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Abstract: We propose an infrastructure that helps a system administrator to identify
a newly published vulnerability on the site hosts and to evaluate the vulnerability’s
threat with respect to the administrator’s security priorities. The infrastructure founda-
tion is the vulnerability semantics, a small set of attributes for vulnerability definition.
We demonstrate that with a few attributes it is possible to define the majority of the
known vulnerabilities in a way that (i) facilitates their accurate identification, and (ii)
enables the administrator to rank the vulnerabilities found according to the organiza-
tion’s security priorities. A large scale experiment demonstrates that our infrastructure
can find significant vulnerabilities even in a site with a high security awareness.

1 Introduction

To date, worms and other widespread network-based attacks have gained unauthorized
access to many organizations’ hosts by exploiting known vulnerabilities. For example,
the "Code Red’ worm—uwhich spread in July and August 2001—exploited a known buffer
overflow vulnerability on thousands of hosts that were running Microsoft servers [CCZ02,
SPWO02]. The damage could have been avoided if the host administrators had installed
the software patch that was announced by Microsoft approximately one month before the
worm was released.

While intrusion detection systems (e.g., [R099]) can detect an attack such as the Code Red,
they usually cannot prevent an attack from occurring. To prevent attacks, we envision an
Intrusion Prevention Infrastructure (IP1), depicted in Figure 1. As soon as a new vulner-
ability is published, the IPI detects the vulnerability on every system host, estimates the
vulnerability threat with respect to the site security priorities, and aids the administrator
in repairing the vulnerability. The infrastructure core is a vulnerability database which
provides a vulnerability definition that facilitates and integrates the other infrastructure
components: an accurate audit tool, a site-customizable threat analyzer, and a repair tool
that derives repair options from the vulnerability definition.

This paper focuses on two IPI components: the vulnerability database, with its language
for defining vulnerabilities, and the threat analyzer. More particularly, we make the fol-
lowing contributions:

Vulner ability semantics (Section 4). We propose a formal language for vulnerability def-
inition. The language core comprises two sets of attributes: the presence attributes define
the characteristics of a vulnerable host and the threat attributes define the severity of the
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Figure 1: Intrusion Prevention Infrastructure. In this paper, we develop the threat analyzer and the
vulnerability semantics.

vulnerability and the difficulty of exploiting it. Since our language is formal, it facilitates
unambiguous vulnerability definition and accurate audit; since it is simple, repair options
can be derived from the vulnerability description by nullifying the presence or threat con-
ditions. Unlike other languages (e.g., [MIb]), our attributes do not rely on specific host or
operating-system features, so they support an efficient audit. At the same time, our lan-
guage enables threat definition that depends on the host configuration. For example, one
can define a conditional threat: “if file F" exists, the threat is high, else the threat is low”.

Threat analyzer (Section 5). We develop a site-customizable threat analyzer that ranks
vulnerabilities according to the site security preferences. Our first threat measure is the
attack severity, a quantitative measure of the resources a vulnerability exposes. To identify
these resources, the analyzer uses both the vulnerability semantics and the audit results;
to quantify them, it uses a resource ranking which is customized according to the site
security preferences. The second threat measure is the attack difficulty, an estimate of the
attacker ability to launch a successful attack. We split the difficulty definition into two
components. The inherent component represents the vulnerability difficulty by comparing
the vulnerability to others that are similar. The site-specific difficulty reflects the difficulty
of exploiting the vulnerability on a particular host.

IPI case study (Section 6). We study the IPI feasibility, its necessity, and its impact on
security. We partially implemented the IPI audit and threat tools, and we used the tools to
conduct a long term experiment on a real site. Our site has 1500 hosts, maintains strong
configuration management (only software that is authorized by the site administrator can
be installed), and has a security officer who devotes his entire time to ensuring the site
security. The results demonstrate the IPI’s capability of finding long-lived vulnerabilities,
even for a site with such a high security awareness. The study demonstrates the value
of a site-customizable threat analyzer for consistently measuring threat levels over a long
period of time. The threat analyzer measures both the impact of repairing vulnerabilities
and the threat levels of vulnerabilities that were not repaired because they are allowed by
the site security policy.
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2 Related Work

Vulner ability databases. There are several vulnerability databases that contain hundreds
[CE, De] to thousands [Th, Se, In] of vulnerability descriptions. These databases primar-
ily use a natural language (i.e., English) to describe vulnerabilities. As we illustrate in the
next section, such descriptions are subject to different interpretations by different people.
Furthermore, a natural language description is difficult to use by programs that can auto-
mate the audit, repair, and threat analysis processes. In contrast, our language is formal, so
it enables unambiguous vulnerability definition and facilitates the use of automatic tools.

