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Abstract

Human social dynamics rely upon the ability to correctly attribute beliefs, goals,
and percepts to other people. The set of abilities that allow an individual to infer
these hidden mental states based on observed actions and behavior has been called
a “theory of mind” (Premack & Woodruff, 1978). Existing models of theory of mind
have sought to identify a developmental progression of social skills that serve as the
basis for more complex cognitive abilities. These skills include detecting eye contact,
identifying self-propelled stimuli, and attributing intent to moving objects.

If we are to build machines that interact naturally with people, our machines must
both interpret the behavior of others according to these social rules and display the
social cues that will allow people to naturally interpret the machine’s behavior.

Drawing from the models of Baron-Cohen (1995) and Leslie (1994), a novel ar-
chitecture called embodied theory of mind was developed to link high-level cognitive
skills to the low-level perceptual abilities of a humanoid robot. The implemented
system determines visual saliency based on inherent object attributes, high-level task
constraints, and the attentional states of others. Objects of interest are tracked in
real-time to produce motion trajectories which are analyzed by a set of naive physical
laws designed to discriminate animate from inanimate movement. Animate objects
can be the source of attentional states (detected by finding faces and head orientation)
as well as intentional states (determined by motion trajectories between objects). In-
dividual components are evaluated by comparisons to human performance on similar
tasks, and the complete system is evaluated in the context of a basic social learning
mechanism that allows the robot to mimic observed movements.

Thesis Supervisor: Rodney Brooks
Title: Fujitsu Professor of Computer Science and Engineering
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Chapter 1

Introduction

Instead of trying to produce a programme to simulate the adult mind, why
not rather try to produce one which simulates the child’s? – Turing (1950,
p. 456)

1.1 A Grand Challenge: Social Robots

Many researchers have written about the problems of building autonomous robots
that can perform useful tasks in environments that are hazardous to human beings.
Whether searching for victims trapped in a destroyed building, inspecting nuclear
waste sites, detecting land mines, or exploring the surface of another planet, these
robots face environments that are extremely complex, unstructured, and hostile. For
these systems, the designer has no control over the environment and cannot rely upon
simplifying assumptions (such as static backgrounds or known physical environments)
that make other robotics research practical. Programming systems to deal with all
of the possible contingencies for such a complex and unstructured environment is an
enormous task – programming robots to perform even simple tasks in structured envi-
ronments is generally a large software engineering project. Rather than attempting to
explicitly program the robot with responses for a large number of events, an alterna-
tive approach is to provide the robot with the capability to autonomously acquire the
information that is required to make these behavioral decisions – in short, to learn.
However, the same complexities of the environment that lead to the consideration of
learning machines produce situations that most learning techniques are very poorly
equipped to handle. These hostile environments present the robot with a wide variety
of possible actions and yet only a few of these actions are generally beneficial. A single
failure in these hostile environments can have very serious consequences, resulting in
the destruction of the robot or injury to human beings.

The environments faced by these robots are very different from the nurturing envi-
ronment in which human children are (typically) raised. Parents spend an enormous
amount of time, energy, and resources on constructing an environment that is both
safe and supportive for the child. Parents ensure that the environment contains few
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physical hazards for the child while still allowing the child enough freedom to explore
different actions and to learn to recognize dangerous situations. Both the environ-
ment and the tasks that the child must perform are scaled to the level of ability of
the child; adults do not attempt to teach algebra to a two-year-old child. The child
also receives almost continuous feedback on the actions that it performs through the
words, gestures, and expressions of the adult. In many ways, the child’s environment
is very well designed to support learning. The fundamental difference between these
two environments is the presence of a helpful, knowledgeable caregiver. It is the par-
ent that changes the otherwise hostile or indifferent environment into one in which
the child can flourish. The child is able to learn effectively because of the structure
provided by the parent.

In many ways, the idea of a machine that can learn from its own interactions with
the world has been one of the driving forces behind artificial intelligence research
since its inception (Turing, 1950). The most powerful form of this grand challenge is
an android, a robot shaped like a human, that could master new skills and abilities
by interacting with a person in the same way that you or I might attempt to learn a
new skill from another person. This mythical machine could be taught a wide variety
of skills with no more effort from the instructors a human student would require.
This machine would be able to exploit the knowledge and assistance of other people
to carry out specified tasks, would recognize and respond to the appropriate human
social cues, and would use the natural social interfaces that people use with each
other. A person would need no specialized training in order to instruct the machine,
although some individuals would naturally be better instructors than others. To be an
effective student, the robot would need many different skills. It would need a rich set
of perceptual abilities for perceiving complex social cues and for guiding its behavior
toward objects in the environment. A robust collection of behavioral responses for
manipulating objects in the world, for performing tasks in the environment, and for
safely engaging in cooperative tasks with people would be essential, as would a wide
range of cognitive skills for planning, selecting appropriate actions, and for learning
from past experiences. The robot would also need to be capable of producing the
social cues that the human instructor required either to maintain the interaction
dynamics or to evaluate the understanding and progress of the student.

Many different research fields have important contributions to make toward this
grand challenge. Even when concentrating on the abilities required for the social
learning aspects of the system (and excluding all of the abilities required for actually
performing interesting tasks and for maintaining the survival of the system), there
are still a wide range of disciplines that contribute to this ability. Research from
machine vision, auditory analysis, and signal processing would contribute perceptual
abilities for locating the instructor, recognizing the actions being performed, identi-
fying objects, and understanding speech. Existing research in artificial intelligence
that focuses on behavior selection and action planning would interact with motion
control research on constructing safe, flexible, and robust behavioral responses with
low latency. All of these systems would require real-time responses; research in em-
bedded systems on parallel algorithms and real-time control would be applicable.
Research on human-machine interfaces would guide the generation of appropriate
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social responses and the generation of social scripts. Of course, machine learning
techniques for building sequences of actions and for using feedback cues to improve
performance would be central to this endeavor. Even with this multitude of fields of
research contributing to this challenge, the set of skills that can be assembled from
existing research does not completely address the problems of social learning. There
are many additional problems that are unique to this challenge that are not currently
being studied. For example, how does the robot recognize when the social context is
appropriate for learning? How does the robot recognize which actions it should be
learning? Can the robot recognize and respond to the goal of an action rather than
the surface behavior?

The grand challenge of building machines that can learn naturally from their
interactions with people raises many difficult questions, but also offers the hope of
overcoming the scaling problem.

1.2 A Specific Challenge: Theory of Mind

One area which has not received a great deal of attention from the computer science
community, but which has been studied extensively in other fields, often goes by the
name “theory of mind” (Premack & Woodruff, 1978). As we observe the behavior of
other people, we naturally attribute to them beliefs, goals, percepts, and other mental
states that we cannot directly observe. In the terms of computer science, theory of
mind is the attempt to represent the hidden state maintained by another agent based
upon the observable behavior of that agent. This set of abilities is also sometimes
known as the ability to “mentalize” (Frith & Frith, 1999) or the ability to “mindread”
(Baron-Cohen, 1995). Human social dynamics are critically dependent on the ability
to correctly attribute beliefs, goals, and percepts to other people. A theory of mind
allows us to understand the actions and expressions of others within an intentional
or goal-directed framework (what Dennett (1987) has called the intentional stance).
The recognition that other individuals have knowledge, perceptions, and intentions
that differ from our own is a critical step in a child’s development and is believed
to be instrumental in self-recognition, in providing a perceptual grounding during
language learning, and possibly in the development of imaginative and creative play
(Byrne & Whiten, 1988). These abilities are also central to what defines human
interactions. Normal social interactions depend upon the recognition of other points
of view, the understanding of other mental states, and the recognition of complex
non-verbal signals of attention and emotional state.

A robotic system that possessed a theory of mind would allow for social interac-
tions that have previously not been possible between man and machine. The robot
would be capable of learning from an observer using normal social signals in the same
way that human infants learn; no specialized training of the observer would be nec-
essary. The robot would also be capable of expressing its internal state (emotions,
desires, goals, etc.) through social interactions without relying upon an artificial vo-
cabulary. Further, a robot that could recognize the goals and desires of others would
allow for systems that can more accurately react to the emotional, attentional, and
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cognitive states of the observer, can learn to anticipate the reactions of the observer,
and can modify its own behavior accordingly. For example, Wood et al. (1976) have
proposed that theory of mind is critical to learning language. By attending to the
attitude and intent of the parent, the child first learns which situations are poten-
tial teaching episodes (marked by long extents of alternating eye contact and distal
attention). The child then learns to associate specific utterances with the parent’s
object of attention. By attending to these social cues, the infant is able to determine
which object is under consideration and can apply the new utterance selectively to
that object.

Researchers from many fields have attempted to delineate the skills that serve as
a foundation for a theory of mind. Developmental psychologists study how normal
children acquire skills such as making eye contact or pointing to an object of interest.
Ethologists consider the presence or absence of these abilities in other species. Re-
searchers of developmental disorders study how these social abilities are either absent
or impaired in certain conditions such as autism and Asperger’s syndrome. These
researchers have focused on behaviors that allow for the recognition of important
social cues (such as gaze direction), behaviors that generate appropriate social cues
(such as pointing to a desired object), and cognitive skills that attribute high-level
concepts of animacy and intent. This endeavor is really an attempt to link what have
classically been considered to be mysterious, high-level cognitive skills to actual be-
havioral triggers. A study of the foundations of a theory of mind is really an attempt
to link low-level perceptual capabilities with a high-level cognitive model.

One of the critical aspects of any system that hopes to approach the grand chal-
lenge of social machines will be a theory of mind. Theory of mind skills have been
studied in many disciplines as a way of bridging between high-level cognitive phe-
nomena and low-level perceptual systems. Constructing the foundational skills for a
theory of mind will investigate the link between these two realms.

1.3 Overview

The work presented in this thesis is an attempt to construct an embodied system
capable of performing many of these foundational skills for a theory of mind. The
implementation will be based on models of the development of theory of mind skills
which account for behaviors observed in normal children, in autistic individuals, and
in other primates. The goal of this implementation is two-fold: to provide an engi-
neering implementation that can support social learning mechanisms by responding
appropriately to basic social cues, and to provide an existence proof for a novel model
of how these foundational skills interact. It should be made clear at this point that
the work presented here is not being proposed as an explicit model of how theory
of mind develops in humans. Although the work presented here is based extensively
on models of human performance, the success of this model in presenting similar be-
havior on the robot does not imply that similar behavior observed in humans results
from the same underlying structure; just because the model works on robots does not
mean that people necessarily work the same way. However, the model will provide
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a proof of concept that certain aspects of popular human models may not be nec-
essary to generate the observed behaviors. Chapter 12 will return to the questions
of what implications can be drawn from this model in particular and how a robotic
implementation might be used as a predictive tool for cognitive models of human
behavior.

The implementation presented here focuses on three foundational skills for a the-
ory of mind:

• Attribution of Animacy : The ability to distinguish between animate and inan-
imate objects on the basis of the spatial and temporal properties of their move-
ment.

• Joint Attention : The ability to direct attention to the same object to which
someone else is attending.

• Attribution of Intent : The ability to describe the movement of pairs of objects
in terms of simple intentional states such as desire or fear.

These three abilities are implemented to operate at real-time interaction rates on a
humanoid robot. To further demonstrate the effects of these foundational skills on
social learning, these foundational skills were integrated with a system that allows
the robot to mimic the movement of agents or objects in the environment.

The outline of the remainder of this document is as follows:

• Chapter 2 : Methodology

We begin with a discussion of the general methodology that has been employed
in building social robots using models of human development. Certain assump-
tions about the nature of human intelligence that are commonly found in classi-
cal artificial intelligence research are discarded and an alternative set of qualities
are emphasized including physical embodiment, social interaction, integration,
and developmental progression.

• Chapter 3 : Developmental Models of Theory of Mind

With this methodological foundation in place, we review data on how normal
children develop theory-of-mind skills, how these same skills are deficient in
individuals with certain developmental disorders (such as autism), and how
some of these skills are observed in other animals. Two popular models of
the development of theory of mind skills, one from Leslie (1994) and one from
Baron-Cohen (1995), are reviewed and a novel hybrid model called embodied
theory of mind is introduced.

• Chapter 4 : Robot Platforms

Three humanoid robots were constructed in part to support the implementation
of the embodied theory of mind model. The capabilities of these robots that
are relevant to social interaction are discussed in this chapter.
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• Chapter 5 : Matching Human Movements

Once the physical structure of these robots has been described, we turn our
attention to the kinds of behaviors that have been implemented on these robots
to support social interaction. Human-like eye movements as well as arm move-
ments such as pointing gestures were implemented to allow the robot to have
natural interactions with people.

• Chapter 6 : Visual Attention

This chapter begins to consider how the robot’s perceptual system has been
structured to support social interaction. The first problem that the perceptual
system must solve is to locate regions of interest that are worthy of further
processing. The attention system selects regions based on inherent object prop-
erties (such as bright color or motion), high-level motivational goals, or the
attentional states of others within the field of view.

• Chapter 7 : The Theory of Body Module

The attention system produces a set of interesting points for each object frame,
which are then linked together using a motion correspondence algorithm to
produce movement trajectories. The theory of body module applies a simple
set of naive rules of physics to these movement trajectories in order to iden-
tify objects that are self-propelled. Self-propelled objects are considered to be
animate, which will be treated as a special class in chapters 9, 10, and 11.

• Chapter 8 : Detecting Faces and Head Pose

One final primitive perceptual process will be required. The robot will need to
find human faces in the visual scene and to extract the orientation of the head
as a measurement of where that person is attending. This orientation direction
will be used later to generate joint reference behaviors.

• Chapter 9 : A Simple Mechanism for Social Learning

Using the basic sensorimotor behaviors and the perceptual system, a mechanism
is constructed that allows the robot to mimic the movement of objects or people.
For example, if you wave to the robot, the robot will move its arm back and forth
in response. Animate trajectories serve as the basic perceptual input which are
mapped directly to arm movements.

• Chapter 10 : Shared Attention Mechanisms

The second special property of animate agents is that they can have a focus of
attention. This focus is a critical social marker, and the robot will be able to
respond to that information. Using head posture as an indicator of attention,
the robot can engage in shared attention using a feedback mechanism to the
existing attention system. These attentional states are also used as a selection
mechanism for the mimicry behavior.
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• Chapter 11 : Detecting Simple Forms of Intent

The final special property of animate agents discussed in this work is that they
can maintain an intentional state. Only animate objects can want something
or fear something. An additional level of processing is be performed on pairs
of trajectories to determine basic representations of intent. Intentional states
of attraction and repulsion are classified using a set of motion criteria. These
intentional states can be used directly to drive behaviors including reaching or
mimicry.

• Chapter 12 : Toward a Theory of Mind

The final chapter re-examines the implementation of the embodied theory of
mind and discusses extensions to systems that can attribute more complex
forms of intention as well as beliefs and desires. This chapter also discusses
implications of this model on predictions of human performance and possible
extensions that use a robotic implementation as a test-bed for evaluating cog-
nitive models.

Evaluations of individual components are performed throughout the chapters us-
ing both comparisons to human performance on similar tasks and subjective evalua-
tions of the performance of the system in responding to naive instructors. Although
the systems presented here will not begin to approach some of the complex social skills
that children master even in the first year of life, we hope that these foundational
skills mark the next step toward the grand challenge of social robots.
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Chapter 2

Methodology

Because we do not understand the brain very well we are constantly tempted
to use the latest technology as a model for trying to understand it. In my
childhood we were always assured that the brain was a telephone switch-
board. (’What else could it be?’) I was amused to see that Sherrington, the
great British neuroscientist, thought that the brain worked like a telegraph
system. Freud often compared the brain to hydraulic and electro-magnetic
systems. Leibniz compared it to a mill, and I am told some of the ancient
Greeks thought the brain functions like a catapult. At present, obviously,
the metaphor is the digital computer. – Searle (1986, p. 44)

In the previous chapter, two long-term goals of this research were outlined: to
build systems that use natural human social cues to learn from social situations and
to evaluate models of human social development using a robotic implementation.
These problems are inherently under-specified; our knowledge both of how best to
build systems that respond to a variety of social situations and how humans and
other animals have evolved to respond to these challenges are not well understood.
In fact, even the problem domains are poorly specified. There are many different kinds
of social situations and responses, and as an engineering necessity any implemented
system will account for only a subset of these possibilities. Even with a restricted class
of problem domains, the number of possible solutions is still very large. For example,
if the restricted problem domain involves determining whether or not someone is
paying attention to you, there are many possible approaches that could perform this
task. These approaches could be applied to different behavioral cues (such as head
orientation, gaze direction, or posture) and be implemented using different sensory
technologies (visible light cameras, infrared cameras, laser range finders, etc.).

This chapter presents some of the methodological principles that have guided the
construction of our robotic systems and the implementation of the biological models of
social development. We begin with a discussion of the requirements that our two goals
introduce. Section 2.1 presents the task requirements for building complex, socially
responsive systems and the requirements imposed by attempts to evaluate biological
models using a mechanical system. These two sets of requirements leads to a re-
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evaluation of the driving methodologies in artificial intelligence and robotics research
and the questionable assumptions they make about human intelligence (section 2.2).
From these observations, we construct a methodology (section 2.3) based upon a
modern awareness of cognitive science, neuroscience, psychophysics, and physiology.
Many of the ideas represented in this chapter have been published previously in
partial form (Brooks & Stein, 1994; Brooks et al., 1998; Scassellati, 1999a; Adams et
al., 2000).

2.1 Requirements for Building Social Robots

To achieve the goal of building systems that can engage in social learning, a set of
minimal requirements must be met. Perhaps the most critical requirement, and the
most difficult to satisfy, is that the system must respond in real time and with low
latency. A social interaction that is delayed by seconds becomes difficult or even
impossible to comprehend. Sensory signals must be processed quickly for relevant
social cues, an appropriate behavioral response must be selected, and the motor
system must begin executing that behavior, all within a fraction of a second. The
latency of the entire system must be very low while the throughput must be very high,
which leads to control systems that have relatively few stages of sequential processing.

Social robots will also need to exist in the same complex, noisy, and cluttered en-
vironment which people inhabit. The robot must have sophisticated sensing systems
to deal with the complexities of the natural environment without artificial simplifica-
tions such as static backgrounds, highly engineered workspaces, or restrictions on the
shape or coloring of objects in the world. Furthermore, the robot must also interact
safely with people and objects in the environment. The robot’s control systems must
be powerful enough to perform routine tasks (such as lifting small objects), but must
incorporate multiple levels of safety protocols.

Our robots must recognize the appropriate social cues for an instructional situ-
ation. Complex social scenes require perceptual systems that can extract relevant
and salient features in flexible ways. Social signals are inherently multimodal, having
visual, auditory, tactile, and other sensory components. To build perceptual systems
of this complexity, it will be necessary to use the appropriate mode of sensory process-
ing. The perceptual system must be robust to large variations in the environment, the
instructor, and in the dynamic qualities of the instructional content. While current
systems will not be capable of understanding all of the rich complexities of human
social cues, a successful system must capitalize on the basic social structures that are
most significant and that are invariant across individuals.

In addition to recognizing social cues, a social robot must also be able to produce
the appropriate social cues that the instructor requires in order to interpret the robot’s
behavior and to maintain the interaction. Simple gestures such as head nods as well
as social indicators such as gaze direction and orientation will allow the instructor to
understand the robot’s current goals and to correctly interpret the robot’s actions.
The robot’s physical design must also support these behavioral interpretations. This
does not imply that the robot must look exactly like a human; people have little
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trouble in interpreting the behavior and expressions of dogs, chimpanzees, and other
animals. The robot must, however, have a sufficient appearance that the human
instructor can easily apply his knowledge of social responses to the robot’s behavior.

In recognizing and exhibiting social cues, it is critical that the behavior and ap-
pearance of the robot provide an appropriate level of expectation in the instructor.
People become quickly frustrated when they are faced with machines or interfaces that
appear to provide more functionality than the machine actually can exhibit (Norman,
1990). At the same time, it is also important that people be able to apply the same
types of social assumptions to our robots that they would to a person in a similar
circumstance. The robot must not be so limiting in its interface or appearance that
the human instructor cannot use normal social proficiencies to understand the robot.
This will naturally result in people attributing qualities such as intention, feelings,
and desires to the robot. The robot’s design must facilitate such attributions without
providing expectations that are too extravagant.

There are certainly many other design criteria that a social machine must meet
in addition to the typical engineering criteria of cost, reliability, robustness, and
availability. Design criteria for social constructs have been treated more thoroughly
by other authors (Dautenhahn, 1997; Breazeal, 2000) and any good engineering design
book can give general pointers for evaluating standard design criteria. However, one
further design criterion deserves mention here. Socially adept systems must respond
based on the “hidden” states of goal, desire, and intent rather than on explicit actions.
Just as human infants respond to the intention of an action rather than the action
itself (Meltzoff, 1995), our robotic systems should ideally respond to the intent of the
instructor rather than the explicit actions of the instructor. In other words, these
socially intelligent machines need a theory of mind.

2.1.1 Classical Approaches in Artificial Intelligence

Many researchers in artificial intelligence have also attempted to satisfy subsets of
these design criteria by building systems that in some way model the only univer-
sally accepted example of intelligence: humans. However, many of these classical
approaches have been based upon either introspective analysis of the respective au-
thors or on an understanding of human psychology and neurology that is outdated
(Brooks et al., 1998). This section considers some of these classical approaches as a
background against which to view the alternative methodologies used in this work.
While we will also certainly commit similar errors in constructing a new methodology,
it is an untenable position to remain locked in the past.

One of the most basic methodological models in artificial intelligence was the claim
of Newell & Simon (1961) that humans use physical symbol systems to “think”. Over
time, this has become adopted into artificial intelligence as an implicit and dominant
hypothesis (see Brooks (1991a) for a review). Following this approach, an AI system
would generally rely on uniform, explicit, internal representations of capabilities of
the system, the state of the outside world, and the desired goals. These AI systems
are concerned primarily with search problems to both access the relevant facts and
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to determine how to apply them. More recent approaches incorporate Bayesian or
other probabilistic ideas into this basic framework (Pearl, 1988). These neo-classical
approaches explicitly represent and manipulate probabilities.

We believe that classical and neo-classical AI falter in assuming that because a
description of reasoning/behavior/learning is possible at some level, then that de-
scription must be made explicit and internal to any system that carries out the rea-
soning/behavior/learning. The realization that descriptions and mechanisms could be
separated was one of the great breakthroughs of Rosenschein & Kaelbling (1986), but
unfortunately that realization has been largely ignored. This introspective confusion
between surface observations and deep structure has led AI away from its original
goals of building complex, versatile, intelligent systems and towards the construction
of systems capable of performing only within limited problem domains and in ex-
tremely constrained environmental conditions. While these classical techniques may
be useful tools in other domains, they are inappropriate for building perceptually-
grounded systems.

The next section of this chapter explores the assumptions about human intelli-
gence which are deeply embedded within classical AI. The following sections explain
a methodology which rectifies these mistakes and yields an alternate approach to
creating robustly functioning intelligent systems.

2.2 Questionable Assumptions about Intelligence

Technological advances have always influenced the metaphors and models that we
have used to understand ourselves. From ancient Greece and Rome through the dark
ages, the first marvels of chemistry (perhaps better thought of as alchemy in that
era) were beginning to take shape. Philosophers at that time spoke of the different
humours in each person that must remain balanced, just as the formulations of an
elixir required exact proportions of different ingredients (Gleitman, 1991). In the
early 1900’s, the dominant technological wonder was the steam engine in its many
forms. Freud and other psychologists of this era often spoke about the brain as if
it were a hydraulic system; the pressures building within the ego and id could be
released (as if a valve had been turned), but left unattended would build in intensity
until an explosion occurred (Freud, 1962). Throughout the twentieth century, the
metaphors changed rapidly from hydraulic systems to basic electronic systems such
as the telegraph and the telephone switchboard until they naturally landed upon
the digital computer. Today, discussions of memory capacity and storage methods,
processing power, and information flow are as likely to occur in a psychology lecture
as in a computer science lecture.

Early artificial intelligence systems exploited the computational metaphors of
mind in an attempt to explain human behavior. While these classical approaches
were certainly a necessary step, in a way it became too easy to follow the metaphor
by using the technology on which the metaphor was based. The biases that the
computational metaphor of mind introduced have carried over into large portions of
artificial intelligence research. These biases, combined with an emphasis on subjec-
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tive observation and introspection, have lead to a number of conceptual errors in
how artificial intelligence (and some other parts of the cognitive sciences) have come
to think about human intelligence. The metaphor has been taken too far (Brooks,
1991a,b).

Three of these conceptual errors have been particularly damaging: presuming
the presence of monolithic internal models, monolithic control, and general purpose
processing. These assumptions result from a reliance on the computational metaphors
(such as mathematical logic, Von Neumann architectures, etc.), but are refuted by a
modern understanding of cognitive science and neuroscience.

2.2.1 No Full Monolithic Internal Models

In classical artificial intelligence, sensory perceptions are used to construct a sin-
gle, consistent internal model of the external world. This internal model is often a
three-dimensional representation of the external environment, or alternately a purely
abstract representation filled with logical relations. All incoming sensory data is con-
verted into a format that can be processed in this internal model. The job of the
perceptual system is to convert complex sensory signals into representational states
within this model. This single monolithic model is attractive from an introspective
stance because we see ourselves as existing in a primarily static world; I can shut
my eyes and see the room that I have been sitting in, and I can think and plan my
next actions by manipulating that model. This monolithic internal representational
scheme that somehow mirrors the external world has been attacked from multiple
directions in psychology, psychophysics, and neurology.

There is evidence that in normal tasks humans tend to minimize their internal
representation of the world. Ballard et al. (1995) have shown that in performing a
complex task, like building a copy of a display of blocks, humans do not normally
maintain an internal model of the entire visible scene. Subjects in their experiments
were asked to copy a demonstration structure (the model) in an empty workspace
using the same components. Subjects would initially look at the model, and then
shift their gaze and their attention to the workspace, return to the model, and repeat.
By changing the model display while subjects were looking at the workspace, Ballard
found that subjects noticed only the most drastic of changes; rather than keeping
a complete model of the scene, they instead left that information in the world and
continued to refer back to the scene while performing the copying task. If subjects had
been maintaining internal models of the demonstration structure, then they should
have been able to notice these drastic changes. Similar results have been seen in the
psychophysics community in the areas of change blindness (Rensink et al., 1997) (in
which large portions of the visual scene are changed either during eye movements
or when accompanied by a flashing display) and inattentional blindness (Mack &
Rock, 1998) (in which observers fail to notice objects or events to which they are not
attending).

There is also evidence that there are multiple internal sensory or logical repre-
sentations, which are not mutually consistent. For example, in the phenomena of
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blindsight, cortically blind patients can discriminate different visual stimuli, but ac-
tually report seeing nothing (Weiskrantz, 1986). These patients report having no
visual experiences within some portion of their visual field, and yet at times can
perform tasks, such as orienting a piece of mail properly to enter either a vertical
or horizontal slot, that rely on that part of the visual field. Some of these subjects
are also significantly better than chance when forced to make choices involving the
affected visual area. These inconsistencies would not be a feature of a single central
model of visual space.

These experiments and others like it (e.g., Gazzaniga & LeDoux, 1978) demon-
strate that humans do not construct a full, monolithic model of the environment.
Instead, we tend to only represent what is immediately relevant from the environ-
ment, and those representations do not have full access to one another.

2.2.2 No Monolithic Control

Naive introspection and observation can lead one to believe in a neurological equiva-
lent of the central processing unit – something that makes the decisions and controls
the other functions of the organism. While there are undoubtedly control structures,
this model of a single, unitary control system is not supported by evidence from
cognitive science.

One example comes from studies of split brain patients by Gazzaniga & LeDoux
(1978). These are patients where the corpus callosum (the main structure connecting
the two hemispheres of the brain) has been cut.1 The patients are surprisingly normal
after the operation, able to resume their normal lives after a recovery period. By
careful experimental procedures, Gazzaniga and LeDoux were able to isolate the
deficits caused by this procedure by presenting different information to either side of
the (now unconnected) brain. Since each hemisphere controls one side of the body,
the experimenters could probe the behavior of each hemisphere independently (for
example, by observing the subject picking up an object appropriate to the scene
that they had seen). In perhaps the most well-known example, a snow scene was
presented to the right hemisphere and the leg of a chicken to the left hemisphere
of a teenage male subject. The subject was asked to select two items (one with
each hand) from a set of binocularly viewed objects based on the scene that he had
just seen. The subject selected a chicken head to match the chicken leg, explaining
with the verbally dominant left hemisphere that “I saw the claw and picked the
chicken”. When the right hemisphere then picked a shovel to correctly match the
snow, the left hemisphere explained that you need a shovel to “clean out the chicken
shed” (Gazzaniga & LeDoux, 1978, p.148). The separate halves of the subject’s brain
independently acted appropriately, but one side falsely explained the choice of the
other. This suggests that there are multiple independent control systems, rather than

1This somewhat radical procedure was originally attempted as a last-resort treatment for severe
epilepsy. The hope was that because the two hemispheres of the brain would be electrically isolated,
a seizure would effect a smaller portion of the body and be less disruptive and dangerous. The
treatment was remarkably successful.
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a single monolithic one. This experiment can also be conducted on normal subjects
by injecting sodium amytal into the carotid artery, which effectively anesthetizes one
hemisphere. Stimuli can then easily be presented to only one hemisphere and testing
can occur either immediately or after the anesthesia wears off. These experiments
force us to recognize that humans are capable of holding conflicting and non-consistent
beliefs.

2.2.3 Not General Purpose

The brain is conventionally thought to be a general purpose machine, acting with
equal skill on any type of operation that it performs by invoking a set of powerful
rules. However, humans seem to be proficient only in particular sets of skills, at
the expense of other skills, often in non-obvious ways. A good example of this is
the Stroop effect (Stroop, 1935). In this simple task, subjects are asked to read a
column of words as quickly as they can. Each of the words is the name of a color
(e.g., “blue,” “red,” or “yellow”) which is printed in an ink color that does not match
the word’s meaning. For example, the first instance of the word “blue” might be
printed in red ink, while the word “red” might be printed in yellow ink. Subjects
produce more errors, and are much slower, at reading this list when the ink colors do
not match the labels than when the colors do match the labels. Performance in this
color recognition and articulation task is actually dependent on the semantic content
of the words. If our capacity for reading were truly a general purpose process, why
would altering the color of the ink effect performance? This experiment demonstrates
the specialized nature of human computational processes and interactions. Similar
perceptual cross-over effects can be seen between vision and audition (Churchland et
al., 1994) and vice-versa (Cohen & Massaro, 1990).

One might complain that the Stroop effect is purely a perceptual event, and that
while perceptual processing may contain domain specific mechanisms, the more cere-
bral functions of deductive logic, planning, and behavior selection are general purpose.
However, the evidence from psychology also refutes this hypothesis. For example, in
the area of deductive logic, humans often perform extremely poorly in different con-
texts. Wason (1966) found that subjects were unable to apply the negative rule of
if-then inference when four cards were labeled with single letters and digits. Subjects
were shown four cards, each of which contained a letter written on one side and a
number written on the reverse. The cards were placed flat on a table, so the observer
saw only one side of the card. For example, the subject might see cards that said
“E”, “F”, “4”, and “7”. The task for this presentation to determine which cards
must be flipped over to verify whether or not the following rule held true: if a card
has a vowel on one side, then there is an even number on the other side. Only 4%
of the university student subjects in the original study correctly answered “E” and
“7”.2 However, when subjects were given a task with the same logical structure but

2For the rule to be true, the “E” must have an even number on the other side and the “7” must
not have a vowel on the other side.
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a different context, they had little difficulty in applying the correct logical inferences.
For example, if the cards contained a person’s age on one side and their choice of bev-
erage on the other, the set “Gin”, “Soda”, “22”, “16” has the same logical structure
when attempting to verify the rule: if a person is drinking alcohol, they must be at
least 21 years of age. Similar populations of university students had no difficulty in
solving this task (Griggs & Cox, 1982).

Further, humans often do not use subroutine-like rules for making decisions. They
are often more emotional than rational, and there is evidence that this emotional
content is an important aspect of decision making (Damasio, 1994). For example,
Damasio’s patient Elliot suffered from a meningioma located above the nasal cavities
which compressed and destroyed large portions of the frontal lobe bilaterally. After
the surgical removal of the tumor, Elliot had no permanent paralysis but had a notable
lack of affective response. Elliot reported having very few emotional feelings. While
Elliot had normal sensory abilities and normal motor responses, his decision making
skills were severely impaired. Elliot had problems in making normal judgments that
people make continuously throughout their normal daily activities (such as what to
order for lunch) and in evaluating whether a particular decision was risky or safe.
Damasio has proposed that one purpose of emotional responses is to quickly label
possible actions as good or bad and to expedite the decision making process by guiding
the selection of one possible course of action among many. Damasio has named this
the somatic marker hypothesis to indicate that these emotional responses place a
“marker” on each of the possible decision points that guides selection. Damasio
argues that the evidence from Elliot and patients like him fail to support models of
decision making based solely on abstract logic or propositional statements.

2.3 Alternate Essences of Human Intelligence

Humans have the ability to autonomously learn, generalize, organize, and assimilate
immense numbers of skills, competencies and facts. We believe that these abilities
are a direct result of four intertwined key human attributes:

• Development forms the framework by which humans successfully acquire in-
creasingly more complex skills and competencies.

• Social interaction allows humans to exploit other humans for assistance, teach-
ing, and knowledge.

• Embodiment and physical coupling allow humans to use the world itself as a tool
for organizing and manipulating knowledge.

• Integration allows humans to maximize the efficacy and accuracy of comple-
mentary sensory and motor systems.

Since humans are vastly complex systems, we do not expect to duplicate every facet of
human intelligence. However, we must be very careful not to ignore aspects of human
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intelligence solely because they appear complex. Classical and neo-classical AI tend
to ignore or avoid these complexities, in an attempt to simplify the problem (Minsky
& Papert, 1970). We believe that many of these discarded elements are essential to
human intelligence and that they actually simplify the problem of creating human-like
intelligence.

2.3.1 Development

Humans are not born with complete reasoning systems, complete motor systems,
or even complete sensory systems. Instead, they undergo a process of development
where they are able to perform more difficult tasks in more complex environments
en route to the adult state. This is a gradual process, in which earlier forms of
behavior disappear or are modified into more complex types of behavior. The adaptive
advantage of the earlier forms appears to be that they prepare and enable more
advanced forms of behavior to develop within the situated context they provide. The
developmental psychology literature abounds with examples of this phenomenon. For
instance, the work of Diamond (1990) shows that infants between five and twelve
months of age progress through a number of distinct phases in the development of
visually guided reaching. In one reaching task, the infant must retrieve a toy from
inside a transparent box with only one open side. In this progression, infants in later
phases consistently demonstrate more sophisticated reaching strategies to retrieve the
toy in more challenging scenarios. As the infant’s reaching competency develops, later
stages incrementally improve upon the competency afforded by the previous stage.

