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ABSTRACT

A foundation is laid for future analyses of gravitation

theories. This foundation is applicable to any theory formulated

in terms of geometric objects defined on a 4-dimensional spacetime

manifold. The foundation consists of (i) a glossary of fundamental

concepts; (ii) a theorem that delineates the overlap between

Lagrangian-based theories and metric theories; (iii) a conjecture

(due to Schiff) that the Weak Equivalence Principle implies the

Einstein Equivalence Principle; and (iv) a plausibility argument

supporting this conjecture for the special case of relativistic,

Lagrangian-based theories.
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I. INTRODUCTION

Several years ago our group initiatedl a project of constructing theo-

retical foundations for experimental tests of gravitation theories. The

results of that project to date (largely due to Clifford M. Will and Wei-Tou

Ni), and the results of a similar project being carried out by the group of

Kenneth Nordtvedt at Montana State University, are summarized in several

2-4
recent review articles. Those results have focussed almost entirely on

"metric theories of gravity" (relativistic theories that embody the Einstein

Equivalence Principle; see §III below).

By January 1972, metric theories were sufficiently well understood that

we began to broaden our horizons to include nonmetric theories. The most

difficult aspect of this venture has been communication. The basic concepts

used in discussing nonmetric theories in the past have been defined so

vaguely that discussions and "cross-theory analyses" have been rather

difficult. To remedy this situation we have been forced, during these last

11 months, to make more precise a number of old concepts and to introduce many

new ones. By trial and error, we have gradually built up a glossary of

concepts that looks promising as a foundation for analyzing nonmetric theories.

Undoubtedly we shall want to change some of our concepts, and make others

more precise, as we proceed further. But by now our glossary is sufficiently

stabilized, and we have derived enough interesting results using it, that we

feel compelled to start publishing.

This paper presents the current version of our glossary (§§II, III, and

IV), and uses it to outline some key ideas and results about gravitation

theories, both nonmetric and metric (§§V and VI). Subsequent papers will

explore some of those ideas and results in greater depth.
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Central to our current viewpoint on gravitation theories is the follow-

ing empirical fact. Only two ways have ever been found to mesh a set of

gravitational laws with all the classical, special relativistic laws of

physics. One way is the route of the Einstein Equivalence Principle ("EEP")

- (i) describe gravity by one or more gravitational fields, including a

metric tensor gag; (ii) insist that in the local Lorentz frames of ga all

the nongravitational laws take on their standard special relativistic forms.

The second way of meshing is the route of the Lagrangian - (i) take a

special relativistic Lagrangian for particles and nongravitational fields;

(ii) insert gravitational fields into that Lagrangian in a manner that

retains general covariance. The equivalence-principle route always leads

to a metric theory. [Example: General Relativity.] The Lagrangian route

always leads to a "Lagrangian-based theory." [Example: Belinfante-Swihart

Theory (Table IV, later in this paper).] Thus, in the future we expect most

of our attention to focus on metric theories and on Lagrangian-based theories;

and in the nonmetric case we might be able to confine attention to theories

with Lagrangians.

4
Since metric theories are so well understood, it would be wonderful

if one could prove that all nonmetric, Lagrangian-based theories are

"defective" in some sense. A conjecture due to Schiff points to a possible

defect. Schiff's conjecture says: Any complete and self-consistent

theory that obeys the Weak Equivalence Principle ("WEP") must also, un-

avoidably, obey the Einstein Equivalence Principle ("EEP"). (See §III for

precise definitions.) Since any relativistic, Lagrangian-based theory that

obeys EEP is a metric theory, this conjecture suggests that nonmetric,

relativistic, Lagrangian-based theories should always violate WEP.
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The experiments of E6tvbs et al.6 and Dicke et al., 7 with refinements by

Braginsky et al.8 ("ED experiments") are high-precision tools for testing WEP.

Hence, the Schiff conjecture suggests that, if one has a nonmetric, Lagrangian-

based theory, one should test whether it violates the ED experiments. (Such

tests for the Belinfante-Swihart and Naida-Capella theories reveal viola-

tions of ED and WEP. )

In this paper, after presenting our glossary of concepts (§§II, III,

IV), we shall (i) derive a criterion for determining whether a Lagrangian-

based theory is a metric theory ("Principle of Universal Coupling," §V);

and (ii) discuss and make plausible Schiff's conjecture (§VI).

II. CONCEPTS RELEVANT TO SPACETIME THEORIES

This section, together with §§III and IV, presents our glossary of

concepts. To understand these concepts fully, the reader should be familiar

with the foundations of differential geometry as layed out, for example, by

Trautman.10 He should also be familiar with chapter 4 of James L. Anderson's

textbook (cited henceforth as JLA), from which we have borrowed many

concepts. However, he should notice that we have modified slightly some of

JLA's concepts; and we have reexpressed some of them in the more precise

notation and terminology of Trautman and of Misner, Thorne, and Wheeler

("MTW") 12

The concepts introduced in this section apply to any "spacetime theory"

(see below for definition). In §§III and IV we shall specialize to "gravi-

tation theories," which are a particular type of spacetime theory. To make

our concepts clear, we shall illustrate them using 4 particular gravitation

theories: Newton-Cartan Theory (Table I), General Relativity (Table II),
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Ni's Theory (Table III), and Belinfante-Swihart Theory (Table IV). Of these

theories, General Relativity and Ni are metric; Newton-Cartan and Belinfante-

Swihart are nonmetric.

Mathematical Representations of a Theory: Two different mathematical

formalisms will be called "different representations of the same theory" if

they produce identical predictions for the outcome of every experiment or

observation. Here by "outcome of an experiment or observation" we mean the

raw numerical data, before interpretation in terms of theory. Any theory

can be given a variety of different mathematical representations. [Example -

Dicke-Brans-Jordan Theory has 2 "standard" representations: (i) the original

representation, 1617 in which test particles move on geodesics, but the field

equations differ significantly from those of Einstein; (ii) the conformally-

transformed representation, 8 in which the scalar field produces deviations

from geodesic motion, but the field equations are nearly the same as Einstein's.]

A theory can be regarded as the equivalence class of all its representations.

Tables I-IV present particular representations for the theories described

there.

Spacetime Theory: A "spacetime theory" is any theory that possesses a

mathematical representation constructed from a 4-dimensional spacetime manifold

and from geometric objects defined on that manifold. (For the definition of

"geometric object," see §4.13 of Trautman. 10) Henceforth weshall restrict

ourselves to spacetime theories and to the above type of mathematical repre-

sentations. The geometric objects of a particular representation will be

called its variables; the equations which the variables must satisfy will be

called the physical laws of the representation. [Example - General Relativity

(Table II): the physical laws are the Einstein field equations, Maxwell's



equations, the Lorentz force law, ...] [Example - Belinfante-Swihart Theory

(Table IV): the physical laws are Riemann (I) = 0, and the Euler-Lagrange

equations that follow from bf d4x = 0.]