Vulner ability definitions and languages. Cuppens et al. [CO00] propose a formal lan-
guage to describe vulnerabilities. However, they focus on vulnerability composition to
detect a series of exploits that form a significant attack [CMO02]. Their language does not
include semantics that support accurate audit or repair of a vulnerability, and is limited in
the threat characterization for each vulnerability.

Parallel to our work, MITRE corporation is developing the Open Vulnerability Assessment
Language (OVAL) [MIb]. OVAL uses SQL to define a host-dependent test that determines
whether or not a host is vulnerable. Unlike OVAL, our higher-level definition supports
threat analysis and vulnerability repair in addition to testing for the presence of the vul-
nerability. Furthermore, our presence attributes facilitate a network-based audit technique
that is host independent. Network-based auditing is identical for all hosts and operating
systems, and is needed for efficient testing.

Quantitative threat analysis. Existing databases and audit tools specify, for each vul-
nerability, a fixed quantitative threat level like ’high’, or "low’ (the CERT database uses
fixed numeric ratings). As far as we can tell, the meaning of these different levels is not
precisely defined in any of these tools and there are inconsistencies among the tools (e.g.,
the threat of CVE-2000-0614 is "high’ by ICAT [Th] but ’'medium’ by ISS [In]). In our
threat model, the threat level depends on the identity of the resources the vulnerability
exposes rather than on a fixed value given by the vulnerability definer. This means that (i)
a vulnerability can yield different threat levels when found on different vulnerable hosts
(e.g., web server vs. user workstation), and (ii) different vulnerabilities that expose the
same resources have the same threat level.

Ortalo et al. [ODK99] define a vulnerability threat based on the difficulty of exploiting
the vulnerability; they assign a fixed difficulty level to each vulnerability. Our threat def-
inition is broader: it is based on the resources the vulnerability exposes in addition to the
vulnerability difficulty. Furthermore, our difficulty definition is customizable: it takes into
account site-dependent factors such as host configuration and firewall protection.

Audit and testing technologies. Two types of audit technologies have been developed: (i)
host configuration checkers that search for host configuration flaws that might be exploited
by attackers [FPA98, FS90, KS94, Or99, SSH93, ZL96], and (ii) remote network-based
vulnerability scanners which test for vulnerabilities exclusively using the network proto-
cols [De, Mu95, In, To]. Since neither of these techniques alone can conclusively identify
all vulnerabilities, these tools produce many false positives. To increase accuracy, the IPI
audit methodology is based on precise semantics, and uses information from both host and
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network audit techniques. However, we leave the detailed implementation of this audit
methodology to the future.

3 Motivation: Imprecise Vulnerability Definition

We demonstrate that a natural-language vulnerability definition—used by all contempo-
rary vulnerability databases—Iacks the ability to define a vulnerable host and the vulnera-
bility threat. Consider the natural language description from the ICAT database [Th]:

GuestBook vulner ability (CAN-1999-1053[MIa]). The guestbook.pl is a CGI script that
enables visitors to sign an online guest book. A security hole, when guestbook.pl is run on
Apache 1.3.9 and possibly other versions, enables users to insert, instead of their names,
shell commands—called Server-Side Includes (SSI). Consequently, attackers can execute
arbitrary commands on the host. However, such commands will be executed only if the
Apache web server enables SSI, and guestbook.pl is configured to accept HTML tags.

This description leads to three possible definitions of a vulnerable host. A first definition
could be: (i) the Apache web server is running, (ii) the Apache web server is configured
to enable SSI, (iii) at least one user is using the guestbook.pl script, and (iv) HTML tags
are enabled in that guestbook.pl script. A second, broader definition can ignore the third
and the fourth conditions. After all, since any user at any time can install the guestbook.pl
script, a host can be viewed as vulnerable even if the script is not currently installed. Lastly,
one might claim that the GuestBook vulnerability represents a family of vulnerabilities
which can be described by a third definition broader than the first and narrower than the
second—conditions (i), (ii), and (iii’): there exists a script accessible by Apache that does
not sanitize SSI directives in its input.

Natural language description is not only ambiguous with respect to the presence of the
vulnerability, but also imprecise with respect to the vulnerability threat. First, the com-
mands the attacker inserts are executed under the privileges of the web server account.
If Apache is running with ’root’ privileges, the threat is higher than if it is running with
'nobody’ privileges. Second, the threat depends on the conditions that define the presence
of the vulnerability. GuestBook poses an immediate threat according to the first and third
definitions above, but only a potential threat according to the second definition.

The GuestBook description lacks two other important properties a vulnerability definition
must possess. First, a definition must facilitate accurate audit. We cannot use a vague
phrase like ’possible other versions’ to implement an accurate audit procedure. Second, to
facilitate rapid repair, the definition must include simple and accurate repair options.