Building systems developmentally facilitates learning both by providing a struc-
tured decomposition of skills and by gradually increasing the complexity of the task
to match the competency of the system. The developmental process, starting with a
simple system that gradually becomes more complex, allows efficient learning through-
out the whole process. For example, infants are born with low-acuity vision. The
infant’s visual performance develops in step with their ability to process the influx
of stimulation (Johnson, 1993). The same is true for the motor system. Newborn
infants do not have independent control over each degree of freedom of their limbs,
but through a gradual increase in the granularity of their motor control they learn
to coordinate the full complexity of their bodies. A process where the acuity of both
sensory and motor systems are gradually increased significantly reduces the difficulty
of the learning problem (Thelen & Smith, 1994).

To further facilitate learning, the gradual increase in internal complexity associ-
ated with development should be accompanied by a gradual increase in the complexity
of the external world. For an infant, the caregiver biases how learning proceeds by
carefully structuring and controlling the complexity of the environment. This ap-
proach is in stark contrast to most machine learning methods, where the robot learns
in a usually hostile environment, and the bias, instead of coming from the robot’s
interaction with the world, is included by the designer. We believe that gradually
increasing the complexity of the environment makes learning easier and more robust.

By exploiting a gradual increase in complexity both internal and external, while
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reusing structures and information gained from previously learned behaviors, we hope
to be able to learn increasingly sophisticated behaviors. We believe that these meth-
ods will allow us to construct systems which do scale autonomously (Ferrell & Kemp,
1996).

2.3.2 Social Interaction

Human infants are extremely dependent on their caregivers, relying upon them not
only for basic necessities but also as a guide to their development. The presence
of a caregiver to nurture the child as it grows is essential. This reliance on social
contact is so integrated into our species that it is hard to imagine a completely
asocial human. However, severe developmental disorders sometimes give us a glimpse
of the importance of social contact. One example is autism (DSM, 1994; ICD, 1993;
Cohen & Volkmar, 1997). Autistic children often appear completely normal on first
examination; they look normal, have good motor control, and seem to have normal
perceptual abilities. However, their behavior is completely strange to us, in part
because they do not recognize or respond to normal social cues (Baron-Cohen, 1995).
They do not maintain eye contact, recognize pointing gestures, or understand simple
social conventions. Even the most highly functioning autistics are severely disabled
in our society. Building social skills into an artificial intelligence provides not only a
natural means of human-machine interaction but also a mechanism for bootstrapping
more complex behavior.

Social interaction can be a means to facilitate learning. New skills may be socially
transfered from caregiver to infant through mimicry or imitation, through direct tute-
lage, or by means of scaffolding, in which a more able adult manipulates the infant’s
interactions with the environment to foster novel abilities. Commonly scaffolding
involves reducing distractions, marking the task’s critical attributes, reducing the
number of degrees of freedom in the target task, and enabling the subject to experi-
ence the end or outcome before the infant is cognitively or physically able of seeking
and attaining it for herself (Wood et al., 1976).

2.3.3 Embodiment and Physical Coupling

Perhaps the most obvious, and most overlooked, aspect of human intelligence is that
it is embodied. Humans are embedded in a complex, noisy, constantly changing
environment. There is a direct physical coupling between action and perception,
without the need for an intermediary representation. This coupling makes some tasks
simple and other tasks more complex. By exploiting the properties of the complete
system, certain seemingly complex tasks can be made computationally simple. For
example, when putting a jug of milk in the refrigerator, you can exploit the pendulum
action of your arm to move the milk (Greene, 1982). The swing of the jug does
not need to be explicitly planned or controlled, since it is the natural behavior of
the system. Instead of having to plan the whole motion, the system only has to
modulate, guide and correct the natural dynamics. For an embodied system, internal
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representations can be ultimately grounded in sensory-motor interactions with the
world (Lakoff, 1987).

A principle tenet of our methodology is to build and test real robotic systems.
We believe that building human-like intelligence requires human-like interaction with
the world (Brooks & Stein, 1994). Humanoid form is important to allow humans to
interact with the robot in a natural way. In addition, we believe that building a real
system is computationally less complex than simulating such a system. The effects
of gravity, friction, and natural human interaction are obtained for free, without any
computation.

Another aspect of our methodology is to exploit interaction and tight coupling
between the robot and its environment to give complex behavior, to facilitate learning,
and to avoid the use of explicit models. Our systems are physically coupled with
the world and operate directly in that world without any explicit representations
of it (Brooks, 1986, 1991b). There are representations, or accumulations of state,
but these only refer to the internal workings of the system; they are meaningless
without interaction with the outside world. The embedding of the system within
the world enables the internal accumulations of state to provide useful behavior (this
was the fundamental approach taken by Ashby (1960) contemporaneously with the
development of early AI).

2.3.4 Integration

Humans have the capability to receive an enormous amount of information from
the world. Visual, auditory, somatosensory, and olfactory cues are all processed
simultaneously to provide us with our view of the world. However, there is evidence
that the sensory modalities are not independent; stimuli from one modality can and
do influence the perception of stimuli in another modality. Churchland et al. (1994)
describe an experiment illustrating how audition can cause illusory visual motion. A
fixed square and a dot located to its left are presented to the observer. Without any
sound stimuli, the blinking of the dot does not result in any perception of motion. If
a tone is alternately played in the left and right ears, with the left ear tone coinciding
with the dot presentation, there is an illusory perception of back and forth motion
of the dot, with the square acting as a visual occluder. Vision can cause auditory
illusions too, for example in the McGurk effect (Cohen & Massaro, 1990). These
studies demonstrate that humans’ perception of their senses cannot be treated as
completely independent processes.

Some tasks are best suited for particular sensory modalities. Attempting to per-
form the task using a different modality is sometimes awkward and computationally
intensive. Using the appropriate mode for a given task can reduce the requisite com-
putation. By integrating multiple sensory and motor systems, we can address a wider
range of tasks while maintaining computational feasibility.

By integrating different sensory modalities we can exploit the complex nature of
stimuli to facilitate learning. For example, objects that make noise often move. This
correlation can be exploited to facilitate perception. These relationships have been
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extensively characterized for the case of the development of auditory localization.
Wertheimer (1961) has shown that vision and audition interact from birth; even ten-
minute-old children will turn their eyes toward an auditory cue. Related investigations
with young owls have determined that visual stimuli greatly affect the development
of sound localization. With a constant visual bias from prisms worn over the eyes,
owls adjusted their sound localization to match the induced visual errors (Knudsen
& Knudsen, 1985).

2.4 Conclusion

Building systems that can both solve interesting and challenging social tasks and also
serve as a testbed for evaluating models of social development in children introduces
a set of difficult constraints. The system must operate in real time, recognizing
the appropriate social cues from the human instructor and providing social cues in
response that are easy and natural to interpret. The robot must be appealing to
interact with, must be easy to attribute intentions and goals to, and yet must not
appear to be capable of more than it can accomplish.

In addressing these issues, we have moved away from the areas of classical AI
and the accompanying computational metaphors of mind. We have thus chosen to
approach AI from a different perspective, in the questions we ask, the problems we
try to solve, and the methodology and inspiration we use to achieve our goals. By
examining a more thorough understanding of current research in human psychology,
neurology, and psychophysics, we have examined and rejected many of the common
assumptions that the computational metaphor produces. Further, we have proposed
a set of four characteristics which serve as the core to our methodology in constructing
these systems. The principles of development, social interaction, physical coupling to
the environment, and integration will be essential to guide us towards our goal.
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Chapter 3

Developmental Models of Theory

of Mind

An individual has a theory of mind if he imputes mental states to himself
and others. A system of inferences of this kind is properly viewed as a
theory because such states are not directly observable, and the system can
be used to make predictions about the behaviour of others. – Premack &
Woodruff (1978, p. 516)

Research from many different disciplines has focused on theory of mind. Students
of philosophy have been interested in the understanding of other minds and the rep-
resentation of knowledge in others. Most recently, Dennett (1987) has focused on
how organisms naturally adopt an “intentional stance” and interpret the behaviors
of others as if they possess goals, intents, and beliefs. Ethologists have also focused
on the issues of theory of mind. Studies of the social skills present in primates and
other animals have revolved around the extent to which other species are able to
interpret the behavior of conspecifics and influence that behavior through deception
(e.g., Premack, 1988; Povinelli & Preuss, 1995; Cheney & Seyfarth, 1991). Research
on the development of social skills in children has focused on characterizing the devel-
opmental progression of social abilities (e.g., Fodor, 1992; Wimmer & Perner, 1983;
Frith & Frith, 1999) and on how these skills result in conceptual changes and the rep-
resentational capacities of infants (e.g., Carey, 1999; Gelman, 1990). Furthermore,
research on pervasive developmental disorders such as autism has focused on the se-
lective impairment of these social skills (e.g., Perner & Lang, 1999; Karmiloff-Smith
et al., 1995; Mundy & Sigman, 1989).

This chapter will review some of the basic observations concerning the set of
skills collectively called “theory of mind” (section 3.1). We then present two of
the most popular and influential models, one from Leslie (1994) (section 3.2) and
one from Baron-Cohen (1995) (section 3.3), which attempt to link together multi-
disciplinary research into a coherent developmental explanation. Section 3.4 will
discuss the implications of these models for the construction of humanoid robots that
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engage in natural human social dynamics and will also highlight some of the issues
involved in implementing the structures that these models propose. Finally, Section
3.5 will describe a hybrid model called embodied theory of mind that links together
ideas from both Baron-Cohen and Leslie with a grounded perceptual system. I do
not mean to imply by this choice of names that the other models exist in a vacuum
without reference to actual physical behavior. However, the differences in the hybrid
model came about as a direct result of attempts to implement these basic foundational
skills on an embodied robotic system. The hybrid model serves as the basis for an
implementation for a humanoid robot that will be discussed in the following chapters.

3.1 Basic observations

The term “theory of mind” has been used to identify a collection of socially-mediated
skills which are useful in relating the individual’s behavior within a social context.1

Examples of these skills include detecting eye contact, recognizing what someone else
is looking at, pointing to direct attention to interesting objects, and understanding
that other people have ideas that differ from one’s own. The most important finding
regarding these skills, repeated in many different forms, is that “theory of mind” is
not a single monolithic system. Evidence from childhood development shows that
not all of these skills are present from birth, and there is a stereotypic progression of
skills that occurs in all infants at roughly the same rate (Hobson, 1993). Children
master certain skills (such as recognizing when someone is making eye contact with
them) before acquiring more complex skills (such as pointing to desired objects).

A second perspective on this decomposition can be seen in the presence of these
same skills in non-human animals. The same ontogenetic progression of skills that
is evident in human infants can also be seen as an evolutionary progression in which
the increasingly complex set of skills can be mapped to animals that are closer and
closer to humans on a phylogenetic scale (Povinelli & Preuss, 1995). Abilities that
most six-month-old human children have mastered are found in many vertebrates,
while skills characteristic of a child at 15 months are found only in primates.

Finally, there are also developmental disorders, such as autism, that limit and
fracture the components of this system (Frith, 1990). Autism is a pervasive develop-
mental disorder of unknown etiology that is diagnosed by a set of behavioral criteria
centered around abnormal social and communicative skills (DSM, 1994; ICD, 1993).
Individuals with autism tend to have normal sensory and motor skills but have dif-
ficulty with certain socially relevant tasks. For example, autistic individuals fail to
make appropriate eye contact, and while they can recognize where a person is look-
ing, they often fail to grasp the implications of this information. While the deficits of
autism certainly cover many other cognitive abilities, some researchers believe that

1Other authors have attempted to distinguish between the “theory of mind skills” and certain
pre-cursor abilities such as maintenance of eye contact (Mundy & Sigman, 1989). For the work
presented here, this difference is largely irrelevant, and the term “theory of mind skills” will include
these precursor abilities.
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the critical deficit may be a lack of advanced theory of mind skills (Baron-Cohen,
1995). In comparison to other mental retardation and developmental disorders (like
Williams and Down’s Syndromes), the social deficiencies of autism are quite specific
(Karmiloff-Smith et al., 1995).

The simplest theory of mind skills are those that emerge earliest in a child’s
development, are most likely to be intact in autistic individuals, and are found in
a wide variety of animals. The more complex skills are the last to be observed
developmentally, are the most likely to be impaired in autism, and are observed only
in humans. In this section, we describe details of many of the social skills that are
discussed in studies of theory of mind. The following section describes two models
that attempt to integrate these behavioral findings into comprehensive explanations
of the development and acquisition of these skills.

3.1.1 Eye Contact

One of the most basic social skills is the recognition and maintenance of eye contact.
Many animals have been shown to be extremely sensitive to eyes that are directed
at them, including reptiles like the hognosed snake (Burghardt & Greene, 1990),
avians like the chicken (Scaife, 1976) and the plover (Ristau, 1991b), and all primates
(Cheney & Seyfarth, 1990). Identifying whether or not something is looking at you
provides an obvious evolutionary advantage in escaping predators, but in many mam-
mals, especially primates, the recognition that another is looking at you carries social
significance. In monkeys, eye contact is significant for maintaining a social dominance
hierarchy (Cheney & Seyfarth, 1990). In humans, the reliance on eye contact as a
social cue is even more striking (Fagan, 1976).

A slightly more complex behavior is gaze following, which is the rapid alternation
between looking at the eyes of the individual and looking at the distal object of their
attention. While many animals are sensitive to eyes that are gazing directly at them,
only primates show the capability to extrapolate from the direction of gaze to a distal
object, and only the great apes will extrapolate to an object that is outside their
immediate field of view (Povinelli & Preuss, 1995).2 This evolutionary progression is
also mirrored in the ontogeny of social skills. At least by the age of three months,
human infants display maintenance (and thus recognition) of eye contact. However,
it is not until nine months that children begin to exhibit gaze following, and not until
eighteen months that children will follow gaze outside their field of view (Butterworth,
1991). Gaze following is a joint attention mechanism, that is, it serves to focus the
child’s attention on the same object that the caregiver is attending to. This simplest
form of joint attention is believed to be critical for social scaffolding (Thelen & Smith,
1994), development of theory of mind (Baron-Cohen, 1995), and providing shared
meaning for learning language (Wood et al., 1976).

2The terms “monkey” and “ape” are not to be used interchangeably. Apes include orangutans,
gorillas, bonobos, chimpanzees, and humans. All apes are monkeys, but not all monkeys are apes.
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3.1.2 Pointing

A second set of behaviors involves pointing. Developmental psychologists often dis-
tinguish between imperative pointing and declarative pointing. Imperative pointing is
a gesture used to obtain an object that is out of reach by extending the arm toward
that object. This behavior is first seen in human children at about nine months of
age (Baron-Cohen, 1995) and has been observed in many primates (Cheney & Sey-
farth, 1990). However, there is nothing particular to this behavior that is different
from a simple reach; the infant is initially as likely to perform imperative pointing
when the adult is attending to the infant as when the adult is looking in the other
direction or when the adult is not present. The adult’s interpretation of the infant’s
gesture provides the shared meaning. Over time, the infant learns when the gesture
is appropriate. One can imagine the child learning this behavior through simple rein-
forcement. The reaching motion of the infant is interpreted by the adult as a request
for a specific object, which the adult then acquires and provides to the child. The
acquisition of the desired object serves as positive reinforcement for the contextual
setting that preceded the reward (the reaching action in the presence of the attentive
adult).

Declarative pointing is characterized by an extended arm and index finger designed
to draw attention to a distal object. Unlike imperative pointing, it is not necessarily
a request for an object; children often use declarative pointing to draw attention to
objects that are outside their reach, such as the sun or an airplane passing overhead, or
to objects that they have no interest in approaching, such as an angry dog. Declarative
pointing also only occurs under specific social conditions. Children do not point unless
there is someone to observe their action and often use other social conventions to draw
attention to the object of interest. No other species has been shown to be responsive
to declarative points and to generate declarative points in naturalistic circumstances
(Povinelli & Preuss, 1995).

3.1.3 Responding to Intent

Theory of mind abilities often bridge the gap between high-level cognitive properties
and low-level perceptual properties. For example, the attribution of intention to an
object is often characterized as a complex, high-level cognitive task involving rea-
soning and episodic memory. Many theory of mind models ground these cognitive
properties in specific low-level percepts. Heider & Simmel (1944) were the first to
characterize the basic perceptual nature of intentional attribution (figure 3-1). Sub-
jects in their experiments were shown movies of simple geometric objects moving
against a static background and were asked to describe the content of the movies.
In spontaneous utterances, virtually all subjects used words like “wants,” “fears,”
or “needs,” in describing the movement of these geometric shapes. The anthropo-
morphization of these shapes was completely automatic; subjects found it extremely
difficult to describe the scene purely in geometric terms even when prompted to do so.
Heider and Simmel’s original results have been replicated and enhanced in many ways
(for a review, see Scholl & Tremoulet, 2000), but the basic observation that humans
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Figure 3-1: Six frames from a movie sequence similar to those used by Heider &
Simmel (1944). Subjects readily attribute intent and goal to the movements of even
these simple geometric shapes. In this example, the large triangle is seen as wanting
to catch the smaller triangle.

naturally tend to attribute intentional states to even simple minimalistic perceptual
scenes remains unchallenged.

Meltzoff (1995) has demonstrated that infants as young as 18 months of age are
also sensitive to the intent of an action and are capable of acting based on the desired
outcome of an unsuccessful intentional act. Infants of this age who were shown an
adult pulling apart a toy shaped like a dumbbell had no difficulty in reproducing the
action. When infants were shown the adult attempting to perform the same action
but failing when their fingers slipped off the object, the infants tended to respond by
completing the action and pulling the object apart rather than imitating the slipping
motion exactly. Interestingly, infants in this study failed to imitate the intended
act when a mechanical set of pincers replaced the human hands. The attribution of
intention in this case was contingent on the nature of the agent that performed the
action.

This sensitivity to intent is also seen in many parts of the animal kingdom. The
simplest forms of intent are expressions of desire and fear, which can easily be ex-
pressed in terms of predator and prey relationships. The evolutionary advantage
of this discrimination power is easy to see; the animal that can determine whether
it is being chased (or can detect the animal that fears it) has an obvious selective
advantage. In some primates, the evolutionary arms race has resulted in behaviors
that attempt to deceive conspecifics by masking the animal’s true intentions (Byrne
& Whiten, 1988; Whiten & Byrne, 1997). Many animal cultures are based on domi-
nance hierarchies that are established not through explicit combat but rather through
complex threat displays and responses. The interpretation of these actions by other
observers can be demonstrated since other individuals in the social group learn dom-
inance relations by observing these interactions (Cheney & Seyfarth, 1990).
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1. Sally hides her 
marble in the box.

S A S A

2.  Sally leaves.

3. Anne moves Sally’ s 
marble to the basket 
and then leaves.

4.  When Sally returns,
where does she look?

SA

Figure 3-2: The Sally-Anne test of false belief. See text for description. Adapted
from Baron-Cohen et al. (1985).

3.1.4 False Belief Tasks

Perhaps the most widely recognized test of theory of mind has been the false belief
task. This class of experimental designs focuses on the question of whether or not
a child can represent that an external agent maintains a belief that is different from
the child’s own beliefs. In many ways, these tasks are more difficult than any of
the preceding problems, as they require the use of many of these precursor abilities
and are often reliant on linguistic responses. Performance on these tasks may not be
effectively measured on non-verbal children or animals.

The first false belief task to be widely studied was the Sally-Anne task (see figure
3-2) (Baron-Cohen et al., 1985), which was based on an earlier design by Wimmer
& Perner (1983). In this scenario, the child is shown a short play that involves two
agents, Sally and Anne, and two locations, a basket and a box. Sally enters the room
carrying a marble, which she hides inside the box. Sally leaves the room, and while
she is away, Anne moves the marble from the box to the basket. Anne covers up
the marble inside the basket so that it is not visible and then leaves the room. Sally
re-enters the scene and the child is asked where Sally will look first in order to find
her marble. To correctly solve this task, children must represent that the belief that
they hold (that the marble is in the basket) is different from the belief that Sally
holds (that the marble is still in the box). Normal children are able to pass this test
at 3-4 years of age, but fail at younger ages (almost always by responding that Sally
will look in the location where the marble is actually hidden). Baron-Cohen et al.
(1985) tested both individuals with autism and individuals with Down’s Syndrome
who had a sufficient verbal aptitude of greater than four years of age. Virtually all
autistic individuals failed this test while those with Down’s Syndrome passed.

The Sally-Anne task has received criticism from many sources (Whiten, 1991),

38



much of which is deserved in that the task requires many competencies and a very
complex understanding of the social situation. A simpler false belief task comes from
Perner et al. (1989), which has come to be known as the “Smarties” test.3 In this
test, the child is shown a sealed tube of Smarties and asked “What do you think
is in here?” Once the child responds that there are Smarties in the container, the
experimenter opens the tube to reveal that instead there are pencils inside. The
children show surprise (and often disappointment) at the appearance of the pencils.
The experimenter then seals the container and asks two belief questions: “Before I
opened the tube, what did you think was inside?” and “When the next child comes
in (who has not seen inside the tube), what will he think is inside?” Normal children
above 3-4 years of age correctly answer “Smarties” to both belief questions. Younger
children, and the majority of autistic children, respond to both belief questions with
“pencils.” In failing this test, the child demonstrates an inability to reconcile the
current (true) belief that there are pencils inside the tube with both the prior (false)
belief that the child himself held and the naive (false) belief that another child would
have in a similar circumstance.

3.2 Leslie’s Model

With a wealth of data on the developmental organization of these disparate abilities,
there have been two major attempts to organize and explain this data. The first
comes from Leslie (1994). Leslie’s theory treats the representation of causal events
as a central organizing principle to theories of object mechanics and theories of other
minds much in the same way that the notion of number may be central to object rep-
resentation. According to Leslie, the world is naturally decomposed into three classes
of events based upon their causal structure: one class for mechanical agency, one
for actional agency, and one for attitudinal agency. Leslie argues that evolution has
produced independent domain-specific modules to deal with each of these classes of
event. The Theory of Body module (ToBY) deals with events that are best described
by mechanical agency, that is, they can be explained by the rules of mechanics. The
second module is system 1 of the Theory of Mind module (ToMM-1) which explains
events in terms of the intent and goals of agents, that is, their actions. The third
module is system 2 of the Theory of Mind module (ToMM-2) which explains events
in terms of the attitudes and beliefs of agents.

3.2.1 ToBY: The Theory of Body

The Theory of Body mechanism (ToBY) embodies the infant’s understanding of phys-
ical objects. ToBY’s goal is to describe the world in terms of the mechanics of physical
objects and the events they enter into. In this sense, ToBY encapsulates a certain

3Smarties are a candy common in Great Britain, where these experiments were originally per-
formed. It is a safe assumption that all British children in the study would be able to instantly
recognize the characteristic tubular Smarties package.
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Figure 3-3: Sequences from some of Michotte’s basic experiments on perceptual
causality. Each row represents five frames from an image sequence involving a gray
square and a black circle. In the first sequence (a), the observer has the perception of
mechanical causation – the black circle moves because it was struck by the gray square.
However, if a temporal gap (b) or a spatial gap (c) is introduced, the movement of
the circle is seen as originating from the circle itself. Similarly, cases where contact is
made (d) but there is no movement are seen as unusual while cases where no contact
is made and no motion results (e) are normal physical processes.

naive understanding of physics. Note that the knowledge in ToBY is neither an accu-
rate view of physics nor is it completely accessible to conscious introspection; ToBY
cannot explain how a gyroscope works both because the explanation is not within its
explanatory power and because the details of that explanation would be inaccessible
to other processes.

ToBY in humans is believed to operate on two types of visual input: a three-
dimensional object-centered representation from high level cognitive and visual sys-
tems and a simpler motion-based system. This motion-based system accounts for the
causal explanations that adults give (and the causal expectations of children) to the
“billiard ball” type launching displays pioneered by Michotte (1962) (see figure 3-3).
Michotte observed that even with a relatively simple visual stimulus, adult observers
were very quick to attribute causal explanations to the movement of simple stimuli.
For example, in case (a) of figure 3-3, observers report that the black circle moves
because it was struck by the gray square. However, slight alterations of the temporal
(b) or spatial (c) characteristics of the collision result in a very different kind of causal
explanation. In these cases, observers report that the black circle moves of its own
accord, that it “wants” to move. Leslie proposed that this sensitivity to the spatio-
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temporal properties of events is innate, but more recent work from Cohen & Amsel
(1998) may show that it develops extremely rapidly in the first few months and is fully
developed by 6-7 months. Cohen and Amsel further argue that infants younger than
6 months respond to spatio-temporal changes in the stimulus but without reference
to the causal properties. We will return to the details of this mechanism in chapter
7.

3.2.2 ToMM: The Theory of Mind Mechanism

Just as the theory of body mechanism deals with the physical laws that govern objects,
the theory of mind mechanism deals with the psychological laws that govern agents.
The objective of ToMM is to interpret the internal state of other agents by making
assumptions based on their behavior. These internal states of belief, goal, and desire
cannot be observed directly, but rather must be estimated from the actions that
the agent takes. The theory of mind mechanism performs this state estimation for
two slightly different classes of causal events. The first deals with actional agencies,
that is, it explains the actions of social agents in terms of their wants, desires, and
fears. The second is concerned with the beliefs and attitudes that an agent maintains.
Leslie’s model has two related but separate mechanisms for dealing with these two
classes of events which he calls system-1 and system-2 but which I will refer to as
ToMM-1 and ToMM-2 after Baron-Cohen (1995).

ToMM-1 is concerned with actional agency; it deals with agents and the goal-
directed actions that they produce. For example, if you see a raccoon slowly ap-
proaching a pool of water, you infer that the raccoon might be thirsty, that it wants
to take a drink. The primitive representations of actions such as approach, avoid-
ance, and escape are constructed by ToMM-1. This system of detecting goals and
actions begins to emerge at around 6 months of age (Leslie, 1982). The emergence of
ToMM-1 is most often characterized by attention to what other agents are looking at
because this serves as a very accurate indicator of intent. Leslie leaves open the issue
of whether ToMM-1 is innate or acquired.

ToMM-2 is concerned with attitudinal agency; it deals with the representations
of beliefs and how mental states can drive behavior relative to a goal. If the raccoon
were to approach a pool of kerosene in the same fashion, you might assume that the
raccoon thought that it was actually a pool of water. This system develops gradu-
ally, with the first signs of development beginning between 18 and 24 months of age
and completing sometime near 48 months. ToMM-2 employs the M-representation,
a meta-representation which allows truth properties of a statement to be based on
mental states rather than observable stimuli. ToMM-2 is a required system for un-
derstanding that others hold beliefs that differ from our own knowledge or from the
observable world, for understanding different perceptual perspectives, and for under-
standing pretense and pretending.
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Figure 3-4: Block diagram of Baron-Cohen’s model of the development of theory of
mind. See text for description. Adapted from Baron-Cohen (1995).

3.3 Baron-Cohen’s Model

While Leslie’s model has a clean conceptual division of the external world into three
spheres of causality, Baron-Cohen’s model is more easily grounded in perceptual pro-
cesses. Baron-Cohen’s model assumes two forms of perceptual information are avail-
able as input. The first percept describes all stimuli in the visual, auditory, and
tactile perceptual spheres that have self-propelled motion. The second percept de-
scribes all visual stimuli that have eye-like shapes. Baron-Cohen proposes that the
set of precursors to a theory of mind, which he calls the “mindreading system,” can
be decomposed into four distinct modules.

The first module interprets self-propelled motion of stimuli in terms of the primi-
tive volitional mental states of goal and desire. This module, called the intentionality
detector (ID), produces dyadic representations that describe the basic movements of
approach and avoidance. For example, ID can produce representations such as “he
wants the food” or “she wants to go over there”. This module only operates on stimuli
that have self-propelled motion, and thus pass a criterion for distinguishing stimuli
that are potentially animate (agents) from those that are not (objects). Baron-Cohen
speculates that ID is a part of the infant’s innate endowment.

The second module processes visual stimuli that are eye-like to determine the di-
rection of gaze. This module, called the eye direction detector (EDD), has three basic
functions. First, it detects the presence of eye-like stimuli in the visual field. Human
infants have a preference to look at human faces, and spend more time gazing at the
eyes than at other parts of the face. Second, EDD computes whether the eyes are
looking at it or at something else. Baron-Cohen proposes that having someone else
make eye contact is a natural psychological releaser that produces pleasure in human
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infants (but may produce more negative arousal in other animals). Third, EDD inter-
prets gaze direction as a perceptual state, that is, EDD codes dyadic representational
states of the form “agent sees me” and “agent looking-at not-me”.

The third module, the shared attention mechanism (SAM), takes the dyadic rep-
resentations from ID and EDD and produces triadic representations of the form “John
sees (I see the girl)”. Embedded within this representation is a specification that the
external agent and the self are both attending to the same perceptual object or event.
This shared attentional state results from an embedding of one dyadic representation
within another. SAM additionally can make the output of ID available to EDD, al-
lowing the interpretation of eye direction as a goal state. By allowing the agent to
interpret the gaze of others as intentions, SAM provides a mechanism for creating
nested representations of the form “John sees (I want the toy)”.

The last module, the theory of mind mechanism (ToMM), provides a way of rep-
resenting epistemic mental states in other agents and a mechanism for tying together
our knowledge of mental states into a coherent whole as a usable theory. ToMM first
allows the construction of representations of the form “John believes (it is raining)”.
ToMM allows the suspension of the normal truth relations of propositions (referential
opacity), which provides a means for representing knowledge states that are neither
necessarily true nor consistent with the knowledge of the organism, such as “John
thinks (Elvis is alive)”. Baron-Cohen proposes that the triadic representations of
SAM are converted through experience into the M-representations of ToMM.

Baron-Cohen (1995) reviews evidence that match the developmental progression of
skills observed in infants to the modular decomposition he has proposed. For normal
children, ID and the basic functions of EDD are available to infants in the first 9
months of life. SAM develops between 9 and 18 months, and ToMM develops from
18 months to 48 months. However, the most attractive aspects of this model are the
ways in which it has been applied both to the abnormal development of social skills
in autism and to the social capabilities of non-human primates and other vertebrates.

Baron-Cohen has proposed that the range of deficiencies in autism can be charac-
terized by his model. In all cases, EDD and ID are present. In some cases of autism,
SAM and ToMM are impaired, while in others only ToMM is impaired. This can be
contrasted with other developmental disorders (such as Down’s Syndrome) or specific
linguistic disorders in which evidence of all four modules can be seen.

Furthermore, Baron-Cohen attempts to provide an evolutionary description of
these modules by identifying partial abilities in other primates and vertebrates. This
phylogenetic description ranges from the abilities of hog-nosed snakes to detect direct
eye contact to the sensitivities of chimpanzees to intentional acts. Roughly speaking,
the abilities of EDD seem to be the most basic and can be found in part in snakes,
avians, and most other vertebrates as a sensitivity to predators (or prey) looking at
the animal. ID seems to be present in many primates, but the capabilities of SAM
seem to be present only partially in the great apes. The evidence on ToMM is less
clear, but it appears that no other primates readily infer mental states of belief and
knowledge.
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3.4 Implications for Humanoid Robots

A robotic system that possessed a theory of mind would allow for social interactions
between the robot and humans that have previously not been possible. A theory of
mind would enable social learning, allowing the robot to learn from a human instruc-
tor using the same natural social cues that people effortlessly use with each other.
No specialized training of the observer would be necessary. The robot would also be
capable of expressing its internal state (desires, goals, etc.) in a way that would be
naturally interpreted by anyone. Further, a robot that can recognize the goals and de-
sires of others will allow for systems that can more accurately react to the emotional,
attentional, and cognitive states of the observer, can learn to anticipate the reactions
of the observer, and can modify its own behavior accordingly. The construction of
these systems may also provide a new tool for investigating the predictive power and
validity of the human and animal models that serve as the basis. An implemented
model can be tested in ways that are not possible to test on humans, using alter-
nate developmental conditions, alternate experiences, and alternate educational and
intervention approaches.

The difficulty, of course, is that even the initial components of these models re-
quire the coordination of a large number of perceptual, sensorimotor, attentional,
and cognitive processes. This section will outline the advantages and disadvantages
of Leslie’s model and Baron-Cohen’s model with respect to implementation. The
following section will describe a hybrid architecture that links components of both
models with a grounded perceptual and behavioral system.

The most exciting aspect of these models from an engineering perspective is that
they attempt to describe the perceptual and motor skills that serve as precursors
to the more complex theory of mind capabilities. These decompositions serve as an
inspiration and a guideline for building robotic systems that can engage in complex
social interactions; they provide a much-needed division of a rather ambiguous abil-
ity into a set of observable, testable predictions about behavior. While it cannot
be claimed with certainty that following the outlines that these models provide will
produce a robot that has the same abilities, the evolutionary and developmental ev-
idence for this skill decomposition does give us hope that these abilities are critical
elements of the larger goal. Additionally, the grounding of high-level perceptual abil-
ities to observable sensory and motor capabilities provides an evaluation mechanism
for measuring the amount of progress that is being made. Robotic implementations of
these systems can be evaluated using the same behavioral and observational metrics
that are used to assess the presence or absence of that same skill in children. This
decomposition provides a sequence of way-points of testable behavioral skills that can
be used to quantitatively measure the progress of a robotic implementation.

Perhaps more importantly, the theory of mind models are interesting from a theo-
retical standpoint in that they serve as a bridge between skills that are often thought
to be high-level cognitive phenomena and low-level skills that are strongly percep-
tual processes. This link allows for a bottom-up engineering approach to begin to
address questions about high-level cognitive tasks by showing how these tasks can be
grounded into perceptual and motor capabilities. While this connection may seem
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obvious given the psychological data, it is often difficult in fields (including robotics)
that are driven primarily by bottom-up design to see how these low-level abilities
might someday scale to more complex questions. Similarly, in fields (including much
of classical artificial intelligence) where top-down design is the status quo, it is difficult
to bind abstract reasoning to realistic sensory data. Bottom-up design tends to result
in systems that are robust and practical, but that in many ways fail to construct
interesting and complex behavior. Top-down design will often result in systems that
are elegant abstractions, but that have little hope of being usable in a real system.
These models of theory of mind provide the insight to construct a system that is truly
grounded in the real-world sensory and motor behaviors but that also can begin to
engage some interesting high-level cognitive questions.

From a robotics standpoint, the most salient differences between the two models
are the ways in which they divide perceptual tasks. Leslie cleanly divides the per-
ceptual world into animate and inanimate spheres and allows for further processing
to occur specifically to each type of stimulus. Baron-Cohen does not divide the per-
ceptual world quite so cleanly but does provide more detail on limiting the specific
perceptual inputs that each module requires. In practice, both models require re-
markably similar perceptual systems (which is not surprising, since the behavioral
data is not under debate). However, each perspective is useful in its own way in
building a robotic implementation. At one level, the robot must distinguish between
object stimuli that are to be interpreted according to physical laws and agent stimuli
that are to be interpreted according to psychological laws. However, the specifications
that Baron-Cohen provides will be necessary for building visual routines that have
limited scope.