Manifold Mapping Group, MMG: The'MMG is the group of all diffeomorph-

isms of the spacetime manifold onto itself. Each diffeomorphism h, together.

with an initial coordinate system xa(0), produces a new coordinate system

x () = x (h- 1 ). (1)

(Events are denoted by capital script letters.)

Kinematically Possible Trajectory, kpt: Consider a given mathematical

representation of a given spacetime theory. A kpt of that representation is

any set of values for the components of all the variables in any coordinate

system. A kpt need not satisfy the physical laws of the representation.

[Example - General Relativity (Table II): a kpt is any set of functions

I[go(x) = gcr(x); F a(x) = - FZ (x); Zka(rk); ... } in any coordinate system,

which - if they were to satisfy the physical laws - would represent metric,

electromagnetic field, particle world lines, ....] [Example - Belinfante-

Swihart theory (Table IV): a kpt is any set of functions [la(x) = Bc(x),

h o(x) = h (x), A (x), Ha(x) =- H C(x), zJ(?J), aja( j), 1Ja(?J)} in

any coordinate system.

Dynamically Possible Trajectory, dpt: A dpt is any kpt that satisfies

all the physical laws of the representation.

Covariance Group of a Representation: A group r is a covariance group

of a representation if (i) 9 maps kpt of that representation into kpt;

(ii) the kpt constitute "the basis of a faithful realization of s" (i.e.,

no two elements of S produce identical mappings of the kpt);
1 9

(iii) g maps



dpt into dpt. [Example - MMG is a covariance group of each of the representa-

tions of theories in Tables I-IV.] [Example - Electromagnetic gauge trans-

formations, A + A + cp , are a covariance group of the representation of

Belinfante-Swihart Theory given in Table IV.] By complete covariance group,

we shall mean the largest covariance group of the representation. By

generally covariant representation of a theory, we shall mean any representa-

tion for which MMG is a covariance group. (An argument due to Kretschmann
2 0

shows that every spacetime theory possesses generally covariant representa-

tions.) By internal covariance group we shall mean a covariance group that

involves no diffeomorphisms of spacetime onto itself. [Example - Electro-

magnetic gauge transformations are an internal covariance group.] By

external covariance group we shall mean a covariance group that is a sub-

group of MMG. The complete covariance group of a representation need not

be the direct product of its complete (i.e., largest) internal covariance

group with its complete external covariance group. It may also include

transformations that are "partially internal" and "partially external" and

cannot be split up. [Example - When one formulates Newton-Cartan Theory in

a Galilean coordinate representation (Appendix - which should not be read

until one has finished this entire section), one obtains a complete co-

variance group described by Eqs. (A5). The complete external covariance

group consists of (A5a), (A5b). There is no internal covariance group.

The transformations (A5c) are mixed internal-external transformations that

belong to the complete covariance group.]

We shall use the following notation to describe a particular element

G of the covariance group, and its effect. G consists of a diffeomorphism

6



h [Eq. (1), above] and an internal transformation H:

G = (h,H). (2)

If G is an external transformation (element of MMG), then H must be the

identity operation; if G is an internal transformation, then h is the

identity mapping; if G is a mixed internal-external transformation, then

neither h nor H is an identity. Denote the variables of the representation

(geometric objects) by y, and their components at a point s in a coordinate

system [x } by YA(, {x }). The set of functions

YA(, [{xa), B varying and [x ] fixed (3)

constitute a kpt. The diffeomorphism h maps this kpt into YA(9' [x a),

where {x
' } is the coordinate system of Eq. (1). The internal transformation

H converts y into a new geometric object

y' = Hy. (4)

The net effect of G on the kpt (3) is

G: yA(), {x}) Y A(9, (x ) (5)

It is often useful to characterize G by the functions

A {x }) y A(O, {x } ) - yA(h-l , {xa})5YA x Y' .e x'

(6)

A evaluated at x (0) evaluated at x = x ().

Note that these "changes in y" satisfy the relation
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5(Y>)(9 {x}) = [x6YA(#, {x})] (7)

where a comma denotes partial derivative; and also the relation

=YA (HY)A (I (X) (hy){x (g, (xC ) (8)

where hy is the geometric object obtained by "dragging along with h" (p. 86

of Trautman 10).

Of particular interest are the infinitesimal elements of a covariance

group. [From them one can generate that topologically connected component
2
1

of the group which contains the identity. The other connected components -

if any - are typically obtained by bringing into play a discrete set of

group elements (space reflections; time inversions; ...).] Let GE = (he,He)

be a one-parameter family of elements (curve in group space parametrized by

E), with GO the identity. Denote by e the infinitesimal generator of the
0

diffeomorphism h

= [d(hg)/de] = (9)

Then to first-order in Ec, Eq. (8) reduces to

[YA
(
, {x}) = e I ( Y)A (9 {x}) + [d (HY)A(' {x})] I (10)

100

where ~ is the Lie derivative along , (§4.15 of Trautman1O).

Equivalence classes of dpt: Two dpt are members of the same equivalence

class if one of them is mapped into the other by some element of the complete

covariance group. [Example - When MMG is a covariance group, all dpt

that are obtained from each other by coordinate transformations belong to
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the same equivalence class.] If a generally covariant representation

possesses no internal covariance groups, then there is a one-to-one corre-

spondence between equivalence classes of dpt and the geometric, coordinate-

independent solutions of its geometric, coordinate-independent physical laws.

Confined, absolute, and dynamical variables. The variables of a

generally covariant representation split up into 3 groups: "confined vari-

ables," "absolute variables," and "dynamical variables." The confined

variables are those which do not constitute the basis of a faithful realiza-

tion of MMG,. [Examples - All universal constants, such as the charge of the

electron, are confined variables. The world line of a particle is not a

confined variable, as one sees by this procedure: (i) characterize the

world line by the scalar field

(0 if i is not on world line

(proper time of particle) if 8 is on world line.

(ii) Verify that an element of MMG can be characterized uniquely by the

manner in which it maps the set of all kinematically possible world lines

(all functions T(x ) that are zero everywhere except along a curve, and are

monotonic along that curve) into each other. (iii) Thereby conclude that a

particle world line does constitute the basis for a faithful realization of

MMG, and therefore that it is not a confined variable.] To determine whether

an unconfined variable B is absolute or dynamical, perform the following

test: Pick out an arbitrary dpt, and let BA(xa) be the functions which

describe the components of B for that dpt. Then examine each equivalence

class of dpt to see whether these same functions BA appear somewhere in it.