4 Vulnerability Semantics

A system administrator considers a vulnerability in the context of a system; an adminis-
trator may choose not to repair the GuestBook vulnerability, because the vulnerable host
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is behind a firewall. The goal of the vulnerability semantics is to specify how various
attributes influence the meaning of a vulnerability, and enable the audit tool and threat
analyzer to fill in the attributes with values. For example, the semantics specifies the vul-
nerability protocol, and the audit tool fills in whether this protocol is blocked by a firewall
for a given host, or, in the GuestBook case, the semantics specifies that the threat depends
on the account that runs the Apache process, while the audit tool determines who the
account owner is (root vs. nobody).

To achieve flexibility in definition, the vulnerability semantics contains four attribute sets.
The identification attributes specify key characteristics of the vulnerability in a human-
readable form. The presence attributes define sufficient and necessary conditions to deter-
mine whether a host is vulnerable. The threat attributes define system resources compro-
mised by the vulnerability and the difficulty of exploiting it. Lastly, the repair attributes
define how to immunize a vulnerable host; this set is beyond the scope of this paper.

4.1 Vulnerability | dentification

This is a set of attributes that provides a human-readable description of the vulnerability;
it is not a complete set of properties that characterize a vulnerable host. The attributes
in this set are (Table 1): (i) Name: provides a vulnerability-unique identifier (e.g., CVE
name [MIa]) (ii) Operating system: provides a list of operating systems that are known
to be vulnerable; (iii) Vulnerable unit: provides a list of the software components that
should be repaired; (iv) Configuration: provides an informal description of configuration

- Name Apache GuestBook (CAN-1999-1053) Telnet cleartext passwords (CAN-1999-0619)
% Operating system | ANY ANY
§ Vulnerable unit Apache version 1.3.9, guestbook.pl. Telnet
§ Configuration Server Sides Include (SSI) on.
= Protocol,Port RFC: 2616/HTTP,80+’any’ RFC: 854/TELNET,23
Py : serviceRunning()
" Condition P> package=Apache ) )
§ Set P content(config-file, Py serviceRunning()
g [Includes|X BitHack])
Verification Hs uynix: (configfile=
Hints ’letc/httpd/conf/httpd.conf’)
Exposed if (version=1.3.9) then <CIA,SA> <CIANPA>
Resources else UNKNOWN
= if (access(guestbook.pl) or
g Expected content(guestbook.pl,* htmi=1'))
= Time then 0; TimeUntil(a user uses TELNET from sniffed
to Exposure
(days) el_se _ _ network)=7.
TimeUntil(guestbook.pl installed)=30
Expected Time
to Attack (days) ! 05

Table 1: Examples of vulnerabilities definitions.
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settings of the vulnerable units, like Apache with SSI turned on; and (v) Protocol/Port:
specifies the name and RFC number of the vulnerability’s application-level protocol (e.g.,
HTTP/2616) and the port number the vulnerability uses. The port is either an integer (e.g.,
21 for FTP), or the word “any” if the protocol standard does not dictate a specific port. In
the latter case, we also specify the default port (e.g., 80 for HTTP).

4.2 Presence Semantics

The vulnerability presence semantics has two components. The first is a set of predicates,
the condition set, that specifies necessary, sufficient, and verifiable conditions that must
hold in order for a host to be vulnerable. The second is a set of verification hints the audit
tool can use to verify these conditions.

4.2.1 Condition Sets.

Out of the hundreds of vulnerabilities we reviewed, 90% of them can be defined using
the predicates in Table 2. We use predicates that assert configurational properties only,
functional properties only, or both.

Since audit tools usually use a functional test—a test that uses the means the attacker
uses [De]—to verify functional predicates, using functional predicates in the vulnerability
presence definition is preferable. When this is not feasible, because a functional test is
either unsafe (e.g., requires buffer overflow exploitation) or inefficient, configurational
predicates can be used. For example, the most efficient way to verify that the SSH service
enables Kerberos authentication is by checking the SSH configuration file (P4 in SSH in
Table 5). To facilitate flexible and efficient audit, we permit two condition sets; in the
WebSitePro vulnerability (Table 5) we specified two (logically equivalent) sets, and the
audit tool can select the set that it believes is more efficient to check.

The condition set relies on the assumption that the site uses an official software release. If

Predicate Evaluated to trueif and only if Type

serviceRunning() the service specified by the Protocol attribute is running. s

access(application, p) application is accessible using the service specified by the Pro- | .S
tocol attribute given the predicate p is true. g

Login(user, password) login with the pair (user,password) succeeded. 2

content(file, regExp) regular expression regexp is found in file.

version() < v version of the network service package is smaller than v. Other | =
binary operators (e.g., =, >, <) are supported. E

package() = name the name of the software package that provides the network ser- ©
vice is name.

hostResponse(command,regExp) | after executing command com the respond contains the regular + 3

H o

expression reg Exp. % .0

netResponse(message, regExp) after sending the message msg the respond contains the regular | & ‘g’
expression reg Exp. 82

Table 2: Predefined basic and compound predicates for presence and threat semantics.
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the site changed the software (e.g., by modifying the version number, service banner, etc.),
we classify such changes as user software that is not widely distributed and is not covered
by the standard IPI audit.