The high-level abstract representations postulated by each model also have im-
plications for robotics. Leslie’s model has a very elegant decomposition into three
distinct areas of influence, but the interactions between these levels are not well spec-
ified. Connections between modules in Baron-Cohen’s model are better specified, but
they are still less than ideal for a robotics implementation. Additionally, issues on
how stimuli are to be divided between the competencies of different modules must be
resolved for both models.

3.5 An Embodied Theory of Mind

Drawing from both Baron-Cohen’s model and Leslie’s model, we propose a hybrid
architecture called the embodied theory of mind. This model connects modules similar
to Leslie’s ToBY and Baron-Cohen’s EDD, ID, and SAM together with real perceptual
processes and with links to physical behaviors. Because both Baron-Cohen and Leslie
seek to explain the same underlying data, there is a great deal of overlap in the
two representational systems. Leslie’s ToMM-1 and ToMM-2 system overlap with
the abilities of Baron-Cohen’s EDD, ID, SAM, and ToMM modules. However, the
emphasis that Leslie places on the theory of body module (ToBY) appears only as an
input assumption to Baron-Cohen’s model. The embodied theory of mind exploits
these overlaps and extends the current models to behavior selection, attention, and
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Figure 3-5: The initial stages for linking the Baron-Cohen model and the Leslie model.
The primary insight is that the theory of body (ToBY) can serve as a classifier for
distinguishing animate from inanimate stimuli.

more complex behavioral forms.

The primary insight in linking the two existing models together is that the theory
of body module can act as a classifier for distinguishing self-propelled stimuli. The
physical causal laws that ToBY encapsulates are really descriptions of how inanimate
objects move through the world. ToBY can be transformed into a classifier by making
the assumption that objects that are inanimate must obey these physical laws while
objects that are animate will often break them. With this insight, we can begin
to sketch out the connections between these modules (see figure 3-5). Visual input
will be processed to form motion trajectories, similar to the trajectories observed in
Michotte’s experiments. These visual trajectories will then be analyzed by a set of
naive physical laws in the theory of body module (ToBY). Objects that obey the
laws of mechanical causality will be considered to be inanimate, while those that
break mechanical causality laws will be classified as animate. Baron-Cohen’s model
requires two types of input stimuli: objects with self-propelled motion and face-like
objects. Animate stimuli trajectories serve directly as the input to Baron-Cohen’s
intentionality detector (ID). These animate trajectories will also then be processed
by additional levels of image processing to find locations that contain faces. These
face locations will then be the input to the eye direction detector module (EDD),
which then feeds directly to the shared attention mechanism (SAM).

Connecting this rough outline to real perceptual systems and real motor response
systems involves slightly more detail but still follows the same general principles.
Figure 3-6 shows the overview of the system architecture that will be the subject of
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Figure 3-6: Overview of the hybrid theory of mind model.

chapters 6-12. Raw visual input will be processed by a number of low-level feature
detectors (such as color, motion, and skin tone) which pre-attentively pick out areas
of interest. These low-level filters will be combined with high-level task constraints
and a habituation mechanism to select the most salient object in the scene. The
attention system performs this selection and then directs limited computational and
motor resources to the object of interest (chapter 6). Multiple objects of interest
will be produced, and the trajectories of these objects will be tracked through time.
These trajectories will serve as the input to the theory of body mechanism, which will
employ an agent-based architecture to model the collective knowledge of many simple
rules of naive physics (chapter 7). Any objects that violate the naive physical laws will
be declared animate and will be subject to further processing by the initial modules of
Baron-Cohen’s model. Animate stimuli will be processed by a multi-stage face detec-
tion system. Any faces in the scene will attract the attention of the robot, which will
then use a sequence of post-attentive processing steps to determine the orientation of
the individual (chapter 8). These perceptual systems will directly drive behaviors in-
cluding head orientation, gaze direction, and pointing gestures. In addition, a simple
social learning system will be implemented to demonstrate the effects of these social
cues on imitative learning (chapter 9). Animate trajectories will also be processed
by a simple intentionality detector that picks out relationships between animate ob-
jects and other objects based on a simple representation of approach and avoidance
(chapter 11). These two representations will trigger shared attention behaviors by
applying an additional measurement of object saliency based on the attentional and
intentional state of the observed individual (chapter 10). Finally, the extensions of
this system toward building a richer set of theory of mind abilities and a more robust
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representational architecture are discussed in chapter 12.
Before discussing the details of this implementation, chapter 4 describes the three

robots that were constructed in part to support this research program. Chapter 5 de-
scribes some of the motor and skill learning required to support this implementation.
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Chapter 4

Robot Platforms

The grand challenge that we wish to take up is to make the quantum leap
from experimenting with mobile robot systems to an almost humanoid in-
tegrated head system with saccading foveated vision, facilities for sound
processing and sound production, and two compliant, dextrous manipula-
tors. – Brooks & Stein (1994, p. 9)

To address many of the issues raised in chapters 1 and 2, the Humanoid Robotics
Group at the MIT Artificial Intelligence Laboratory has been constructing robots
that have human-like forms and abilities. To allow humans to engage these robots
in natural social interactions, the robots have been designed to mimic the sensory
and motor capabilities of the human system. The robots should be able to detect
stimuli that humans find relevant, should be able to respond to stimuli in a human-like
manner, and should have a roughly anthropomorphic appearance.

This chapter details the design decisions necessary to balance the need for human-
like capabilities with the reality of relying on current technology and with design
constraints such as reliability, cost, and responsiveness. The primary robotic platform
for this work is an upper-torso humanoid robot called Cog. In addition to the work
presented here, Cog has been used as an experimental platform for investigations
of auditory localization (Irie, 1995), rhythmic arm movements that exploit natural
dynamics (Williamson, 1999), learning functional mappings between sensorimotor
systems (Marjanović, 1995), and a bio-chemical model of muscle fatigue (Adams,
2000). Cog is also currently an active research platform for work on learning ego-
motion relations using sensorimotor correlations (Marjanović, 2001) and for a gestural
language for a humanoid robot (Edsinger, 2001).

This chapter will also provide a basic description of two other robots, Kismet
and Lazlo, that have been used for portions of this work. Both Kismet and Lazlo
are active vision systems that were originally designed as copies of Cog’s head, but
which have both undergone considerable augmentation. Kismet has been given a set
of expressive facial features in order to study the interaction dynamics of the adult-
infant relationship (Breazeal, 2000). Lazlo has been given a more anthropomorphic
appearance than either Cog or Kismet in order to explore the aesthetic and design
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Figure 4-1: Cog, an upper-torso humanoid robot reaching toward an interesting visual
stimulus (which happens to be itself in a mirror). The hardware platform has evolved
considerably over the last few years. Cog has twenty-two degrees of freedom to
approximate human movement, and a variety of sensory systems that approximate
human senses, including visual, vestibular, auditory, and tactile senses.

issues involved in building systems that evoke a social response (Edsinger et al., 2000).

4.1 Cog, An Upper-Torso Humanoid Robot

The main robotic platform for this work is an upper-torso humanoid robot called
Cog (figure 4-1). The hardware design, computational architecture, and software
systems for Cog have undergone considerable evolution over the seven years since the
inception of the project. There have been three different mechanical designs for the
head, two major revisions of the arm systems, one reconstruction of the torso, three
major overhauls in the computational system, and uncountable software changes.
This section presents a single snapshot of the development of Cog as of May, 2001,
along with the design criteria that have been used in the development of the robot.
For a historical perspective on the changes in the robotic systems, see Scassellati
(1998a), Brooks et al. (1999), and Brooks et al. (1998).
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4.1.1 Perceptual Systems

While there are many aspects of human perceptual systems that are far too delicate
or detailed to replicate with current hardware technology, we have made attempts to
mimic many human perceptual abilities. Mimicking aspects of the human perceptual
system provides both additional challenges in the engineering of the system and ad-
ditional possibilities in the use of human perceptual models. There are many sensory
technologies that provide abilities that are super-human in their sensitivity or that
are not natural to human beings. For example, many gyroscopes available on the
market today provide a higher sensitivity than the human ability to represent orien-
tation through vestibular mechanisms. Other sensor technologies, such as infra-red
cameras, sonar, and laser range-finders, are commonly used on robotic systems to
provide information that is often difficult or impossible to obtain by normal human
senses.

While these technologies can aid in many tasks that are difficult for robotic sys-
tems, such as navigation for mobile robotic systems, they are often not the best
choices given the goals outlined in chapter 2. Building a system using these super-
human abilities is a convenient way to solve some difficult problems, but may lead a
researcher away from other fundamental and interesting questions. For example, one
common method for obtaining the distance to a target is the use of a laser range-
finder. While these systems are moderately large, they have been successfully used
on a number of mobile robotic systems. Using this sensing technique, it is possible to
avoid the complexities of visual disparity detection, vergence, and depth estimation.
If the only goal is to obtain depth estimates, the laser range finder will provide a
quicker and easier engineering solution. However, by avoiding the difficulties of visual
depth detection, opportunities for using this information to solve problems in visual
tracking and object segmentation may be missed.

These additional capabilities may also detract from the social interactions between
the robot and others. When based upon these super-human capabilities, the robot’s
behavior may be uninterpretable by a human observer. If the robot responds to
signals that the human cannot sense, the human may attribute the behavior to a
very different causal explanation, or may find the behavior completely inexplicable.
For example, mobile robots are often equipped with infrared cameras, which aid in
finding people in a scene. Imagine that the robot is programmed to provide a greeting
every time it encounters a new person, that is, every time it encounters a new heat
source. After observing the robot greet a number of people, an observer might be
surprised to see the robot greeting a dog, a halogen lamp, or even to greet someone
through a thin wall. Or, imagine that a human-like robot had been equipped with a
camera that allowed it to see in all directions.1 If this robot were to face one person
and yet respond to another person standing behind it, the social cues that the robot
would exhibit become confused.

In building Cog, we have chosen to remain faithful to human senses as much as

1Cameras such as these are often used in mobile robotics by pointing a normal camera upward
toward a conical mirror.
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Figure 4-2: Location of the visual and inertial sensors on the robot’s head. Each
eye contains two color CCD cameras. The upper camera captures a field of view of
approximately 120◦ for peripheral vision. The lower camera captures a smaller field
of view (≈ 20◦) which approximates the human fovea. The images at the left show
typical scenes captured from the two cameras. The images at the right were taken by
the robot’s cameras while pointed toward a piece of graph paper. Notice that while
the foveal camera produces a regular grid, the peripheral camera contains a moderate
fish-eye distortion. The inertial sensor is mounted above the four degrees of freedom
in the neck, and thus moves as the head moves.

possible using commercially available technology. Cog has a variety of sensory systems
including visual, vestibular, tactile, and kinesthetic senses.2 The following sections
will provide details on each of the individual sensing systems. Primary emphasis will
be placed on the visual system, as the other systems are used only incidentally in
the work presented here. Additional information has been published on the auditory
system (Irie, 1995) and the kinesthetic system (Williamson, 1999).

Visual System

While current technology does not allow us to exactly mimic all of the properties
of the human visual system, there are two properties that we desire: wide field of
view and high acuity. Wide field of view is necessary for detecting salient objects in
the environment, providing visual context and compensating for ego-motion. High
acuity is necessary for tasks like gesture identification, face recognition, and guiding
fine motor movements. In a system of limited resources (limited photoreceptors), a
balance must be achieved between providing wide field of view and high acuity. In the
human retina, this balance results from an unequal distribution of photoreceptors. A

2Cog has also had an auditory system at various points in its history, but this was never re-
mounted on the current head design. There are future plans for mounting these microphones once
the robot has a face-like shell such as the one currently being developed on Lazlo.
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high-acuity central area, called the fovea, is surrounded by a wide periphery of lower
acuity. Cog’s vision system will also need to balance the need for high acuity with the
need for wide peripheral vision (Scassellati, 1998a). There are experimental camera
systems that provide both peripheral and foveal vision from a single camera, either
with a variable density photoreceptor array (van der Spiegel et al., 1989), with space-
variant image sampling (Bernardino & Santos-Victor, 1999), or with distortion lenses
that magnify the central area (Kuniyoshi et al., 1995). Because these systems are
still experimental, factors of cost, reliability, and availability preclude using these
options. A simpler alternative is to use two camera systems, one for peripheral vision
and one for foveal vision. This alternative allows the use of standard commercial
camera systems, which are less expensive, have better reliability, and are more easily
available. Using separate foveal and peripheral systems does introduce a registration
problem; it is unclear exactly how points in the foveal image correspond to points in
the peripheral image. We will address this issue in chapter 8.

The vision system developed for Cog uses four Elmo MN42H remote-head cameras.
The remote heads are cylindrical, measuring approximately 17 mm in diameter and
53 mm in length (without connectors), and weighing 25 grams per unit. The upper
camera of each eye is fitted with a 3 mm lens that gives Cog a wide peripheral field
of view (88.6◦(V) × 115.8◦(H)). The lower camera is fitted with a 15 mm lens to
provide higher acuity in a smaller field of view (18.4◦(V) × 24.4◦(H)). This creates a
fovea region significantly larger than that of the human eye, which is 0.3◦, but which
is significantly smaller than the peripheral region. Each camera produces an NTSC
signal that is digitized by a frame grabber connected to the primary computation
system.

Vestibular System

The human vestibular system plays a critical role in the coordination of motor re-
sponses, eye movement, posture, and balance. The human vestibular sensory organ
consists of the three semi-circular canals, which measure the acceleration of head ro-
tation, and the two otolith organs, which measure linear movements of the head and
the orientation of the head relative to gravity.

To mimic the human vestibular system, Cog uses a three-axis inertial sensor from
Intersense (www.isense.com). The sensor consists of a single integrated remote pack-
age measuring 1.06′′ × 1.34′′ × 1.2′′ and a processing module. The remote sensor is
mounted on the robot’s head (as shown in figure 4-2) in a position that allows it to
move with the robot’s head but remain stationary when the eyes are moving (sim-
ilar to the positioning of our own vestibular organs). The sensor delivers both the
angular accelerations in roll, pitch, and yaw and an absolute angular measurement
in two dimensions with respect to the gravity vector. The sensor processing mod-
ule communicates through a standard serial RS-232 interface to the main processing
system.
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Kinesthetic System

Feedback concerning the state of Cog’s motor system is provided by a variety of
sensors located at each joint. The eye and head axes use only the simplest form of
feedback; each actuator has a single digital encoder which gives position information.
The arm joints have the most involved kinesthetic sensing. In addition to all the
previous sensors, each of the 12 arm joints also has strain gauges for accurate torque
sensing and potentiometers for absolute position feedback.

Other Perceptual Systems

Some previous hardware revisions of Cog incorporated additional sensory capabilities
that have either been abandoned or omitted from the current implementation. Other
work on Cog has focused on tactile and auditory perception, but these systems have
not been integrated into this work.

4.1.2 Motor Systems

To build a system that can engage in interesting social interactions, the motor re-
sponse of the system must be reliable, flexible, and have a low response latency. The
system must also conform to certain safety considerations, allowing people to interact
with the robot and to touch the robot. Most importantly, the movement of the robot
must be sufficient to evoke a feeling of sociability from the human observer. The robot
must move in a natural, biological manner; the movements must be of appropriate
speed, timing, and structure. These movements must not only serve to accomplish
tasks for the robot, but also to convey social information to the human instructor as
to the nature of the action that the robot is performing. In the same way that we
naturally interpret the movement of other people and animals, we must be able to
interpret the actions of the robot.

Cog’s mechanical structure has been designed to approximate both the range of
movement and the speed of movement of a human. Cog has a total of twenty-two
mechanical degrees of freedom; two arms with six degrees of freedom each, a torso
with three degrees of freedom, a neck with three degrees of freedom, and three degrees
of freedom in the eyes.

Head and Eyes

Human eye movements can be classified into five categories: three voluntary move-
ments (saccades, smooth pursuit, and vergence) and two involuntary movements
(vestibulo-ocular reflex and optokinetic response) (Goldberg et al., 1992). Saccades
focus an object on the fovea through an extremely rapid ballistic change in position
(up to 900◦ per second). Smooth pursuit movements maintain the image of a moving
object on the fovea at speeds below 100◦ per second. Vergence movements adjust the
eyes for viewing objects at varying depth. While the recovery of absolute depth may
not be strictly necessary, relative disparity between objects are critical for tasks such
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Figure 4-3: The seven mechanical degrees of freedom in Cog’s head. The movement
of the head has been designed to match the range and speed of human head movement,
even though the current outer structure of the head is not a representation of the shape
of a human head.

as accurate hand-eye coordination, figure-ground discrimination, and collision detec-
tion. The vestibulo-ocular reflex and the optokinetic response cooperate to stabilize
the eyes when the head moves.

The goal of mimicking human eye movements generates a number of requirements
for the mechanical system. Saccadic movements provide a strong constraint on the
design of this system because of the high velocities necessary. To obtain high ve-
locities, the system must be lightweight, compact, and efficient. Smooth tracking
motions require high accuracy from the motor control system, and a computational
system capable of real-time image processing. Vergence requires a binocular system
with independent vertical axis of rotation for each eye. The vestibulo-ocular reflex
requires low-latency responses and high accuracy movements, but these requirements
are met by any system capable of smooth pursuit. The optokinetic response places the
least demanding requirements on this system; it requires only basic image processing
techniques and slow compensatory movements.

The active vision system has three degrees of freedom consisting of two active
“eyes”. Each eye can independently rotate about a vertical axis (pan), and the two
eyes share a horizontal axis (tilt). This allows for both conjunctive eye movements,
that is, movements in which both eyes move in similar ways in both dimensions, and
disjunctive eye movements, in which the two eyes verge in toward the midline or away
from the midline. Human eyes have one additional degree of freedom; they can rotate
slightly about the direction of gaze. You can observe this rotation as you tilt your
head from shoulder to shoulder. This additional degree of freedom is not implemented
in our robotic system due to mechanical constraints. To approximate the range of
motion of human eyes, mechanical stops were included on each eye to permit a 120◦
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pan rotation and a 60◦ tilt rotation. On average, the human eye performs 3 to 4
full range saccades per second (Goldberg et al., 1992). Given this goal, Cog’s eye
motor system is designed to perform three 120◦ pan saccades per second and three
60◦ tilt saccades per second (with 200 milliseconds of stability between saccades).
This specification corresponds to angular accelerations of 1309 radians/s2 and 655
radians/s2 for pan and tilt.

Cog also has four degrees of freedom in the neck. The neck tilt axis brings the
whole head forward toward the chest with an axis of rotation near the level of the
shoulders. This axis allows for movements that tip the entire head forward and are
equivalent to the movement of the upper vertebrae of the spinal column. The neck
pan axis rotates the entire head about a vertical axis of rotation, allowing the head
to look to the left or the right. Finally, a differentially driven set of motors allows
for two additional degrees of freedom: the head roll which tips the head around an
axis of rotation that passes from the center of the head straight out through where
the nose would be, and the head tilt which nods the head (but not the neck) toward
the chest. The head tilt axis of rotation can be seen as a line connecting where the
robot’s ears would be, allowing movements along this axis to be seen as a “yes” nod
of the robot’s head. These axes of the neck allow the robot to adopt a number of
expressive movements including yes/no head nods (movements of the head tilt and
neck pan axes respectively), withdrawals and approaches (counter-rotations of the
neck tilt and head tilt axes), and looks of curiosity (an approach movement combined
with a head roll).

Human observers readily interpret the movement of the head and eyes of the robot
as representative of the attentional state and level of commitment of the robot toward
a particular object or stimulus (Breazeal et al., 2000b). Movements of the eyes alone
are easily interpreted as representing the attentional state of the robot. Movements of
the eyes followed by an orientation movement of the neck is seen as both an indication
of the robot’s focus of attention but also as a greater level of interest on the part of
the robot.

Arms

Each of Cog’s arms is loosely based on the dimensions of a human arm with six
degrees of freedom, each powered by a DC electric motor through a series spring (a
series elastic actuator, see Pratt & Williamson, 1995). The spring provides accurate
torque feedback at each joint and protects the motor gearbox from shock loads. A
low gain position-control loop is implemented so that each joint acts as if it were a
virtual spring with variable stiffness, damping and equilibrium position. These spring
parameters can be changed, both to move the arm and to alter its dynamic behavior.
Motion of the arm is achieved by changing the equilibrium positions of the joints, not
by commanding the joint angles directly. There is considerable biological evidence
for this spring-like property of arms (Zajac, 1989; Cannon & Zahalak, 1982; MacKay
et al., 1986).

The spring-like property gives the arm a sensible “natural” behavior: if it is
disturbed, or hits an obstacle, the arm simply deflects out of the way. The disturbance
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is absorbed by the compliant characteristics of the system and needs no explicit
sensing or computation. The system also has a low frequency characteristic (large
masses and soft springs) which allows for smooth arm motion at a slower command
rate. This allows more time for computation and makes possible the use of control
systems with substantial delay (a condition akin to biological systems). The spring-
like behavior also guarantees a stable system if the joint set-points are fed forward to
the arm.

Torso

Cog’s torso has three degrees of freedom: the waist bends side-to-side and front-to-
back, and the “spine” can twist allowing the arms and head to rotate to the left
and right. Each of the degrees of freedom in the torso has recently been modified
to use force control based upon feedback from load cells in each of the joints. These
load cells provide a torque signal for the amount of force being applied on each joint.
One current research project is addressing using the torso and arms in a coordinated
fashion (Edsinger, 2001). The mechanical limits and movement of the torso have been
calibrated to allow for human-like movements without a loss of safety.

4.1.3 Common Computational Substrate

The computational control for Cog has changed radically over the course of the
project. Each revision of the primary computational architecture has focused on
providing real-time response for complex signal processing applications with minimal
latencies.

The current computational core is a network of off-the-shelf industrial PC com-
puters. There are currently 24 processors, ranging in speed from 200 to 800 MHz, but
the network is expandable to 256 processing nodes. Processors are interconnected by
a 100 Mbps ethernet with a 1 Gigahertz networking switch, as well as with point-
to-point ethernet connections between specific processors. Each processor runs the
QNX real-time operating system (www.qnx.com), a commercial product that allows
for real-time scheduling in a Linux-like environment. QNX provides transparent and
fault-tolerant interprocess communication over the network. The robot is connected
to the computational core through commercial video digitization boards (Imagina-
tion PCX-200 frame grabbers), through dedicated analog-to-digital conversion boards
(from Universal Electronics Industries, www.uei.com), and through commercial motor
control boards (from Motion Engineering, www.motioneng.com).

4.2 Kismet, A Robot for Expressive Interaction

Kismet is an active vision head augmented with expressive facial features (see figure 4-
4). Kismet is designed to receive and send human-like social cues to a caregiver, who
can regulate its environment and shape its experiences as a parent would for a child
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Figure 4-4: Kismet has a large set of expressive features – eyelids, eyebrows, ears,
jaw, lips, neck and eye orientation. The schematic on the right shows the degrees
of freedom relevant to visual perception (omitting the eyelids!). The eyes can turn
independently along the horizontal (pan), but turn together along the vertical (tilt).
The neck can turn the whole head horizontally and vertically, and can also crane
forward. Two cameras with narrow “foveal” fields of view rotate with the eyes. Two
central cameras with wide fields of view rotate with the neck. These cameras are
unaffected by the orientation of the eyes. Line drawing courtesy of Paul Fitzpatrick.

(Breazeal, 2000). Kismet has three degrees of freedom to control gaze direction,
three degrees of freedom to control its neck, and fifteen degrees of freedom in other
expressive components of the face, including eyebrows (each with two degrees of free-
dom: lift and arch), ears (each with two degrees of freedom: lift and rotate), eyelids
(each with one degree of freedom: open/close), a mouth (with one degree of freedom:
open/close), and lips which can curl at each of the four corners. The robot is able
to show expressions analogous to anger, fatigue, fear, disgust, excitement, happiness,
interest, sadness, and surprise (shown in figure 4-5) which are easily interpreted by
an untrained human observer.

To perceive its caregiver, Kismet uses a microphone, worn by the caregiver, and
four color CCD cameras. The visual system on Kismet differs from Cog’s in the
configuration and type of cameras. Kismet has two single-board CCD cameras, one
behind each eye, that have a narrow field of view slightly larger than the foveal
cameras on Cog. Between the eyes, there are two unobtrusive central cameras fixed
with respect to the head, each with a wider field of view but correspondingly lower
acuity. This configuration leads to a less anthropomorphic visual sensing system, but
has the benefit that certain visual tasks become simpler to implement. For example,
smooth-pursuit tracking of a visual stimulus (that is, moving the eyes to maintain the
object within the center of the field of view) becomes simpler when the two cameras
along the robot’s midline are used. Because these cameras do not move with the eyes,
the visual processing required for tracking need not compensate for camera motion,
leading to a simpler tracking algorithm.

The computational system for Kismet is considerably more heterogeneous than
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Figure 4-5: Static extremes of Kismet’s facial expressions. During operation, the 15
degrees of freedom for the ears, eyebrows, mouth, and eyelids vary continuously with
the current emotional state of the robot.

Cog’s, although the components used for vision are nearly identical. Kismet’s vision
system is implemented on a network of nine 400 MHz commercial PCs running the
QNX real-time operating system. Kismet also has a motivational system which runs
on a collection of four Motorola 68332 processors. Machines running Windows NT
and Linux are also networked for speech generation and recognition respectively.

4.3 Lazlo, A Visual Development Platform

A third robot, called Lazlo, was constructed to provide a second development platform
and to allow additional researchers to contribute to the visual processing system (see
figure 4-6). Until the most recent revision, Lazlo was an exact copy of the hardware
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Figure 4-6: In addition to Cog and Kismet, a third development platform called Lazlo
was constructed. The earliest version of Lazlo (shown at right) was used primarily
as a visual skill development platform. The most current revision (left),has been
modified to have a more anthropomorphic appearance.

architecture that was used for Cog’s head. The most recent revision is a copy of the
understructure of Cog’s head and neck, but with additional mount points and a new
“face”. These additions were intended to allow research on the aesthetic qualities
that enable more natural social interactions and the development of social contracts.
The underlying perceptual and computational systems for Lazlo are identical to those
on Cog. Additional details on the original development platform design can be found
in Scassellati (1998a), and the most recent revision is described in Edsinger et al.
(2000).

4.4 Summary

Three robots were designed and constructed by the Humanoid Robotics Group at
MIT to support natural social interactions with people. Cog has the most sensory
and manipulation capabilities, and has been the centerpiece of many related projects.
With a human-like form, human-like sensory systems, and human-like movements,
Cog is a unique platform for investigating how people use and respond to social
cues. Kismet is an active vision system that has been modified to have expressive
capabilities that help to engage people and to regulate its interactions with the world.
Lazlo is a development platform for visual processing routines and for investigating
the aesthetics of social interaction. All three robots were used to support the work
described in the following chapters.
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Chapter 5

Matching Human Movements

Because people have a strong positive bias toward social relationships and
predictable environments, the more a media technology is consistent with
social and physical rules, the more enjoyable the technology will be to use.
Conforming to human expectations means that there is instant expertise
just because we’re human... – Reeves & Nass (1996, p. 8–9)

In addition to providing an anthropomorphic appearance, we want our robots
to move in human-like ways. By matching human movement behaviors, the robot’s
behavior will be easily understood by a human observer because it is analogous to
the behavior of a human in similar circumstances. For example, when an anthropo-
morphic robot moves its eyes and neck to orient toward an object, an observer can
effortlessly conclude that the robot has become interested in that object. By creating
behaviors that match human behaviors, the robot can more easily be seen as fitting
into the expected social norms. There are other advantages to modeling our imple-
mentation after the human motor system. There is a wealth of data and proposed
models for explaining human and animal motor responses. This data provides both
a standard with which to judge our implementations and often a well-recognized set
of evaluation metrics for measuring the progress of the robot’s motor behaviors.

This chapter reviews a set of behavioral responses that have been developed for
Cog, Kismet, and Lazlo, so that the later chapters on foundational skills for a theory
of mind can be evaluated in context. The reader is referred to Scassellati (1999a);
Brooks et al. (1999); Scassellati (1998a); Breazeal et al. (2000a); Marjanović et al.
(1996), and the other references throughout this chapter for a more extensive review
of the appropriate motor responses.

Whenever possible, we have attempted to build adaptive systems that learn to per-
form sensorimotor skills rather than using explicitly specified kinematic models. This
constraint allows the same software to be usable across all of the robotic platforms,
even though the kinematics of each will differ slightly. This also allows for more ro-
bust behavior, as the kinematic and dynamic aspects of any motor system will change
gradually over time due to slight adjustments in the system and mechanical wear.
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5.1 Eye Movements

As described in section 4.1.2, human eye movements can be classified into five cate-
gories: three voluntary movements (saccades, smooth pursuit, and vergence) and two
involuntary movements (vestibulo-ocular reflex and opto-kinetic response)(Goldberg
et al., 1992). We have implemented mechanical analogs of each of these eye motions
(Scassellati, 1999a; Marjanović et al., 1996).

5.1.1 Saccades

Saccades are high-speed ballistic motions that focus a salient object on the high-
resolution central area of the visual field (the fovea). In humans, saccades are ex-
tremely rapid, often up to 900◦ per second. To enable our machine vision systems to
saccade to a target, we require a saccade function S : (~x,~e) 7→ ∆~e which produces
a change in eye motor position (∆~e) given the current eye motor position (~e) and
the stimulus location in the image plane (~x). To obtain accurate saccades without
requiring an accurate model of the kinematics and optics, a self-supervised learning
algorithm estimates the saccade function. This implementation can adapt to the
non-linear optical and mechanical properties of the vision system.

Distortion effects from the wide-angle lens create a non-linear mapping between
the location of an object in the image plane and the motor commands necessary to
foveate that object. One method for compensating for this problem would be to
exactly characterize the kinematics and optics of the vision system. However, this
technique must be recomputed not only for every instance of the system, but also
every time a system’s kinematics or optics are modified in even the slightest way. To
obtain accurate saccades without requiring an accurate kinematic and optic model,
we use a self-supervised learning algorithm to estimate the saccade function.

Marjanović et al. (1996) learned a saccade function for this hardware platform
using a 17 × 17 interpolated lookup table. The map was initialized with a linear set
of values obtained from self-calibration. For each learning trial, a visual target was
randomly selected. The robot attempted to saccade to that location using the current
map estimates. The target was located in the post-saccade image using correlation,
and the L2 offset of the target was used as an error signal to train the map. The
system learned to center pixel patches in the peripheral field of view. The system
converged to an average of < 1 pixel of error in a 128 × 128 image per saccade after
2000 trials (1.5 hours). With a trained saccade function S, the system can saccade
to any salient stimulus in the image plane. We have used this mapping for saccading
to moving targets, bright colors, and salient matches to static image templates.

Saccade map training begins with a linear estimate based on the range of the en-
coder limits (determined during self-calibration). For each learning trial, we generate
a random visual target location (xt, yt) within the 128 × 128 image array and record
the normalized image intensities Īt in a 13×13 patch around that point. The reduced
size of the image array allows us to quickly train a general map, with the possibility
for further refinement after the coarse mapping has been trained. Once the random
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Figure 5-1: L2 error for saccades to image positions (x,y) after 0 training trials (left)
and 2000 training trials (right) using an interpolated lookup table.

target is selected, we issue a saccade motor command using the current map estimate.
After the saccade, a new image Īt+1 is acquired. The normalized 13 × 13 center of
the new image is then correlated against the target image. Thus, for offsets x0 and
y0, we seek to maximize the dot-product of the image vectors:

max
x0,y0





∑

i

∑

j

Īt(i, j) · Īt+1(i + x0, j + y0)



 (5.1)

Because each image was normalized by the average luminance, maximizing the dot
product of the image vectors is identical to minimizing the angle between the two
vectors. This normalization also gives the algorithm a better resistance to changes
in background luminance as the camera moves. In our experiments, we only exam-
ine offsets x0 and y0 in the range of [−32, 32]. The offset pair that maximized the
expression in equation 5.1, scaled by a constant factor, is used as the error vector for
training the saccade map.

Figure 5-1 shows the L2 error distance for saccades after 0 learning trials and
after 2000 trials. After 2000 training trials, an elapsed time of approximately 1.5
hours, training reaches an average L2 error of less than 1 pixel. As a result of moving
objects during subsequent training and the imprecision of the correlation technique,
this error level remained constant regardless of continued learning.

We have also used the same training data with different function approximation
techniques including neural networks and spline fitting. In each of these cases, the
approximated functions have similar error curves and similar times to convergence
(Scassellati, 1999a).

5.1.2 Smooth Pursuit Tracking

Smooth pursuit movements maintain the image of a moving object on the fovea at
speeds below 100◦ per second. Our current implementation of smooth pursuit tracking
acquires a visual target and attempts to maintain the foveation of that target using a
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cross-correlation metric. Following a saccade, a new target is acquired and installed as
the correlation mask by extracting the central mh ×mw pixels from the post-saccade
image. In subsequent frames, the correlation mask is convolved with each position in
a search region of size sh × sw to produce correlation scores X(i,j) where i ∈ [1...sh]
and j ∈ [1...sw]. The position with the lowest cross-correlation value is considered to
be the center of the new target. A more robust mechanism would use segmentation
to delimit the target within the image, but this simple scheme has proved successful
for many real-world interactions with the robot.

To ensure that the tracking signal accurately reflects a valid match, three criteria
are imposed to maintain consistency. First, the best score must pass a threshold
test. This ensures that a sudden, extremely poor match will not cause an erratic eye
movement. Second, the quality of the match must exceed a threshold value. The
quality of the match is defined as :

Q = (max
i,j

X(i,j) − min
i,j

X(i,j))/(sh ∗ sw);

Intuitively, this criteria ensures that the best match location is significantly better
than the worst possible match, which prevents the system from selecting from among
many similar options. The quality also ensures that the system will not move when
the correlation mask is a poor match to all of the possible search locations. Third,
the average correlation score for all evaluated locations within a single image must
also pass a threshold test. This prevents the tracker from wandering randomly when
presented with a blank background or with a poor quality mask. When these three
criteria are satisfied, the target is declared valid and is used to generate eye movement.
If any of these criteria fails, the match is declared invalid. If a consecutive sequence
of m matches are declared invalid, the tracker declares that it is lost, which triggers
a saccade to acquire a new target.

The vector from the current image center to the center of the valid match is used
as a visual error signal, which is then scaled by a constant vector to generate a velocity
signal for the eye motors. In practice, for an image of size 128× 128, target masks of
size mh = 8 by mw = 8 are used with a search area of mh = 40 by mw = 40. This
allows for tracking at real-time rates (30 Hz).