If they do, for every equivalence class and for every choice of the arbitrary

initial dpt, then B is an absolute variable. If they do not, for some
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particular choice of the initial dpt and for some particular equivalence

class, then B is a dynamical variable. Some dynamical variables contain

absolute parts; and some dynamical and absolute variables contain confined

parts. [Example - Belinfante-Swihart Theory (Table IV): lBp is an absolute

variable; had and all the nongravitational variables are dynamical.]

[Example - Ni's Theory (Table III): B and t are absolute variables; , ,

and g are dynamical. Although r is dynamical, it contains an absolute part

- the projection of 4 on dt (i.e., 4t lkT).) The remaining, "spatial"

part of + ( * + 4ttl adt) is fully dynamical. Although t is absolute,

it contains a confined part - its "origin," or equivalently, its value at

some fixed fiducial event 0o. One can remove this confined part from t by

passing from t to the 1-form field dt.] [Example - General Relativity

(Table II): All the unconfined variables are dynamical, and they contain

no absolute parts. It is this feature that distinguishes general relativity

from almost all other theories of gravity (see JLA 1 also chapter 17 of MTW,

where absolute variables are called "prior geometry").] [Example - Newton-

Cartan Theory: In the representation of Table I, t and y are absolute vari-

ables; V is dynamical. As in Ni's Theory, the origin of t is a confined

variable and can be split off by passing from t to dt. Although the co-

variant derivative V is dynamical, it contains absolute parts. A decomposi-

tion of V into its absolute and dynamical parts is performed in the Appendix

[Eq. (Ale)]. After that decomposition the theory takes on a new mathematical

representation with absolute variables I, y, D, and dynamical variables 0 and

V.]

Irrelevant variables: A set of variables of a generally covariant re-

presentation is called irrelevant if (i) its variables are not coupled by
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the physical laws to the remaining variables of the representation; and

(ii) its variables can be eliminated from the representation without altering

the structure of the equivalence classes of dpt and without destroying general

covariance. A variable that is not irrelevant is called "relevant." Some

variables contain both relevant and irrelevant parts. [Example - The gauge

of the electromagnetic vector potential is irrelevant. So is any other

variable that can be forced to take on any desired set of values by imposing

an appropriate internal covariance transformation.] [Example - In Ni's

Theory (Table IV) and Newton-Cartan Theory (Table I) the origin of universal

time t is an irrelevant variable.]

Fully reduced, generally covariant representation: A generally co-

variant representation is called "fully reduced" if (i) it contains no

irrelevant variables, (ii) its dynamical variables contain no absolute parts,

and (iii) its dynamical and absolute variables contain no confined parts.

[Example - Newton-Cartan Theory: The representation of Table I is generally

covariant, but not fully reduced. To reduce it one must follow the procedure

of the Appendix: (i) remove the irrelevant origin of t by passing from t

to ? = dt; (ii) split V into its absolute and dynamical parts. The resulting

representation is not quite fully reduced because it possesses the internal

covariance transformation (A3'a) with an associated, irrelevant "gauge

arbitrariness" in D and D. When one removes that irrelevance by fixing the

"gauge" once and for all (e.g., by requiring, for an island universe, that

{B7} = 0 in any Galilean frame where the total 3-momentum vanishes), then

one obtains a fully reduced representation.]

Boundary conditions, prior geometric constraints, decomposition

equations, and dynamical laws: In a given mathematical representation of
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a given theory, the physical laws break up into four sets: (i) boundary

conditions - those laws which involve only confined variables; (ii) prior

geometric constraints2 2 - those which involve absolute variables and possibly

also confined variables, but not dynamical variables; (iii) decomposition

equations - those which express a dynamical variable algebraically in terms

of other variables; (iv) dynamical laws - all others. [Example - Ni's

Theory (Table III): Eqs. 3a,b are prior geometric constraints; Eq. 3c is

a decomposition equation; and the equations that follow from the variational

principle are all dynamical. If one augments the theory by cosmological

demands that r and cp go to zero at spatial infinity, those demands are

boundary conditions.] [Example - General Relativity (Table II): All physical

laws are dynamical.] [Example - Belinfante-Swihart Theory (Table IV):

Riemann (n) = 0 is a prior geometric constraint; the equations obtained from

the variational principle are dynamical.] [Example - Newton-Cartan Theory

(Table I): In the mathematical formulation of Table I, 3a,b,c,d are all

dynamical laws. One has the "feeling," however, that they "ought not to be"

dynamical, because they involve only gravitational fields; they make no

reference to any source of gravity. Only 3e contains a source, so only it

"ought to be" dynamical. The failure of one's "ought-to" intuition results

from one's failure to split V up into its absolute and dynamical pieces.

Such a split (Appendix) results in a new mathematical formulation of the

theory, with just one dynamical gravitational law: (Alf), which is equivalent

to 3e of Table I. Of the other gravitational equations in the new formulation,

(Ala,b,c,d) are prior geometric constraints; and (Ale) is a decomposition

equation.]

Symmetry group: Let G be an element of the complete covariance group
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of a representation. Examine the change produced by G in every variable B

that (i) is absolute, and (ii) has had all irrelevant, confined parts removed

from itself. If

5BA(, {xa }) = 0 at all q and for all coordinate systems {x } (12)

for every such B. then G is called a symmetry transformation. Any group of

symmetry transformations is called a symmetry group; the largest group of

symmetry transformations is called the complete symmetry group of the repre-

sentation. [Note: that component of the complete symmetry group which is

topologically connected to the identity is generated by infinitesimal trans-

formations. One can find all the infinitesimal generators by solving Eqs.

(10) and (12) for I, and for (dH /de) = O.] [Another note: if the absolute

variables B are all tensor or affine-connection fields, then ;B are all

tensor fields, so

(NBA = 0 for all g in one coordinate system)

U (BA = 0 for all g in every coordinate system). (13)

Hence, in this case one can confine attention to any desired, special co-

ordinate system when testing for symmetry transformations.] [Example -

Belinfante-Swihart Theory (Table IV): The complete symmetry group consists

of the Poincar4 group (inhomogeneous Lorentz transformations), together with

the electromagnetic gauge transformations. One proves this most easily in

a global Lorentz frame of q; one can restrict calculations to this frame be-

cause the absolute variable ~ is a tensor.] [Example - Ni's Theory (Table

III): Symmetry transformations are analyzed most easily in a coordinate

0
system where x = t = (universal time), and ag has the Minkowskii form.