4.2.2 Verification Hints.

To help the audit tool verify the predicates in the condition set, we add verification hints
to the vulnerability presence definition. We define two categories of verification hints:
informational and logical.

An informational hint suggests the location of a resource that the audit tool can use to
verify predicates. For example, H3 ynrx in the GuestBook definition (Table 1) points to
the Apache configuration file required by predicate P3 (an additional hint can be provided
for a Windows machine). A logical hint specifies either a netResponse or a hostResponse
predicate that can be used to verify the predicates in the condition set. For example, to
verify the predicates P; and P, in Perl-In-CGl (Table 5), the audit tool can use H » that
specifies a netResponse predicate that if it holds, P; and P, hold too. Note that H; 5 is
a sufficient hint only: if it fails, P; and P, may still be true. We can specify necessary
and sufficient hints; for example, H2 3 yvrx in the LPRng example (Table 5) specifies a
hostResponse predicate which holds if and only if both Ps and P5 hold. To increase the
audit flexibility, it is possible to specify more than one hint for predicates. For example,
H, s unix (a host dependent hint) and Ho 3 (a host independent hint) can be used to
verify P, and P; in the SSH example (Table 5).

There is no clear border between necessary-and-sufficient hints and predicates in the con-
dition set; the vulnerability definer has the power to "upgrade’ such hints into predicates.
However, our guideline is to leave the condition set, to the extent possible, host indepen-
dent.

4.3 Threat Semantics

The threat semantics has two components: the vulnerability severity and the vulnerability
difficulty. A novel feature of our semantics is the use of the same predicates that define
presence to define the threat attributes.

4.3.1 Vulnerability Severity.

The vulnerability severity is the extent to which an attacker gains unauthorized privileges
on various system resources. Hence, the Exposed Resources attribute specifies privileges
on resources that the attacker gains. In the Telnet example (Table 1), the attacker gains
Confidentiality, Integrity and Availability (CIA) privileges (i.e., reading, modifying, and
blocking access, respectively) to all resources associated with a particular non-privileged
user. In WebSitePro (Table 5), the attacker gains only confidentiality privileges to the
directory names of the web server.
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Reg. Expression Resour ce Definition
[PA | 'NPA" | Denotes resources associated with user accounts. The strings PA” and *NPA’ dis-
"SA’" | UserName] tinguish between privileged accounts (e.g., root or administrator) and regular user

accounts. "SA’ denotes an account of the owner of the vulnerability network service
(e.g., SA=root if the web server is running with the root privileges). UserName is
used to specify a specific user account (e.g., ’john’ or "guest’).

File Specifies a regular expression for a set of files or directories.

Hostlp(.RFC) Denotes the physical device associated with an IP address Hostlp (e.g., a work-
station, a printer). RFC is optional and specifies the protocol of the compromised
service (e.g., 2616 for HTTP).

root_directoy The root directory associated with the vulnerability network service (e.g., root direc-
tory of a web server).

['user_data’ | Denotes compromised data about users’ files, or directories.

"file_data’ |

"directory_data’]

config_file Denotes the configuration file of a vulnerable network service.

Table 3: Predefined resources.

We used the resources listed in Table 3 to define hundreds of vulnerabilities. Besides fa-
cilitating the customizable threat model, our ’exposed resources’ approach has two other
advantages. First, it enables us to specify resources in a fine-grained manner. For ex-
ample, <CIAjohn> specifies CIA privileges of the account with the name john, while
<ClIA,/home/john/* > specifies CIA privileges to all files under the directory ’/home/john’.
Second, using presence predicates to express conditions on the exposed resources attribute
further increases our definition expressiveness. In the GuestBook example, it is not clear
whether Apache versions other than 1.3.9 are vulnerable too (Section 3). So, we put the
version predicate in the exposed resources attribute rather than in the condition set (Ta-
ble 1). The result is a vulnerability definition that is not limited to a particular version
when it is unknown whether other versions are vulnerable too (as more knowledge be-
comes available, the definition may change).

4.3.2 Attack Difficulty.

Our difficulty definition is based on two observations. First, some vulnerabilities are intrin-
sically more difficult to exploit than others. The GuestBook can be exploited by any user
familiar with a few UNIX commands, whereas exploiting a buffer overflow on an SNMP
daemon (e.g., CAN-2002-0017) requires programming and network expertise. Second,
the vulnerability difficulty is also host dependent. For example, it is very difficult to ex-
ploit a host behind a firewall. We use two attributes to define the intrinsic and host-specific
difficulty.

