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Abstract 

Early software environments have supported a narrow range of 
activities (programming environments) or else been restricted to 

a single “hard-wired” software development process. The Arca- 

dia research project is investigating the construction of software 

environments that are tightly integrated, yet flexible and extensi- 

ble enough to support experimentation with alternative software 

processes and tools. This has led us to view an environment 

as being composed of two distinct., cooperating parts. One is 

the v&ant part, consisting of process programs and the tools 

and objects used and defined by those programs. The other is 

the fixed part, or infmstructure, supporting creation, execution, 

and change to the constituents of the variant part. The ma- 
jor components of the infrastructure are a process programming 

language and interpreter, object management system, and user 

interface management system. Process programming facilitates 

precise definition and automated support of software develop- 

ment and maintenance activities. The object management sys- 

tem provides typing, relationships, persistence, distribution and 

concurrency control capabilities. The user interface management 

system mediates communication between human users and exe- 

cuting processes, providing pleasant and uniform access to all 

facilities of the environment. Research in each of these areas and 

the interaction among them is described. 

1 INTRODUCTION 

The purpose of a software environment is to support users in 

their software development and maintenance activities. Past at- 

tempts to do this have indicated the vast scope and complexity 

of this problem. The Arcadia project is a consortium research 

effort aimed at addressing an unusually broad range of software 

environment issues. In particular, the Arcadia project is con- 
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cerned with simultaneously investigating and developing proto- 

type demonstrations of: 

0 environment architectures for organizing large collections of 

tools and facilitating their interactions with users as well as 
with each other, 

l tools to facilitate the testing and analysis of concurrent and 

sequential software, and 

l frameworks for environment and tool evaluation. 

This paper describes the research rationale and approach being 

taken by Arcadia researchers in investigating environment archi- 

tecture issues. Although details concerning the tool suite and 

the evaluation framework are outside the scope of this paper, 
attempting to assemble these components into a coherent envi- 

ronment will provide a non-trivial test case for experimentally 

evaluating this architecture. 

The remainder of this section presents a high-level overview of 

our proposed environment architecture. The major components 

of the architecture are described. Each of these represents a 

major research subarea being investigated as part of this project. 

The ensuing sections describe the major goals and rationale for 

each of these subareas. Although each subarea is an interesting 

research project in its own right, the most challenging questions 

are often raised by the interactions among subareas. Indeed, it is 

the importance and complexity of these interactions that requires 

research in the subareas be pursued cooperatively. One of the 

novel features of the Arcadia project is that it is synergistically 

exploring many of these issues. 
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1.1 Arcadia Environment Architecture Goals 

Osterweil observed [40] that a software environment must be 

broad in scope, highly flexible and extensible, and very well inte- 

grated. Subsequent research has underscored how essential those 

characteristics are in a software environment, but has also in- 

dicated that there are some fundamental tensions among them. 

Most strikingly, it seems that a well-integrated environment is 

easiest to achieve if the environment is limited in scope and static 

in its content and organization. Conversely, broad and dynamic 

environments are typically loosely coupled and poorly integrated. 

Unfortunately, poorly integrated environments impose excessive 

burdens upon users, and small static environments are quickly 

outgrown. Thus, it is necessary to conduct research on envi- 

ronment flexibility/extensibility techniques, on environment in- 

tegration techniques, and on understanding the tensions between 

these two often-conflicting goals. This is precisely the intent of 

the Arcadia research project, which is developing a prototype 
environment architecture directed toward maximizing both flex- 

ibility/extensibility and integration and toward understanding 
the tradeoffs between them. 

The requirement that an environment be flexible and extensi- 

ble springs from a variety of sources. First, users are different 

and perceive their needs differently. In addition, projects are 

different and have different support requirements. Further, as 

projects progress, their needs change and workers’ perceptions 

of these needs also change. These factors all dictate that envi- 

ronments must be flexible enough to change the nature of their 

support for users as painlessly as possible. In addition, as new 
tools and technologies appear, a software environment must read- 

ily incorporate them. Otherwise the environment will become 

increasingly inefficient and obsolescent. 

Arcadia research on environment flexibility/extensibility fo- 

cuses on supporting the notion of process programming [39,41]. 

The basic idea is that process programs, written in a process 

programming language (PPL), will describe the diverse software 

processes that users want to employ in developing and maintain- 
ing software. The tools available to support software activities 

will be operators or functions in this language and the operands 

wilI be the various objects created by tools or users. Because of 

the complexity of software processes, a PPL will need to have 

at least the power of a general-purpose programming language, 

extended to satisfy the requirements of process programming. 