Any symmetry transformation must leave br-- = St = (Xa tA ) = 0.
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Thus, the symmetry transformations are (i) electromagnetic gauge transforma-

a' a a a
tions; (ii) spacetime translations, x = x + a with a a constant; (iii)

time-independent spatial rotations, x = x0 and x = RJxk with II Rj
k II a

rotation matrix; (iv) spatial reflections.] [Example - General Relativity

(Table II): There are no absolute variables, so the complete

covariance group and the complete symmetry group are identical; they are the

MMG plus electromagnetic gauge transformations.] [Example - Newton-Cartan

Theory: see Appendix.] An external symmetry group is a symmetry group that

is a subgroup of MMG. An internal symmetry group is a symmetry group that

involves no diffeomorphisms of spacetime onto itself. The complete symmetry

group need not be the direct product of the external symmetries and the

internal symmetries; it may also include symmetries that are partially internal

and partially external and cannot be split up. [Example - Newton-Cartan Theory

in the representation of the Appendix: Transformations (A5c) are partially

internal and partially external.]

III. GRAVITATION THEORIES AND EQUIVALENCE PRINCIPLES

We now turn from general spacetime theories to the special case of

gravitation theories. We cannot discuss gravitation theories without making

somewhat precise the distinction between gravitational phenomena and non-

gravitational phenomena. There seem to be a variety of ways in which one

might make this distinction. Somewhat arbitrarily, but after considerable

thought, we have chosen to regard as "gravitational" those phenomena which

are either absolute, or "go away" as the amount of mass-energy in the

experimental laboratory decreases. In other words, gravitational phenomena

are either prior geometric effects, or effects generated by mass-energy.

This means that the flat background metric D of Belinfante-Swihart Theory is



a gravitational field; the metric of general relativity is a gravitational

field; but the torsion of Cartan's modified general relativity,2 3 which is

generated by spin rather than by mass-energy, is not a gravitational field.

We try to make the above statements more precise by introducing the

following concepts:

Local test experiment: A "local test experiment" is any experiment,

performed anywhere in spacetime, in the following manner. A shield is set

up around the experimental laboratory. When analyzed using the concepts

and experiments of special relativity, this shield must have arbitrarily

small mass-energy and must be impermeable to electromagnetic fields, to

neutrino fields, and to real (as opposed to virtual) particles. The experi-

ment is performed, with freely falling apparatus, in the center of the

shielded laboratory, in a region so small that inhomogeneities in all

external fields are unimportant. One makes sure that external inhomogeneities

are unimportant by performing a sequence of experiments of successively

smaller size (with size of shield and external conditions unchanged), until

the experimental result asymptotes to a constant value. [Examples - The

experiment might be a local measurement of the electromagnetic fine-structure

constant, or a Cavendish experiment with two lead spheres, or a series of

Cavendish experiments involving lead spheres and small black holes.]

Local, nongravitational, test experiment: A "local, nongravitational

test experiment" is a local test experiment with these properties: (i)

When analyzed in the center-of-mass Galilean frame, using the Newtonian

theory of gravity, and using all forms of special relativistic mass-energy

as sources for the Newtonian potential i, the matter and fields inside the
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shield must produce a 0 with

lo (at any point inside shield) - o (at any point on shield)| << 1.

(ii) When the experiment is repeated, with successively smaller mass-energies

inside the shield (as deduced using special relativity theory) - but leaving

unchanged the characteristic sizes, intrinsic angular momenta, velocities,

and charges (electric, baryonic, leptonic, ...) of its various parts - the

experimental result does not change. [Examples: A measurement of the

electromagnetic fine-structure constant is a local, nongravitational test

experiment; a Cavendish experiment is not.]

Gravitation theory: A "gravitation theory," or "theory of gravity" is

any spacetime theory which correctly predicts Kepler's laws for a binary

star system that (i) is isolated in interstellar space ("local test experi-

ment"!); (ii) consists of 2 "normal stars" (stars with {~{ << 1 throughout

their interiors); and (iii) has periastron p large compared to the stellar

radii, p >> R. The theory's predictions must not deviate from Kepler's laws

by fractional amounts exceeding the larger of | |maxi and p/R. [Note: To

agree with experiment in the solar system, the theory will have to reproduce

Kepler much more accurately than this.'] [Examples - The theories in Tables

I-IV are all gravitation theories.]

In the absence of gravity: The phrase "in the absence of gravity" means

"when analyzing any local, nongravitational test experiment, for which the

shield is spherical, has arbitrarily large radius, and is surrounded by a

spherically symmetric sea of matter." "To turn off gravity" means "to pass

from a generic situation to a situation where gravity is absent." "To turn

on gravity" means "to pass from a situation where gravity is absent to a

generic situation."
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Gravitational field: In a given representation of a given gravitation

theory, any unconfined, relevant variable B is a "gravitational field" if,

in the absence of gravity, it reduces to a constant, or to an absolute vari-

able, or to an irrelevant variable. In particular, every absolute, relevant

variable is a gravitational field. [Example - General Relativity (Table II):

for local, nongravitational test experiments, analyzed using Fermi-Normal

coordinates, one gets the same result whether one uses the correct g or one

replaces it by a flat Minkowskii metric r (absolute variable). Thus, g

is a gravitational field.] [Example - Newton-Cartan Theory (Table I): t and

y are already absolute, so they are gravitational fields; V can be replaced

by the Riemann-flat D of the appendix without affecting local, nongravitational

experiments, so it is also a gravitational field.] [Example - Cartan's modi-

23
fication of general relativity, with torsion : The torsion is generated by

spin. Therefore, it must remain a dynamical variable in analyses of local,

nongravitational test experiments. It is not a gravitational field.]

Dicke's2 Weak Equivalence Principle (WEP)25: The "Weak Equivalence

Principle" states that "If an uncharged test body is placed at an initial

event in spacetime, and is given an initial velocity there, then its sub-

sequent world line will be independent of its internal structure and

composition." Here by "uncharged test body" is meant an object (i) that is

shielded, in the sense used above in defining "local test experiments";

(ii) that has negligible self-gravitational energy, when analyzed using

Newtonian theory; (iii) that is small enough in size so its coupling to

inhomogeneities of external fields can be ignored. These constraints

guarantee that any test of WEP is a local, nongravitational test experiment.

WEP is called "Universality of Free Fall" by MTW, and is called
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"equality of passive and inertial masses" by Bondi.2 6

6 7 8
The experiments of Eotvos et al., Dicke et al., and Braginsky et al.,

are direct tests of WEP. Braginsky's experiment, which is the most recent

and most accurate, shows that the relative acceleration of an aluminum test

body and a platinum test body, placed in the sun's gravitational field

at the location of the Earth's orbit, is

(Relative Acceleration) < 0.9 x 102 (G rorbit

[95% confidence]

= 0.5 X 10-1 2 cm/sec2

If WEP is correct, then the world lines of test bodies are a preferred

family of curves (without parametrization) filling spacetime - with a single

unique curve passing in each given direction through each given event. But

WEP does not guarantee that these curves can be regarded as geodesics of

the spacetime manifold; only if these curves have certain special properties

can they be geodesics.2 7

Einstein Equivalence Principle ("EEP"). The Einstein Equivalence

Principle states that "(i) WEP is valid, and (ii) the outcome of any local,

nongravitational test experiment is independent of where and when in the

universe it is performed, and independent of the velocity of the (freely

falling) apparatus." [Example - dimensionless ratios of nongravitational

physical constants must be independent of location, time, and velocity.]