5.1.3 Binocular Vergence

Vergence movements adjust the eyes for viewing objects at varying depth. While the
recovery of absolute depth may not be strictly necessary, relative disparity between
objects is critical for tasks such as accurate hand-eye coordination, figure-ground dis-
crimination, and collision detection. A variety of different computational techniques
have been used to provide enough depth information to drive vergence movements
(e.g., Rougeaux & Kuniyoshi, 1997; Coombs & Brown, 1993; Yeshurun & Schwartz,
1989)

We have re-implemented the zero-disparity filtering technique used by Coombs
& Brown (1993) to drive vergence. We have not yet incorporated this system to
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consistently drive vergence on Cog, but we have used the system to detect whether
two objects exist at the same depth. This information will be used later in chapter 7
to detect potential elastic collisions. Because the moving objects may not be on the
depth plane defined by the current vergence angle of the eyes, we have made a slight
alteration of the zero-disparity filter. For a given object, the correlation-based tracker
is used to locate the same object in the left and right eye images. The difference in
position of the target between the two images defines a disparity shift, which can
be used to shift the left (or right) image so that the two objects are aligned at the
same coordinate location. The zero-disparity filter is then applied to these two shifted
images to find other patches in the image at that depth.

5.1.4 Vestibular-Ocular and Opto-Kinetic Reflexes

The vestibulo-ocular reflex and the opto-kinetic nystigmus cooperate to stabilize the
eyes when the head moves. The vestibulo-ocular reflex (VOR) stabilizes the eyes
during rapid head motions. Acceleration measurements from the semi-circular canals
and the otolith organs in the inner ear are integrated to provide a measurement of
head velocity, which is used to counter-rotate the eyes and maintain the direction of
gaze. The opto-kinetic nystigmus (OKN) compensates for slow, smooth motions by
measuring the optic flow of the background on the retina (also known as the visual
slip). OKN operates at much lower velocities than VOR (Goldberg et al., 1992).
Many researchers have built accurate computational models and simulations of the
interplay between these two stabilization mechanisms (Lisberger & Sejnowski, 1992;
Panerai & Sandini, 1998).

A simple OKN can be constructed using a rough approximation of the optic flow on
the background image. Because OKN needs only to function at relatively slow speeds
(5 Hz is sufficient), and because OKN only requires a measurement of optic flow of the
entire field, the computational load is manageable. A standard optic flow algorithm
(Horn, 1986) calculates the full-field background motion between successive frames,
giving a single estimate of camera motion. The optic flow estimate is a displacement
vector for the entire scene. Using the saccade map, an estimate of the amount of eye
motion required to compensate for the visual displacement can be estimated.

A simple VOR can be constructed by integrating the velocity signal from the in-
ertial system, scaling that signal, and using it to drive the eye motors. This technique
works well for transient and rapid head motions, but fails for two reasons. First, be-
cause the gyroscope signal must be integrated, the system tends to accumulate drift.
Second, the scaling constant must be selected empirically. Both of these deficits can
be eliminated by combining VOR with OKN.

Combining VOR with OKN provides a more stable, robust system. The OKN
system can be used to train the VOR scale constant. The training routine moves
the neck at a constant velocity with the VOR enabled. While the neck is in motion,
the OKN monitors the optical slip. If the VOR constant is accurate for short neck
motions, then the optical slip should be zero. If the optical slip is non-zero, the VOR
constant can be modified in the appropriate direction. This on-line technique can
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adapt the VOR constant to an appropriate value whenever the robot moves the neck
at constant velocity over short distances. The combination of VOR and OKN can
also eliminate gradual drift. The OKN will correct not only for slow head motions but
also for slow drift from the VOR. We are currently working on implementing models
of VOR and OKN coordination to allow both systems to operate simultaneously.

An alternative to the VOR/OKN mechanisms for gaze stabilization is the use
of efference copy. In efference copy, motor command signals for neck movement are
copied, scaled appropriately, and then sent to counter-rotate the eyes:

∆~e = ~k × ~n

The change in eye position (∆~e) is the product of the neck position (~n) with a scalar

vector (~k). Similar to the training for VOR, the scale vector ~k can be estimated by
observing the image slip while a given neck command is executed. In practice, the
scale factor between the neck pan axis and the eye pan axes is -1.1, the scale factor
between the neck tilt axis and the eye tilt axis is 1.0, and the scale factor between
the virtual head tilt axis (a combination of the two differential axes) and the eye tilt
axis is -1.45. The sign of the scale factor reflects that the two axes are either wired to
move in the same direction (negative scale factors, since this is a mapping that should
counter-rotate the eyes) or to move in opposite directions (positive scale factors).

While this mechanism is effective only for self-induced movement, it is more re-
liable than inertial sensing. The efferent copy signal to the eye motors will arrive
with minimal latency. Even a simple control loop for VOR will impose additional
delay on the signal. This near-zero latency response can reduce image blur even for
a properly tuned VOR/OKN system for movements of the head and neck. However,
compensating for movement of the torso imposes an additional difficulty in translating
between the force-controlled axes of the torso and the position-controlled axes of the
eyes. There is current research on developing a system that learn these relationships
(Marjanović, 2001). In practice, we use the efference copy system whenever the neck
is moving and a VOR response at all other times. The gains for the VOR system
were chosen empirically.

5.2 Coordinated Eye and Neck Movements

Orienting the head and neck along the angle of gaze can maximize the range of the
next eye motion while giving the robot a more life-like appearance. Head orientation
movements have a very strong social influence. This orientation movement is a strong
indicator of social engagement and is easily interpreted by a human observer (Breazeal
et al., 2000b,a).

Once the eyes have foveated a salient stimulus, the neck should move to point
the head in the direction of the stimulus while the eyes counter-rotate to maintain
fixation on the target (see figure 5-2). To move the neck the appropriate distance, we
use a mapping N : (~n,~e) 7→ ∆~n to produce a change in neck motor positions (∆~n)
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Figure 5-2: Orientation to a salient stimulus. Once a salient stimulus (a moving
hand) has been detected, the robot first saccades to that target and then orients the
head and neck to that target.

given the current neck position (~n) and the initial eye position (~e). Because the axes
of rotation for the eyes are parallel to the appropriate axes of rotation of the head, a
simple linear mapping has sufficed: ∆~n = ( 1

~k
× ~e − ~n) where ~k is the same constant

factor used for efference copy.1

5.3 Arm Movements

Cog’s arms have been designed to support force-control strategies for rhythmic arm
movements (Williamson, 1999). The majority of the research on arm control within
the Cog project has focused on exploiting the natural dynamics and force feedback
to perform rhythmic control movements including turning cranks, swinging pendula,
sawing through boards, and playing the drum. However, a few ballistic arm move-
ments have also been studied on this platform. This section will describe two ballistic
movements: pointing to a visual target and following a visual trajectory. While this is
certainly not a complete list, these two behaviors will be useful for building a system
that can mimic human movements.

5.3.1 Pointing to a Visual Target

The ability to point to a visual target appears in infants sometime near 9 months
of age (Baron-Cohen, 1995). At this age, an infant will reach towards objects that
are of interest, often with the hand open and palm extended toward the object and
occasionally opening and closing the hand to indicate interest. This ability is also
sometimes referred to as imperative pointing to distinguish it from the later-developing
action called declarative pointing which is used to direct the attention of the parent
to an object of interest (Gomez, 1991). This ability is also believed to be a critical
part in learning to reach for objects of interest (Diamond, 1990).

There are many ways to approach the problem of enabling a robot to point to a
visual target. If we consider the head to be in a fixed position, a purely kinematic

1This linear mapping has only been possible with motor-motor mappings and not sensorimotor
mappings because of non-linearities in the sensors.
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solution is a R2 → R4 sensorimotor mapping problem with no obvious training signal;
the position of the target in the visual coordinates (a two-dimensional quantity) must
be converted into an arm trajectory for the four degrees of freedom in the arm which
are involved in positioning the end effector. While the arm has six mechanical degrees
of freedom, the action of pointing is only a four dimensional problem. One mechanical
degree of freedom rotates the forearm about its principle axis, and while this alters
the orientation of the hand, it does not change the direction of pointing. Further, two
degrees of freedom, one at the shoulder and one at the elbow, both produce movement
in a plane that is perpendicular to the line connecting the robot’s shoulders and thus
form a redundant system. However, even this R2 → R4 mapping is still too large
a search space to allow for random explorations. Furthermore, it is unclear how to
obtain a reliable error signal for pointing. With head movements, the dimensionality
of the mapping problem becomes even more complex: R6 → R4.

To simplify the dimensionality problem associated with learning to point and to
uncover reliable error signals, we have applied two different aspects of the method-
ology discussed in chapter 2. The first implementation uses a developmental decom-
position of pointing behavior based on the progression of stages that infants pass
through in learning to reach. The benefit of this method is that it is completely
self-trained, and can be done without human effort. The second implementation uses
a set of social constraints to provide the robot with appropriate learning examples.
This method requires the assistance of a benevolent instructor to assist the robot in
learning to point.

Self-Trained Pointing

Diamond (1990) has shown that infants between five and twelve months of age
progress through a number of distinct phases in the development of visually guided
reaching. In this progression, infants in later phases consistently demonstrate more
sophisticated reaching strategies to retrieve a toy in more challenging scenarios. Us-
ing the behavioral decomposition Diamond (1990) observed in infants, Marjanović et
al. (1996) implemented a system that learns to point toward a visual target. The
implemented system simplifies the dimensionality of the process and allows for the
robust recovery of training signals. Given a visual stimulus, typically by a researcher
waving an object in front of its cameras, the robot saccades to foveate on the tar-
get, and then reaches out its arm toward the target (see figure 5-3). Early reaches
are inaccurate, and often in the wrong direction altogether, but after a few hours of
practice the accuracy improves drastically.

To reach to a visual target, the robot must learn the mapping from the target’s
image coordinates ~x = (x, y) to the coordinates of the arm motors ~α = (α0...α5) (see
figure 5-4). To achieve this, the robot first learns to foveate the target using the

saccade map ~S : ~x → ~e which relates positions in the camera image with the motor
commands necessary to foveate the eye at that location. This foveation guarantees
that the target is always at the center of the visual field. The reaching movement
considers only the 2-D projected position of the target on the image plane without
regard for depth. Once the target is foveated, the joint configuration necessary to
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product of two sub-skills: foveating a target and generating a ballistic reach from that
eye position. Image correlation can be used to train a saccade map which transforms
retinal coordinates into gaze coordinates (eye positions). This saccade map can then
be used in conjunction with motion detection to train a ballistic map which transforms
gaze coordinates into a ballistic reach.

point to that target is generated from the gaze angle of the eyes using a “ballistic
map.”

To simplify the dimensionality problems involved in controlling a six degree-of-
freedom arm, arm positions are specified as a linear combination of basis posture
primitives. Although the arm has four joints active in moving the hand to a par-
ticular position in space (the other two control the orientation of the hand), we re-
parameterize in such a way that we only control two degrees of freedom for a reach.
The position of the outstretched arm is governed by a normalized vector of postural
primitives (Mussa-Ivaldi et al., 1985). A primitive is a fixed set of joint angles, cor-
responding to a static position of the arm, placed at the corners of the workspace.
Three such primitives form a basis for the workspace. The joint-space command
for the arm is calculated by interpolating the joint-space components between each
primitive, weighted by the coefficients of the primitive-space vector. Since the vector
in primitive space is normalized, three coefficients give rise to only two degrees of
freedom. Hence, a mapping between eye gaze position and arm position, and vice
versa, is a simple, non-degenerate R2 → R2 function. This considerably simplifies
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Figure 5-5: Generation of error signals from a single reaching trial. Once a visual
target is foveated, the gaze coordinates are transformed into a ballistic reach by the
ballistic map. By observing the position of the moving hand, we can obtain a reaching
error signal in image coordinates, which can be converted back into gaze coordinates
using the saccade map.

learning.

Training the ballistic map is complicated by the inappropriate coordinate space of
the error signal. When the arm is extended, the robot waves its hand. This motion
is used to locate the end of the arm in the visual field. The distance of the hand from
the center of the visual field is the measure of the reach error. However, this error
signal is measured in units of pixels, yet the map being trained relates gaze angles
to joint positions. The reach error measured by the visual system cannot be directly
used to train the ballistic map. However, the saccade map has been trained to relate
pixel positions to gaze angles. The saccade map converts the reach error, measured
as a pixel offset on the retina, into an offset in the gaze angles of the eyes (as if Cog
were looking at a different target). In this way, the knowledge gained from learning
to foveate a target transforms the ballistic arm error into an error signal that can
be used to train the arm directly (see figure 5-5). This re-use allows the learning
algorithms to operate continually, in real time, and in an unstructured “real-world”
environment without using explicit world coordinates or complex kinematics.

This is still not enough to train the ballistic map. Our error is now in terms of gaze
angles, not joint positions (i.e., we know the gaze position that would have foveated
the visual target, but not how the arm should move to attain that position). To
train the ballistic map, we also need a “forward map,” that is, a forward kinematics
function which gives the gaze angle of the hand in response to a commanded set
of joint positions (Jordan & Rumelhart, 1992). The error in gaze coordinates can
be back-propagated through this map, yielding a signal appropriate for training the
ballistic map.
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The forward map is learned incrementally during every reach: after each reach
we know the commanded arm position, as well as the position measured in eye gaze
coordinates (even though that was not the target position). For the ballistic map to
train properly, the forward map must have the correct signs in its derivative. Hence,
training of the forward map begins first, during a “flailing” period in which Cog
performs reaches to random arm positions distributed through its workspace.

This technique successfully trains a reaching behavior within approximately three
hours of self-supervised training. Additional details on this method can be found in
Marjanović et al. (1996). One limitation of this work is that the notion of postural
primitives as formulated is very brittle: the primitives are chosen ad-hoc to yield a
reasonable workspace. Finding methods to adaptively generate primitives and divide
the workspace is a subject of active research.

Socially-Trained Pointing

Another method for simplifying the problem of learning to point is to rely upon social
contracts to provide appropriate feedback to the learning algorithm. In this case, we
rely upon the presence of a benevolent caregiver to structure the environment in such
a way that the learning algorithm is always presented with a partial success. The
driving observation for this method is that when children attempt to point to an
object, the parent will often respond by providing the child with that object, or by
moving an object into the reach of the child. In this way, the parent is always acting
to provide the child with a positive example; the location of the presented object and
the executed reach constitute a positive example for the ballistic mapping function.

In collaboration with Bryan Adams, a prototype system for socially-trained reach-
ing has been implemented. Four primitive postures were defined for each arm. The
first three postures were with the arm near full extension and were used to define a
manifold of possible end-points within the robot’s range of reaching. The first pos-
ture was near the center of the workspace, roughly pointing straight out in front of
the robot. The second posture was at roughly the same horizontal position as the
first primitive but extended upward toward the limit of the workspace. Similarly, the
third posture was at the same vertical position as the first primitive but extended
horizontally toward the extreme right of the robot’s body. These three postures de-
fined a manifold of extended arm postures. Any point within that surface could be
localized as a linear combination of the first posture with some percentage of the
displacements toward the second and third postures. The fourth postural primitive
was a rest posture in which the robot’s arm hung limp along the side of its body.
A pointing gesture was defined as a smooth movement from the rest posture to a
posture that was a linear combination of the first three postures.

Using this set of postural primitives, the end position of a pointing gesture could
be defined by two values. The vertical arm posture Av was the percentage of the
second postural primitive that was to be added to the first postural primitive, and
the horizontal arm posture Ah was the percentage of the third postural primitive.
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The total end posture of the arm P ∗ was defined to be:

A∗ = P1 + Av ∗ (P2 − P1) + Ah ∗ (P3 − P1)

where Pi is the ith postural primitive and the scalar values Av and Ah were allowed to
range between 1 and −1. On each learning trial, the robot would point to a random
position by selecting random values of Av and Ah. A human acting as the parent
would then provide the robot with a positive learning example by picking up an object
near where the robot pointed, moving it to be in alignment with the robot’s gesture,
and making the object more salient by shaking it, attending to it, and presenting
it toward the robot.2 For each trial then, the robot was presented with a single
example of where it would need to reach given a visual position. Approximately 100
trials were recorded in a session lasting slightly more than ten minutes. The data
that was collected was processed off-line, although on-line algorithms similar to those
used in the developmental decomposition could easily be used. Figure 5-6 shows
the resulting visual image coordinates of the most salient object in the scene given
the starting arm posture values. Polynomial least-squares fitting revealed a linear
fit between the horizontal arm posture and the image column and a quadratic fit
between the vertical arm posture and the image row. By inverting these functions,
we obtain a reaching function that provides a set of posture ratios given an image
location (r, c) as input:

Av = 0.0134 ∗ r2 − 0.6070 ∗ r + 6.8009 (5.2)

Ah = 1.4819 ∗ c − 51.2754 (5.3)

Examining the basis postures reveals that the horizontal posture does indeed create
a nearly-horizontal movement through the image plane that varies linearly, while the
vertical posture creates a slightly non-linear projection as the arm reaches either the
upper or lower limit of the workspace.

Using this social learning technique, the robot was able to very quickly obtain
a reasonably accurate behavior with very little training. While these results are
somewhat qualitative, they do provide a behavior that is sufficiently believing to
point to objects of reasonable size that are presented to the robot.

5.3.2 Trajectory Following for Mimicry

Pointing gestures move the end effector from a rest position to some point on the
manifold defined by the other postural primitives. It is also possible to create arm
trajectories that move along curves within that manifold. Given a set of positions

2Rather than having a human intervene, it would also be possible for the robot to simply use
the visual movement of its arm as the target. In practice, discriminating the robot’s hand from its
forearm or elbow is a difficult visual task. Furthermore, this would imply a level of self-understanding
that we have been unwilling to assume for this work.
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Figure 5-6: Resulting function fit for the pointing behavior using social training.
Cross marks indicate training points obtained when the robot generated a random
reach using postural primitive parameters shown on the x-axes and the resulting
image coordinates of the most salient stimulus. Polynomial fitting by least-squares
(solid line) and confidence intervals of 95% (dotted lines) are also shown.

within that manifold, a trajectory can be formed either by simply updating the current
command posture at a rapid rate (30-100 Hz), or by interpolating a set of way points
between positions for movements over longer time intervals.

Mapping from a set of points in the image plane to a set of arm postures can
be done in a few different ways. One simple option is to map the image plane into
the range [-1,1] along both dimensions by dividing each pixel location by one-half
the height and width respectively. This has the effect of allowing the robot to match
the range of its field of view to the range of its arm movements. This mapping will
suffer from local distortions, but will preserve the general shape and direction of
the trajectory of positions in the image plane. A second option is to recognize the
extent of the visual trajectory and use that boundary as the full range of movement
of the arm. For example, if the movement were coming from a person, it might be
desirable to map the person’s range of motion to the robot’s range of motion. A third
option is to use the mappings developed when learning to point to a visual target,
which convert visual coordinates to arm postures, to map the visual trajectories to
a trajectory of arm postures in the same localized region of space. This option is
useful for attempting to match the robot’s arm trajectories to objects in the real
world. By following the mapping obtained when learning to point, the robot in effect
points to and follows the visual impression of the object. In practice, we have used all
three of these options. Chapter 9 describes the details on the effects of these different
mappings on the behavior of the robot.

5.4 Conclusion

This chapter has presented a set of basic robot behaviors that have a close similarity
to human behavioral counterparts. These behaviors give a basis upon which the
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perceptual and cognitive abilities discussed in the following chapters are based. There
are certainly many additional improvements that could be made to these individual
behavioral components to strengthen this foundation. Improvements to these basic
behavioral systems would enrich the behavioral repertoire of the robot, but these
basic behaviors are sufficient to demonstrate the effects of the embodied theory of
mind model.
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Chapter 6

Visual Attention

Seeing the world around you is like drinking from a firehose. The flood
of information that enters the eyes could easily overwhelm the capacity
of the visual system. To solve this problem, a mechanism – attention –
allows selective processing of the information relevant to current goals. –
Kanwisher & Downing (1998, p. 57)

6.1 Introduction

A common problem for both animal and mechanical perceptual systems is that there
are too few computational and motor resources to completely process all of the in-
coming perceptual signals. Attention is a mechanism for allocating these limited
resources to the most relevant sensory stimuli. The most common view of atten-
tion in human psychophysics is that there are two levels of perceptual processing,
pre-attentive and post-attentive, and that attention serves as a gateway to limit the
amount of information that enters into the limited capacity of the post-attentive
processes (Treisman, 1985). The pre-attentive systems are relatively simple compu-
tations that occur in parallel across the entire sensory stimulus (for example, across
the entire retina for visual processing or across the entire tonal spectrum for audi-
tory signals). Pre-attentive processing is automatic and not available to conscious
inspection, although it can be influenced in limited ways by higher-level conceptual
processes. Post-attentive processes make use of limited resources in memory, com-
putational power, or motor responses. Due to these limited resources, post-attentive
processes can only be applied in serial. Post-attentive processes are deliberate actions
and are available to conscious inspection and planning. Attention mechanisms inte-
grate influences from the pre-attentive mechanisms in order to direct post-attentive
processes. These mechanisms are solving a saliency problem, that is, they are deter-
mining which stimuli out of the entire sensory scene are interesting and worthy of
further attention.

This chapter discusses the construction of an attention system which directs lim-
ited computational resources and selects among potential behaviors by combining
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Figure 6-1: A model of human visual search and attention by Wolfe (1994). Visual
stimuli are processed by a variety of low-level perceptual filters which produce indi-
vidual feature maps, which are weighted and summed into a single activation map.
Peaks in the activation map are areas of interest and are allocated limited compu-
tational or motor resources. High-level cognitive systems can influence the selection
process only by modifying these weights.

perceptions from a variety of modalities with the existing motivational and behav-
ioral state of the robot.1 This is a critical ability both for maintaining behavioral
consistency (which allows the human to have a more natural interaction) and for
allowing the robot to operate in cluttered and noisy environments. The implemen-
tation is based upon models of human attention and visual search and has been a
useful tool in predicting faults with existing models of visual attention. The imple-
mentation is opportunistic, deliberative, and socially grounded. The robot responds
opportunistically to stimuli that an infant would find salient while also being able
to perform deliberate search sequences based on high-level task constraints. Finally,
the system is socially mediated in being able to respond to natural social cues that
humans readily use to draw attention to a stimulus.

6.2 Implementation Overview

The implementation discussed here is based upon Wolfe’s “Guided Search 2.0” model
of human visual attention and visual search (Wolfe, 1994). This model integrates

1The original implementation of this work was carried out on Kismet in collaboration with Cyn-
thia Breazeal (Breazeal & Scassellati, 1999). Since then, the architecture has been extended to
include influences from joint reference behaviors (see chapter 10) and standardized for use on all
three of our robot platforms.
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Figure 6-2: Overview of the attention system. A variety of visual feature detectors
(color, motion, and face detectors) combine with a habituation function to produce an
attention activation map. The attention process influences eye control and the robot’s
internal motivational and behavioral state, which in turn influence the weighted com-
bination of the feature maps. Displayed images were captured during a behavioral
trial session.

evidence from Treisman (1985), Julesz & Krose (1988), and others to construct a
flexible model of human visual search behavior. In Wolfe’s model (see figure 6-1),
visual stimuli are filtered by broadly-tuned “categorical” channels (such as color and
orientation) to produce feature maps in which high values indicate areas of interest.
These feature maps may contain multiple categories of filtering. For example, the
feature map for color may contain independent representations for red, yellow, green,
and blue, each of which may contribute to the single color feature. These feature maps
are retinotopically organized, maintaining the same 2-D projection as the retina.
Individual feature maps are weighted and combined by point-wise summation to
produce a single activation map. The peaks in this activation map indicate the
most salient objects in the scene, and the scan path of an individual is computed
by following the sequence of most activated regions. Top-down activation can drive
a visual search by influencing the activation map through the weightings that are
applied before summation. High-level processes may not have arbitrary effects on the
visual search process; only through modifications of these weights may these processes
find influence. For example, the search may be modified to be preferential towards
“blue” stimuli or for “vertical” stimuli, but it may not execute arbitrary searches.

This model does well at explaining many of the conjunctive search effects noticed
by Treisman (1985), Julesz & Bergen (1983), and Nakayama & Silverman (1986). For
example, when presented with a field of objects consisting of a single circle among
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many squares, subjects are able to report the presence of the circle immediately. A
similar effect is observed when searching for a blue item among red, or a vertical line
among horizontal lines. These searches are simple and can be conducted in a constant
amount of time that does not depend upon the number of distractors. To the observer,
the query item seems to “pop-out” instantly from among the distractors. However,
many conjunctive searches cannot be done in this fashion. For example, searching for
a square red object among distractors that contain both circles and squares of both
red and blue color takes an amount of time that increases linearly with the number of
distractors. These complex searches do not result in “pop-out” effects and require an
active search to find the query object. Wolfe’s model explains these effects through
the modifications that top-down processes may make on the summation weights.
When looking for items that match particular categorical channels (such as “blue”),
the weighting can influence the activation map to bring attention immediately to the
query object. However, the model is incapable of performing more complex searches,
which cannot be framed in terms of a single set of weight values. Thus, a search for
objects that are both red and circular cannot be expressed by a single set of weights
without also biasing the search toward objects that are merely red or merely circular.
In this way, Wolfe’s model provides a good estimation of the visual search behavior
observed in humans.

This implementation does not attempt to match human performance exactly (a
task that is difficult with current component technology), but rather requires only that
the robotic system perform enough like a human that it is capable of maintaining
a normal social interaction. Our implementation is similar to other models based
in part on Wolfe’s work (Itti et al., 1998; Hashimoto, 1998; Driscoll et al., 1998),
but additionally operates in conjunction with motivational and behavioral models,
with moving cameras, and it differs in dealing with habituation issues. The following
sections will describe the low-level pre-attentive features that have been implemented,
the habituation mechanisms that have been added, the methods for combining feature
maps, and the ways in which high-level tasks influence this system.

6.3 Low-level Perceptual Systems

One reason that objects can become salient is because they have inherent properties
that are intrinsically interesting. For example, objects that are brightly colored or
moving naturally attract attention. The low-level perceptual systems process visual
input directly to represent the inherent saliency of an object. The implementation
described here focuses on three pre-attentive processes: color, motion, and skin color
pop-outs.2 Both color and motion are inherent properties that are recognized by
Wolfe as part of his model. We have additionally added skin color as a pre-attentive
filter to bias the robot toward attending to people. While this is a less well-supported

2In previous versions of this work, a face detector pop-out was used instead of the skin color
filter. However, this complex processing was a less faithful representation of Wolfe’s model, and also
was more computationally expensive than the pre-attentive features should be.
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Figure 6-3: The color saliency feature detector. At left, the raw 128×128 image. At
right, the feature map produced by processing the raw image with the color saliency
feature detector.

assumption, there are reasons to believe that skin colors attract the attention of
infants (Aslin, 1987).

Responses to these inherent properties represent opportunistic behaviors, that is,
they are responses that are driven by the environment directly. The responses are
also socially mediated, in that they respond to stimuli that are often used socially
to indicate objects of interest. For example, when attempting to show an object to
a child (or a robot), a person will often shake the object or present it by moving it
closer. These simple social cues are recognized through these low-level filters and thus
can influence all later stages of behavior.

6.3.1 Color Saliency Feature Map

One of the most basic and widely recognized visual features is color (see figure 6-
3). Our models of color saliency are drawn from the complementary work on visual
search and attention of Itti et al. (1998). The incoming video stream contains three
8-bit color channels (r, g, and b) which are transformed into four color-opponency
channels (r′, g′, b′, and y′) to better match the human color-opponent center-surround
photoreceptors. Each input color channel is first normalized by the luminance l (a
weighted average of the three input color channels):

rn =
255

3
·
r

l
gn =

255

3
·
g

l
bn =

255

3
·
b

l

These normalized color channels are then used to produce four opponent-color chan-
nels:

r′ = rn − (gn + bn)/2

g′ = gn − (rn + bn)/2

b′ = bn − (rn + gn)/2
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Figure 6-4: The visual motion feature detector. At left, the raw 128 × 128 image.
At right, the feature map produced by subtracting the previous frame in the image
sequence.

y′ =
rn + gn

2
− bn − ‖rn − gn‖

The four opponent-color channels are clipped to 8-bit values by thresholding. While
some research seems to indicate that each color channel should be considered individ-
ually (Nothdurft, 1993), we choose to maintain all of the color information in a single
feature map to simplify the processing requirements (as does Wolfe (1994) for more
theoretical reasons). The maximum of the four opponent-color values is computed
and then smoothed with a uniform 5 × 5 field to produce the output color saliency
feature map. This smoothing serves both to eliminate pixel-level noise and to pro-
vide a neighborhood of influence to the output map, as proposed by Wolfe (1994).
A single computational node computes this filter and forwards the resulting feature
map both to the attention process and a VGA display processor at a rate of 30 Hz.
The processor produces a pseudo-color image by scaling the luminance of the original
image by the output saliency while retaining the same relative chrominance (as shown
in Figure 6-2).

6.3.2 Motion Saliency Feature Map

In parallel with the color saliency computations, a second processor receives input
images from the frame grabber and computes temporal differences to detect motion
(see figure 6-4). The incoming image is converted to grayscale and placed into a ring
of frame buffers. A raw motion map is computed by passing the absolute difference
between consecutive images through a threshold function T :

Mraw = T (‖It − It−1‖)

This raw motion map is then smoothed with a uniform 5 × 5 field. Additionally,
the output of the motion filter is suppressed during certain eye movements. For 200
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Figure 6-5: The skin color feature detector. At left, the raw 128 × 128 image. At
right, the result of applying the skin color filter.

milliseconds following the onset of a saccade, the output of the motion detector is
completely suppressed to allow for the image to stabilize. When performing smooth-
pursuit tracking, the non-central areas of the peripheral image are suppressed from
the output of the motion map. In general, this removes the motion blur of background
objects from attracting the robot’s attention (although those objects still maintain
other inherent saliency properties). The motion saliency feature map is computed at
30 Hz by a single processor node and forwarded both to the attention process and
the VGA display.

6.3.3 Skin Color Feature Map

The third pre-attentive feature detector identifies regions that have color values that
are within the range of skin tones (see figure 6-5) (Breazeal et al., 2000b). Incoming
images are first filtered by a mask that identifies candidate areas as those that satisfy
the following criteria on the red, green, and blue pixel components:

2g > r > 1.1g 2b > r > 0.9b 250 > r > 20

These constants were determined by examining the clusters of skin pixels in hand-
labeled images. The final weighting of each region is determined by a learned clas-
sification function that was trained on hand-classified image regions. The output
is median filtered with a small support area to minimize noise. This detector also
operates at 30 Hz.

6.4 Habituation

Wolfe’s model explains reactions to static scenes, but does not model how the human
responds dynamically over time. One simple mechanism that gives a realistic human-
like response is to habituate to stimuli that are currently under attention. For our
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Time

Figure 6-6: The habituation function is a Gaussian field with amplitude that decays
by a linear time constant. The time decay is reset whenever the eyes move to acquire
a new target of attention.

robot, the current object under consideration is always the object that is in the center
of the peripheral visual field. This is extremely relevant on Cog and Lazlo, since the
center of the peripheral field of view is also the area inside the foveal field of view.
The habituation mechanism serves both to initially enhance an object when it first
comes under attention and later to make the object less and less interesting.

The habituation function can be viewed as a feature map that initially maintains
eye fixation by increasing the saliency of the center of the field of view and slowly
decays the saliency values of central objects until a salient off-center object causes
the eyes to move. The habituation function is a Gaussian field G(x, y) centered in
the field of view with θ = 30 pixels (see figure 6-6). It is combined linearly with the
other feature maps using the weight

w = W · max(−1, 1 − ∆t/τ)

where w is the weight, ∆t is the time since the last habituation reset, τ is a time
constant, and W is the maximum habituation gain. Whenever the eyes move, the
habituation function is reset, forcing w to W and amplifying the saliency of central
objects until a time τ when w = 0 and there is no influence from the habituation
map. As time progresses, w decays to a minimum value of −W which suppresses
the saliency of central objects. In the current implementation, we use a value of
W = 255 (to remain consistent with the other 8-bit values) and and a time constant
τ = 5 seconds. The habituation function is treated as another low-level perceptual
feature, and may have a weighting associated with it. This weighting allows for an
amplification of the effects of the habituation signal with respect to the other feature
maps.

6.5 Linking Feature Maps to Behaviors

The results from the individual feature maps are independent measurements of inher-
ent object saliency. The attention system weights each of these features and combines
them to produce a command signal for the eye movements.
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6.5.1 Combining Feature Maps

Each of the feature maps contains an 8-bit value for each pixel location which repre-
sents the relative presence of that visual scene feature at that pixel. The attention
process combines each of these feature maps using a weighted sum to produce an
attention activation map. The gains for each feature map default to values of 200
for color, 40 for motion, 50 for skin color, and 10 for habituation. The attention
activation map is thresholded to remove noise values, and normalized by the sum of
the gains.

Pixels passing threshold are each assigned a tag which indicates the object area
to which they belong. Whenever two pixels with different tags are adjacent (using
8-connectivity), those two tags are merged into a single tag. Once no further merges
are possible, the bounding box and centroid of each tagged region are computed. To
compensate for some of the noise properties of the camera system, if any two tagged
regions have bounding boxes that overlap or that are within ǫ pixels of overlap, those
two regions are also merged. While this second merge procedure limits the resolution
of the labeling procedure, in practice this step was necessary to ensure the robustness
of the system; many typical objects had two or more salient areas that were very
close but were not consolidated by the 8-connectivity merge because of a few pixels
of noise. In this implementation, a value of ǫ = 2 was used.

Statistics on each region are collected, including the centroid, bounding box, area,
average attention activation score, and average score for each of the feature maps in
that region. The tagged regions that have an area in excess of 30 pixels are sorted
based upon their average attention activation score. The attention process provides
the top three regions to both the eye motor control system and the behavior and
motivational systems.

The entire attention process (with habituation) operates at 30 Hz on a single pro-
cessor node. The speed varies slightly (by less than 10%) with the number of attention
activation pixels that pass threshold for region growing. While the implementation
could be further optimized, these small deviations have little impact on the behavior
of the system.

6.5.2 Attention Drives Eye Movement

The eye motor control process acts on the data from the attention process to center the
eyes on an object within the visual field using the learned saccade behavior described
in section 5.1.1. The centroid of the most salient region is used to determine the target
of the saccade. Additionally, the attention activation score and the individual feature
map scores of the most salient region are made available to higher level processes so
that they may base behavioral choices on the target of interest.

Each time the eyes move, the eye motor process sends two signals. The first
signal inhibits the motion detection system for approximately 200 milliseconds, which
prevents self-motion from appearing in the motion feature map. The second signal
resets the habituation state.

Because the effects of habituation are combined with the other low-level features,
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Figure 6-7: Influences of Kismet’s motivation and behavior systems on the attention
system. Kismet has two homeostatic drives; one drive is to interact socially with
people and the other is to be stimulated with brightly colored toys. The drives influ-
ence the selection of behaviors at multiple levels of a cross-exclusion groups (CEG),
allowing only one behavior at each level to activate its children. Each of the behaviors
at the leaves can influence the weight gains of the attention system.

there is no fixed time period for which the robot will maintain attention on a target.
The length of fixation will depend on the inherent saliency properties of the object, the
decay rate of the habituation Gaussian, and the relative weights of the feature maps.
In this way, the robot’s behavior becomes richly enmeshed with the complexities of
the environment.