The Expected Time to Exposure (ETE)—which captures the host-dependent difficulty—is
the time it takes for a host to be vulnerable. In most cases, the ETE is O if all the presence
predicates hold (e.g., LPRng in Table 5). In cases where additional user activity is required
before a host becomes vulnerable, the ETE gets a non-zero value. For example, a user
must install the guestbook.pl script before the GuestBook attack can take place. In such
cases, the attribute value is ‘timeUntil(user-activity-description)=default’ (Table 1). The
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IP1 database contains the default value for the timeUntil predicate, but the administrator
can customize the value according to her familiarity with her system.

The Expected Time to Attack (ETA)—which captures the intrinsic vulnerability difficulty—
is the expected time until an attacker gains unauthorized privileges, given that the host is
vulnerable (i.e., no more user activity is required for the host to become vulnerable). In
the case of LPRng (Table 5), the ETA is the time it takes to develop code that exploits the
buffer overflow. For password sniffing (Telnet in Table 1), it is the time it takes to login
after a user/password pair is known, which is essentially zero. For GuestBook (Table 1),
it is the time until the guest book owner will upload the guest book and the attacker code
will be executed (estimated as a week). We give examples of assigning the ETA value to
the vulnerabilities we found in Section 6.1.

The vulnerability definer assigns both the ETA and ETE values (e.g., 1, 7 days). These
values can be conservative, and can be refined from measures of exploit activity on the
Internet (e.g., [BAMFOL1]). However, it is important to be consistent, and to assign similar
values to vulnerabilities with similar difficulties.

4.4 Repair Semantics

The repair semantics is beyond the scope of this paper. However, since the presence se-
mantics defines a set of necessary and sufficient conditions a vulnerable host must possess,
to repair the host is to nullify at least one of the conditions. For example, software upgrade
usually changes the software version number, so it nullifies the version predicate. This
observation makes it easier to present to the system administrator the repair options, as we
illustrate in Section 6.2.

5 Threat Analysis

In the previous section we presented the threat semantics for defining the vulnerability
threat. Here, we discuss how the threat analyzer uses the semantics to estimate the vulner-
ability threat according to the site security priorities.

5.1 Ranking Severity

We assign to every resource in the system (e.g., file, host, printer) an *exposure cost’ that
represents the damage to the organization if the resource is compromised (e.g., the cost
for the company if its front web page is hacked). We assume that the audit tool reveals
the exposed resources of each vulnerability, so we can map each exposed resource to its
cost. We define the total severity of a vulnerability as the total cost of the resources the
vulnerability exposes. More formally, the total severity of vulnerability v, T'S ,,, is defined
as:

TS,= Y  EC(h,<P,R>)

h vulnerable to v
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where h is a system host (e.g., server, printer), <P, R> is a privileges-resource pair (Sec-
tion 4.3.1) the attacker gains after exploiting v on h, and EC is the site Exposure-Cost
function which maps the exposed resource < P, R> on the host & to its exposure cost. The
following properties make 7'S., a good candidate for measuring severity:

1. The EC map counts for both the type of the vulnerable host and the resources the
vulnerability exposes. This enables threat definition that is relative to both the vul-
nerability characteristics and the type of the vulnerable host. For example, EC can
assign a higher cost to resources on an AFS server than to resources on a user work-
station, so the threat of a given vulnerability is higher on the AFS server.

2. Usually, an administrator repairs a vulnerability by applying a patch to all vulnerable
hosts. Since T'S,, sums the costs over all hosts, it concisely shows to the administra-
tor the “security benefit’ from his actions.

3. T'S, ensures that a resource is protected only if it is not exposed from any host.
If v exposes the same resource from two different hosts, a situation that occurs in
the presence of a shared file system, T'S., counts the resource twice. One might
claim that this "overestimates’ v’s severity, but it still reflects that removing the
vulnerability necessitates repairing more than one host.

4. TS, facilitates a simple and intuitive comparison between vulnerabilities. If v and
vo are vulnerabilities that expose the same resources on the same hosts, the definition
ensures that 7'S,,, =7'S,,. Furthermore, if v; and v, expose different resources but
still T'S,,,=T'S,,, then even though v, and vy are different, their severity is still
the same (with respect to the EC' chosen). Similarly, because TS, is additive, the
administrator can easily understand that if 7.S,,, =1007'S,,, then v, is 100 times more
severe than vs.

5.2 Building an Exposure Cost Map.

We build the EC map by (i) qualitatively ranking sets of hosts according to the site security
priorities, (ii) qualitatively ranking sets of exposed resources according to the site security
priorities, and (iii) combining and quantifying the two rankings in a consistent way.