The experimental evidence supporting EEP is reviewed in §§38.5 and 38.6 of

MTW.1 2

Dicke's Strong Equivalence Principle ("SEP"): SEP states that "(i) WEP

is valid, and (ii) the outcome of any local test experiment -- gravitational or

nongravitational - is independent of where and when in the universe it is
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performed, and independent of the velocity of the (freely falling) apparatus."

[Example - Dicke-Brans-Jordan Theory, with its variable "gravitational

constant" as measured by Cavendish experiments, satisfies EEP but violates

SEP.]

Two types of effects can lead to a breakdown of SEP: "preferred-

location effects" and "preferred-frame effects." Perform a local test experi-

ment, gravitational or nongravitational. If the experimental result depends

on the location of the freely falling experimenter, but,not on his velocity

there, the phenomenon being measured is called a preferred-location effect.

If it depends on the velocity of the experimenter, it is called a preferred-

frame effect. [Examples - A cosmological time variation in the "gravita-

tional constant" (as measured by Cavendish experiments) is a preferred-

location effect. Anomalies in the Earth's tides and rotation rate due to

the orbital motion of Earth around Sun and Sun through galaxy2 8 are preferred-

frame effects.]

A theory of gravity obeys SEP if and only if it obeys EEP, and it

possesses no preferred-frame or preferred-location effects.

Any theory for which the complete external symmetry group excludes

boosts will presumably exhibit preferred-frame effects. But preferred-frame

effects can also show up when boosts are in the symmetry group. [Example.-

The vector-tensor theory of Nordtvedt, Hellings, and Will exhibits

preferred-frame effects but possesses MMG as a symmetry group.] For further

discussion see "Metric theory of gravity," below.
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IV. PROPERTIES AND CLASSES OF GRAVITATION THEORIES

Completeness of a theory: A gravitation theory is "complete" if it

makes a definite prediction (not necessarily the correct prediction') for

the outcome of any experiment that current technology is capable of perform-

ing. (Standard quantum mechanical limitations on the definiteness of the

prediction are allowed.) To be complete, the theory must predict results

for nongravitational experiments as well as for gravitational experiments.

Of course, it can do so only if it meshes with and incorporates (perhaps in

modified form) all the nongravitational laws of physics. If a theory is

complete so far as all "classical" experiments are concerned, but has not

yet been meshed with the quantum mechanical laws of physics, we shall call

it classically complete.

Self-consistency of a theory: A gravitation theory is "self-consistent"

if its prediction for the outcome of every experiment is unique - i.e., if,

when one calculates the prediction by different methods, one always gets the

same result.

Reference 2 discusses completeness and self-consistency in greater

detail, and gives examples of incomplete theories and self-inconsistent

theories.

Relativistic theory of gravity: A theory of gravity is "relativistic"

if it possesses a representation ("relativistic representation") in which,

in the absence of gravity, the physical laws reduce to the standard laws

of special relativity. [Examples - General Relativity, Ni's Theory, and

Belinfante-Swihart Theory are relativistic; Newton-Cartan Theory is not,

nor is Cartan's torsion-endowed modification of general relativity. 
3
]
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Metric theory of gravity: By "metric theory" we mean any theory that

possesses a mathematical representation ("metric representation") in which

(i) spacetime is endowed with a metric; (ii) the world lines of test bodies

are the geodesics of that metric; and (iii) EEP is satisfied, with the non-

gravitational laws in any freely falling frame reducing to the laws of

special relativity.29 Any theory or representation that is not metric will

be called "nonmetric." [Examples - General Relativity and Ni's Theory are

metric theories, and the representations given in Tables II and III are

metric; Belinfante-Swihart Theory is nonmetric, but can be made metric by

suitable modifications. 1
4 3 0 Newton-Cartan Theory is nonmetric. Dicke-

Brans-Jordan Theory is metric; the representation of Ref. 16 is a metric

representation; the representation of Ref. 18 ("conformally transformed

representation"; "rubber meter sticks") is nonmetric.]

In any metric theory, the metric that enters into EEP is called the

"physical metric." All other gravitational fields are called "auxiliary

gravitational fields." Relevant auxiliary scalar fields typically produce

preferred-location effects; other relevant auxiliary gravitational fields

(vector, tensor, ...) typically produce preferred-frame effects. This is

true independently of whether or not the auxiliary fields are absolute

variables or are dynamical - i.e., independently of whether the complete

external symmetry group is MMG or is more restrictive.

Clearly, every metric theory is relativistic; but relativistic theories

need not be metric [example: Belinfante-Swihart]. Ni has given a partial

catalogue of metric theories. Will and Nordtvedt3 2 have developed a

"parametrized post-Newtonian formalism" for comparing metric theories with

each other and with experiment.
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Prior geometric theories. Any gravitation theory will be called a

"prior geometric theory" if it possesses a fully reduced, generally covariant

representation that contains absolute variables. [Examples - Newton-Cartan

Theory, Ni's Theory, and Belinfante-Swihart Theory are prior geometric;

General Relativity and Dicke-Brans-Jordan Theory are not.]

Lorentz symmetric representations and theories. A generally covariant

representation is called "Lorentz symmetric" if its complete external

symmetry group is the Poincare group - with or without inversions and time

reversal. We suspect that, for any theory, all fully reduced, generally

covariant representations must have the same complete external symmetry

group. Assuming so, we define a theory to be "Lorentz symmetric" if its

fully reduced, generally covariant representations are Lorentz symmetric.

[Example - General Relativity is not Lorentz symmetric; the complete external

symmetry group of its fully reduced, standard representation is too big - it

is MMG rather than Poincare.] [Example - Ni's Theory is not Lorentz sym-

metric; as with Newton-Cartan, the complete external symmetry group is too

small.] [Example - Belinfante-Swihart Theory is Lorentz symmetric.]

Elsewhere in the literature one sometimes finds Lorentz symmetric

theories called "Lorentz invariant theories" or "flat-space theories."

Lagrangian-Based Representations and Theories. A generally covariant

representation of a spacetime theory is called Lagrangian-based if (i) there

exists an action principle that is extremized with respect to variations

of all dynamical variables - but not with respect to variations of absolute

or confined variables, and (ii) from the action principle follow all the

dynamical laws but none of the other physical laws. The issue of whether

the other physical laws (boundary conditions, decomposition equations, and
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prior geometric constraints) are imposed before the variation, or afterwards,

does not affect the issue of whether the representation is Lagrangian-based.