6.6 Influences from High-Level Tasks

We have experimented with the mechanisms for allowing high-level processes to influ-
ence and modify the attention model using the robot Kismet. Kismet’s behavior and
motivation system have been described extensively (Breazeal & Scassellati, 2001a;
Breazeal, 2000), but to understand the impact on the attention system, a brief sketch
of the behavior and motivation system will be presented here.

The design of Kismet’s motivation and behavior systems (modeled after theories
of Lorenz (1973)) enable it to socially interact with a human while regulating the in-
tensity of the interaction via expressive displays. Post-attentive perceptual processes
classify stimuli into social stimuli (i.e., people, which move and have faces) which
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Figure 6-8: Changes of the motion, skin(face), and color gains from top-down moti-
vational and behavioral influences (top). When the social drive is activated by face
stimuli (middle), the face gain is influenced by the seek people and avoid people be-
haviors. When the stimulation drive is activated by colorful stimuli (bottom), the
color gain is influenced by the seek toys and avoid toys behaviors. All plots show the
same 4 minute period.

satisfy a drive to be social and non-social stimuli (i.e., toys, which move and are col-
orful) which satisfy a drive to be stimulated by other things in the environment. For
each drive, there is a desired operation point, and an acceptable bounds of operation
around that point (the homeostatic regime). As long as a drive is within the homeo-
static regime, that corresponding need is being adequately met. Unattended, drives
drift toward an under-stimulated regime. Excessive stimulation (too many stimuli or
stimuli moving too quickly) push a drive toward an over-stimulated regime. Kismet’s
drives influence behavior selection by preferentially passing activation to select be-
haviors. By doing so, the robot is more likely to activate behaviors that serve to
restore its drives to their homeostatic regimes.

As shown in Figure 6-7, the face gain is enhanced when the seek people behavior
is active and is suppressed when the avoid people behavior is active. Similarly, the
color gain is enhanced when the seek toys behavior is active, and suppressed when the
avoid toys behavior is active. Whenever the engage people or engage toys behaviors
are active, the face and color gains are restored to their default values, respectively.
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Figure 6-9: Preferential looking based on habituation and top-down influences. When
presented with two salient stimuli (a face and a brightly colored toy), the robot prefers
to look at the stimulus that has behavioral relevance. Habituation causes the robot
to also spend time looking at the non-preferred stimulus.

Weight adjustments are constrained such that the total sum of the weights remains
constant at all times. Figure 6-8 illustrates how the face, motion, and color gains
are adjusted as a function of drive intensity, the active behavior, and the nature and
quality of the perceptual stimulus.

6.6.1 Evaluating the Effects of Top-Down Influences

Top-down gain adjustments combine with bottom-up habituation effects to bias the
robot’s gaze preference (see Figure 6-9). When the seek people behavior is active,
the face gain is enhanced and the robot prefers to look at a face over a colorful toy.
The robot eventually habituates to the face stimulus and switches gaze briefly to the
toy stimulus. Once the robot has moved its gaze away from the face stimulus, the
habituation is reset and the robot rapidly re-acquires the face. In one set of behavioral
trials when seek people was active, the robot spent 80% of the time looking at the
face. A similar affect can be seen when the seek toy behavior is active — the robot
prefers to look at a toy over a face 83% of the time.

The opposite effect is apparent when the avoid people behavior is active. In this
case, the face gain is suppressed so that faces become less salient and are more rapidly
affected by habituation. Because the toy is relatively more salient than the face, it
takes longer for the robot to habituate. Overall, the robot looks at faces only 5% of
the time when in this behavioral context. A similar scenario holds when the robot’s
avoid toy behavior is active — the robot looks at toys only 24% of the time.

Notice that in each of these cases, the influence of the high-level motivations
are easily seen in the behavior of the system, but do not completely determine the
behavior of the system. In this way, the robot is both deliberative in behaving
according to these high-level goals and opportunistic in continuing to respond to
stimuli that become salient through their inherent properties. The behavior of the
system is based off both of these influences, and there is no fixed determination of
the relative importance of low-level and high-level influences.
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6.7 Summary

We have implemented a visual attention system based on models of human visual
search and attention. The attention system is critically important for limiting the
amount of information that must be processed, which allows the robot to operate
in unstructured environments. This system combines information on inherent object
properties (such as color saturation, motion, and skin color), high-level influences from
motivations and goals, and a model of habituation to select objects in the visual scene
that are socially relevant. In the next chapter, we begin to analyze the movement
patterns of these objects in order to perform the most basic theory of mind task: the
discrimination of animate from inanimate stimuli.
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Chapter 7

The Theory of Body Module

Of course, algorithms for animateness and intentionality can lead to mis-
takes. They surely did not evolve in response to selection pressures in-
volving two-dimensional figures moving across computer screens. These
inhabitants of flatland just happen to fall within the actual domains to
which the modules for animacy and intentionality spontaneously extend,
as opposed to the proper domains for which the modules evolved (i.e., an-
imate beings and intentional agents). – Atran (1998, p. 555)

One of the most basic visual tasks for any organism is to distinguish between
animate objects, which might be potential predators or mates, and inanimate objects.
The distinctions between “alive” and “not-alive” are complex conceptual constructs
that change drastically as children acquire new knowledge and reasoning capabilities
(Keil, 1995; Carey, 1995; Gelman et al., 1983). While the discrimination of animate
from inanimate certainly relies upon many distinct properties, including the object’s
texture, color, shape regularity, and perhaps symmetry, as well as the context of the
observed object, Michotte (1962) and a host of others (for a review, see Scholl &
Tremoulet, 2000) have demonstrated that animacy can be elicited by the movement
of single points of light or simple geometric objects moving across a blank background.
As Leslie (1982) and Cohen & Amsel (1998) observed, these basic spatial and temporal
properties are recognized by children as early as six months of age.

In Leslie’s model (1984), this discrimination is performed by the theory of body
module (ToBY). ToBY uses a set of naive rules about how inanimate objects move
through the world in order to classify inanimate from animate stimuli based purely
on the spatial and temporal qualities of the object’s movement. The rules that ToBY
encapsulates are a somewhat simplified view of Newtonian physics in an environment
with high levels of friction. These rules do not match the real mechanics of object
motion, rather they represent our naive understanding of how objects move. Chaput
& Cohen (2001) have begun to outline a connectionist architecture for interpreting
these events as causal indicators. Their system uses the most primitive of perceptual
data (single points) to develop causal explanations of collision events similar to those
described by Michotte (1962) and shown in figure 3-3. Unlike the work presented
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Figure 7-1: Outline of the motion correspondence problem. Each image frame in
a video sequence contains some number of target locations which must be linked
together to form spatio-temporal object trajectories.

here, their system deals with very clean perceptual signals and does not attempt to
ground the perceptual data to real sensory systems. Their architecture also focuses
almost exclusively on collision events and ignores many other interesting cognitive
perceptual events. However, their work is complementary to this work in that it
offers an example of how these naive physical laws might be learned autonomously.

Although most of the testing on the animate/inanimate distinction has been per-
formed on simple geometric shapes on a flat screen, the discrimination that ToBY
performs must operate on real-world stimuli. To provide the perceptual grounding
for ToBY, salient objects generated by the attention system are linked together using
a motion correspondence algorithm to form trajectories, which in turn serve as the
inputs to ToBY (section 7.1). These trajectories are then processed by a multi-agent
representation that mimics Leslie’s ToBY module by attempting to describe trajec-
tories in terms of naive physical laws (section 7.2). The results of the implemented
system on real-world environments are introduced, and a comparison against human
performance on describing identical data is discussed in section 7.3.

7.1 Computing Motion Trajectories

In order to classify object movement according to animacy, the ToBY module requires
as input the trajectory of an object as it moves through space and time. However,
the attention system has been designed to operate on single images. The output
of the attention system is a set of object locations and properties for each image
frame in the video sequence. The first problem that must be addressed is how to link
these individual points together to form trajectories (see figure 7-1). This problem,
often called trajectory formation or motion correspondence, has been extensively
studied in the fields of target tracking and surveillance (Bar-Shalom & Formtann,
1988). Simple solutions track feature points between frames using a nearest-neighbor
judgment (Tomasi & Kanade, 1992), or assume that the number of trajectories is a
known constant (Chang & Aggarwal, 1991). However, these simple methods fail when
dealing with trajectories that cross paths, when the number of trajectories changes
dynamically, or when targets enter or leave the scene – all cases that regularly occur

90



Feature
Extraction

Generate k-best
Hypotheses

Management
(pruning, merging)

Delay

Generate
Predictions

Matching

Figure 7-2: Flowchart for the multiple hypothesis tracking algorithm developed by
Reid (1979) and implemented by Cox & Hingorani (1996).

in the visual environments that our robots inhabit. Furthermore, these methods tend
to be sensitive to spurious measurements (noise in the target selection process) and
often violate uniqueness constraints by assigning the same target position to multiple
trajectories.

To address these problems, Reid (1979) proposed an algorithm called multiple
hypothesis tracking, which was later implemented and evaluated by Cox & Hingorani
(1996). At each timestep, the attention system produces a set of at most b salient
objects. The centroids of those salient objects define a set of measurement points
{P 1

t , P 2
t , ...P b

t } in each frame t. Given an incoming stream of these measurements,
the objective of the multiple hypothesis tracking algorithm is to produce a labeled
trajectory which consists of a set of points, at most one from each frame, which
identify a single object in the world as it moves through the field of view:

T = {P i1
1 , P i2

2 , ...P in
t }

The algorithm (see figure 7-2) operates by maintaining a set of hypotheses, each of
which represents a possible trajectory for a subset of the total image points. As new
measurements arrive, they are matched against existing hypothetical trajectories.
These new measurements might extend an existing trajectory, start a new trajectory,
or be classified as a false alarm (a sensory value that is noise, and should not be
considered part of any particular trajectory). For each new data point, the algorithm
generates all possible trajectory extensions, creations, and false alarms. The algo-
rithm then does some hypothesis management by eliminating or merging duplicate
trajectories, removing old trajectories, and pruning the set of trajectories by selecting
the k best hypotheses and discarding the rest. The surviving hypotheses are used
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to generate predictions of where the next set of measurements should appear. The
prediction of new feature points is based on a Kalman predictor, which uses the pre-
vious positions as internal state in order to predict velocity measurements and future
positions. The predictions are then used as the basis upon which the matching of
new features occurs.

The matching of features can be carried out in many ways. One possibility is
simply to use the distance between the centroids of each target. In this option,
individual feature points are matched to those that maintain a close spatial distance.
This mechanism differs slightly from a generic nearest-neighbor matching, since an
optimal hypothesis across multiple frames may have some non-optimal matches on
particular frames. In other words, to get a better global solution a non-optimal
local match may be accepted. More accurate and detailed matching metrics can be
obtained by using some of the additional feature information associated with each of
the targets generated by the attention system. For each target point produced by the
attention system, the following information is available: centroid position, bounding
box, total pixel area, total pixel saliency, total saliencies for each individual feature
map (color, motion, skin, etc.), and a measurement of whether the object was within
the current disparity plane. Matching can be done with any subset of these features
by defining a statistical model of how the individual feature components are likely to
change over time. In practice, the area, centroid position, and saliency components
from the individual feature maps are used to evaluate the match criteria. Each feature
is considered to have a normal distribution with variance determined empirically from
a few hand-labeled trajectories.

The implementation of the multiple hypothesis tracking algorithm was based
on code kindly provided by Ingemar Cox. Modifications of the existing code were
required to transform the algorithm from a batch-processing implementation to a
continuous on-line implementation. Additional modifications were implemented to
embed the algorithm within the real-time process model and inter-process commu-
nication mechanisms used throughout the current implementation. The completed
implementation runs in real-time (30 Hz) with a maximum of b = 8 measurement
points in each frame and a maximum of k = 300 global hypotheses.

7.2 Naive Physics Experts

To implement the variety of naive physical laws encompassed by the Theory of Body
module, a simple expert-based approach was chosen. Each expert represents knowl-
edge of a single theory about the behavior of inanimate physical objects. For every
trajectory T , each expert a computes both an animacy vote αTa and a certainty ρTa.
The animacy votes range from +1 (indicating animacy) to −1 (indicating inanimacy),
and the certainties range from 0 to 1. For these initial tests, five experts were con-
structed: a static object expert, a straight line expert, an acceleration sign change
expert, an elastic collision expert, and an energy expert. These experts were chosen
to handle simple, common motion trajectories observed in natural environments and
do not represent a complete set. Most notably absent are experts that recognize
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Figure 7-3: The architecture for the theory of body module.

repetitive motions as inanimate.

At each time step, every trajectory that passed a minimum length requirement
was processed by each of the ToBY experts (see figure 7-3). The minimum length
requirement was imposed to ensure that all trajectories contained sufficient data to
compute statistical information against the noise background. Any trajectory with
fewer than one-twentieth the maximum trajectory length or fewer than three data
points is given an animacy vote α = 0.0 with a certainty value of 1.0. In practice,
maximum trajectory lengths of 60-120 were used (corresponding to trajectories span-
ning 2-4 seconds), so any trajectory of fewer than 3-6 data points was rejected. All
trajectories that passed this test were evaluated by each ToBY expert, and the votes
from each of these experts were tallied. Three different voting arbitration algorithms
were tested to produce the final vote VT for each trajectory T . The first voting method
was a simple winner-take-all vote in which the winner was declared to be the expert
with the greatest absolute value of the product:

VT = max
a

‖αTa × ρTa‖

The second method was an average of all of the individual vote products:

VT =
1

A

∑

a

(αTa × ρTa)

where A is the number of experts voting. The third method was a weighted average
of the products of the certainties and the animacy votes:

VT =
1

A

∑

a

(wa × αTa × ρTa)
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where wa is the weight for expert a. Weights were empirically chosen to maximize
performance under normal, multi-object conditions in natural environments and were
kept constant throughout this experiment as 1.0 for all experts except the static object
expert which had a weight of 2.0. The animacy vote at each time step is averaged
with a time-decaying weight function to produce a sustained animacy measurement.

7.2.1 Static Object Expert

Objects that are stationary are inanimate.

Because the attention system still generates target points for objects that are
stationary, there must be an expert that can classify objects that are not moving as
inanimate. The static object expert rejects any trajectory that has an accumulated
translation below a threshold value as inanimate. The certainty of the measurement
is inversely proportional to the translated distance and is proportional to the length
of the trajectory.

7.2.2 Straight Line Expert

Objects that move in a straight line with constant deceleration are inani-
mate.

The straight line expert looks for constant, sustained velocities. This expert com-
putes the deviations of the velocity profile from the average velocity vector. If the
sum of these deviations fall below a threshold, as would result from a straight linear
movement, then the expert casts a vote for inanimacy. Below this threshold, the
certainty is inversely proportional to the sum of the deviations. If the sum of the de-
viations is above a secondary threshold, indicating a trajectory with high curvature
or multiple curvature changes, then the expert casts a vote for animacy. Above this
threshold, the certainty is proportional to the sum of the deviations.

7.2.3 Elastic Collision Expert

Objects that rebound from a contact with another object in the same depth
plane are inanimate.

A collision in which the kinetic energy is the same before and after the collision is
called elastic. In an inelastic collision, some of the kinetic energy is lost in friction or
as heat as the shape or structure of the objects change due to the impact force. While
most macroscopic interactions between objects are unlikely to be elastic, there are
certain real-world events that look enough like elastic collisions that they represent
an interesting domain. For example, a ball bouncing on the floor can be roughly
modeled as an elastic collision. In terms of describing animacy, elastic collisions serve
well as indicators of inanimacy, while inelastic collisions are not good estimators of
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either animacy or inanimacy (Premack, 1990). An inelastic collision could be the
result of two inanimate objects striking each other and deforming (as would occur if
a boulder rolling down a hill were to strike a tree), the result of an animate agent
interacting with an inanimate object (such as a man stopping to rest against a tree),
or the result of two animate agents interacting (such as two people stopping in the
hall to chat).

One method for detecting elastic collisions would be to look at the interactions
between all pairs of objects in the scene. This is not feasible for most real-world
implementations, as the number of objects in the scene is potentially very large and
often unknown. Furthermore, objects of interest may collide with objects that are
often unrepresented (such as the floor). Rather than matching between pairs of salient
objects, the elastic collision expert monitors each individual trajectory for potential
collision points using a two-step method that does not explicitly represent the second
object. For each salient trajectory (β), points of possible collisions are detected by
watching for changes in the direction of the velocity vector by more than 90 degrees.
Second, possible collision points are evaluated to determine if a solid object is located
along the direction of the original velocity and within close spatial proximity to the
point of contact. The elastic collision expert projects along the original velocity
direction for a short distance (ǫ = 4 pixels) and compares the result of the depth
map at that location with the depth value of the trajectory. (Recall from section
5.1.3 that the depth map is computed using a simple correlation matching method
on image patches). If an object is detected at the same (rough) depth, the collision
is declared to be elastic. If all collisions for a trajectory are elastic, the trajectory is
given an animacy vote of α = −1 with a certainty of 0.50. The certainty value was
chosen empirically to reflect the inaccuracies of the depth process.

7.2.4 Energy Expert

Objects that trade potential for kinetic energy are inanimate.

Bingham et al. (1995) have proposed that human adults judge animacy based on
models of potential and kinetic energy. To explore their hypothesis, a simple energy
model expert was implemented. The energy model expert judges an object that gains
energy to be animate. The energy model computes the total energy of the system E
based on a simple model of kinetic and potential energies:

E =
1

2
mv2

y + mgy

where m is the mass of the object, vy the vertical velocity, g the gravity constant, and
y the vertical position in the image. In practice, since the mass is a constant scale
factor, it is not necessary for these calculations. This simple model assumes that an
object higher in the image is further from the ground, and thus has more potential
energy. The vertical distance and velocity are measured using the gravity vector from
a three-axis inertial system as a guideline, allowing the robot to determine “up” even
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when its head is tilted. The certainty of the vote is proportional to the measured
changes in energy.

7.2.5 Acceleration Sign Change Expert

Objects that often reverse their acceleration are animate.

One proposal for finding animacy is to look for changes in the sign of the ac-
celeration. According to this proposal, anything that can alter the direction of its
acceleration must be operating under its own power (excluding contact with other
objects). The acceleration sign change expert looks for zero-crossings in the acceler-
ation profile of a trajectory. Anything with more than one zero-crossing is given an
animacy vote with a certainty proportional to the number of zero crossings.

7.3 Performance Evaluation

The performance of the individual experts was evaluated both on dynamic, real-world
scenes at interactive rates and on more carefully controlled recorded video sequences.

For interactive video tasks, at each time step five attention targets were produced.
Trajectories were allowed to grow to a length of sixty frames, but additional informa-
tion on the long-term animacy scores for continuous trajectories were maintained as
described in section 7.2. All three voting methods were tested. The winner-take-all
and the weighted average voting methods produced extremely similar results, and
eventually the winner-take-all strategy was employed for simplicity. The parameters
of the ToBY module were tuned to match human judgments on long sequences of
simple data structures (such as were produced by static objects or people moving
back and forth throughout the room).

Figure 7-4 shows three sample trajectories taken during the unconstrained dy-
namic testing. Each of the samples shows a single image frame and the overlayed
trajectories from the past 30 frames. In the first sequence (shown at left), five tra-
jectories were detected. Four of the five were static objects (the author’s head, a
desk chair, a door in the background and a couch in the background) and were de-
tected as inanimate by ToBY. The fifth was from the author’s hand making a circular
movement, which ToBY judged to be animate. In this example, the energy expert,
acceleration sign change expert, and the straight line expert all voted that the hand
trajectory was animate while the static object expert and the collision expert voted
with zero certainty. This example was characteristic of many human-generated move-
ments that were observed as people (both experienced and naive) interacted with the
robot or simply passed by the robot. In the second sequence (shown at center), the
author launched a wheeled office chair across the floor with a gentle push. The chair
moved approximately 1.5 meters before it rolled to a stop. Of the five experts, two
voted for inanimacy (the straight line expert and the acceleration sign change expert)
and three gave an uncertain vote (α = 0 for the remaining three experts). This trajec-
tory was characteristic of many examples of manipulated objects in the environment
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Figure 7-4: Three examples taken from the dynamic real-world tests of the ToBY
module. Each example shows the overlayed trajectories as a connected line of black
dots. At left, a hand making a circular movement was found to be animate. A desk
chair that was launched across the floor (center) was inanimate, but the same desk
chair that was moved across the floor by pushing it with an attached rod was animate
(right). See text for further details.

including dropped books, desks and chairs pushed across the floor, and balls rolling
on the floor. In the final example (at right), a long pole was attached to the office
chair so that it could be pushed across the floor at varying speeds. The pole was
too thin and neutrally-colored to be detected by the attention system as a target. In
an attempt to reproduce inanimate motion, the author pushed the desk chair across
the floor by pushing and pulling on the pole. In a few cases like this, the chair’s
trajectory was judged to be inanimate by the ToBY experts. However, in most cases,
the ToBY experts judged the movement to be animate with two experts voting for
animacy (the straight line expert and the acceleration sign change expert) and three
experts voting with zero certainty. While it was difficult to discriminate between
these two cases from the overlayed trajectory data, looking at the raw motion or at
the individual components of the trajectory vectors showed clear differences between
the natural chair movement and the pole-induced movement. In this case, the author
was unable to mimic the natural movements of the chair rolling across the floor with
sufficient fidelity to fool the ToBY classifier. While this evidence is anecdotal, it does
demonstrate some of the power of this classification system. The following section
provides more controlled comparisons of the ToBY experts against human judgments
and the ground truth animacy of a variety of stimuli.

7.3.1 Motion Trajectory Stimuli

To further quantify the performance of the ToBY system and to evaluate the contri-
butions of the individual experts, a set of dynamic motion data was recorded from the
robot’s attention system. While the robot was observing natural objects in both nor-
mal situations and planned sequences, the output of the attention system was written
to a file. To accurately evaluate the performance of the ToBY experts, we desired to
evaluate the machine results against both the ground truth of the visual scene and
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Figure 7-5: Fifteen stimuli used in the pilot study for evaluating ToBY. Each image
is a static representation of a 2-4 second movie sequence in which a single point of
light moved against a black background. The most recent position of the point of
light is shown as a bright white spot, while older positions are less bright.

against what humans would judge given similar spatio-temporal information. To do
this, a sequence of short movies were created from the attention data in which all
potential contextual cues were removed. The human was shown only a single moving
spot of light against a black background, in essence, the exact data that the ToBY
system has available for an individual trajectory. The location of this dot was tied
to the centroid location of the most salient object detected by the attention system.
While the attention data contained multiple trajectories, only the trajectory of the
most salient object was displayed to simplify in the collection of human animacy
judgments and to simplify the reporting. Because each expert currently treats each
trajectory independently, this restriction should not bias the comparison.

Two sets of data were collected using this technique. The first set of data contained
fifteen sequences, each of which was two seconds long and contained only a single
moving object. Each image in figure 7-5 shows a static representation of the moving
stimulus in which the location of the moving dot is seen as a blur with the most
recent positions drawn as the brightest points. This data was used to develop a
reliable testing method for human subjects. Subjects were directed to a web page
which contained instructions on how to perform the survey. Subjects were allowed to
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Figure 7-6: Thirty stimuli used in the evaluation of ToBY. Stimuli were collected
by recording the position of the most salient object detected by the attention system
when the robot observed natural scenes similar to the one shown in figure 7-4. Each
image shown here is the collapsed sequence of video frames, with more recent points
being brighter than older points. Human subjects saw only a single bright point in
each frame of the video sequence.
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view each 2-4 second movie sequence as many times as they wished, and afterward
were asked to rate the animacy of the video sequence on a scale of 1 to 10, where 1
represented that they were certain that the object was animate and 10 represented
certainty that the object was inanimate. Of the twenty subjects shown this initial
pilot, five subjects found the initial set of instructions to be ambiguous, and one
subject was confused on the recording method. Following the observations of these
subjects and the critiques of three anonymous reviewers, the data from this pilot
task was discarded and a slightly altered questionnaire was provided to a new set of
subjects.

A second set of data consisting of thirty video segments of approximately 120
frames each was collected (see figure 7-6). A wide variety of movements were pro-
duced by putting real-world objects in front of the robot and recording the attention
systems results. These trajectories included static objects (e.g., #2), swinging pen-
dula (e.g., #3), objects that were thrown into the air (e.g., #7), as well as more
complicated trajectories (e.g., #1). Figure 7-7 lists the trajectories grouped accord-
ing to the category of movement and can be matched to figure 7-6 using the stimulus
number in the second column. While many stimuli can easily be interpreted from the
static representations shown in figure 7-6, a few deserve additional comment. Among
the thrown objects, stimuli #7 and #13 are a result of normal objects being thrown
into the air and falling, while stimuli #20 and #25 have been artificially created by
an experimenter. In stimulus #20, the object is thrown into the air, caught near
the apex of its ascent, held stationary momentarily, and then released. In stimulus
#25, an experimenter moved a toy block through an upward motion followed by a
downward motion but attempted to reverse the normal velocity profile by beginning
with a slow movement, increasing the velocity as the block approached the apex, and
slowing as the block descended.

7.3.2 Human Animacy Judgments

Thirty-two adult, volunteer subjects were recruited for the study using the second
stimulus set. No subjects from the pilot study were allowed to participate in this
experiment. Subjects ranged in age from 18 to 50, and included 14 women and 18
men. Subjects participated in a web-based questionnaire and were informed that they
would be seeing video sequences containing only a single moving dot, and that this
dot represented the movement of a real object. They were asked to rank each of the
thirty trajectories shown in figure 7-6 on a scale of 1 (animate) to 10 (inanimate).
Following initial pilot subjects (not included in this data), subjects were reminded
that inanimate objects might move (such as a boulder rolling down a hill) but should
still be treated as inanimate. Subjects received the following instructions on animacy
judgments:

To make these movies, a small light was attached to an object. The lights
in the room were then turned off so that the only thing that could be
seen was that single point of light. Your job will be to guess whether the
object in each video was an animate object (such as a person’s hand or
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Stimulus Stimulus
Category Number Notes

Static 2 Stationary toy ball
Objects 16 Stationary person
Thrown 7 Ball is thrown into the air and falls
Objects 13 Toy block is thrown into the air and falls

20 Thrown object is held stationary at apex
25 Velocity increases near apex

Circular 5 Toy ball moving in a circle
Movements 8 Person’s hand moving in a circle

17 Hand that spirals inward
26 Slow inward spiral
29 Elliptical movement

Straight 4 Toy ball moves left to right
Line 11 Toy block moves right to left

Movements 22 Hand moving slowly downward
27 Hand moving slowly upward
15 Ball rolling down an inclined plane
24 Ball being pulled up an inclined plane

Pendula 3 Movement along a large radius
10 Initial release has longer arc
21 Object “settles” quickly
30 Almost horizontal movement
12 Rapid alternation of direction

Erratic 1 Random movements created by a moving person
Movements 6 Rapid left/right alternating movements

9 Object bounces up and down
14 Repeated left/right hops
18 Left/right movement starts, stops, starts again
19 Tracking system failure
23 “Figure eight” movement
28 Left/right movement starts, stops, starts again

Figure 7-7: Description of the stimuli from figure 7-6, grouped by motion class.
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a dog) or an inanimate object (such as a book falling off a shelf or a ball
rolling across the floor). You will be asked to rate each object on a scale
of 1 (animate) to 10 (inanimate).

Subjects were allowed to review each video sequence as often as they liked, and no
time limit was used.

The task facing subjects was inherently under-constrained, and the animacy judg-
ments showed high variance (a typical variance for a single stimulus across all subjects
was 2.15). Subjects tended to find multiple interpretations for a single stimulus, and
there was never a case when all subjects agreed on the animacy/inanimacy of a tra-
jectory. To simplify the analysis, and to remove some of the inter-subject variability,
each response was re-coded from the 1-10 scale to a single animate (1-5) or inani-
mate (6-10) judgment. Subjects made an average of approximately 8 decisions that
disagreed with the ground truth values. This overall performance measurement of
73% correct implies that the task is difficult, but not impossible. Column 4 of figure
7-8 shows the percentage of subjects who considered each stimulus to be animate. In
two cases (stimuli #13 and #9), the majority of human subjects disagreed with the
ground truth values. Stimulus #9 showed a dot moving alternately up and down,
repeating a cycle approximately every 300 milliseconds. Subjects reported seeing this
movement as “too regular to be animate.” Stimulus #13 may have been confusing to
subjects in that it contained an inanimate trajectory (a ball being thrown and falling)
that was obviously caused by an animate (but unseen) force.

7.3.3 ToBY Animacy Judgments

The identical video sequences shown to the human subjects were processed by the
trajectory formation system and the ToBY system. Trajectory lengths were allowed
to grow to 120 frames to take advantage of all of the information available in each short
video clip. A winner-take-all selection method was imposed on the ToBY experts to
simplify the reporting of the results, but subsequent processing with both other voting
methods produced identical results. The final animacy judgment was determined to
be the winning expert on the final time step. Columns 6 and 5 of figure 7-8 show the
winning expert and that expert’s animacy vote respectively.

Overall, ToBY agreed with the ground truth values on 23 of the 30 stimuli, and
with the majority of human subjects on 21 of the 30 stimuli. On the static object
categories, the circular movement stimuli, and the straight line movement stimuli,
ToBY matched the ground truth values perfectly. This system also completely failed
on all stimuli that had natural pendulum-like movements. While our original predic-
tions indicated that the energy expert should be capable of dealing with this class of
stimuli, human subjects seemed to be responding more to the repetitive nature of the
stimulus rather than the transfer between kinetic and potential energy. ToBY also
failed on one of the thrown objects (stimulus #20), which paused when it reached its
apex, and on one other object (stimulus #19) which had a failure in the trajectory
construction phase.
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Stimulus Stimulus Ground Human ToBY ToBY
Category Number Truth Judgment Judgment Expert

Static 2 Inanimate 3% Inanimate Static Object
Objects 16 Inanimate 6% Inanimate Static Object
Thrown 7 Inanimate 44% Inanimate Energy
Objects 13 Inanimate 53% Inanimate Energy

20 Animate 78% Inanimate Straight Line
25 Animate 81% Animate Energy

Circular 5 Animate 59% Animate Energy
Movements 8 Animate 81% Animate Energy

17 Animate 81% Animate Straight Line
26 Animate 78% Animate Acc. Sign Change
29 Animate 56% Animate Energy

Straight 4 Inanimate 47% Inanimate Straight Line
Line 11 Inanimate 36% Inanimate Straight Line

Movements 22 Inanimate 30% Inanimate Straight Line
27 Animate 53% Animate Energy
15 Inanimate 37% Inanimate Straight Line
24 Animate 75% Animate Energy

Pendula 3 Inanimate 16% Animate Energy
10 Inanimate 12% Animate Acc. Sign Change
21 Inanimate 31% Animate Acc. Sign Change
30 Inanimate 19% Animate Acc. Sign Change
12 Inanimate 6% Animate Acc. Sign Change

Erratic 1 Animate 97% Animate Energy
Movements 6 Animate 75% Animate Acc. Sign Change

9 Animate 31% Animate Acc. Sign Change
14 Animate 75% Animate Acc. Sign Change
18 Animate 87% Animate Straight Line
19 Animate 93% Inanimate Little Data
23 Animate 81% Animate Energy
28 Animate 90% Animate Straight Line

Figure 7-8: Comparison of human animacy judgments with judgments produced by
ToBY for each of the stimuli from figure 7-6. Column 3 is the ground truth, that is,
whether the trajectory actually came from an animate or inanimate source. Column 4
shows the percentage of human subjects who considered the stimulus to be animate.
Column 5 shows the animacy judgment of ToBY, and column 6 shows the expert
that contributed that decision. Italic items in the human or ToBY judgment columns
indicate a disagreement with the ground truth.
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7.4 Summary

The distinction between animate and inanimate is a fundamental classification that
humans as young as 6 months readily perform. Based on observations that humans
can perform these judgments using only spatio-temporal signatures, this chapter pre-
sented an implementation of a few naive rules for identifying animate objects. Using
only the impoverished stimuli from the attentional system, and without any additional
context, adults were quite capable of classifying animate and inanimate stimuli. While
the set of experts explored in this chapter is certainly insufficient to capture all classes
of stimuli, as the pendulum example illustrates, these five simple rules are sufficient
to explain a relatively broad class of motion profiles. These simple algorithms (like
the experts presented here) may provide a quick first step, but do not begin to make
the same kinds of contextual judgments that humans use.
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Chapter 8

Detecting Faces and Head Pose

An eye can threaten like a loaded and levelled gun, or can insult like hissing
or kicking; or, in its altered mood, by beams of kindness, it can make the
heart dance with joy. – Emerson (1860)

Eye direction, body posture, and head orientation are all important social cues in
human interactions. By observing these cues in another individual, people naturally
make assumptions about their attentional state, attribute emotional states, and in-
terpret behavioral goals and desires. These cues are never perfect predictors; a person
can easily look in one direction but actually attend to something on the other side
of the room. However, the orientation of the head, eyes, and body are part of the
natural behavioral repertoire.

The ability to detect another creature looking at you is critical for many species.
Many vertebrates, from snakes (Burghardt, 1990), to chickens (Ristau, 1991a), to
primates (Povinelli & Preuss, 1995), have been observed to change their behavior
based on whether or not eyes are gazing at them. In humans, eye contact serves a
variety of social functions, from indicating interest to displaying aggression. Primates
have further developed this ability to distinguish what another creature is looking at
- that is, to follow and extrapolate its direction of gaze.

Gaze direction in particular is used for a wide variety of social signals (Nummen-
maa, 1964). These cues are so integrated into our social behavior that it is difficult
to imagine what it would be like without them. However, the importance of these
social cues can be observed by considering a case of abnormal development. Indi-
viduals with autism do not maintain eye contact, or recognize pointing gestures, or
understand simple social conventions. While their perceptual and abstract reasoning
skills can be profound, autistics are severely disabled in our society.

Gaze direction can also be a critical element of social learning. Like a pointing
gesture, gaze direction serves to indicate what object an individual is currently con-
sidering. While infants initially lack many social conventions (understanding pointing
gestures may not occur until the end of the first year), recognition of eye contact is
present from as early as the first month (Frith, 1990; Thayer, 1977). Detection of
eye direction is believed to be a critical precursor of linguistic development (Scaife &
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Bruner, 1975), theory of mind (Baron-Cohen, 1995), and social learning and scaffold-
ing (Wood et al., 1976).