The IPI has a repository of rankings for hosts and exposed resources; any host ranking can
be combined with any resource ranking. So, the administrator can select the rankings that
come close to her system characteristics, refine them, and quickly build an EC function
according to her security preferences. This process is simple enough to be done from
scratch by the administrator, if desired.

To rank hosts, we create the Hosts partial order which qualitatively ranks sets of hosts
according to their exposure cost as defined by the site security priorities. Such a simple
qualitative ranking—which fits many organizations—is illustrated in Figure 2(a). The
ranking contains three levels, where the organizations’ servers have the highest exposure
cost and the employees’ workstations the lowest.

To rank resources, we create the Exposed Resources (E Rs) partial order which ranks sets
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‘ <CIA, PA> | [ <wcmen > |
[ I
‘ <CIA, NPA> ‘ ‘ <[CII|CI], */private/*>
e
(a) Hosts (b) ERs

Severity Value

Server

Server, s
<[Cll|CI]./*>

<CIA, PA>

Server
, 1
| <CIA,NPA> | 000

erver

s, Management,
<[Cll|CI], */private/*>

<CIA, PA>

Management,
<[Cll|CI], /*>

Management,
<CIA,NPA>

anagement

M Employee,
<[CII|CI], */private/*>

<CIA, PA>

Server Employee, 10
<[1|A],*/public/*> <[Cll|CI], /*>

Management
<[I|A],*/public/*>

Employee,
<CIA,NPA=>

<[I|Al,*/public/*=
(c)HostsErs = (Hostsx ERs).
The administrator ’fixed’ the default partial order

by moving to a higher level <CIANPA> (in bold).

Employee,
<[CIIICI], */private/*>

Figure 2: Building severity cost function.

of exposed resources according to the site security priorities, without considering the re-
source host component. For example, a site that emphasizes confidentiality and integrity
can rank exposed resources using the F Rs from Figure 2(b). At the lowest cost level, the
site ranks availability and integrity of files (i.e., vulnerabilities that expose those files) in
public directories. Next, the site ranks vulnerabilities that compromise non-privileged ac-
counts. Since, according to the site policy, compromising user’s private files is equivalent
to compromising the user’s account, the site ranks also into the second level vulnerabil-
ities that expose either confidentiality or integrity (but not availability) of files in private
directories. Last, the site assigns the highest exposure cost to vulnerabilities that expose
privileged accounts, or expose the confidentiality or integrity of files which do not fall
under the previous categories®.

Both Hosts and £ Rs are neither unique nor as detailed as possible. As the system ad-
ministrator becomes more familiar with the process, he can further partition the Hosts or
ERs. For example, he can add more server levels to Hosts, or move a specific exposed
resource, like the availability of the company’s main web page, to a higher level in E Rs.

The next step is to build the product partial order: HostsxERs = HostsERs. HostsERs
preserves the consistency of both Hosts and ERs. But, it may not reflect exposure rank-
ings that depend on a combination of hosts and resources. For example, servers are con-
sidered more valuable than user workstations, and in many cases compromising a non-
privileged account on a server may cause the same damage as compromising a privileged
account on the server. Hence, the administrator can move the exposure level of non-
privileged accounts on servers to a higher level in the HostsE Rs order (Figure 2(c)).

170 keep the example simple, we assume that all users’ files are either under public or private directories.
The example can be easily refined to include files that are not under one of these directories (e.g., by using the
resource */home/*).
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Note that the modified HostsE Rs (Figure 2(c)) ’breaks’ the consistency of the E'Rs par-
tial order. That is, it is no longer true that the cost of any privileged account vulnerability
is higher than any non-privileged account vulnerability. However, the HostsE Rs helps
to maintain the consistency of both Hosts and ERs in the majority of the cases. The
administrator will override the consistency only when security priorities dictate the incon-
sistency. In a realistic case, where Hosts and E'Rs contain many more sets of hosts and
resources, it is difficult to build an EC function which is consistent with both. In such
cases, the importance of the HostsE Rs order and the methodology to consistently build
it from a product of two partial orders increases.

Since every level in both Hosts and E'Rs represents the same exposure cost, it makes
sense to assign to each level in HostsE Rs the same cost too. A consistent way to do so
is to assign higher exposure costs to higher levels in HostsE Rs. For example, we assign
exposure costs with different orders of magnitude to each level in the HostsERs from
Figure 2(c). As we demonstrate in Section 6, such a simple scheme is very effective in
pinpointing vulnerabilities with high severity.

5.2.1 Ranking Difficulties.

To quantify attack difficulty, we use a sum of the ETE and ETA values. Other (e.g., non-
linear [ODK99]) measures are left for future work.