With this environment model, flexibility is obtained by sup- 

porting alterations to process programs. Extensibility is achieved 

by writing new process programs or by modifying existing pro- 

cess programs to incorporate new tools, subprocesses, types or 
objects. For example, a new tool is incorporated into the en- 

vironment by writing a new process program, or modifying an 

existing process program, that explicitly indicates the way this 

tool will interact with other tools in the environment and the 

types of objects this tool will use and create. 

To assure that the flexibility/extensibility gained through pro- 

cess programming does not come at the expense of integration, 

Arcadia researchers are also investigating integration techniques. 

The requirement for tight integration has a variety of manifesta- 

tions. Users should interact with the environment in a uniform 

way, instead of accommodating themselves to each tool’s idiosyn- 
cratic interface. In addition, environment tools should share in- 

formation among themselves, assuring that users are not pestered 

to supply the same information multiple times nor needlessly 

paying for recomputation of available information. Environment 

components should be shared whenever possible as well, to keep 
the size of the environment down and to prevent performance 

penalties due to excessive paging and thrashing. Integration is- 

sues such as these seem to divide neatly into internal and external 

integration issues. 

In the Arcadia project, internal integration research focuses 

on the investigation of environment object management issues. 

In recent years it has become increasingly clear that environ- 

ments require powerful object management mechanisms. The 

earliest software environments were little more than intelligent 

editors [28], whose object management needs were modest, in 

keeping with their modest functionality and scope. As environ- 

ment power and scope have grown, however, effective object man- 

agement has become a daunting task. Object managers must be 

capable of effectively storing and retrieving software objects for a 

broad spectrum of tools. Software objects may be internal data 

structures, such as parse trees, symbol tables, and abstract syn- 

tax graphs, or external products, such as source code, test plans, 

and designs. Software objects may vary in size from a single byte 

to millions of bytes, may persist in the object store for seconds or 

years, may be manipulated by transactions that are brief or last 

for months, and may be self contained or intricately interrelated 

to other objects. Further, if the environment is to be flexible 

and extensible, the object manager must be capable of reacting 

effectively to a wide variety of changes. 

External integration research in the Arcadia project focuses 

on investigation of user interface management issues. The user’s 

interactions with all of the tools and facilities of an environment 

must be as uniform and comfortable as possible. Because soft- 

ware tools are so varied, environments must support the effective 

use of a gamut of user interface technologies, ranging from sim- 

ple textual interfaces to direct manipulation of complex graphical 

displays. Moreover, independent evolution of both the tool base 

and user interface technology must be accommodated. In addi- 

tion, environments must support multiple users acting in various 

roles. An environment user interface management system must 

also be able to project multiple views of a software object and to 
maintain consistency among these views. 

Several other research projects are exploring approaches for 

providing strong integration mechanisms, external or internal, or 
powerful flexibility and extensibility mechanisms. For the most 

part these issues are being investigated in isolation, and the re- 

sults often appear to be inconsistent with each other. For exam- 

ple, there are object management systems (e.g., most classiclll 

databases) that seem to offer acceptable support for modest, rel- 

atively inflexible environments, but their support is inadequate 

for more complex, flexible, and extensible environments [4]. Sim- 

ilarly, some excellent user interfaces have been developed, but 

often these are closely tailored to fixed tool configurations. En- 

vironments that are more flexible seem to undermine the power 

of such user interfaces. 

Arcadia researchers are simultaneously investigating environ- 

ment integration and environment flexibility/extensibility to 

study the tensions and interactions between them. To experi- 

mentally evaluate our approach, we are developing a prototype 

environment. The architecture of this environment is designed 

to foster research in each of the major subareas and acceler- 

ate understanding of the interplay among them. The Arcadia 

project will yield research insights in each of the major subareas 
as well as an environment prototype that effectively synthesizes 

and demonstrates these research findings. 

1.2 Architecture Overview 

The high-level architecture of the Arcadia prototype environ- 

ment, called Arcadia-l, is depicted in Figure 1. The Process 
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Figure 1: Invariant Components of the Arcadia-l Environment 

Program Interpreter (PPI) component is responsible for carry- 

ing out the instructions of the process programs. This compo- 

nent communicates with users through the User Interface Man- 

agement System (UIMS) and accesses software objects via the 
Object Manager. All three of these components must interact 

with an underlying virtual machine for basic operating system 

support. In our early work we are assuming this machine to be 

the Berkeley UNIX 1 version 4.3 operating system running on a 
network of Sun workstations. 