Computationally determining direction of gaze is a complex process that places
very stringent requirements on a system. Detection of cues such as gaze direction
and head orientation requires very high accuracy processing to be done quickly and
reliably. People are extremely accurate in gauging the gaze direction of another
individual, often being able to localize the target with only a single degree of difference
(Nummenmaa, 1964) or even by accounting for minor variations in eye position caused
by changes in vergence angle (Butterworth, 1991). Meaning is also conveyed by the
dynamic aspects of gaze; a quick glance might last only a fraction of a second and
yet carry a very significant social meaning. These challenges are compounded by
difficulties imposed by building systems that can also generate these same social
cues. Cameras that must move rapidly are more difficult to position accurately, and
any moving camera also requires more complex image processing.

Because of the complexities involved in processing these cues, many research pro-
grams have focused on individual components of this task: detecting faces in an
arbitrary visual scene, determining head orientation given a face location, or tracking
gaze direction given a fixed location and orientation. Research on detecting faces in
visual scenes has been the focus of numerous papers, conferences, and books (for ex-
ample, the Automatic Face and Gesture Recognition conference sponsored by IEEE
will celebrate its fifth year in 2002). Many of these research projects have focused
on developing very accurate, but computationally expensive, techniques for finding
faces (Rowley et al., 1995; Turk & Pentland, 1991; Sung & Poggio, 1994). A few
more recent projects have attempted to build real-time detection systems (Darrell et
al., 1998a; Jones & Viola, 2001). Other research has focused on the tracking of eyes
and facial features for video conferencing (Graf et al., 1996; Maurer & von der Mals-
burg, 1996), as a user interface (Baluja & Pomerleau, 1994; Heinzmann & Zelinsky,
1997), or in animation (Terzopoulous & Waters, 1991); however, these techniques
generally begin with calibrated high resolution images where the face dominates the
visual field. Finally, a few systems have attempted to detect gaze direction given con-
strained visual scenes (Kozima, 1998) or by using an active infrared system that uses
scleral reflections (the same reflections that cause red-eye in normal photography)
(Morimoto et al., 1998).

For an active vision system in unstructured environments, these problems acquire
a hierarchical structure; before finding gaze direction, the head location and orienta-
tion must be identified. These tasks have different sensory requirements. Detecting
faces requires a wide field of view. Determining gaze direction and head orientation
requires very high acuity in a localized region. The visual systems of Cog and Lazlo
can accommodate some of these demands. The fields of view of the two cameras in
each eye allow for both a wide field of view and a central region of high acuity. How-
ever, the resolution of these systems are insufficient for detecting gaze direction with
a high degree of accuracy when a person is more than a few feet from the robot. To
address this problem, we will rely upon head orientation rather than gaze direction
as an indicator of attention. While this restriction does limit the behavior of the
system, orientation is still a good measurement of attention and can be more easily
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determined by a computational process. With additional hardware in the form of
a higher resolution camera, a lens with a tighter field of view, or with a computer-
controlled zoom, information on gaze direction could be collected and used in the
same ways that head orientation will be used.

To detect head orientation of a person within the robot’s wide field of view, a five
stage algorithm was developed:

1. Whenever a potential target is selected in the wide field of view by the attention
system, the robot moves its eyes and head to foveate the object.

2. A skin color pre-filter is used to detect candidate face locations in the foveal
image.

3. Two types of shape metrics are applied to candidate locations to verify the
presence of a face.

4. A software zoom is used to extract the maximum detail from the location that
contains a face.

5. Verified face locations are processed to find features including the eyes and
mouth, which are then used to determine a rough estimate of head pose.

These five stages of processing are shown in figure 8-1. The dynamic nature of the
task requires that all of the stages of processing happen in real-time and with minimal
latencies. In building these algorithms, these temporal requirements will be more
critical than the accuracy requirements; missing a face in one particular image is not
as important when you have another chance to detect in the very next frame.

The following five sections will describe each of these processing stages in detail.
Section 8.6 will return to the problem of acquiring images of eyes in sufficient detail
when there is a person within a few feet of the robot.

8.1 Foveating the Target

The first stage in detecting head pose focuses on bringing the face within the field of
view of the foveal camera. This step accomplishes two goals: it allows the face to be
imaged in sufficient detail for further processing and it also gives the human under
observation the social cue that the robot is looking at them. Both of these aspects
are critical for simplifying the processing that the robot performs. By bringing the
face into the foveal field of view, a high acuity image can be obtained in which the
face is likely to be the largest single object. This movement also serves as a social
cue to the human, who often will respond in a way that makes the processing task
of the robot simpler. When the robot turns to look at a person, it is common for
that person to also turn toward the robot. This mutual orientation makes the robot’s
computational task easier by providing a motion stimulus and by aligning the face
toward the robot. The person often will move so that the robot is more clearly visible,
removing possible occlusions.
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Figure 8-1: Five stages of processing for finding head pose. The attention system
locates regions of interest in the peripheral image. These targets are brought into
the field of view of the foveal image by a saccadic eye movement. Within the foveal
image, a skin color prefilter locates candidate face locations which are then verified
by a set of shape metrics. Verified faces result in a software zoom within the foveal
image to that location. These faces are then processed to find feature locations (such
as eyes and mouth) that can be used to determine head pose.

Possible targets are selected by the attention system using the same saliency cri-
teria discussed in chapter 6. Recall that it is easy to bias the robot toward faces by
increasing the attentional weighting for moving and skin-colored objects. The robot
will then move its eyes and neck to look at and orient toward the object of interest.
This sensorimotor skill is acquired through a reinforcement learning technique (see
section 5.1.1). This action brings the target to the center of the peripheral camera,
which is roughly aligned to be within the field of view of the foveal camera. How-
ever, the centers of the two fields are not necessarily the same due to parallax and
misalignment of the camera mountings. To relate positions in the peripheral image
to positions in the foveal image, a second sensorimotor mapping was learned. This
mapping was acquired in two stages:

1. An estimate of the relative difference in scale between the fovea and peripheral
cameras was obtained by observing the relative rates of optic flow in the two
images while the eye was moving.

2. The foveal image was reduced by that scaling factor and used as a correlation
mask to compare against the peripheral image. The best location match gives
the location of the foveal center within the peripheral image

These two steps are sufficient to map locations in the foveal image to locations in the
peripheral image.

The difference in scale between the two images is obtained by measuring differences
in optic flow. To measure these rates of change, one option is to keep the eyes in a

108



fixed position while observing a moving object. If the object is tracked in both
images, then the difference in the rate of movement is the same as the difference in
scale. However, this approach has difficulties both in isolating the target and in the
accuracy of the scale measurement. Because it is rarely the case that there is only a
single source of movement from a rigid object in the world, it would be necessary to
verify that the same object was being observed in both images. While this might be
accomplished by looking at some featural properties of the object (other than size)
such as color content, texture, or shape, these features may be difficult to compare
across images without additional camera calibration as the color content, exposure,
and background content will vary between the images. Further, the accuracy of
the velocity measurement would be limited by the resolution of the camera images.
Objects moving at speeds that are easy to measure accurately in the peripheral image
may move too quickly in the foveal image for accurate tracking. An alternative
approach is to wait until there is no motion in the visual scene and then to move
the cameras themselves. This self-generated movement results in perceived motion of
the entire background. The two cameras in each eye are fixed with respect to each
other; as the eye moves, the two cameras remain in the same relative positions to
each other. Because of this mechanical arrangement, as the eyes move the rate at
which objects move across the visual fields gives the difference in scale between the
images. This background motion is measured using standard correlation-based optic
flow algorithms (Horn, 1986). This alternative technique solves both the problems of
single object tracking. No single object need be selected, so there is no associated
matching problem. Also, the eyes can be moved at a variety of speeds to find a speed
at which the optic flow can be reliably measured in both images.

Once the difference in scale has been localized, it is possible to complete the
mapping of foveal image points to peripheral image points by establishing the location
of the foveal center within the peripheral image. This mapping assumes that there is
relatively little difference in rotation about the image axis and that the scale across
the image plane is relatively constant. The rotation constraint basically imposes that
“up” is the same for both image planes. This is a reasonable assumption for the
camera systems on Cog and Lazlo, as the cameras have a mechanical alignment tab
that is relatively easy to position. The assumption of a constant scale can be observed
both from the qualitative observation that the entire foveal image and the center
portion of the peripheral image (see figure 4-2) and quantitatively in the linearity
of the saccade mapping for image positions near the center of the peripheral image.
Given these assumptions, the location of the relative field centers can be identified
by reducing the size of the foveal image by the ratio of the scale factors between
images, in essence, by making the foveal image to be the same scale as the peripheral
image. This reduced image is then used as a correlation mask to find the best match
within the peripheral image plane. The location of the best match gives the location
of the foveal image within the periphery. Using this information, any image point in
the foveal image can be mapped to the peripheral image by considering the vector
from the foveal image center, scaling that vector by the ratio of optic flow scales, and
shifting the vector to the center point of the correlation best match in the peripheral
image. Similarly, peripheral image points can be mapped to foveal image points,
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although obviously not every peripheral image position can be mapped to a foveal
position.

Both of these steps can be done automatically without any need for human in-
tervention. Further, these steps rely on the active nature of the vision system in
acquiring the scale difference between cameras. When a target is foveated by the
attention system, this mapping can be used to identify potential regions in the foveal
image and to bias the verification stages in the foveal image. In practice, the ratio
between scale factors between the two images is determined by the optical charac-
teristics of the camera and lens and is independent of mounting. This ratio was
found to be 4.0 for both eyes on both Cog and Lazlo. The offset positions of the
best correlation match do depend on the mounting and thus vary between each eye
and can easily change whenever the eyes are re-assembled. The center of the fovea
image tends to be very close to the center of the image in each case. For example,
at one measurement for Cog’s right eye, the center of the reduced foveal image in
the periphery was at pixel 268 (of 512) horizontally and 248 (of 512) vertically. The
correlation measurement can easily be re-evaluated whenever maintenance is done on
the robot.

8.2 Skin Color Filtering

Once a target has been brought within the foveal field of view, the robot must de-
termine whether it is looking at a face or some other object. The first step in this
analysis is to use a skin-color filter to remove background effects and as a first pass
to remove non-face objects. The skin color filter used on the foveal image is the same
as the one used by the attention system for determining saliency that was described
in section 6.3.3. The skin color filter used directly in the attention system produces a
saliency image, that is, for each pixel in the image, the filter produces a rating from 0
to 1 on how well the pixel matches the skin tone region of color space. For the atten-
tion saliency map, this number is scaled to 0–255 in order to match the other filter
outputs. For filtering face images, the unscaled value is thresholded at 0.50. Pixels
that pass this threshold are retained in the post-filtering image. Pixels that fail the
threshold are set to black in the post-filtering image. (The next stage of processing
will not depend on the color content, only on the intensity. By setting other pixels to
black, they are effectively removed from the processing stream.) Regions are identi-
fied in the skin-filtered image using a four-neighbor connected components algorithm
identical to the one used by the attention system. The result of this processing gives
a set of connected regions for each image that contain skin-colored pixels.

The skin color filter is not an ideal filter for detecting faces. First, some items
that are skin but are not faces will also pass through the filter. Second, the skin
filter accepts certain objects that are not skin. Wooden doors, cardboard, and some
pressed-board notebooks are accepted by the skin color filter. These objects are
common in most office environments, including the laboratory spaces that our robots
occupy. To combat this, a second verification step must be provided to determine
whether the observed object is actually a face.
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Figure 8-2: The face detection system. Once an object is brought within the foveal
field of view, two stages of processing are applied to determine whether or not a face
is present. First, a skin-color filter is applied to determine candidate areas. Second,
a pair of shape metrics are used to evaluate whether the object has the proper shape.
If both agree, then the object is classified as a face.

8.3 Detecting Faces

The choice of a face detection algorithm was based on three criteria. First, it must
be a relatively simple computation that can be performed in real time. Second,
the technique must perform well under social conditions, that is, in an unstructured
environment where people are most likely to be looking directly at the robot. Third,
it should be a biologically plausible technique. To verify that a location is actually a
face, two algorithms based on shape are used (see figure 8-2). The first verifies that
the exterior shape (the boundary of the object) is roughly oval and the second verifies
that the internal structure resembles a face (it has eyes, a mouth, etc.). These metrics
are made computationally tractable in real-time by applying the metric not to the
complete image at all scales but rather only to the connected components of the skin-
filtered image at scales that match the size of the connected component. Both of these
techniques were designed to detect frontal views of faces, which matches the social
constraint. Finally, these metrics are rough estimates of the kind of processing that
is believed that infants are capable of performing (Fagan, 1976). Infants are sensitive
not only to the exterior shape of an object but also to the rough arrangement of
features within that object.
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Figure 8-3: A ratio template for face detection. The template is composed of 16
regions (the gray boxes) and 23 relations (shown by arrows). Darker arrows are
statistically more important in making the classification and are computed first to
allow real-time rates.

8.3.1 Exterior Shape Metric: Oval Detector

The exterior metric attempts to verify that the boundary of the object is roughly oval.
The algorithm for this verification was implemented and applied to face detection by
Artur Arsenio, Jessica Banks, and Paul Fitzpatrick within our laboratory. Given a
connected component from the skin-color filter, the oval detector attempts to find edge
boundaries that roughly match an oval of given proportions. In applying the detector
to the skin-color patches, two possible center points are considered: the centroid of
the patch and the center of the bounding box. These two variants allow for slight
variations in the exterior boundary to have little impact on further processing. Given
these center locations, the size of the oval is fixed to be the maximum size of the
bounding box, with the caveat that the oval maintain an aspect ratio that favors the
vertical dimension.

Given a center position and a size, the algorithm searches through a set of aspect
ratios that could be contained within that bounding box. For each possible oval, the
algorithm looks for edges in the image at 32 points along the upper 300 degrees of the
oval (allowing the lower sixty degrees to vary based on the neck presence or absence).
If 80% or more of these points have an image gradient that flows in toward the center
of the oval, then the location is considered to be a successful oval.

This exterior metric has been successfully used on its own to detect faces within
unstructured visual scenes by Arsenio and Banks. The detector is used in this work
primarily to remove the presence of objects that pass the skin-color filter but that are
completely inappropriate (such as doors and notebooks). The more critical judgment
in distinguishing hands and other objects with complex structure from faces is made
by evaluating the interior shape metric.

8.3.2 Interior Shape Metric: Ratio Template

To evaluate the internal shape of the target object, a template-based algorithm called
ratio templates (Sinha, 1994) was selected. The ratio template algorithm was designed
to detect frontal views of faces under varying lighting conditions, and is an extension
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of classical template approaches (Sinha, 1996). However, rather than being based
on particular pixel values as a normal template would, the ratio template is based
on the gradients between template regions. For detecting faces, the ratio template
attempts to capitalize on lighting-invariant features of faces that are based upon the
facial structure of normal individuals. For example, the eye sockets tend to be re-
cessed and thus often appear darker than the surrounding face. The ratio template
uses these regularities to detect faces. While other techniques handle rotational in-
variants more accurately (Sung & Poggio, 1994), the simplicity of the ratio template
algorithm allows us to operate in real time while detecting faces that are most likely
to be engaged in social interactions. Ratio templates also offer multiple levels of bi-
ological plausibility; templates can be either hand-coded or learned adaptively from
qualitative image invariants (Sinha, 1994).

A ratio template is composed of a number of regions and a number of relations,
as shown in Figure 8-3. For each target location in the image, a template comparison
is performed using a special set of comparison rules. First, the template is scaled to
match the bounding box of the connected component patch identified from the skin-
color filter. The template is overlayed on a grayscale copy of the filtered image at the
location of the connected component. Each region in the template is convolved with
the grayscale image to give the average grayscale value for that region. Relations are
comparisons between region values, for example, between the “left forehead” region
and the “left temple” region. The relation is satisfied if the ratio of the first region
to the second region exceeds a constant value (in our case, 1.1). This ratio allows
us to compare the intensities of regions without relying on the absolute intensity of
an area. In figure 8-3, each arrow indicates a relation, with the head of the arrow
denoting the second region (the denominator of the ratio). We have adapted the
standard ratio template algorithm to process video streams (Scassellati, 1998b). In
doing so, we require the absolute difference between the regions to exceed a noise
threshold, in order to eliminate false positive responses for small, noisy grayscale
values. In practice, for each connected component in the skin-color filtered image,
a small number of possible face locations are analyzed by the ratio template region.
A small range of motion of the center and a small range of scales are allowed in the
comparison, with neither exceeding 10% of the original values.

Improving the Speed of Ratio Templates

To improve the speed of the ratio template algorithm, we have implemented an early-
abort optimization. At the suggestion of Sinha (1997), we further classified the re-
lations of our ratio-template into two categories: eleven essential relations, shown as
black arrows in figure 8-3, and twelve confirming relations, shown as gray arrows.
We performed a post-hoc analysis of this division upon approximately ten minutes of
video feed in which one of three subjects was always in view. For this post-hoc anal-
ysis, an arbitrary threshold of eighteen of the twenty-three relations was required to
be classified as a face. This threshold eliminated virtually all false positive detections
while retaining at least one detected face in each image. An analysis of the detected
faces indicated that at least ten of the eleven essential relations were always satis-
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Figure 8-4: Six of the static test images from Turk & Pentland (1991) used to evaluate
the ratio template face detector. Each face appears in the test set with three lighting
conditions, head-on (left), from 45 degrees (center), and from 90 degrees (right). The
ratio template correctly detected 71% of the faces in the database, including each of
these faces except for the center image from the first row.

fied. None of the confirming relations achieved that level of specificity. Based on this
analysis, we established a new set of thresholds for face detection: ten of the eleven
essential relations and eight of the twelve confirming relations must be satisfied. As
soon as two or more of the essential relations have failed, we can reject the location
as a face. This optimization allows for very rapid rejection of non-face patches and
increases the overall speed of the ratio template algorithm by a factor of four.

Static Evaluation of Ratio Templates

To evaluate the static performance of the ratio template algorithm, we ran the algo-
rithm on a test set of static face images first used by Turk & Pentland (1991). The
database contains images for 16 subjects, each photographed under three different
lighting conditions and three different head rotations.

To test lighting invariance, we considered only the images with an upright head
position at a single scale, giving a test set of 48 images under lighting conditions with
the primary light source at 90 degrees, 45 degrees, and head-on. Figure 8-4 shows the
images from two of the subjects under each lighting condition. The ratio template
algorithm detected 34 of the 48 test faces. Of the 14 faces that were missed, nine were
the result of three subjects that failed to be detected under any lighting conditions.
One of these subjects had a full beard, while another had very dark rimmed glasses,
both of which seem to be handled poorly by the static detection algorithm. Of the
remaining five misses, two were from the 90 degree lighting condition, two from the 45
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degree lighting condition, and one from the head-on condition. While this detection
rate (71%) is considerably lower than other face detection schemes (Rowley et al.,
1995; Turk & Pentland, 1991; Sung & Poggio, 1994), this result is a poor indicator of
the performance of the algorithm in a complete, behaving system (see section 8.6.1
below).

Using the real-time system, we determined approximate rotational ranges of the
ratio template algorithm. Subjects began looking directly at the camera and then
rotated their head until the system failed to detect a face. Across ten subjects, the
average ranges were ±30 degrees pitch, ±30 degrees yaw, and ±20 degrees roll.

8.4 Software Zoom

If a skin-colored patch is accepted by both the interior and exterior shape metric,
the patch is declared to be a face. If multiple face locations are present in a single
foveal image, the larger face (which is almost always the face closer to the camera) is
selected as the primary target. This selection process is arbitrary, but it does allow
the robot to have reasonable behavior when faced with large crowds (or tour groups).
Note also that this choice does not drive the outward signs of the robot’s attentional
state; the eye and head motion is still controlled directly by the attention system.
The net effect of this decision is to make people closer to the robot more important
than people further away.

Once a face is selected, the software controlling the frame grabber on the foveal
image is reconfigured to capture an image of the face area at the maximal resolution.
To allow face verification and feature extraction to occur in parallel, Cog employs two
different hardware frame grabbers for each foveal camera. The first of these always
captures images of the entire field of view at the fixed resolution used for image
processing (128 by 128), while the other is used as a “software zoom” to capture a
sub-region of the complete field of view at this same resolution. The field of view and
center position of this zoomed image is set in software to maximize the information
coming from the frame grabber. Ideally, the zoomed image is a 128 by 128 subset of
the full 640 by 480 NTSC camera signal centered on the face. A face at approximately
three meters from the robot will fill this zoomed image at maximum resolution. Faces
further away will be smaller in the zoomed image, as there is no additional resolution
that can be obtained from the statically-configured cameras. Faces closer to the robot
can be fit exactly to this size.

It is important to note that because the grabber parameters are controlled directly,
the location of the face in the zoomed image (or of any known point in the full foveal
image) can easily be computed. This property will allow us to begin to analyze the
face within the zoomed image immediately without any further computation. The
only differences will be induced by the delay between acquiring and processing the
full foveal image and the response time for acquiring a new zoomed image. In general,
the processing of the face finding algorithm runs at real-time rates (30 Hz), so the
delay between the original acquisition and the availability of the zoomed image is the
time to process the full frame (1/30 of a second) plus the time to change the grabber
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Figure 8-5: Eye and mouth regions detected by the multi-stage classifier system from
figure 8-1. The top row contains the foveal images acquired immediately after a
saccade, while the lower row contains the result of the feature identification system.
The positions of the eyes and the mouth are shown with black dots. The first three
cases were successful, but the last examples failed due to a mis-match of the feature
set to the nostrils rather than the mouth.

parameters and acquire a new image (between 1/30 and 1/15 of a second).

8.5 Finding Facial Features to Estimate Head Pose

Once a face has been located and a zoomed image of the face has been acquired, the
final step is to locate features within the face which can be used to interpret head
pose. The approach used here is similar to the work of Heinzmann & Zelinsky (1997)
as well as Loy et al. (2000), but lacks some of the sophistication used in either of
these systems. Heinzmann and Zelinsky use Kalman filters to track triplets of corner
features with one triplet for each eye and another triplet for the mouth, while Loy,
Holden, and Owens use seven features based on the corners of the mouth, the outside
corners of the eyes, the center of the upper and lower lips, and the midpoint between
the nostrils. Both of these systems, and the majority like them, are tracking systems
that rely upon a manual or semi-automated initialization phase in which a user either
selects the initial locations of target features or in which the observed individual must
perform some fixed action (such as orienting to known positions in the environment).
The simplified system presented here has neither the accuracy nor the computational
generality that other techniques possess, but it does have the necessary autonomy
that these robotics applications require.

To determine a rough estimate of head pose, three salient facial features are de-
tected in each frame: the centers of each eye, and the center of the mouth. These
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three features, combined with the bounding box of the face area, are sufficient to
determine the orientation of the head (Gee & Cipolla, 1994). Each of these features
can be defined by a low-intensity patch in a specific region of the face template.
The algorithm presented here uses an iterative refinement technique to localize these
region centers that is similar to simulated annealing (Kirpatrick et al., 1993). The
algorithm operates as follows:

1. Localize the mouth region by searching within a limited range of the face tem-
plate for the centroid of a large, low-intensity patch in the skin-filtered image.

2. Localize the eye regions by searching for a pair of low-intensity patches that
are symmetric about the line parallel to the principle axis of skin-colored patch
which passes through the mouth center.

3. Extrapolate head pose based on these three points.

Although we allow for an iterative refinement stage in the first two steps of this
algorithm, the complete process must operate at real-time rates.

The mouth region is identified as the largest patch of low intensity that occurs
within the lower 60–80% of the face region. The mouth is identified by starting with
a relatively high skin-filter threshold and annealing the threshold rate by gradually
reducing it and allowing the center point of the detected region to deviate slightly
at each time step. In this way, the center point initially is placed in a relatively
large region that may include pixels that are actually skin, but that as the threshold
is reduced, more skin pixels are correctly classified and correspondingly more non-
skin pixels are incorrectly classified. The skin threshold is dropped logarithmically
until either the center point of the detected mouth region remains stationary for
three consecutive iterations or until ten iterations have passed. This process allows
the center point to deviate from its original position to more accurately reflect the
midline of the face while maintaining a relatively quick and simple algorithm.

Once the mouth region has been localized, a similar annealing step is performed for
the two eyes. This process has one additional complication in that the eye regions are
simultaneously searching for two intensity minima while at the same time attempting
to maintain a symmetry requirement. A line of symmetry for the face is determined
by considering all lines parallel to the principle axis of the oval (the first moment of the
pixels passing threshold) and selecting the line that passes through the point selected
as the mouth center. The search range for the eyes occurs within the upper 30–50% of
the face region. At each time step in the annealing process, the skin filter threshold is
reduced by a logarithmic scale and the center point of the two eye regions are allowed
to move toward the new centers of low-intensity regions with the constraint that the
two points must move to maintain the same symmetry relationship.

Figure 8-5 shows the result of this algorithm on a few samples images from the
full foveal field of view (top) and the zoomed image (bottom). The locations of
the eyes and mouth are shown as black dots. The system successfully located the
mouth and eye regions of the first three subjects shown here, but had some failures
on the final subject. The failure shown here, which was a typical failure mode for
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the complete system, had a match for the mouth point that was still on the main
symmetry axis, but was located more toward the nose than the mouth. This failure
had relatively little impact on the detection of head orientation, as the symmetry axis
was unaffected. Another more serious failure was the confusion of the eye regions
with the eyebrow regions. The simulated annealing techniques were usually sufficient
for guiding selections toward the larger, darker, eye regions, but there were a few
instances seen in testing in which the eye search was caught by the local minima of
the eyebrows.

A triangle defined by these points in relation to the bounding box of the entire face
can be used to determine head pose (Gee & Cipolla, 1994). The relative positions of
these points within the bounding box provides a quick estimate of the yaw and pitch
of the head, while the rotation of the skin region and the rotation of the symmetry axis
gives the roll of the head. The head posture system was evaluated on ten subjects to
determine the accuracy of each head posture. Subjects were asked to stand anywhere
in the room between 2 and 6 meters from the robot. Once the robot had oriented
toward them, they were asked to move their heads left to right (yaw), then up and
down (tilt), and finally to tilt their head from shoulder to shoulder (roll). At distances
of up to six meters, the yaw position could be determined with an accuracy of between
five and ten degrees, while the other two directions (tilt and roll) could be localized
within ten and fifteen degrees. Chapter 10 will make use of this information to provide
the robot with behaviors that allow it to operate on objects based on the attentional
state (represented here by orientation) of an instructor.

8.6 Extracting Eye Images

While the system presented in this chapter concentrates on extracting the basic feat-
ural properties of head orientation, the ideal system would also be responsive to gaze
direction. Although the perceptual problems of detecting gaze are not addressed
here, we have demonstrated that at very close distances, the robot can obtain high-
resolution images of the eyes using the behaviors outlined above. With a person
standing less than four feet in front of the robot, the location of the eyes from the
ratio template (or from the eye locations derived in the previous section) can be used
to extract a high-resolution zoomed image that contains only the eye. Figure 8-6
shows a few examples of the foveal images and the resulting zoomed image.

8.6.1 Dynamic Evaluation of Eye Finding

The evaluation of this system must be based on the behavior that it produces, which
can often be difficult to quantify. The system succeeds when it eventually finds a
face and is able to extract a high resolution image of an eye. However, to compare
the performance of the entire system with the performance of the ratio template
algorithm on static images, a strawman quantitative analysis of a single behavior
was studied. Subjects were asked to sit within 4 feet of Lazlo. The subject was to
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Figure 8-6: A selection of faces and eyes identified by the robot. Potential faces are
located in the peripheral image. The robot then saccades to the target to obtain a
high-resolution image of the eye from the narrow field-of-view camera.

remain stationary during each trial, but was encouraged to move to different locations
between trials. These tests were conducted in the complex, cluttered background of
our laboratory workspace (similar to the images shown in figure 8-1).

For each behavioral trial, the system began with the eyes in a fixed position,
roughly centered in the visual field. The system was allowed one saccade to foveate
the subject’s right eye (an arbitrary choice). The system used the skin color filtering
and ratio template face detection routines to generate a stream of potential face
locations. Once a face was detected, and remained stable (within an error threshold)
for six cycles (indicating the person had remained stationary), the system attempted
to saccade to that location and extract the zoomed eye image. In a total of 140 trials
distributed between 7 subjects, the system extracted a foveal image that contained an
eye on 131 trials (94% accuracy). Of the missed trials, two resulted from an incorrect
face identification (a face was falsely detected in the background clutter), and seven
resulted from either an inaccurate saccade or motion of the subject.

This quantitative analysis of the system is extremely promising. However, the true
test of the behavioral system is in eventually obtaining the goal. Even in this simple
analysis, we can begin to see that the total behavior of the system may be able to
correct for errors in individual components of the system. For example, one incorrect
face identification was a temporary effect between part of the subject’s clothing and
the background. Once the system had shifted its gaze to the (false) face location, the
location no longer appeared face-like. Without the arbitrary imposition of behavioral
trials, the natural behavior of the system would then have been to saccade to what
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it did consider a face, achieving the original goal.
If our behavioral test had allowed for a second chance to obtain the goal, the

failure rate can be estimated as the product of the failure rates for each individual
trial. If we assume that these are independent saccades, the probability of failure
for a two-attempt behavior becomes 0.06 × 0.06 = .0036. As we allow for more and
more corrective behavior, the stability of the system increases. While individual trials
are probably not completely statistically independent, we can see from this example
how the behavior of the system can be self-stabilizing without requiring extremely
accurate perceptual tools.

Issues like these make quantitative analysis of behaving systems difficult and of-
ten misleading (Brooks, 1991a). Our system does not require a completely general-
purpose gaze tracking engine. In a real-world environment, the humans to whom
the robot must attend in order to gain the benefits of social interaction are generally
cooperative. They are attempting to be seen by the robot, keeping their own atten-
tion focused on the robot, facing toward it, and often unconsciously moving to try to
attract its attention. Further, the system need not be completely accurate on every
timestep; its behavior need only converge to the correct solution. If the system can
adequately recognize these situations, then it has fulfilled its purpose.

8.7 Summary

Faces have a special status in human visual perception. Social interactions in partic-
ular are critically dependent on being able to locate people in the visual scene, and
detecting faces is an obvious partial solution to that requirement. Further, the focus
of attention of an individual is commonly reflected in the individual’s posture, head
orientation, and gaze direction.

We have implemented a system that identifies faces in a visual scene, attempts
to obtain an image of the face in as much resolution as possible, and then calculates
head pose based on the locations of certain facial features (the eyes and mouth). We
have also extended this system on Lazlo to find eyes in the visual scene, and to obtain
high resolution images for future processing. We will return to the use of head pose
as an indicator of attention and as a trigger for joint reference behavior in chapter
10. However, before we can build on these foundational theory of mind components,
chapter 9 will introduce a basic social learning behavior which will have a vital role
in demonstrating the implications of theory of mind skills.
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Chapter 9

A Simple Mechanism for Social

Learning

Imitation is to understanding people as physical manipulation is to under-
standing things. – Meltzoff & Moore (1994, p. 83)

Social learning skills provide a powerful mechanism for an observer to acquire
behaviors and knowledge from a skilled individual (the model). Biologists have de-
lineated many different forms of social learning, from direct tutelage in which the
model actively attempts to instruct the novice to social facilitation in which merely
the contingent presence of the model and the objects involved in the action provide
the necessary cues for learning (Galef, 1988; Whiten & Ham, 1992; Hauser, 1996). In
particular, imitation is an extremely powerful mechanism for social learning which
has received a great deal of interest from researchers in the fields of animal behavior
and child development (for a review, see Dautenhahn & Nehaniv, 2001).

Similarly, social interaction can be a powerful way for transferring important skills,
tasks, and information to a robot. The grand challenge, and the great hope, of imi-
tation research in robotics is that this will provide a way for the robot to acquire new
skills and actions on its own without additional programming. Imitation has been an
active area of research within the robotics and artificial intelligence communities as
a potential mechanism for overcoming the problems involved in building incremen-
tally complex systems without expending enormous amounts of human effort. This
issue, often called the scaling problem, is at the core of the motivation for many ma-
chine learning systems and has been examined from the perspective of behavior-based
robotics by Tsotsos (1995). Schaal (1999) surveyed imitative learning specifically for
humanoid systems and concluded that imitation was a rich problem space for the
integration of perceptual systems, motor systems, and cognitive modeling.

Social cues provide the perceptual bias that most machine learning systems in
complex environments crave. Many machine learning systems in robotics research
operate in environments in which there is a high penalty for failure (such as falling off
a cliff), a high level of environmental complexity (rough terrain or complex dynamic
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scenes), and unreliable or uncertain feedback mechanisms for determining whether
an action was successful or not. Social cues such as a brief head nod, an encouraging
tone of voice, or a pointing gesture provide structure to the environment by providing
a mechanism for feedback. These social cues also serve to simplify the computational
requirements of the robot by pointing out the aspects of a scene that are most rele-
vant. For example, when demonstrating a complex process, the gaze direction of the
instructor gives a good indication of the aspect of the task that is most attracting their
attention and thus should be the object of attention of the observer. These simpli-
fications allow for relatively simple machine learning techniques to be used without
resorting to more complex statistical methods for extracting regularities from the
environment.

9.1 Definitions

Great debates in animal cognition have focused on defining labels for different be-
haviors that allow social learning. Galef (1988), Whiten & Ham (1992), and Hauser
(1996) have all made serious attempts at building taxonomies for describing different
classes of social learning. The goal behind these descriptive attempts (and much of the
work on imitation in animals) is to identify the minimal sets of cognitive abilities that
underlie a particular observed behavior without attributing any additional competen-
cies.1 For our purposes, it is not necessary to attend to all of the finer distinctions
between observational conditioning, goal emulation, social facilitation, imitation and
the many other classes of social learning that have been proposed. However, one
distinction used by Byrne (1999) is critically important: one type of imitation copies
the organizational structure of a behavior while the other copies the surface form of
the behavior. For example, suppose a robot was to observe a person picking up a
paintbrush and applying paint to a wall. The robot could imitate the surface form of
this event by moving its arm through a similar trajectory, perhaps even encountering
a wall or a brush along the way. However, the underlying organizational structure of
applying paint to a wall involves recognizing the intent of the action as well as the
usefulness of the tool in accomplishing the goal. Note that this is the same distinc-
tion that was made in the studies of Meltzoff (1995) in which children as young as 18
months of age were able to repeat not only the surface form the behavior, but also
could recognize and tended to respond with the underlying intended action.

In this work, we will use the word imitate to imply that the observer is not merely
replicating the actions of the model but rather is attempting to achieve the goal
of the model’s action by performing a novel action similar to that observed in the
model. The simpler action of copying the outward surface form of a movement will be
called mimicry.2 While the grand challenge is to build robots that imitate, the issues

1It is interesting to note that, at their core, each of these descriptions is really an attempt by
human observers to suppress the attributions that their own theory of mind provides.