To account for visibility (i.e., firewall), the vulnerabilities could again be partitioned (within
each difficulty ranking) by their visibility ranking. If there are many firewalls, the system
administrator could assign a "trustworthiness”rating to the users of each firewalled subnet,
where this rating is used as a multiplier for the expected time to attack (ETA) measure
defined for the wide area Internet.

6 Pilot Study

We investigate two questions regarding the IPI. First, to what extent the IPI is needed.
Second, to what extent the threat model can express the site security priorities, and whether
such a model is useful as a quantitative security measure. To answer the first question, we
test whether a ‘repeated audit’ approach is capable of identifying security holes in a site
with relatively high security awareness. To answer the second question, we perform a field
test of our threat model.

6.1 Experimental Methodology

We simulated the IPI, over a period of six months, on a site that contains more than 60
dedicated servers, and almost 1500 hosts running a variety of operating systems. The
site administrators monitor mailing lists and web sites for security issues, and apply secu-
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rity patches as quickly as possible. Most importantly, the site security practices empha-
size strong configuration management (SCM)—all software installations are identical and
users cannot install their own software on their workstations. Under SCM settings, the ad-
ministration can focus security efforts on a (relatively) small set of software packages, so
it is relatively easy to identify and patch vulnerabilities. Finding long-lived vulnerabilities
in such a situation points to the necessity of the IPI.

We used Nessus [De] to audit the system over a period of six months. During the first
five months we did not share the audit results with the administrators, but we modeled
the vulnerabilities using our presence semantics and semi-automatically applied our threat
analysis:

1. We analyzed each vulnerability Nessus reported and expressed its presence using
our predicates (Section 4.2). Then, we analyzed the Nessus script that attempts to
identify the vulnerability. If the script did not verify all the predicates necessary for
the vulnerability identification, we classified this Nessus alarm as a false positive and
removed the alarm from the audit results. For each vulnerability, we also specified
the repair options we derived from the predicates (Section 4.4).

2. We assigned exposed resources (Section 4.3.1) to each vulnerability. According
to our difficulty definition, we assigned an ETA value (intrinsic difficulty) to each
vulnerability: 30 days to exploits that require large computational effort (e.g., dictio-
nary attack), 7 days to vulnerabilities that require considerable programming effort
(e.g., buffer overflows without a known exploit), and 1 day to exploits that are easily
found on the web (e.g., buffer overflow with a known exploit) 2.

3. We removed from the audit results all vulnerabilities that cannot be exploited due to
site firewall protection.

4. Together with the system administrators we built the Hosts, the ERs, and the final
HostsERs partial orders; an order that is similar in nature to the one illustrated
in Figure 2(c). Then, we calculated the total threat (7'S,) of each true positive
vulnerability.

The prioritized audit report for the fifth month was presented to the system administrators.
To measure the impact of the audit results on the site security, we performed one additional
audit a month later.

6.2 Results

Per month, Nessus reported about 190 different vulnerabilities on hundreds of different
hosts. After we analyzed the reported vulnerabilities, we conclude that 75% of the alarms
are false positives caused by one of the following reasons:

2We do not claim that these are the difficulties the IPI should use—future work should consider such issues.
But, these values illustrate to the system administrator the differences in the inherent difficulty of the vulnerabil-
ities found.
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Figure 3: Severity of persistent vulnerabilities. Severity calculated by T'S,,.

1. Inaccurate test. A presence predicate is not verified properly. For example, Nessus
identifies the TELNET vulnerability (Table 1) by checking for the existence of the
Telnet banner. However, the existence of a banner does not mean that Telnet login
is possible. Indeed, the site administrators disabled Telnet, but to notify users about
this, left a modified banner in place.

2. Incomplete test. One of the predicates in the condition set is not verified at all. For
example, Nessus cannot verify predicates that require host configuration information
as P, in the SSH vulnerability (Table 5).

3. Firewall protection. Nessus does not filter out vulnerabilities that cannot be ex-
ploited due to firewall protection®.

We believe that the IPI eliminates these types of false positives. First, inaccurate tests are
less likely to happen because the IPI audit stems from a precise semantics (Table 2). Sec-
ond, configuration predicates, that are verified using a host-based audit daemon, eliminate
false positives that require host configuration information. Lastly, we indent to incorporate
firewall information into the threat analyzer.

Figure 3 presents the severe vulnerabilities found during our six month audit. To maintain
the site confidentiality, we do not specify the vulnerability names or the HostsE Rs partial
order. Three observations should be noted:

1. Vulnerabilities of which the system administrator was unaware did pop up, even
though the system used SCM. CVE-2, CVE-3, CVE-7, and CAN-1 appeared in the
fifth month. During the experiment period CVE-6 appeared, was fixed (without the
use of the audit results) and reappeared.