The architecture is designed so that the capabilities of each 

important subarea can be defined separately, through carefully 

specified interfaces that provide the appropriate functionality 

while hiding implementation details. This separation of concerns, 

captured by the system modularity, facilitates orderly evolution 

based on continuing research activity in each subarea. Clearly 

each key component must still interact with other key architec- 

tural components in supporting the overall architecture. For ex- 

ample, research into using process programming to achieve flex- 

ibility and extensibility is constrained by and coordinated with 

parallel research into using object managers and user interface 

management systems to achieve tight internal and external inte- 

gration. 

Figure 1 depicts the infrastructure, or fixed part, of an environ- 

ment and thus does not show any of the process programs, tools, 

and software objects that populate an environment. It is antici- 

pated that these components will change frequently, so they are 

referred to as the variant part of the architecture. The Arcadia 

architecture encourages change to the variant part, and discour- 

ages change to the fixed part. Of course, there are bound to 

be circumstances under which the fixed part will require change 

as well, but presumably such changes should occur infrequently. 

One of the contributions of the Arcadia project is the recognition 

of the need to separate the fixed and variant parts of an architec- 

ture. We intend to experimentally explore where the boundary 

between these two parts lies and the ramifications of this distinc- 
tion. 

2 SOFTWARE PROCESS PROGRAMS 

2.1 Process Program Requirements and Related 

Work 

Software development and maintenance organizations carry out 

their jobs by following carefully thought out processes. Difficul- 

ties arise because specifying and modifying these processes is a far 

harder task than expected and is therefore not done effectively. 

Modelling software processes is a useful way to approach these 

difficulties, and a number of approaches to modelling software 

processes have been proposed [47,73,20,57,6,44]. 
As the previous discussion on environment flexibility and ex- 

tensibility reveals, environments must not only support user pro- 

cesses but they must also support change to those processes. 

Different users employ different processes. At different times a 

user may wish to change processes, perhaps because a better way 

of doing work suggests itself, because the overall project process 

has changed, or because the user may wish to begin using a new 

tool. In all of these cases, the needed changes seem to be ac- 

curately viewed as changes to the model describing the user’s 

process. In effect we are suggesting that environment flexibility 

and extensibility are to be achieved by carrying out maintenance 

changes to process programs. 

Process programming differs from earlier work in that it hy- 

pothesizes the need for a full programming language. At a min- 

imum, process programming languages need to provide powerful 

typing mechanisms and a variety of powerful flow of control mech- 

anisms such as concurrency, exception handling, and complex 
looping constructs. An important part of our research involves 

determining the necessary characteristics of such languages and 

defining at least one such language and developing an interpreter 

for it. 

A process program indicates how the various software tools 

and objects would be coordinated to support a process. It would 

also be used to indicate to a process program interpreter which 

operators are to be carried out by humans, rather than tools or 

hardware. These operations would appear as subprocesses, which 

would not be further elaborated, but would be bound to human 

execution agents. The Arcadia research project is providing a 

framework for investigation of this premise. 

Operating system control languages have attempted to sup- 

port the specification of software processes, and we believe that 
these are primitive antecedents of process programming. In this 

context, system utilities are process programming language oper- 

ators and the files managed by the operating system’s file system 

are their operands. Command files or scripts are primitive pro- 

cess programs, using the operating system command language as 

a process programming language. These languages, however, do 

not usually enable users to assign types to data objects, specify 

complex control sequences, access operands smaller than files, or 

invoke operators smaller than executable programs and tools. 

The lack of a rich type system in these languages is a serious de- 

ficiency. Key software objects, such as parse trees, requirements 

specifications, testcases, and bug reports, should be viewed as in- 

stances of types. These types seem readily definable using typing 

mechanisms in modern programming languages. Object typing 

is a powerful vehicle for organizing the objects managed in a soft- 

ware project, and for defining and organizing the operators - 

both human and machine executable - to be employed by the 

project.2 Object typing is discussed further in Section 3. 

Another deficiency is the lack of sufficiently powerful flow of 

control capabilities. Many operating system command languages 

incorporate some flow of control operators, but these are usually 

quite primitive, often consisting only of basic looping and alter- 
nation constructs (csh is an exception here). These restrictions 

are unacceptably constraining in trying to program real software 
processes, as some early work has shown. Perhaps the most no- 

‘In either case, the semantics of operations can be formally defined using, 
for example, pre- and post- conditions. 