2Note that this is not a normally accepted definition. In most biological literature, the word
mimicry indicates that the outward appearance of an animal has evolved to appear to be something
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involved in building a robotic system that can mimic are still extremely challenging.
Simpler mechanisms such as stimulus enhancement, emulation, and mimicry must
address challenges such as determining what actions are relevant in the scene and
finding conspecifics, while other challenges (such as determining the goal behind an
action) are specific to this definition of imitation. It is an open question as to whether
or not inferring intent is necessary to explain particular behaviors (Byrne, 1999).
However, for a robot to fulfill the expectations of a human instructor, the robot
must have a deeper understanding of the goal and intent of the task it is learning to
perform.

In the next section, we will review the current research on robotic systems that
imitate or mimic. Section 9.3 outlines four hard problems in building robots that
imitate people and section 9.4 discuss how the social cues that humans naturally and
intuitively provide could be used by a robot to solve these difficult problems. Much
of the material in these two sections is drawn from a review by Breazeal & Scassellati
(2001b). Section 9.5 introduces a mechanism based on the perceptual and motor
skills outlined in previous chapters that allow an upper-torso robot to mimic socially
presented stimuli.

9.2 Existing Studies of Imitation in Robotics

There are many, many perceptual, motor, and cognitive skills that are necessary to
begin to address the specific problems of imitation. Figure 9-1 shows a small subset of
the necessary behaviors which have been implemented or are currently under devel-
opment by the Humanoid Robotics Group at MIT. Most of the listed skills represent
the work of large communities of researchers, with individual books, journals, and
conferences dedicated to each. The integration of each of these components is also
a challenging topic by itself. For example, representing the dynamic interaction be-
tween different behaviors or understanding the compromises involved in using many
different perceptual filters presents new sets of challenges.

To begin to address the specific problems of imitation, each robotics research
team must make some simplifying assumptions and trade-offs. Simplifications in
the hardware design, the computational architecture, the perceptual systems, the
behavioral repertoire, and cognitive abilities allow a research team to address the
more complex issues without implementing complete solutions to other problems.
Each research team must be very careful to describe the assumptions that are made
and the potential implications of these assumptions on the generality of their results.
While these simplifications are at one level unavoidable, it is important to keep the
big picture in mind.

Initial studies of social learning in robotics focused on allowing one robot to fol-
low a second robot using simple perception (proximity and infrared sensors) through
mazes (Hayes & Demiris, 1994) or an unknown landscape (Dautenhahn, 1995). Other

else, such as the eye spots common in the wing patterns of many butterflies (Hauser, 1996). While
this overlap is unfortunate, other proposed labels are excessively long or awkward.
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Figure 9-1: A sample of behavioral skills that are relevant to the study of imitation in
robotics. This incomplete set represents behaviors that have been implemented (bold
text), that have been partially implemented or implemented in a basic form (italic
text), or are currently under investigation (normal text) by the Humanoid Robotics
Group at MIT.

work in social learning for autonomous robots addressed learning inter-personal com-
munication protocols between similar robots (Steels, 1996), and between robots with
similar morphology but which differ in scale (Billard & Dautenhahn, 1998). Robotics
research has also focused on how sequences of known behaviors can be chained to-
gether based on input from a model. Matarić et al. (1998) used a simulated humanoid
to learn a sequence of gestures from a set of joint angles recorded from a human per-
forming those same gestures, and Gaussier et al. (1998) used a neural network archi-
tecture to allow a robot to sequence motor primitives in order to follow the trajectory
of a teacher robot. One research program has addressed how perceptual states can be
categorized by matching against models of known behaviors; Demiris & Hayes (1999)
implemented an architecture for the imitation of movement on a simulated humanoid
by predictively matching observed sequences to known behaviors. Finally, a variety of
research programs have aimed at training robots to perform single tasks by observing
a human demonstrator. Schaal (1997) used a robot arm to learn a pendulum bal-
ancing task from constrained visual feedback, and Kuniyoshi et al. (1994) discussed
a methodology for allowing a robot in a highly constrained environment to replicate
a block stacking task performed by a human in a different part of the workspace.

Traditionally in robot social learning, the model is indifferent to the attempts of
the observer to imitate it. In general, learning in adversarial or indifferent conditions
is a very difficult problem that requires the observer to decide who to imitate, what
to imitate, how to imitate, and when imitation is successful. To make the problem
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tractable in an indifferent environment, researchers have vastly simplified one or more
aspects of the environment and the behaviors of the observer and the model. Many
have simplified the problem by using only simple perceptions which are matched to
relevant aspects of the task, such as Kuniyoshi et al. (1994), who use white objects
on a black background without any distractors or Matarić et al. (1998), who place
reflective markers on the human’s joints and use multiple calibrated infrared cameras.
Others have assumed the presence of a single model which is always detectable in
the scene and which is always performing the task that the observer is programmed
to learn, such as Gaussier et al. (1998), and Schaal (1997). Many have simplified
the problem of action selection by having limited observable behaviors and limited
responses (such as Steels, 1996; Demiris & Hayes, 1999), by assuming that it is always
an appropriate time and place to imitate (such as Dautenhahn, 1995), and by fixing
the mapping between observed behaviors and response actions (such as Billard &
Dautenhahn, 1998). Few have addressed the issue of evaluating the success of an
imitative response; most systems use a single, fixed success criteria which can only be
used to learn a strictly specified task with no hope for error recovery (although see
Nehaniv & Dautenhahn, 1998, for one treatment of evaluation and body mapping).

Our approach is to constrain the learning scenario in a different manner - we
assume that the model is motivated to help the observer learn the task. A good
teacher is very perceptive to the limitations of the learner and sets the complexity
of the instruction and task accordingly. As the learner’s performance improves, the
instructor incrementally increases the complexity of the task. In this way, the learner
is always competent but slightly challenged - a condition amenable for successful
learning. This assumption allows us to build useful implementations on our robots,
but limits the applicability of these results to less constrained learning environments
(such as having an indifferent model). However, we believe that the problems that
must be addressed in building systems with the assumption of an active instructor are
also applicable to robotics programs that use other assumptions and to investigations
of social learning in natural systems.

Evaluating complex robotic systems presents another level of challenges. Most
individual components can be evaluated as stand-alone modules using traditional
engineering performance measures, such as comparisons against standardized data
sets or considerations of optimization and efficiency. Evaluating the behavior of an
integrated system using standard techniques from ethology and behavioral psychology
is difficult for many reasons. First, before the complete behavior can be evaluated,
all of the required system components must be implemented and integrated together.
Second, the particular assumptions used in constructing the system may limit the
types of interactions that the robot can be evaluated under. For example, limits
to perception may restrict the robot to only certain limited classes of stimuli, or to
stimuli that are marked in certain ways. Similarly, simplified sets of motor responses
can limit the types of behavior that we can expect to observe. Third, long-term studies
of behavior are difficult because the hardware systems are fragile and constantly
changing. Simply maintaining a robot at a given level of functionality requires full-
time support, and few robotic systems are designed to operate for extended periods of
time without human intervention. Furthermore, because of the expenses of building
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a robot, each research robot is often supporting a variety of research studies, many
of which are constantly altering the hardware platform. Fourth, comparing results
between robots is difficult because of differences in the underlying assumptions and
in the hardware platforms. Despite these difficulties, we believe that the application
of behavioral measurement techniques will be a critical step in the development of
future robots. It is a goal of our research to achieve a level of functionality with our
robots that would permit such an evaluation.

9.3 Challenges in Building Robots that Imitate

People

The ability to imitate relies upon many perceptual, cognitive, and motor capabilities.
Many of these requirements are precursor skills which are necessary before attempting
any task of this complexity, but which are not directly related to the act of imitation.
For example, the robot will require systems for basic visual-motor behaviors (such
as smooth pursuit tracking and vergence), perceptual abilities for detecting motion,
color, and scene segmentation, postural control, manipulative abilities such as reach-
ing for a visual target or controlled-force grasping, social skills such as turn taking
and recognition of emotional states, as well as an intuitive physics (including object
permanence, support relations, and the ability to predict outcomes before attempting
an action).

Even if we were to construct a system which had all of the requisite precursor
skills, the act of imitation also presents its own unique set of research questions.
Each of these questions is a complex problem which the robotics community has only
begun to address. In this section, we focus on four of these questions:

• How does the robot know when to imitate?

• How does the robot know what to imitate?

• How does the robot map observed actions into behavioral responses?

• How does the robot evaluate its actions, correct errors, and recognize when it
has achieved its goal?

To investigate these questions, consider the following example: A robot is observ-
ing a model opening a glass jar. The model approaches the robot and places the jar
on a table near the robot. The model rubs his hands together and then sets himself to
removing the lid from the jar. He grasps the glass jar in one hand and the lid in the
other and begins to unscrew the lid. While he is opening the jar, he pauses to wipe
his brow, and glances at the robot to see what it is doing. He then resumes opening
the jar. The robot then attempts to imitate the action. We will use this example
throughout this section to demonstrate some of the unique challenges to mimicry and
imitation.
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9.3.1 How Does the Robot Know When to Imitate?

A socially intelligent robot should be able to use imitation for the variety of pur-
poses that humans do. Human children use imitation not only to acquire new skills,
but also to acquire new goals from their parents. By inferring the intention behind
the observed actions, children can gain an understanding of the goals of an individ-
ual. Children also use imitation to acquire knowledge about socializing, including
the social conventions of their culture and the acceptable dynamics necessary for
social communication. Imitation can be a mechanism for developing social attach-
ments through imitative play and for gaining an understanding of people. Just as
infants learn about physical objects by acting on them, infants learn about people
by interacting with them. As Meltzoff & Moore (1994) wrote, “Imitation is to un-
derstanding people as physical manipulation is to understanding things.” Imitation
can also be used to explore and expand the range of possible actions in the child’s
repertoire, learning new ways of manipulating objects or new motor patterns that the
child might not otherwise discover. Finally, imitation can be a mechanism for estab-
lishing personal identity and discovering distinctions between self and other. Meltzoff
& Moore (1994) have proposed that deferred imitation may serve to establish the
identity of a previously encountered individual.

A social robot should selectively use imitation to achieve many of these goals.
However, the robot must not merely be a “puppet on a string.” The robot must
decide whether or not it is appropriate to engage in imitative behavior based on the
current social context, the availability of a good model, and the robot’s internal goals
and motivations. For example, the robot may need to choose between attending to a
learning opportunity or fulfilling another goal, such as recharging its batteries. This
decision will be based upon the social environment, how likely the robot is to have
another opportunity to engage in that particular learning opportunity, the current
level of necessity for charging the batteries, the quality of the instruction, and other
competing motivations and goals. When faced with the example of opening a jar,
the robot must identify that the person is attempting to demonstrate a skill that
should be imitated and recognize when during that interaction it is appropriate to
attempt a response. Furthermore, the robot should also recognize when imitation
is a viable solution and act to bring about the social context in which it can learn
by observation, perhaps by seeking out an instructor or motivating the instructor to
perform a certain task.

9.3.2 How Does the Robot Know What to Imitate?

Faced with an incoming stream of sensory data, the robot must make a number of
decisions to determine what actions in the world are appropriate to imitate. The
robot must first determine which agents in the scene are good models (and be able
to avoid bad models). The robot must not only be able to distinguish the class of
stimuli (including humans and perhaps other robots) which might be a good model
but also determine if the current actions of that agent are worthy of imitation. Not
all humans at all times will be good models, and imitation may only be appropriate
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under certain circumstances.
Once a model has been selected, how does the robot determine which of the

model’s actions are relevant to the task, which may be part of the social/instructional
process, and which are circumstantial? In the example above, the robot must seg-
ment the scene into salient objects (such as the instructor’s hand, the lid, and the
jar) and actions (the instructor’s moving hand twisting the cap and the instructor’s
head turning toward the robot). The robot must determine which of these objects
and events are necessary to the task at hand (such as the jar and the movement of
the instructor’s elbow), which events and actions are important to the instructional
process but not to the task itself (such as the movement of the instructor’s head),
and which are inconsequential (such as the instructor wiping his brow). The robot
must also determine to what extent each action must be imitated. For example, in
removing the lid from a jar, the movement of the instructor’s hand is a critical part
of the task while the instructor’s posture is not The robot must also recognize the
important aspects of the objects being manipulated so that the learned action will
be applied to only appropriate objects of the same class (Scassellati, 1999b).

9.3.3 How Does the Robot Map Observed Actions into Be-

havioral Responses?

Once the robot has identified salient aspects of the scene, how does it determine what
actions it should take? When the robot observes a model opening a jar, how does
the robot convert that perception into a sequence of motor actions that will bring
its arm to achieve the same result? Mapping from one body to another involves
not only determining which body parts have similar structure but also transforming
the observed movements into motions that the robot is capable of performing. For
example, if the instructor is unscrewing the lid of the jar, the robot must first identify
that the motion of the arm and hand are relevant to the task and determine that its
own hand and arm are capable of performing this action. The robot must then observe
the movements of the instructor’s hand and arm and map those movements into the
motor coordinates of its own body.

9.3.4 How Does the Robot Evaluate its Actions, Correct Er-

rors, and Recognize Success?

Once a robot can observe an action and attempt to imitate it, how can the robot
determine whether or not it has been successful? In order to compare its actions
with respect to those of the model, the robot must be able to identify the desired
outcome and to judge how similar its own actions were to that outcome. If the robot
is attempting to unscrew the lid of a jar, has the robot been successful if it merely
mimics the model and rotates the lid but leaves the lid on the jar? Is the robot
successful if it removes the lid by pulling instead of twisting? Is the robot successful
if it smashes the jar in order to open it? In the absence of internal motivations
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that provide feedback on the success of the action, the evaluation will depend on an
understanding of the goals and intentions of the model. Further, if the robot has been
unsuccessful, how does it determine which parts of its performance were inadequate?
The robot must be able to diagnose its own errors in order to incrementally improve
performance.

9.4 An Approach to Building Imitative Systems

Our approach to building systems that address the problems of determining saliency
and relevance, mapping observed actions into behavioral responses, and implementing
incremental refinement focuses on three keystones. First, saliency results from a com-
bination of inherent object qualities, contextual influences, and the model’s attention.
This provides the basis for building perceptual systems that can respond to complex
social situations. Second, our robots use similar physical morphologies to simplify the
task of body mapping and recognizing success. By building human-like robots, we
can vastly simplify the problems of mapping perceived actions to behavioral responses
while providing an interface that is intuitive and easy to correct. Third, our systems
exploit the structure of social interactions. By recognizing the social context and the
stereotypical social actions made by the model, our robots can recognize saliency.
By engaging in those same types of stereotypical social actions, the dynamics be-
tween the robot and the model provide a simplified means for recognizing success and
diagnosing failures.

9.4.1 Multiple Sources of Saliency

Knowing what to imitate is fundamentally a problem of determining saliency. Objects
can gain saliency (that is, become the target of attention) through a variety of means,
including inherent object qualities, contextual influences and the model’s attention.
At times, objects are salient to people and animals because of their inherent proper-
ties; objects that move quickly, objects that have bright colors, and objects that are
shaped like faces are all likely to attract attention. (We call these properties inherent
rather than intrinsic because they are perceptual properties, and thus are observer-
dependent and not strictly a quality of an external object.) Objects can also become
salient through contextual effects. The current motivational state, emotional state,
and knowledge of the observer can impact saliency. For example, when the observer is
hungry, images of food will have higher saliency than they otherwise would. Objects
can also become salient if they are the focus of the model’s attention. For example,
if the model is staring intently at a glass jar, the jar may become a salient part of
the scene even if it is otherwise uninteresting. Fundamental social cues (such as gaze
direction) can also be used by the observer to determine the important features of
a task. People naturally attend to the key aspects of a task while performing that
task. For example, when opening the jar, the model will naturally look at the lid as
he grasps it and at his own hand while twisting off the lid. By directing its own at-
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tention to the object of the model’s attention, the observer will automatically attend
to the critical aspects of the task. In the case of social instruction, the observer’s
gaze direction can also serve as an important feedback signal for the instructor. For
example, if the observer is not attending to the jar, then the instructor can actively
direct the observer’s attention by increasing the jar’s saliency, perhaps by pointing to
it or tapping on it.

9.4.2 Similar Physical Morphologies

Three of the problems outlined above can be simplified by assuming a similar physical
morphology between the model and the observer. If the observer and model have a
similar shape, the perceptual task of determining saliency can be constrained by the
possible actions of the observer. If the observer witnesses an ambiguous motion of the
model’s arm, the observer can postulate that the perception must have been one of
the actions which it could possibly perform in that situation and eliminate any other
possible perceptual interpretations.

The mapping problem can also be simplified by having similar physical morpholo-
gies. If the observer can identify that it is the model’s arm that is moving, it need
not initially try to match that motion with an action that it is capable of performing
only with its mouth or legs. Additionally, the position of the model’s arm serves as a
guideline for an initial configuration for the observer’s arm. A different morphology
would imply the need to solve an inverse kinematics problem in order to arrive at
a starting position or the more complicated problem of mapping unlike body parts
between model and observer (for example, see Herman, 2001, for imitation between
dolphins and humans). In general this transformation has many solutions, and it is
difficult to add other constraints which may be important (e.g., reducing loading or
avoiding obstacles). By constraining the space of possible mappings, the computa-
tional complexity of the task is reduced.

Similar physical morphology also allows for a more accurate evaluation. If the
observer’s morphology is similar to the model’s, then the observer is likely to have
similar failure modes. This potentially allows the observer to characterize its own fail-
ures by observing the failures of the model. If the observer watches the model having
difficulty opening the jar when his elbows are close together, the observer may be able
to extrapolate that it too will fail without sufficient leverage. In situations where the
model is taking an active role in instructing the observer, a similar morphology also
allows the model to more easily identify and correct errors from the observer. If the
observer’s arms are too close together when attempting to open the jar, the model’s
knowledge about his own body will assist him in evaluating the failure mode and in
providing an appropriate solution.

9.4.3 Exploit the Structure of Social Interactions

Social interactions have structure that can be exploited to simplify the problems of
imitation. By recognizing the appropriate social context, the observer can limit the
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number of possible perceptual states and determine whether the attention state of the
model is an appropriate saliency signal. When the model is performing a manipulative
task, the focus of attention is often very relevant. However, when engaged in some
social contexts, the focus of attention is not necessarily important. For example,
it is customary in many cultures to avert eye contact while taking one’s turn in a
conversation and to establish eye contact when ending a turn. Exploiting these rules
of social conduct can help the observer to recognize the possible value of the attention
state of the model (thus simplifying the saliency problem).

The structure of social interactions can also be used to provide feedback in order
to recognize success and correct failures. In the case of social instruction, the difficulty
of obtaining success criteria can be simplified by exploiting the natural structure of
social interactions. As the observer acts, the facial expressions (smiles or frowns),
vocalizations, gestures (nodding or shaking of the head), and other actions of the
model all provide feedback that will allow the observer to determine whether or
not it has achieved the desired goal. The structure of instructional situations is
iterative; the instructor demonstrates, the student performs, and then the instructor
demonstrates again, often exaggerating or focusing on aspects of the task that were
not performed successfully. The instructor continually modifies the way he performs
the task, perhaps exaggerating those aspects that the student performed inadequately,
in an effort to refine the student’s subsequent performance. By repeatedly responding
to the same social cues that initially allowed the observer to understand and identify
which salient aspects of the scene to imitate, the observer can incrementally refine its
approximation of the actions of the instructor.

Monitoring the structure of the social interaction can assist the instructor in main-
taining an appropriate environment for learning. Expressive cues such as facial expres-
sions or vocalizations can regulate the rate and quality of instruction. The instructor
modifies both the speed and the content of the demonstration based on feedback from
the student. By appearing confused, the student causes the instructor to slow down
and simplify the demonstration.

Recognizing the appropriate social context can be an important cue in knowing
when imitation is an appropriate solution to a problem. Internal motivations will
serve as a primary mechanism for determining when to search for an appropriate
model and when an attempt to perform an imitative act is appropriate. However,
opportunistic use of good models in the environment can also be important in learning
new skills. By recognizing which social contexts are likely to produce a good model
behavior, the robot can exploit learning opportunities when they arise.

9.5 A Mechanism for Mimicry

Using the perceptual and motor systems developed in previous chapters, a basic set of
mimicry behaviors can be constructed. As an initial proof of concept, any interesting
trajectory will be mapped directly to a trajectory of the arm as described in section
5.3.2 (this mapping was a joint research project with Bryan Adams). The attention
system will serve as the primary arbiter of saliency, integrating properties from in-
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Figure 9-2: Still images from a video recording of a simple demonstration of mimicry.
The frames shown were spaced apart by approximately one second in the original
video. Images 1–3 show a person moving a bright red ball in a figure eight pattern.
The robot observes this action and then responds by making a similar movement with
its right arm.

herent object properties, the attentional state of the instructor, and the motivational
constraints. Trajectories will be formed by the multi-hypothesis tracking algorithm,
and the animacy judgment from ToBY (chapter 7) will serve to select appropriate
trajectories. This process will be described in further detail by considering a set of
examples. For each of the examples, a person interacted with Cog from a distance
of between two and eight feet. There were an additional two to six people in the
room during each of these interactions, but none were actively trying to engage the
robot. Interactions were video recorded, and still images were extracted from the
video sequence. The sequence of still images were extracted at roughly regular inter-
vals (every one or two seconds) but deviations of a few frames were allowed to provide
clearer static images.

Figure 9-2 shows an example of the basic mimicry behavior. A brightly colored
ball was moved in a figure eight pattern in front of Cog. The ball was detected by
the attention system by virtue both of the motion and the high color saturation. The
trajectory was linked by the multi-hypothesis tracking system and the agents of the
theory of body module classified the movement as animate. The multi-hypothesis
tracking algorithm was designed to produce trajectories of only 30-60 elements (1-2
seconds of data), but mimicry requires a representation of trajectories that is longer.
This is easily accomplished, since the tracking algorithm places a unique identifier
with each detected trajectory. A second processing stage simply collects the trajectory
points for each unique trajectory, throwing away trajectories when they are no longer
part of the visual scene. To maintain tractability, trajectory points that are older
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Figure 9-3: Images taken from a video clip showing Cog mimicking the author
waving. Approximately one second of video separates each image. In this example,
the range of motion and spatial position of the robot’s response are determined by
the scale and location of the person’s face.

than 15 seconds are also discarded. For this most basic behavior, the points in the
trajectory were mapped linearly into a two dimensional space with limits at ±1. Thus,
a position (x, y) within an image of size w × h, the remapped positions were at:

(x′, y′) = (
2x

w
− 1,

2y

h
− 1)

These positions were then used as the linear combination weights for the set of postu-
ral primitives defined in section 5.3.2. Because the sequence of points in the trajectory
were regularly spaced in time, the command position for the robot’s arm was updated
by these remapped trajectory positions at 30 Hz. This allowed the robot to match
not only the spatial form of the movement but also the temporal characteristics. The
resulting behavior allowed the robot to replicate a movement that had a similar two-
dimensional projection as the original movement of the model object. This full-field
mapping is useful if there is no additional information about the scene, but additional
information can provide a more interesting spatial reproduction.

A more complex representation of the spatial properties of the movement can be
created if there is additional information about the creation of the model trajectory.
For example, if the movement results from a person’s hand, the size and position
of the hand with respect to the body are relevant for determining the extent of the
movement. Figure 9-3 shows an example of this spatial mapping. In this example, a
person waving at the robot from a distance of approximately six feet produced a small
retinal projection (the trajectory ranged over 30 columns and 20 rows in the 128×128
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Figure 9-4: Cog mimicking a person making the American Sign Language sign for
food. The person began making the gesture before entering the field of view of the
video camera, but the length of time of each gesture was still similar.

image) near the center of the image. Using the full-field mapping, this would result
in a relatively small movement of the robot’s arm near the primary primitive posture
(the origin of the postural primitive space). This would result in an arm movement
that varied slightly around this primary posture, which was originally set with the
elbow near the robot’s side and the forearm straight out in front of the body, parallel
to the floor. With the aid of a complete perceptual model of the body structure
of the individual being observed, a more accurate reconstruction could be achieved;
if the robot could compute the relative positions of the joints of the human’s arm,
replicating that structure would be simple. While there are computational systems
that attempt to extract body posture from video sequences (for example Rosales
& Sclaroff, 1999; Darrell et al., 1998b), these techniques are often computationally
expensive or require a simplified visual scene or a structured background. As an
alternative, we have constructed a mapping that uses the scale of detected faces in
the image as an indication of the range of motion that should be performed. A
detected face centered at the image coordinates (xf , yf ) with a size of wf × hf is
assumed to be structured around a body centered at (xb, yb) with a size of wb × hb.
To map upper-body movements to the range of postural primitives, the following
values were chosen:

wb = 6 × wf (9.1)

hb = 4 × hf (9.2)

xb = xf (9.3)

yb = yf + 1.5 × hf (9.4)
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Figure 9-5: The mimicry system can also be made to depend on ToBY by allowing
imitation only of animate trajectories. In this example, the robot observes a ball
rolling down a slope (images 1-2), which ToBY classifies as inanimate. The robot
does not respond to this inanimate trajectory (images 3-4). When the same ball is
pulled up the inclined plane by a piece of fishing wire (images 5-6), the robot responds
by mimicking the movement of the ball (images 7-9). Each frame shown here was
separated by approximately two seconds of video.

If more than 75% of a selected trajectory exists within the bounding box of a body
range of a detected face, then this body range is used as the full range for transforming
the trajectory into postural primitive coordinates. Otherwise, the full range of the
image is used (as was the case in the previous example). The result of this mapping, as
seen in figure 9-3, allows the robot to more closely approximate human movements.
Figure 9-4 shows a similar mapping with another individual. The robot maps the
movement of the hand to a range relative to its own body that matches the range of
motion of the person’s hand relative to his body.

In the past two examples, it was assumed that the appropriate trajectory had been
selected for imitation. In a social setting, the problem of choosing the appropriate
trajectory is complex. With many people in the robot’s field of view, there are always
a variety of visual targets. Simple mechanisms can quickly rule out some background
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trajectories. Trajectories that are too short (have fewer than thirty points) or that
have a cumulative displacement that is below a threshold (generally, 25 pixels) are
quickly rejected. However, additional criteria such as selecting the trajectory with
the greatest spatial displacement (or maximum velocity) proved to be too simplistic.
The classification performed by the theory of body module can serve as an excellent
discrimination function for selecting the most interesting trajectory for mimicry. Only
trajectories that are classified as animate are considered as candidates for mimicry.
Figure 9-5 shows an example of this discrimination. For this demonstration, the
trajectory system and the imitation system were applied to the foveal camera image,
rather than the peripheral camera image. This allowed the same object and spatial
conditions to be used to describe both an animate and inanimate trajectory without
the construction of a large testing apparatus. Because the robot has no concept
of object permanency, when an object leaves the field of view and re-enters, it is
considered to be a completely different trajectory. The video recorder was placed
such that the field of view of the robot’s foveal camera matched the recorder’s field of
view; when an object disappears from the video, it also disappeared from the robot’s
sight. As a simple demonstration, a brightly colored ball was allowed to roll down a
ramp (images 1-2 of figure 9-5). The robot classified this movement as inanimate and
did not respond (images 3-4). When the ball was pulled up the same incline using an
attached string (images 5-6), this trajectory was classified as animate and the robot
responded by mimicking the movement (images 7-9). While this demonstration was
certainly artificial, the ToBY classifications were critical in removing background
trajectories in complex social environments.

To evaluate the mimicry system in natural social environments, groups of naive
subjects were recruited to interact with the robot.3 Twelve subjects, ranging in age
from 7 years to 39 years, were brought into the lab either in pairs (two pairs) or in-
dividually (eight subjects) and asked to interact with the robot. (Most subjects were
quite happy to just go and “play” with the robots without any additional instruc-
tions.) The subjects were given no explanation of the range of behaviors that the
robots could perform, nor were they told the robot’s perceptual abilities. Subjects
had access to a variety of brightly colored children’s toys and a variety of other ob-
jects that are common in our laboratory. Because this was also a pilot study, subjects
were observed by four to six researchers while they were interacting with the robot.
While the observers never directly engaged the robot, they did act as distractors by
providing a wide assortment of background movement (both animate and inanimate).
While subjects were in the laboratory, Cog performed three different behaviors. First,
the robot’s head and neck would saccade and orient to salient targets. Second, when
the most salient object in the scene had a very high color saturation, the robot would
point/reach toward that object. Third, the robot would mimic movements that were
animate. The head and eye movement was driven directly be the attention system,

3A more complete study of the forms of social interactions that occur between naive users and
the robots Cog and Kismet is currently being performed by Jen Audley, Cynthia Breazeal, Brian
Scassellati, and Sherry Turkle. Some of the subjects reported here were also used as pilot subjects
for these more extensive studies.
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Figure 9-6: Additional testing was performed with subjects who knew nothing about
the capabilities of the robot. A naive subject swings a toy inchworm clockwise in
front of the robot in an attempt to attract the robot’s attention (images 1-3). When
the robot responds by making a similar circular motion with its arm (images 4-6),
the subject said to the robot “wow, that’s pretty cool...now try this.”

and did not interact directly with the arm movement. A simple arbiter process me-
diated between the two arm behavior movements on a first-come first-served basis;
while one behavior was active, the other was actively suppressed.

The effectiveness of the mimicry system was evaluated both while the naive sub-
jects were unaware of the behaviors that the robot could perform and under a directed
interaction with the robot. Of the twelve subjects, eleven subjects gave a verbal re-
port within the first five minutes of interacting with the robot that indicated that
they were aware that the robot was mimicking their movements. For example, one
thirteen year-old subject noted “hey, it’s doing what I’m doing.” The twelfth subject
also clearly noticed the correlation and began engaging the robot in an imitation
game but gave no verbal report of what was happening. While subjects were uni-
formly interested in getting the robot’s attention and in engaging the robot socially,
the discovery of the imitative behavior was always accompanied by a heightened level
of excitement. Many subjects also began to use this mimicry behavior as a way of
discovering the robot’s capabilities by trying to find the range of its movement or the
range of stimuli that the robot found salient. Figure 9-6 shows one of these subjects
swinging a plush toy inchworm in front of Cog. She swings the toy in a large clock-
wise circle (images 1-3), and the robot responds by swinging its arm in a similar circle
(images 4-6). The subject then said to the robot, “wow, that’s pretty cool...now try
this.” That subjects could spontaneously recognize the arm movements as mimicry
even in the presence of other similar arm movements gives a good indication that
they were socially engaged by this process. Once subjects had become aware that the
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robot was mimicking their movements, we further asked them to deliberately get the
robot to perform certain actions such as waving goodbye, reaching out to the side,
making a circular movement, or a Zorro-like swash in front of it. All subjects in this
case were able to attract the robot’s attention and to get the robot to mimic their
movement. At times, this often involved the performance of an action more than
once, and on some occasions subjects actively attempted to improve the performance
of the robot by providing further verbal cues, by exaggerating their movements, or
by presenting a more salient or easily processed visual cue. The success of these
subjects at performing these tasks (and at manipulating the robot to perform tasks)
demonstrates that the robot is perceiving at least some of the social cues that people
find natural to use in these situations.

There are many obvious extensions of this mimicry system: recognition of vocal
cues as a feedback mechanism, a perceptual system that does analysis of articulated
movement, three-dimensional representations of object trajectories, and many oth-
ers. The following two chapters will each introduce an additional perceptual criteria
that enables a more complex and responsive mimicry system within the context of
the embodied theory of mind model. One further extension that is currently under
development in our laboratory also deserves mention here. Edsinger (2001) has been
using the perceptual systems described in this work (the attention system, trajectory
formation, and the ToBY trajectory analysis) to demonstrate a mimicry system that
includes a more complex sensorimotor mapping. Rather than mapping visual trajec-
tories to a fixed coordinate frame of postural primitives, Edsinger has defined a set of
behavioral actions and uses a spline-based representation to map between observed
trajectories and their behavioral counterparts. In many ways, this may be one step
closer to the mechanisms for behavioral responses in humans and other animals. By
mapping observed states onto a finite set of well-known behaviors, Edsinger (2001)
can accomplish more natural, optimized movements.
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Chapter 10

Shared Attention Mechanisms

Thus, it is possible that human embodiment supports joint attention, joint
attention supports gesture, gesture supports the representational properties
of language, and symbolic language supports the capacity for mentalising.
Such a developmental sequence need not carry any implication that since
the mind is supposedly unobservable it therefore has to be theorized. –
Butterworth (2000)

One of the critical precursors to social learning in human development is the
ability to selectively attend to an object of mutual interest. Humans have a large
repertoire of social cues, such as gaze direction, pointing gestures, and postural cues,
that all indicate to an observer which object is currently under consideration. These
abilities, collectively named mechanisms of joint (or shared) attention, are vital to
the normal development of social skills in children. Joint attention to objects and
events in the world serves as the initial mechanism for infants to share experiences
with others and to negotiate shared meanings. Joint attention is also a mechanism
for allowing infants to leverage the skills and knowledge of an adult caregiver in order
to learn about their environment, in part by allowing the infant to manipulate the
behavior of the caregiver and in part by providing a basis for more complex forms of
social communication such as language and gestures (Lund & Duchan, 1983; Baldwin,
1991).

Joint attention has been investigated by researchers in a variety of fields. Experts
in child development are interested in these skills as part of the normal develop-
mental course that infants acquire extremely rapidly and in a stereotyped sequence
(Scaife & Bruner, 1975; Moore & Dunham, 1995). Additional work on the etiology
and behavioral manifestations of developmental disorders such as autism and As-
perger’s syndrome have focused on disruptions to joint attention mechanisms and
demonstrated how vital these skills are in our social world (Cohen & Volkmar, 1997;
Baron-Cohen, 1995). Philosophers have been interested in joint attention both as an
explanation for issues of contextual grounding and as a precursor to a theory of other
minds (Whiten, 1991; Dennett, 1991). Evolutionary psychologists and primatologists
have focused on the evolution of these simple social skills throughout the animal king-
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18 months: Representational stage

6 months: Sensitivity to field

9 months: Ecological stage

12 months: Geometric stage

Figure 10-1: Stages in the development of joint reference proposed by Butterworth
(1991). Children initially are sensitive only to the left/right direction of gaze of the
parent. By nine months, the child is capable of projecting along a rough directional
vector from the adult’s gaze direction, but tend to stop at the first inherently salient
object along that scan path. Around 12 months, the child correctly interprets the
direction of gaze as a three dimensional reference, but will not turn to look at objects
that are outside the field of view until 18 months.

dom as a means of evaluating both the presence of theory of mind and as a measure
of social functioning (Povinelli & Preuss, 1995; Hauser, 1996; Premack, 1988).