2. High severity vulnerabilities could pass undetected even in a site that used SCM.
Between the first and second months, the administrator removed a severe vulnera-
bility (CVE-1) from almost all hosts. This system repair was done without any audit
information and reduced the severity level of the vulnerabilities in the system by two
orders of magnitude. Nevertheless, two servers and three user workstations were in-
advertently left exposed to CVE-1. During this time, despite CVE-1 existence on

3Nessus can identify these by performing two audits: one inside the firewall and one from outside the firewall.
Clearly, this approach doubles the audit effort.
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Name Service Threat Definition Threat Analysis Repair Comments
2 o | €
Exposed < 2g Non S £ g E
- > 9 o
Resources i S| S| servers | Servers| & S| & |
CVE-2 | ftp <CIASA> 110 7 11 410 \/ - v/ | buffer overflow
CVE-5 | fip <CIAPA> 110 - 3 300 v - +/ | buffer overflow
CVE-4 | oracle <CIASA> 110 1 1 VARV - easy password
tnslsnr
NO-CVE 1] HTTP | <usernameC> | 1 | 0 - 1 1 - - +/ | misconfiguration
[ CVE-1 | ssh <CIAPA> [7]0 2 8 2800 [ +/ [ v/ [ +/ [ bufferoverflow |
[ CVE-3 | fip <CIANPA> [ 710 3 - 400 v | - | /| bufferoverflow |
CAN-1 [ finger <CIAPA> 3|0 1 100 v/ - v/ | easy password
CVE-8 | X11 < CIANPA> 300 5 50 - v | /| easypassword
CVE-7 | HTTP | <Hostlp.2616A>| 30 | 0 4 4 \/ - v/ | buffer overflow
CVE-6 | Idap <Host, A> 300 2 2 \/ - v/ | buffer overflow
CAN-2 | Ipd <Host,A> 300 1 1 - v/ | v/ | easy password

Table 4: The threat analyzer report after the audit of the fifth month.

Vulnerabilities are prioritizes

first by their difficulty and then by their severity.

only a few machines, it imposed a risk that was an order of magnitude higher than
all the other vulnerabilities combined. CVE-1 and other undetected vulnerabilities
(e.g., CAN-2, CVE-5) were fixed only after the administrator got the audit results.

. Our threat analysis accurately captured the security notion of the system adminis-

trator. After the administrator fixed the majority of the vulnerabilities in the audit
report (Table 4), the total severity level dropped one order of magnitude (between
the fifth and the sixth months in Figure 3), a decrease that was confirmed by the sys-
tem administrator. The administrator reviewed the raw Nessus report and assured us
that the vulnerabilities in Table 4 were the most severe ones.

Other state of the art audit tools do not capture this major change in the threat level.
For example, the Nessus report after the fifth month included "high severity” vul-
nerabilities on 45 hosts and the sixth month report included 44. Due to vulnerable
hosts that popped up before the sixth month audit (CVE-4 and CVE-8), the num-
ber of vulnerable hosts remained almost the same. However, the threat level was
reduced considerably because the administrator considered the vulnerabilities that
were fixed (i.e., CVE-1) much more severe than the vulnerabilities that popped up.

Table 4 presents the prioritized audit report (of the fifth month) our threat analyzer pro-
duces from the audit results. A few observations should be noted.

1. The severity of privileged-account vulnerabilities is not always higher than that

of non-privileged-account ones. The severity of CVE-3, a non-privileged-account
vulnerability found on three sensitive servers, is higher than CVE-5, a privileged-
account vulnerability found only on user workstations.

. Not all vulnerabilities with the same exposed resources (e.g., privileged account)

have the same severity. Although CVE-1, CVE-5, and CAN-1 have the same ex-
posed resources, their severity levels are considerably different.
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3. Our audit report includes precise repair options that are derived from the vulnerabil-
ity presence definition.

The above two sets of observations reveal the advantages of the proposed IPI. First, the IPI
is based on the "frequent audit’ approach which is necessary to identify severe vulnerabil-
ities even in a site that uses strong configuration management. Second, because our threat
definition is based on exposed resources and because our threat analysis is sensitive to the
number and type of vulnerable hosts, we can accurately capture the administrator security
preferences. The analysis not only enables us to differentiate between vulnerabilities that
traditionally had the same severity level (e.g., CVE-1 and CVE-5), but it also demonstrates
that sometimes the severity of ’highly severe’ vulnerabilities is actually less severe than
that of ’less severe’ ones.

7 Conclusion

Much remains to be done: automating the audit and repair processes, extending the threat
model to fully support difficulty and visibility site-dependent parameters, and developing
the vulnerability semantics to support all these activities. Building a robust IPI is a sig-
nificant challenge, and we hope that the vision we have outlined here will inspire both
academics and industry professionals to continue this work.
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