A theory is called Lagrangian-based if it possesses a generally covariant,

Lagrangian-based representation. [Examples - General Relativity, Ni's Theory,

and Belinfante-Swihart Theory are all Lagrangian-based.]

The Lagrangian density f of a Lagrangian-based representation (which

appears in the action principle in the form fd d4x = 0) can be split up

into two parts; % = P G + ZNG The gravitational part zG is the largest

part that contains only gravitational fields. The nongravitational part NG

is the rest.

V. UNIVERSAL COUPLING

We turn attention, now, from our glossary of concepts to some applica-

tions. We begin in this section by analyzing the overlap between metric

theories and relativistic, Lagrangian-based theories.

As motivation for the analysis, consider any relativistic representation

of a relativistic theory of gravity. In the absence of gravity that repre-

sentation reduces to special relativity - so, in particular, it possesses a

flat Minkowskii metric oBP. By continuity one expects the representation

to possess, in the presence of gravity, at least one second-rank, tensor

gravitational field Ad that reduces to Aid as gravity is turned off.

Indeed, this is the case for all relativistic theories with which we are

familiar. [Example - General Relativity: the curved-space metric gg

reduces to Alp when gravity is turned off.] [Example - Ni's theory: there

are a variety of second-rank, symmetric tensor gravitational fields that

reduce to na. They include the flat background metric BAd, the physical
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metric ga, any tensor field of the form [1 + f(q)] aB where f(cp) is an

arbitrary function with f(O) = 0, etc.] [Example - Belinfante-Swihart

Theory: Bal' lap + h , rn (l+ 3h ) - 17h "h f all reduce to d when

gravity is turned off.]

Next consider any Lagrangian-based, relativistic theory. Being rela-

tivisitic, it must possess a generally covariant, Lagrangian-based repre-

sentation in which, as gravity is turned off, the nongravitational part of

the Lagrangian NG approaches the total Lagrangian of special relativity.

Adopt that representation. Then, in the presence of gravity NG will pre-

sumably contain at least one second-rank, symmetric, tensor gravitational

field ~ that reduces to lar as gravity is turned off. Roughly speaking,

if NG contains precisely one such *up and contains no other gravitational

fields, then the theory is said to be "universally coupled."3 3

More precisely, we say that a Lagrangian-based, relativistic theory is

universally coupled if it possesses a representation ("universally coupled

representation") with the following properties: (i) The representation is

generally covariant and Lagrangian-based. (ii) NG contains precisely one

gravitational field, and that field is a second-rank, symmetric tensor *Ai

with signature +2 throughout spacetime. (iii) In the limit as gravity is

turned off a becomes a Riemann-flat second-rank, symmetric tensor field

nap; and whenever a is replaced by such an ac' q NG becomes the total

Lagrangian of special relativity. (iv) The prediction for the result of any

local, nongravitational experiment anywhere in the universe is unchanged

when, throughout the laboratory, one replaces Ad by a Riemann-flat second-

rank, symmetric tensor.

The following theorem reveals the key role of universal coupling as a
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link between Lagrangian-based theories and metric theories: Consider all

Lagrangian-based, relativistic theories of gravity. Every such theory that

is universally coupled is a metric theory; and, conversely, every metric

theory in this class is universally coupled.

Proof: Let A be a Lagrangian-based, relativistic, universally coupled

theory. Adopt a universally coupled representation. Use that representa-

tion to analyze any local, nongravitational test experiment anywhere in

spacetime. Use the mathematical tools of Riemannian geometry, treating the

unique gravitational field Ap that appears in eNG as a metric tensor. In

particular, introduce a Fermi-Normal coordinate system (a = , Py O at the

center of mass of the laboratory). Condition (iv) for universal coupling

guarantees that the predictions of the representation will be unchanged if we

replace AB by qAp throughout the laboratory. Do so. Then condition (iii)

for universal coupling guarantees that zeM is the total Lagrangian of

special relativity. The dynamical laws that follow from S(;eG + NG)d
4
x = O

by varying all nongravitational variables also follow from S dNGd x = 0; in

this representation and coordinate system they are the laws of special rela-

tivity. Thus, the outcome of the local, nongravitational test experiment is

governed by the standard laws of special relativity, irrespective of the

location and velocity of the apparatus. This guarantees that theory A is a

metric theory.

Proof of converse: Let ; be a Lagrangian-based, metric theory. Adopt

a Lagrangian-based, metric representation. Since all unconfined, nongravi-

tational variables are dynamical, they must all be varied in bjSrd4x = 0.

Moreover, since they appear in NG but not in eG, their Euler-Lagrange

equations are obtained equally well from G5~JNGd x = O. Call those



Euler-Lagrange equations (obtained by varying all unconfined, nongravitational

variables in F5fNGd4x= 0) the "nongravitational laws." Let a freely falling

observer anywhere in spacetime, with any velocity, perform a local, nongravi-

tational test experiment. Analyze that experiment in a local Lorentz frame

of the physical metric gag using the above nongravitational laws. Because the

theory is metric, the predictions must be the same as those of special

relativity. Hence, the nongravitational laws - in any local Lorentz frame

of g anywhere in the universe - must reduce to the laws of special rela-

tivity. This is possible only if (i) those laws - and hence also NG -

34
contain no reference to any gravitational field except g , and (ii) eNG

is some version of the total special relativistic Lagrangian, with U

replaced by gag. These properties of NG' plus the definition of "metric

theory," guarantee directly that the 4 conditions for universal coupling

are satisfied. Hence, theory J is universally coupled. QED.

VI. SCHIFF'S CONJECTURE

Schiff's conjecture
5

states that any complete and self-consistent

gravitation theory that obeys WEP must also, unavoidably, obey EEP.

General relativity is an example. It endows spacetime with a metric;

it obeys WEP by predicting that all uncharged test bodies fall along geo-

desics of that metric, with each geodesic world line determined uniquely

by an initial event and an initial velocity; it achieves completeness by

demanding that in every local, freely falling frame the nongravitational

laws of physics take on their standard special relativistic forms; and by

this method of achieving completeness, it obeys EEP.

Newton-Cartan Theory is another example. It was complete and self-
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consistent within the framework of nineteenth century technology. It endows

spacetime with an affine connection; it obeys WEP by predicting that all

uncharged test bodies fall along geodesics of that affine connection, with

each geodesic world line determined-uniquely by an initial event and an

initial velocity; it achieves completeness by demanding that in every local,

freely falling frame the laws of physics take on their standard nongravita-

tional Newtonian form; and by this method of achieving completeness, it

obeys EEP.