Butterworth (1991) has conducted particularly detailed investigations of the de-
velopment of joint reference and has proposed a four-stage model (see figure 10-1).
Each of these stages can be demonstrated by observing the behavior of an infant
when an adult who is making eye contact with the infant moves their gaze to another
object. At approximately 6 months, infants will begin to follow a caregiver’s gaze to
the correct side of the body, that is, the child can distinguish between the caregiver
looking to the left and the caregiver looking to the right. Over the next three months,
the infant’s accuracy increases, allowing a rough determination of the angle of gaze.
At 9 months, the child will track from the caregiver’s eyes along the angle of gaze
until a salient object is encountered. Even if the actual object of attention is further
along the angle of gaze, the child is somehow “stuck” on the first object encountered
along that path. Butterworth labels this the “ecological” mechanism of joint visual
attention, since it is the nature of the environment itself that completes the action. It
is not until 12 months that the child will reliably attend to the distal object regardless
of its order in the scan path. This “geometric” stage indicates that the infant can
successfully determine not only the angle of gaze but also the vergence of the eyes.
However, even at this stage, infants will only exhibit gaze following if the distal object
is within view while looking at the adult. Children of this age will not turn to look
behind themselves, even if the angle of gaze from the caregiver would warrant such
an action. Around 18 months, the infant begins to enter a “representational” stage
in which it will follow gaze angles outside its own field of view, that is, it somehow
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represents the angle of gaze and the presence of objects outside its own view.
Using the perceptual primitives for detecting head orientation developed in chapter

8, basic examples of joint reference can be constructed. Using Butterworth’s first two
stages as a guideline, section 10.1 will demonstrate how a relatively simple feedback
system between the head pose orientation module and the attention system developed
in chapter 6 can generate joint reference. This implementation will be supported with
examples of biasing the mimicry behavior discussed in the previous chapter. Section
10.2 will discuss potential implications of this implementation on models (including
Baron-Cohen, 1995) that maintain a strict modular representation of joint reference.

10.1 Implementing Joint Reference

A robot capable of engaging in joint reference behaviors with a human requires three
types of capabilities: a physical structure that allows the human to attribute atten-
tional states to the robot, a perceptual system that is capable of recognizing the
social cues indicative of attention in the human, and the ability to link these percep-
tual states to behaviors that direct attention. The first two requirements are already
present in the system design that has been presented thus far. Cog can produce the
appropriate social cues of attention through eye and neck movements (orientation
behaviors), through visual tracking, and through pointing gestures. These behaviors,
combined with the robot’s anthropomorphic appearance, are naturally interpreted by
humans, even those who have no experience interacting with the robot. While Cog
cannot recognize all of the complex perceptual signals involved in social interaction,
recognition of head pose is a sufficient social cue to evoke joint reference behavior.

The one remaining requirement is to link this attentional state to behavior that
directs the robot’s attention. In the model of Baron-Cohen (1995), this purpose is
served by SAM, the shared attention mechanism. In Baron-Cohen’s terms, SAM is a
“neurocognitive mechanism” rather than a module in sense of Fodor (1992). However,
the treatment of SAM has always been as a distinct modular component – encap-
sulated knowledge that can be selectively present or absent. In the implementation
discussed here, joint reference is not explicitly represented as a modular component.
Rather, it is a property of a feedback mechanism between the head pose detection
system and the attention system. This feedback loop, combined with the existing be-
havioral systems, produces the same joint reference behaviors as would be generated
by SAM.

To complete the feedback between the perceptual processes that detect salient
social cues and the behavioral systems that produce attentive behavior, a simple
transformation must be employed. By modifying the fidelity of this transformation,
the first three of Butterworth’s stages of joint reference development can be achieved,
although due to perceptual limitations only the first two will be demonstrated here.
The output of the head pose detection system is a data structure that includes the
location of the face, the scale of the face, and the orientation of the head in terms of
yaw, pitch, and roll. The inputs to the attention system are all structured in terms
of a retinotopic map. To achieve Butterworth’s first stage (sensitivity to the field
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Figure 10-2: Nine frames from a video sequence showing the application of joint
reference for selection of trajectories for mimicry. In this video, a large mirror was
positioned behind the robot, outside its field of view, to permit the video camera
to record both the actions of the human and the robot. When the human looks to
the left and makes two arm movements (images 1-2), the robot responds by selecting
an arm movement that matches the head orientation (image 3). Similarly, when the
human looks to the right (image 4), the trajectory to the right becomes more salient,
and the robot acts upon it by moving its left arm (image 5). Images 6-9 show the
same effect for two arm movements that differ from each other. Approximately two
seconds of video separated each of these images.
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of view), the transformation marks all pixels to the appropriate side of the head as
salient and all other pixels as uninteresting. For example, for a face located at row 20
and column 30 that is looking to the right (toward the origin), all pixels in columns
0-29 would received a value of 255, while all other pixels would receive a value of 0.
(Recall that high values in the activation maps indicate salient regions.) To achieve
the ecological stage of gaze following, a different mapping function is employed. The
area of attention is modeled as a cone of attention that originates at the center of
the face location and extends along an angle that matches the projection of the head
orientation. To match the behavior of the ecological stage, the intensity of the cone
is at a maximum (a pixel value of 255) at its origin and degrades by 10% every fifteen
pixels of distance from the origin. This gives both a directional differential and a
distance differential which biases the robot to attend to the first salient object along
that scan path. In practice, a cone with an extent of 15 degrees to either side of the
orientation angle was found to be effective.

The geometric stage can also be achieved with this method by using the same cone
of attention but rather than degrading the intensity of the cone based on the distance
from the origin, the intensity is degraded based on the distance from the perceived
vergence target. In this way, targets at a specific distance from the observed person are
enhanced. This capability has not been demonstrated on Cog because the perceptual
processing is not sophisticated enough to recognize vergence angles or more detailed
3-D representations of pointing gestures. Similarly, a true representational stage
of joint reference relies on the presence of other cognitive abilities for representing
objects and for building representations of space that are not currently within the
field of view, both of which are not currently implemented. A true representational
stage would likely also directly influence search behaviors at a higher level than these
pre-attentive processes.

The addition of a joint reference input to the attention system is not a capability
originally envisioned by Wolfe (1994). While there is little evidence that these joint
reference behaviors are at the same perceptual level as the other pre-attentive filters
in human visual behavior, this implementation choice is a simple method to allow
all of the robust behaviors that had previously been designed to act on the output
of attentional processes to be driven by joint reference without the introduction of
any additional mechanisms. The relative influence of joint reference can easily be
modified simply by changing the weighting that is applied to that input channel in
the attentional process.

In addition to driving attentional responses such as orientation and pointing be-
haviors, the effect of joint reference can also be applied to select appropriate trajec-
tories to mimic. People tend to pay close attention to their movements and manip-
ulations of objects. When attempting to instruct another individual, this tendency
is even more pronounced. In this way, attention acts as a natural saliency cue by
pointing out the important aspects of the social scene. On Cog, the integration of
the joint reference cues into the attention system allows for the selection of salient
trajectories based on joint reference to be implemented without any further software.
Figure 10-2 shows an example of the influence of head orientation on mimicry. To
allow both the robot’s behavior and the human’s behavior to be captured using only
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a single video camera, a large mirror was placed behind the robot. The robot could
neither see nor reach the mirror. The human instructor then made either identical
movements with both arms (images 1-5) or different movements with both arms (im-
ages 6-9) while looking and orienting either toward his own left (images 1-3 and 6-7)
or right (images 4-5 and 8-9). To allow an easily observable behavioral difference,
the robot was programmed to respond either with its left or right arm, depending on
whether the robot selected a trajectory that was to the right or the left of a detected
face. (Note that to act like a mirror image reflection, when the human acts with his
left hand, the robot must respond with its right hand.) As figure 10-2 demonstrates,
the response of the robot to joint reference cues can easily be reflected in the mimicry
behavior.

10.2 Shared Attention without a Modular Struc-

ture

One of the primary differences between the embodied theory of mind presented here
and the original work of Baron-Cohen (1995) is that the role of joint reference is not
encapsulated within a single modular structure. The model presented here should
not be taken as any sort of proof that the human system operates in the same way.
It does however provide an existence proof that joint reference behavior can be pro-
duced without the need for a complex, encapsulated module. The embodied model
provides a useful interface to behavior selection and can account for many of the
basic properties observed in the development of joint reference skills in infants. This
perspective is not unheard of within the developmental science community. In fact,
shortly before his death, Butterworth (2000) had begun to articulate a position that
joint attention is based on the properties of system embodiment. Butterworth noted
that aspects of the design of the human body allowed the social cues that indicate
attentional states to be more easily perceived. For example, the white color of the
human sclera makes determining gaze direction easier.1 He concluded that “it is
possible that human embodiment supports joint attention, joint attention supports
gesture, gesture supports the representational properties of language, and symbolic
language supports the capacity for mentalising. Such a developmental sequence need
not carry any implication that since the mind is supposedly unobservable it therefore
has to be theorized.” We agree with Butterworth that joint reference is supported
by the basic facts of embodiment and that it can be grounded in perceptual states
without resorting to wholly cognitive explanations of behaviors.

Although the system developed here uses only a single social cue for joint refer-
ence (head orientation), this architecture can easily be extended to deal with more
complex perceptions and more complex behavioral responses. Gaze direction could
be integrated into the attentional system using the same types of functional feedback

1It is also interesting to note that no other primate has this dramatic difference in coloring
between the sclera and the iris and pupil.
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connections as are currently used for head orientation. If a perceptual system were
able to recognize body postures and could determine pointing gestures, this infor-
mation could also be integrated using a similar set of rules for determining a cone
of attention. More complex behavioral selection procedures could also allow the at-
tentional states to directly trigger specific behavioral responses. For example, were
the robot to observe a person pointing to an apple, the robot might also point to
the apple (another case of mimicry) or might attempt to re-direct the attentional
state of the person to an object that the robot was more interested in acquiring (thus
interpreting the pointing gesture as a question).
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Chapter 11

Detecting Simple Forms of Intent

If you should encounter a mountain lion while hiking in the Sierra Nevada
mountains of California, there are two things you must not do, according
to the Mountain Lion Foundation: turn your back on the animal or run
away. Either of these behaviors would trigger the lion’s predatory chase
behavior, transforming you from startled hiker into potential prey. It is
possible to avoid becoming prey by denying the lion’s perceptual system the
cues that normally accompany being a mealtime animal. Knowing how
other creatures categorize behavior based on motion cues could thus make
the difference between life and death. – Blythe et al. (1999, p. 257)

In addition to the interpretations of animacy provided by ToBY, simple motion
cues can also provide information about intention. The classic studies of Heider &
Simmel (1944) demonstrated that people naturally attributed a wide variety of inten-
tional states to even simple geometric shapes that moved across a background. The
attribution of goal and intent has a central role in both the theories of Leslie (1994,
as part of ToMM-1) and Baron-Cohen (1995, as ID). Furthermore, the attribution of
intent is a critical distinction between mimicry and true imitation, or, using the ter-
minology of Byrne (1999), the difference between copying the form of an action and
the structure of an action. The close ties between intent and imitation were studied
by Meltzoff (1995), who demonstrated the ability of infants as young as 18 months of
age to distinguish between the surface form of an action and the underlying goal of
an action.

While many of these studies focus on the fact that people are willing to attribute
intention to basic object motion, very few research programs have addressed ques-
tions about the nature of the basic properties that cause these attributions or even
a classification of the types of attributions that are applied. One notable exception
is the work of Blythe et al. (1999), who attempted to build a classification system
for a set of basic intentional states for a pair of simulated insects. Their experiments
focused on two simulated ants in an on-screen environment that had no other objects
or obstacles, but that did have a reasonable model of physics (friction, inertia, etc.).
Three networked computers were attached to this simulation. Subjects at the first two
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computer consoles could control the movement of the ants through simple keyboard
and mouse-based interfaces. A subject at the third terminal had no control over the
simulation, but could observe the movements of the two ants. In the first phase of
their study, the two subjects controlling ants were given certain intentional roles that
they were asked to play out using the ants, such as “pursuing,” “evading,” “court-
ing,” “fighting,” or “playing.” These two subjects were isolated in separate rooms
and had no interaction with each other except through the simulation. The third
subject was asked to characterize the intentional role of each ant as they observed the
interaction. In the second phase of their study, they attempted to derive classifiers
that could look at the raw trajectories of the ant movement and produce judgments of
intentionality that matched the human judgments. Their results demonstrated that
even relatively complex intentional attributions (such as “play”) can be discriminated
solely on the basis of spatio-temporal properties of rigid body movement and that
this discrimination can be performed by an algorithm.

The studies of Blythe et al. (1999) were so successful in part because of the limited
range of intentional choices presented to subjects and also because of the simplicity of
the environment. In building a basic representation of intent for a humanoid robot,
we have chosen to deal with a much more restricted set of intentional states that can
be recognized in exchange for being able to process a more complex environment.
This chapter will present a very basic system that attributes two states of inten-
tional relation in similar ways to the intentionality detector in Baron-Cohen (1995).
This implementation will recognize both attraction and repulsion relationships, which
might also be characterized as intentions of approach/desire and escape/fear. This
implementation will differ significantly from the work of Blythe et al. (1999) in two
ways: attributions of intent will only be applied to agents that exhibit self-propelled
motion and this perceived intentional state will be used directly to drive behavior.

11.1 Recognizing Attraction and Repulsion

The intentionality detector (ID) takes as input the labeled trajectories that are pro-
duced by the theory of body module. Unlike ToBY which operates on each trajectory
independently, the intentionality detector is primarily concerned with the relation-
ships between trajectories. The motion of one object (the actor) can be interpreted
in an intentional framework only with respect to the position (or movement) of a
second object (the target). Because these trajectories are based on the salient objects
detected by the attention system, ID can only represent relationships between pairs
of salient objects. While this does limit the full potential of the system, the effect
of the restriction on the behavior of the system is minor. In one way, the limitation
is useful in that it restricts the number of possible pair-wise trajectory comparisons
that must be performed.

Attributions of intent are only permitted to trajectories that have been classified
as animate by the theory of body module. In this way, many spurious comparisons
between pairs of inanimate objects are never computed, and the attribution of intent
is critically tied to the internal representations of agency. Only those stimuli that are
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Figure 11-1: The intentionality detector seeks to label the intentional relationships
for basic approach and withdrawal. The image at left shows a person reaching for
a toy block with the trajectory positions drawn on the image. This trajectory was
classified as an approach event. At right, an event that was classified as a withdrawal
event when the person then quickly pulled his hand away.

classified as social agents are capable of acting as the primary actor in the intentional
relations. Note that the target of the intentional relation may be either animate or
inanimate; it is still possible for an animate agent (such as a person) to desire an
inanimate object (such as an apple). It is also possible that the discrimination of an-
imacy in the target stimulus might someday be a useful component in discriminating
more complex forms of intent. For example, when I observe a man moving rapidly
away from a woman, I might interpret that reaction differently than when I see a man
moving rapidly away from a cardboard box.

The intentionality detection system implemented in this work classifies two types
of intentional relationship: attraction and repulsion. While this set of relationships
is certainly smaller than the set used in Blythe et al. (1999), these basic forms of
attraction and repulsion may be the basis for more complex forms of intentional rela-
tion (Leslie & Keeble, 1987). Every animate trajectory is considered to be a possible
actor. ID compares all possible pairings of possible actors with the complete set of
trajectories (excluding the actor’s own trajectory). To perform a comparison, the
sets of points from each trajectory are aligned temporally by local shifting operations
which match points in each trajectory that were acquired from the same original im-
age frame. Each matched set of points is then compared using some simple spatial
measurements such as distance, velocity, the difference in the angles of the velocity
vectors (the relative heading), and the velocity angle of the actor with respect to
the actual directional vector between the actor and the target (the approach vector).
These statistics are identical to those used by Blythe et al. (1999) and are used di-
rectly to classify the intent as approach, avoidance, or neither. An approach relation
occurs when:

• The difference in the relative headings of the actor and target, averaged over the
number of points in the trajectories that could be aligned, is below a threshold
of 20 degrees.
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Figure 11-2: A demonstration of the use of intentional relationships to guide behavior.
The subject was asked to perform a sequence of social tasks. First, the subject was
asked to get the robot’s attention (image 1). The subject was then asked to orient
to a nearby toy (image 2). The robot responded by engaging in joint reference by
orienting to the block. The subject was then asked to re-acquire the robot’s attention
(image 3) and reach for the toy (image 4-5). The robot observed this reach, classified
it as an intent to approach or acquire the toy, and reached for the toy in response
(image 5). The subject returns her attention to the robot and the robot engages her
in mutual regard (image 6). Approximately 1.5 seconds elapsed between the images
shown here.

• The distance between the actor and target is non-increasing.

When these two criteria are satisfied, an intentional relationship between the actor
and the target is recorded. Similarly, an avoidance intention is recorded when:

• The distance between the actor and target is non-decreasing.

• The angle of the approach vector is maintained between 135 degrees and 225
degrees.

These criteria enforce that an avoidance relationship is assigned only when the actor
is actively moving away from the target. Note that this assignment system allows for
a single actor or object to maintain multiple intentional relationships (he wants x and
y, he fears x and y). Figure 11-1 shows two examples of these attributions. In the
left image, a person reaching toward a toy block is described as an attraction relation
between the hand and the block. The right image in figure 11-1 shows the person
withdrawing their hand from the block, an action which generates an avoidance event.

These intentional attributions can also be used to drive more complex behaviors.
Because the intentional relationship is grounded to the perceptual properties of the

150



location, color, and size of both the actor and the target, additional behavioral criteria
can easily be applied. Furthermore, since each intentional relation is also grounded
to the past history of movement for both agent and target, behavior can be selected
based on the complete actions of the actor and the target. Figure 11-2 shows one
example of an implemented behavioral connection between intentional relationships
and a socially-engaging behavior. In this example, the robot was performing a set of
behaviors including attempting to engage in joint reference (described in the previous
chapter) and attempting to reach out toward the target of any observed attraction
relationship. In this way, the robot acts “selfish” by attempting to obtain any object
that is interesting enough for another person to desire (and approach) while not
bothering to attempt to acquire objects that are only the object of visual attention.
The interactions in this experiment were semi-scripted in that the experimenter asked
the subject to perform a sequence of methods for engaging the robot socially. First,
the subject was asked to get the robot’s attention (image 1). The subject was then
asked to turn and look at the toy block (image 2). The robot detected the change
in head pose, which resulted in an increased saliency of the block, which caused a
saccade and head orientation to the block. The subject was again asked to obtain
the robot’s attention (image 3). As a result, the robot saccaded and oriented again
to the subject’s face. Finally, the subject was asked to reach for the block (images
4-5). The robot observed the movement of the subject’s left hand as an animate
trajectory. ID detected an approach relationship between the moving hand and the
block. The target of the approach relationship (the block) became the target of a
reaching gesture (image 5). The subject then returned her attention to the robot. In
response, the robot oriented to her and stopped acting on the intentional relationship
(image 6). This example demonstrates the type of behavioral effects that intentional
attribution can generate.

There are many possible extensions to this implementation of ID. Obviously, a
richer set of intentional states and behavioral responses would enrich the system.
Applications of intentional relationships as feedback mechanisms for social learning
could also be explored. For example, it might be an adaptive strategy for a robot to
learn to avoid classes of objects that humans avoid (such as pits or fire). This approach
would also address many issues of generalization that have yet to be addressed in
this context. Intentional states might also serve as an interesting starting point for
implementations of episodic memory. Two of the critical problems in building systems
that can remember what happened to them are in selecting the small set of data to be
remembered from a very large input stream of data and in building a representational
structure that can support this learning. The intentionality detector may provide a
basis for addressing both of these problems; the intentional relationship provides the
basis of a representational structure and also serves to pull out salient events as they
occur.
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Chapter 12

Toward a Theory of Mind

Isn’t it curious that infants find social goals easier to accomplish than
physical goals, while adults find the social goals more difficult? One way
to explain this is to say that the presence of helpful people simplifies the
infant’s social world – since because of them, simpler actions solve harder
problems ... How do children start on the path toward distinguishing be-
tween psychological and physical relationships? – Minsky (1988, p. 297)

In the previous chapters, a novel model of the development of theory of mind was
introduced, implemented on a humanoid robot, and evaluated in the context of social
learning. This final chapter serves both to summarize the significant contributions of
this implementation and to look beyond the current implementation toward a more
complete theory of mind. We will consider the types of additional competencies that
would be required to allow a machine to solve simple theory of mind tasks (such as
the Smarties task or the Sally-Anne task described in chapter 3) and evaluate how
the current implementation could support these extensions. We will also consider the
implications that this existence proof provides in terms of the development of theory
of mind abilities in human children

12.1 Summary of Significant Contributions

Based on the models of Baron-Cohen (1995) and Leslie (1994), we have proposed a
hybrid model of the foundational skills for a theory of mind. This model, which we
have called the embodied theory of mind, grounds concepts that have traditionally
been thought to be high-level cognitive properties (such as animacy and intent) to
low-level perceptual properties. All aspects of the model were implemented on a
complex humanoid robot to operate in natural environments and at interactive rates.
The implemented model featured the following components:

• An attentional mechanism which combined low-level feature detectors (such as
color saturation, motion, and skin color filters) with high-level motivational
influences to select regions of interest.
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• A “theory of body” module which determined whether an object was animate
or inanimate based on a set of naive physical laws that operated solely on the
spatial and temporal properties of the object’s movement.

• An active sensorimotor system that detected faces at a large variety of scales
using a color pre-filter and two shape-based metrics. This system also iden-
tified three features (the two eyes and the mouth) and used those features to
determine the orientation of the person’s head. This information on the atten-
tional state of the observed person was then used to engage in joint reference
behaviors, directing the robot’s attention to the same object that the person
was considering.

• A simple mechanism for detecting the basic intentional states of approach/desire
and avoidance/fear. These classifications were determined by considering pairs
of trajectories and allowing attributions of intent to only be applied to animate
agents.

Individual components were evaluated by comparison with human judgments on
similar problems and the complete system was evaluated in the context of social
learning. A basic mimicry behavior was implemented by mapping a visual trajectory
to a movement trajectory for one of Cog’s arms. Both the mimicry behavior and
behaviors that generated an attentional reference (pointing and head orientation)
were made socially relevant by limiting responses to animate trajectories, by acting
on objects that became salient through joint reference, and by acting on objects that
were involved in an intentional relationship. This set of simple behaviors made a first
step toward constructing a system that can use natural human social cues to learn
from a naive instructor.

12.2 Future Extensions

There are many obvious improvements that could be made to the sensory and motor
control systems. Better perceptual systems for detecting the direction of eye gaze, for
analyzing articulated motion, and for interpreting pointing gestures would be welcome
additions. More complex motor behaviors such as object manipulation, whole-body
movements, and coordinated manipulations between the two arms would allow for a
wider range of social responses and richer interaction. It is easy to articulate these
abilities and the effects that they might have on the system. Additional cognitive
abilities would also increase the believability and usability of the system, but are
more difficult to integrate into the existing behavioral architecture. For example,
consider episodic memory which is the ability to represent, store, and recall events
that have been experienced. The addition of episodic memory to this system would
certainly provide new behavioral possibilities, but the exact effects of this inclusion
and the ways in which episodic memory would affect the individual components of the
system would need to be considered carefully. Beyond the obvious applications for
learning sequences of movements, episodic memory might also allow the robot to use
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previously imitated behaviors to bias perception or to influence attentional selection.
Other cognitive abilities might allow existing behaviors to be enhanced. The addition
of a representation of objects that allowed identification across multiple viewpoints
and representation outside the current visual field of view would permit joint reference
behaviors to proceed to the representational stage outlined by Butterworth (1991).

While many additional cognitive capacities would add obvious value to this sys-
tem, this implementation was designed to support three additional skills which were
not part of this implementation: the attribution of belief and knowledge, more com-
plex social learning mechanisms, and systems that show a basic level of self-awareness.

12.2.1 Attribution of Belief and Knowledge

The culmination of both the model of Leslie (1994) and the model of Baron-Cohen
(1995) is the ability to attribute belief states to other individuals. The ability to
represent the knowledge that another individual has is both a critical developmental
waypoint and a useful skill in predicting behavior. No existing computational systems
can currently pass any of the false belief tasks (such as the Smarties task or the Sally-
Anne task) for real-world stimuli.1 The core of Baron-Cohen’s model is the thesis that
the same foundational skills of joint reference, attribution of animacy, and inference
of intent are the critical precursors in building a system that can evaluate these
propositions about the internal knowledge states of other agents.

In order to apply knowledge states to other people, the robot must first have an
internal representation of these knowledge states for itself. This representation might
result from episodic memory, from object representations, or from a combination
of both. For example, a simple form of episodic memory might connect sequences
of judgments of intent or animacy with underlying perceptual properties. If the
robot always saw red objects violate ToBY’s energy expert (and thus be classified as
animate) and then become the actor in an intentional relationship of attraction, an
episodic memory system might generalize this into a rule about the behavior of red
agents. When a person was present and was attending to the red object while the
robot was making these generalizations, the agent’s representation would be extended
to include this rule about the behavior of red agents. Similar attributions might
also be possible with a more complex object representation. For example, the robot
might learn the preferences of other individuals by observing the characteristics of
the objects that they tended to approach.

The architecture presented here could be extended to allow attribution of knowl-
edge and belief states based on shared perceptual experiences. Informally, the system
would operate by applying the rule that “if he sees what I see, then he knows what
I know.” Whenever an individual and the robot are engaged in a joint reference
state, the robot would apply the same representational knowledge structures that it
was combining at a given time to the other agent. From this point, it would also be

1It is trivial to build a system that can perform the appropriate inferences if given high-level
abstractions of the perceptual data and the rules to be applied.
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possible to begin to have the robot selectively predict the missing pieces of knowl-
edge in another individual and attempt to supply that information by directing their
attention to the relevant stimuli. If the robot was watching something slowly sneak
up on you, it might point in that direction in an attempt to draw your attention to
the potential danger. In this way, the robot might become not only a more active
and involved student but also a very rudimentary instructor. Note that this differs
drastically from a simple behavioral rule of the form “if you see something sneaking
up, then you should point at it.” The theory of mind abilities would be much more
flexible, robust, and adaptive than these hard-coded rules. Ideally, since the attri-
bution of knowledge states depends only on the referential process and not on the
content of the information being conveyed, the robot could apply this information
sharing technique without a deep understanding of the content of the message.

12.2.2 More Complex Social Learning Mechanisms

The mimicry mechanism described here is a relatively simple social learning mech-
anism. To achieve the grand challenge of building a machine that can acquire new
tasks, skills, and knowledge from a naive instructor, much more complex social learn-
ing techniques will be required. In many ways, the foundations laid by this model of
a theory of mind contribute to this challenge.

One obvious extension would be to move from mimicry to imitation. The simple
example presented in chapter 11 in which the robot performed a reach for an object
whenever it detected another agent’s intent to approach that object was a first bridge
between mimicry and imitation. The robot responded not to the raw movement,
but rather to the intention of the agent (and the target of that intent). To make
any real claims about systems that are capable of imitation, a much richer set of
potential behavioral responses, triggering percepts, and intentional categories would
be required. However, the same basic architecture could be used to support these
more complex components. Intentional acts should serve as both the behavioral
selection mechanism and as the guiding force that links a behavior to objects and
events in the world. In this way, the robot would move beyond acting just as a
mirror of the human’s surface behavior and become a more autonomous and believable
agent within the world. The transformation from mimicry to imitation signals a
fundamental change in the way that any system, biological or artificial, represents
other individuals.

A further step in developing socially competent systems would combine a goal-
directed system with social exploration behaviors to create a robot that actively
attempts to learn something. Imagine that the robot observed a person obtaining
some desired object (perhaps a special toy) from within a locked box. If the robot de-
sired that toy (for whatever reason), it might engage in behaviors that either directly
or indirectly resulted in the human opening the box. Perhaps the robot would point
and gesture to the box. Perhaps it would attempt to open the box, look despon-
dent, and engage the human in an appeal for assistance. Perhaps it would engage
in a more deceptive attempt to obtain the toy by distracting the person once the
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box was opened and then grabbing the toy for itself. The combinations of social
learning with representations of knowledge and intent leads to issues of deception in
robotic systems in the same ways that it does for humans (Wimmer & Perner, 1983;
LaFreniere, 1988), other primates (Woodruff & Premack, 1979; Savage-Rumbaugh
& McDonald, 1988; Hauser, 1992; Whiten & Byrne, 1988; Byrne & Whiten, 1991),
and other animals (Ristau, 1991a,b). The development of robotic models capable of
modeling knowledge states will be forced to address these issues.

12.2.3 Self-Aware Systems

One other area that has been closely related to theory of mind research in biology
is the study of self perception and self awareness. Studies on human children have
focused on how a child learns to distinguish itself from other people and from inani-
mate objects in the environment, how the child learns to use self-referential words and
phrases, and how children learn to solve false belief tasks (Povinelli & Simon, 1998).
Studies of animals have focused on self-recognition as an indicator of the cognitive ca-
pability of various species. Gallup (1970) first discussed self-recognition in non-human
primates by observing their reactions to a mirror after placing an odorless, colored
mark on the foreheads of chimpanzees. These animals had been exposed previously
to mirrors and allowed to acclimate to these strange devices. The critical question
involved in this study was whether the animal would reach for its own forehead or
for the colored spot on the “other” animal that appeared in the mirror. If the ani-
mal reached for its own forehead, it would necessarily have developed some internal
representation that the mirror allowed it to view its own body and not some other
animal that just happened to act similarly. While both the exact findings and the
usefulness of the method have been questioned, many researchers have used this as a
critical thought experiment in developing other tests of self-recognition. Gallup’s task
is still being used, and recent research indicates that some other animals including
monkeys (Hauser et al., 1995) and dolphins (Reiss & Marino, 2001) might recognize
the creatures in the mirror as themselves.

In considering this question for a humanoid robot, a somewhat different set of
research questions emerges based on the foundational skills of theory of mind. One
of the basic functions of these skills is to distinguish between inanimate objects and
agents which can be engaged socially. However, the current implementations classify
the robot’s own movements as animate. If a mirror is placed in front of the robot, it is
perfectly content to engage itself indefinitely.2 One could argue that a robot is unlikely
to encounter many mirrors in some environments, however, the same problems arise
whenever the robot happens to look down at its own body or whenever its arm
happens to move up into its field of view. At some level, we would like the robot
to recognize the contingency of the motor signals it is sending and the perceptual
stimuli that co-occur. A system with a basic form of self-awareness would be able

2Yes, this test has actually been performed. The robot views the movement of its own head and
arm as animate and will attempt to mimic that movement. Because the robot’s movement never
exactly matches its perception, the gesture being performed gradually changes over time.
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to distinguish between perceived movements that were a result of its own body and
those that originated from other sources.

This simple form of self-awareness might also be extended to guide social behav-
iors to further refine the class of socially-receptive stimuli. For example, it might be
inappropriate for the robot to engage a pre-recorded television program while remain-
ing appropriate for the robot to become a participant in a video conference call. One
possible way of distinguishing between these different levels of social engagement is
to play a simple imitation game.3 In this game, the robot would alternate between
attempting to mimic what it saw another individual doing and performing its own
actions in an attempt to get the person to imitate it. By looking at the quality of the
imitative responses in these two situations, the robot can start to distinguish objects
that are interesting to engage socially. A pre-recorded television program might give
the robot good quality actions for it to imitate, but would be very unlikely to imitate
the actions that the robot initiates. Conversely, a mirror would be extremely good at
following the movements that the robot initiates, while providing very little sponta-
neous movement for the robot to imitate. Static objects or objects that had physical
morphologies that differed greatly from the robot would be poor both at providing
quality movements to imitate and at responding to the robot’s actions. Finally, those
people interested in engaging the robot socially, whether they are physically in the
same room or projected on a television screen, would be good at both phases of this
imitation game.

12.3 Implications to Models of Human Behavior

Although no claims have been made that this implementation reflects the kinds of
processing that occurs in either humans or other animals, systems like this one rep-
resent a new kind of tool in the evaluation and testing of human cognitive models
(Adams et al., 2000; Webb, 2001). In particular, this implementation is an existence
proof for building joint reference behaviors without an explicit, encapsulated mod-
ule. The implementation has also demonstrated a useful addition to Wolfe’s Guided
Search model by incorporating both habituation effects and the effects of joint refer-
ence. Furthermore, the implemented system gives an example of how to perceptually
ground animacy and intentionality judgments in real perceptual streams.

In a more general sense, robotic systems represent the natural next step in cog-
nitive and behavioral modeling. Just as computer simulations presented researchers
with the ability to make predictions for models that were difficult or impossible to see
with only pen and paper, embodied models will provide predictions for models that
rely upon complex interactions with the world that are difficult to simulate. Models
of human social functioning rely upon the complex interplay between multiple people
and the environment; performing simulations that can represent the wide variability
and range of human responses is an extremely daunting task. By building systems

3I am indebted to Kerstin Dautenhahn and Cynthia Breazeal for assistance in developing this
example.
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that exist in the real world and interact directly with people, the difficult simulation
problems disappear. Obviously, building real-world systems introduces an entirely
new set of difficulties, but these problems often reflect deep underlying challenges
that both biological and artificial systems must address.

An implemented robotic model also has benefits over direct experimentation on
human subjects. Accurate testing and validation of these models through controlled,
repeatable experiments can be performed. Slight experimental variations can be used
to isolate and evaluate single factors (whether environmental or internal) independent
of many of the confounds that affect normal behavioral observations. Experiments
can also be repeated with nearly identical conditions to allow for easy validation.
Further, internal model structures can be manipulated to observe the quantitative
and qualitative effects on behavior. A robotic model can be subjected to testing
that is potentially hazardous, costly, or unethical to conduct on humans; the “bound-
ary conditions” of the models can be explored by testing alternative learning and
environmental conditions. A robotic implementation may also be preferable to simu-
lation studies or a theoretical analysis because the robot can interact freely with the
same environmental conditions. Especially for models of social interaction, theoretical
studies or simulations have great difficulty in accurately representing the complexities
of agents in the environment. Finally, a robotic model can be used to suggest and
evaluate potential educational strategies before applying them to human subjects.

12.4 Implications to Social Robotics

Technological devices rapidly become frustrating when they do not meet our expec-
tations on how they can be used. In user interface design, the mapping between the
user’s goal and the actions that must be performed to achieve that goal should be as
simple and obvious as possible. Rather than requiring users to learn some esoteric
and exact programming language or interface, more and more systems are beginning
to use the natural social interfaces that people use with each other. People continu-
ously use this extremely rich and complex communication mechanism with seemingly
little effort. The desire to have technologies that are responsive to these same social
cues will continue to drive the development of systems that do what we want, not
necessarily what we say. As artificial intelligence technology and robotics become
more and more a part of our daily lives, these lessons will be even more important.

Theory of mind skills will be central to any technology that interacts with people.
People attribute beliefs, goals, and desires to other agents so readily and naturally
that it is extremely difficult for them to interact without using these skills. They will
expect technology to do the same.
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Marjanović, M. J., Scassellati, B. & Williamson, M. M. (1996), Self-Taught Visually-
Guided Pointing for a Humanoid Robot, in ‘From Animals to Animats: Proceedings
of 1996 Society of Adaptive Behavior’, Society of Adaptive Behavior, Cape Cod,
Massachusetts, pp. 35–44.
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