Before accepting Schiff's conjecture as plausible, one should search the

literature for a counterexample - i.e., for a theory of gravity which somehow

achieves completeness, and somehow obeys WEP, but fails to obey EEP. Several

Lagrangian-based theories which one finds in the literature might conceiv-

ably be counterexamples, but they have not been analyzed with sufficient care

to allow any firm conclusion. Subsequent papers 1 4 will show that the most

likely counterexample, Belinfante-Swihart Theory, actually fails to satisfy

WEP, violates the ED experimental results, and is thus not a counter-

example at all.

One can make Schiff's conjecture seem very plausible within the frame-

work of relativistic, Lagrangian-based theories (the case of greatest

interest; see §I) by the following line of argument.

Consider a Lagrangian-based, relativistic theory, and ask what con-

straints WEP places on the Lagrangian. WEP probably forces NG to involve

one and only one gravitational field (and that field must, of course, be a

second-rank symmetric tensor gf which reduces to a far from all gravita-

ting bodies). If NG were to involve, in addition, some other gravitational

field cp, then to satisfy WEP g(B, and cp would have to conspire to produce
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identically the same gravitational accelerations on a test body made largely

of rest mass, as on a body made largely of electromangetic energy, as on a

body made largely of internal kinetic energy, as on a body made largely of

nuclear binding energy, as on a body made largely of .... This seems

implausible, unless gog and cp appear everywhere in qG in the same "mutually

coupled" form f(c) .g~a - in which case one can absorb f(p) into ga and end

up with just one gravitational field in 4NG. Thus, it seems likely that WEP

forces eNG to involve only gaB. This means that the theory is universally

coupled - and, hence, by the theorem of §V, it is a metric theory.

This argument convinces us that Schiff's conjecture is probably correct,

when one restricts attention to Lagrangian-based, relativistic theories.

And it is hard to see how the conjecture could fail in other types of

theories.

A formal proof of Schiff's conjecture for a more limited class of

theories will be given in a subsequent paper.9
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APPENDIX

ABSOLUTE AND DYNAMICAL FIELDS IN NEWTON-CARTAN THEORY

In order to separate the absolute gravitational fields of Newton-Cartan

Theory from the dynamical fields, one must change mathematical representa-

tions. In place of the representation given in Table I, one can adopt the

following:

1. Gravitational fields:

a. Symmetric covariant derivatives (2 of them) .................. D, V

b. Scalar gravitational field .................................... 0

c. Spatial metric (defined on vectors w such that (J,w)= O) ...... 

d. Universal 1-form .................................. ............. 

[Note: t has been replaced by P in order to remove from the theory

the "irrelevant" choice of origin of universal time; see "irrelevant

variables" in §IIA. D and ~ will turn out to be absolute and dynamical

parts of V; see below.]

2. Gravitational field equations:

a. P is perfect: dE = 0. (Ala)

b. ? is covariantly constant: DE = 0. (Alb)

c. D is flat: Riemann (D) = O. (Alc)

d. Compatibility of D and z: D (vw) = (D vn)w+ v' (D w)

for any vector n, and for any (Ald)

spatial vectors v,w.

e. Decomposition of V: V = D+ A , where A is the

spatial vector "dual" to do: (Ale)

(d~,w~) - Aw for all spatial w.

f. Field equation for (D: D-A = (divergence of A) 4Jltp. (Alf)
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3. Influence of gravity on matter:

Same as in part 4 of Table I where t is any scalar field such that 3= dt.

To prove that this and the formalism given in Table I are different

mathematical representations of the same theory, we can show that they become

identical in Galilean coordinate frames. The reduction of the formalism of

12Table I to a Galilean frame is performed in Exercise 12.6 of MTW. The

reduction of the above formalism proceeds as follows: (i) Let t be any

particular scalar field such that 4 = dt. (ii) At some particular event in

spacetime pick a set of basis vectors {e} such that (a) el, e2, e3 are

spatial, (<, ej) = 0, and orthonormal, ej 'ek = .jk; (b) e0 is not spatial,

(eo) A O0. (iii) From each vector e construct a vector field on all of

spacetime by parallel transport with D. The resulting field is unique be-

cause D is flat; and it has De = 0. Hence, the commutators vanish

[e e] = D e - D e = O.

This guarantees the existence of a coordinate system {xa } in which e = a/x

(iv) The condition (valid in any coordinate frame) (dx ; ej) = O, when

compared with (dt, ej) = 0, guarantees that the surfaces of constant x0 and

constant t are identical; i.e., t = f(x ). Moreover, because the connection

coefficients of D vanish in this coordinate frame,

PY - (dx , DY e) 0 O (A2a)

the condition D dt 0 becomes 6at/axaxx = 0; in particular a t/axO ax = O,

0 0 0
so t = ax +b for some constants a and b. Renormalize x so t = x (v) In

the resulting coordinate frame p, y, and A have components

00 P = 0 7jk = bjk A = O, A: = /x; (A2b)
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so the field equation for 0 is Poisson's equation

2~/axJaxJ = 4p; (A2c)

and the connection coefficients of V are r = A t Pt a' i.e.,

r00 = -6/6xj, all other r vanish. (A2d)

This Galilean coordinate version of the above formalism is identical to

the Galilean coordinate version of the formalism of Table I, as given in

chapter 12 of MTW.1
2

Thus, the two formalisms are different mathematical

representations of the same theory.

In the above formalism it is easy to verify that D, A, and Z are abso-

lute gravitational fields, while 0 is a dynamical gravitational field. In

fact, D, &, and Z are the absolute parts of V; o is its dynamical part;

Eqs. (Ala,b,c,d) are the prior geometric constraints of the theory; Eq. (Ale)

is the decomposition of V into its absolute and dynamical parts; and Eq. (Alf)

is the dynamical field equation for (D.

The covariance group for the above mathematical representation of

Newton-Cartan Theory is slightly larger than that for the representation of

Table I. For Table I the covariance group is MMG. For the above representa-

tion it is the direct product of MMG with a group of internal covariance

transformations. In a Galilean frame the internal transformations are

{00} {0}' = {00} + aJ(t) = aj(t),

* c' = o -a(t)xj + constant, (A3)

all other variables, including r f', left unchanged.

31

I I



In coordinate-free form the internal transformations are

D - D' = D + a ® 3 Q ,

+ (' = - b, (A3'a)

where a is any vector field which is covariantly constant in the surfaces of

D a = a = 0 for all spatial vectors w; (A3'b)

and where b is any scalar field such that

(db, w) = a.w for all spatial vectors w. (A3'c)

The complete symmetry group for the above mathematical representation

of Newton-Cartan theory is best analyzed in a Galilean coordinate system.

(Because the absolute objects are all tensors or affine connections, one can

restrict attention to a single coordinate system; see Eq.(13) and associated

discussion in the text.) The symmetry transformations are those which leave

57jk = "'a = . (A=)

Clearly, the symmetry transformations include (i) spacetime translations

a 1' a a a
x + x = x + c where c are constants, (A5a)

and (ii) spatial rotations

xj + xj = RJkxk , IIRjkll a constant rotation matrix. (A5b)

They also include (iii) the combination of an arbitrary time-dependent

spatial translation with a carefully matched internal covariance
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transformation

i
j

x
j
ix -*. = x

j + cJ(t), where cj are arbitrary functions of t,

{} {} = OJO} + t(t)oo tool = -00 c(t)x

=

(A5c)

where cJ = d
2
cJ/dt

2
.

Note that these symmetry transformations are precisely the transformations

that lead from one Galilean coordinate system to another (cf. §12.3 of

MTW12 ).

33



TABLE I. Newton-Cartan Theory

1. Reference for this version of the theory:

Chapter 12, and especially Box 12.4 of MTW12

2. Gravitational fields:

a. Symmetric covariant derivative (affine connection) ............. V,

b. Spatial metric ......... .............................. ....... Y,

c. Universal time ........................................ t.

3. Gravitational field equations:

a. V dt = 0.

b. (u,n)w 0 o

c.

where R is the curvature operator formed from V; u and n are arbi-

trary vectors; w is any spatial vector ((dt,w)= 0).

R(v,w) = o

for every pair of spatial vectors, v,w. [Note: a,b,c guarantee

the existence of the metric, y or "-", defined on spatial vectors

only, such that

u(W'Y) = (V W)-V + w-(V.v)

for any u and for any spatial w,v.]

d. v. [(-u,n)w] = w. [-(u,n)v]

for all spatial v,w and for any un, where

(unn)p = ½ [,(pn)u + R(p,u)n].

e. Ricci = 4vp dt ® dt,

where Ricci is the Ricci tensor formed from V, and p is mass density.
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4. Influence of gravity on matter:

a. Test particles move along geodesics of V, with t an affine parameter.

b. Each test particle carries a local inertial frame with orthonormal,

parallel-transported spatial basis vectors (e = k u = O)

and with eO = d/dt = (tangent to geodesic world line).

c. All the nongravitational laws of physics take on their standard,

Newtonian forms in every local inertial frame.
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TABLE II. General Relativity Theory

1. Reference: Standard textbooks, e.g., MTW1 2

2. Gravitational field:

The metric of spacetime ..........................................

3. Gravitational field equations:

G = 8n T,

where G is the Einstein tensor formed from g, and T is the stress-

energy tensor.

4. Influence of gravity on matter:

a. Test particles move along geodesics of g, with proper time T an

affine parameter.

b. Each test particle carries a local inertial ("local Lorentz") frame

with parallel-transported, orthonormal basis vectors ea, and with

e! = d/dr = (tangent to geodesic world line).

c. All the nongravitational laws of physics take on their standard,

special-relativistic forms in every local inertial frame (aside from

delicacies associated with "curvature coupling"; see chapter 16

of MTW)
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TABLE III. Ni's "New Theory"

1. Reference: Ni.

2. Gravitational fields:

a. Background metric (signature +2) ............................... q,

b. Universal time ........................................ t,

c. Scalar field ................................................... 

d. One-form field .................................................

e. Physical metric ...................................... g.

3. Gravitational field equations:

a. Background metric is flat,

Riemann (a) = 0.

b. "Meshing" of i, t, V:

tlcz = 0,

tlic tlp Tf = -1,

thlan Tp [q = 0.

where "I" denotes covariant derivative with respect to A, and

Ilfl is the inverse of l Rij.ll 

c. g = f2(0) + [f2 (cp) - fl(c)] dt Q dt - : dt - dt ® -.

Here fl(cp) and f
2
(cp) are arbitrary functions to be determined once-

and-for-all by experiment.

d. Field equations for cp and * follow from the action principle

d 4x = 0, where e = 4NG + = G'

1 I1 P,7 5
G S }e [f(x) i 1] [7lIF t cz1c8]2 ' I 

+ [f3 (CP) + 1] [aIca tI 01]2 t 7_ ;
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e is a constant to be determined by experiment, -NG = LNG/- I and LNG

is the standard Lagrangian density of special relativity with the

metric of special relativity replaced by g.

4. Influence of gravity on matter:

Governed by action principle bS Md x = O, where particle world lines

and nongravitational fields are varied.
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TABLE IV. Belinfante-Swihart Theory

14
1. References: Summary and analysis of the theory by Lee and Lightman ;

original papers by Belinfante and Swihart.15

2. Gravitational fields:

a. Metric ......................................................... ,

b. Symmetric second-rank tensor ................................... h.

3. Nongravitational variables:

a. Electromagnetic vector potential ............................... A,

b. Electromagnetic field tensor (second-rank, antisymmetric)....... H,

c. World line of particle J, parametrized in an arbitrary

manner .................................................... z )

[in a given coordinate system, world line is x z

d. Velocity vector of particle J (defined along world line) .. aJ(hJ),

e. Momentum vector of particle J (defined along world line) .. nJ(?J).

4. Gravitational field equations:

a. Metric is flat: g.ipen (I) = 0,

b. Field equation for h follows from varying had in 0fd
4
x = O. where

;z is given below.

5. Influence of gravity on matter:

Equations for A, H, zj, aj, !j follow from varying these quantities in

Af d4x = 0.

6. Lagrangian density:

a. ~a. ; Z=;G + ;eNG

N t PC (a hhpjc, h"ll +I f h17ViU hoolp) (-T) /b. = - (1/16) (a h h 1/2

where "'" denotes covariant derivative with respect to xj; a and f

are constants to be determined by experiment, and ~ - det Ii.ij. I .
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1 YCL VCI 1
c. jeNO = (1/4 )(¼ H

t

H - H A jv)(- TB)a2c~ ~ - ~Gl VL1

+Co

+ Z S [-mjbj + (j~- e A) )j~ - ,,aj 
] 4

-

J -OD

+_+cv h00 
+ ½.V. T

'

+ K omb ha +4 [- - ,zj(;j) ] dj.-
J -oo

d. Here eJ and mJ are the charge and rest mass of particle

J~ -dzj /dj; bj (-aJ ajc); K is a constant to be

by experiment; indices are raised and lowered with qrCf

T~v _ (1/-4)(H X? HAV - 14t v' Hc H)

+OD

+ £ . aJ[ J 4 [x - zJ(J)] d\j.
J -oo

e. In the action principle one varies h ,

iJ(AJ) independently; but one holds BPv

J;

determined

and

A f, H v, ZJ (J)', aJ(j),

fixed.
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