1 UNIX is a registered trademark of AT&T 
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table of this early work was the diagrammatic software lifecycle 

modelling, such as the “Waterfall Model” [53]. In this work, 

principal software processes were represented by boxes, and the 

only flow of control that was shown was that which could be 

represented using arrows. These models were attacked as being 

incomplete and naive. Their weak flow of control capabilities 

made it impossible, for example, to depict concurrent activities, 

which are essential to any real, large-scale software activity. 

Another deficiency in operating system command languages is 

their inability to show relations such as data flow and process 

hierarchy. Software process models have attempted to represent 

key relations among a variety of types of software objects. For 

these models notations have been developed in which, for ex- 

ample, data objects are differentiated from process objects by 

using different shaped boxes. Different relations are usually in- 

dicated by differently shaped lines and arrowheads and by differ- 

ent colors. Some examples of advanced techniques and notations 

for diagrammatic representations of processes are ETVX boxes 

[48], SADT diagrams [51] and Software Development Graphs 151. 

These notations and representations are limited because there 
are so many valid relations among the software objects in a real 

software project, and different users may at different times wish 

to study various combinations of them. Creating a single dia- 

gram showing all of these relations is hardly a solution, as such a 

diagram is so complicated as to confound all understanding. Cre- 

ating a single internal representation capturing all the relations 

among the objects and subprocesses of a software process, and 

then using tools to draw specific diagrams (“views”) upon re- 

quest, is a more promising approach. The PMDB project moved 

in this direction by proposing a model of the life-cycle process [44] 

in terms of its objects and relationship types and by performing 

a prototyping exercise exploring views based on user roles [43]. 

It did not, however, model explicitly the activities that produce 

such objects and relationships. 

Some earlier software environments can be viewed as provid- 

ing process programming support for limited software develop- 

ment activities. For instance, systems such as PAISLey [76], 

RSL/REVS [3], SARA (211, Data Flow Diagram Designs [70], 

Jackson System Development [12], and USE [71], support the 

creation of certain fixed types of specifications and designs. Code 

development is supported by programming environments, such as 

Inter&p [65], Arcturus [58], and Cedar [64], which incorporate 

tools for editing, parsing, debugging, and documentation. Simi- 

larly, intelligent editors such as the Cornell Program Synthesizer 

[63], Integral-C [52], Gandalf [24], and Mentor [19] effectively in- 

tegrate user activities around a parsed representation of code. 

As long as the user’s activities fall within the domain of these 

environments, they provide strong support. If the user seeks to 

model software products and processes outside this domain, sup- 

port from these environments falters. 

Support for limited, pre-determined processes has taught us a 
great deal about those processes but has also demonstrated how 

quickly users want to stray beyond those boundaries. Products 

and processes must be expected to vary from user to user, from 

location to location, and from time to time. Thus no fixed pre- 

determined process will be adequate for a wide range of software 

activities, or even for a single software activity over a period of 

time. Thus it seems imperative that the full power of a general 

purpose programming language be available to users attempting 

to express the full range of processes to be supported. 

We believe that progress towards understanding what consti- 

tutes adequate products and effective processes can only follow 

from experimentation with alternatives. The best way to facili- 

tate such experimentation seems to be to enable users to describe 

software products and processes in ways that are convenient and 

effective and to support the rapid interpretation of processes in 

terms of software tools and procedures. This seems tantamount 

to creating environments in which the product specifications, pro- 

cess descriptions, and set of operators is specifiable by the user, 

and in which the environment exploits this specification to fash- 

ion its support. 

2.2 Arcadia Process Programming Research 

Arcadia research in this area involves two interrelated activities, 

process research and process programming research. The first 

has as its goal to gain a better understanding of the process of 

developing software, and the second to develop means of repre- 

senting the process in terms of a process programming language 

and its execution support. 

We are starting to understand the requirements for a pro- 

cess programming language. Unfortunately, the specification of 

such a language depends upon the accumulation of experience in 

writing process programs. Thus there is a “research deadlock” 

between the need for a process programming language and the 

need to write process programs. We are breaking this deadlock 

through some prototyping projects. These projects are aimed at 

studying specific language features that seem important to pro- 

cess programming by adding those features to existing general 

purpose languages and then using these enhanced languages to 

write process programs. These process programs then serve as 

vehicles for studying the suitability of the new features. By pro- 

ceeding in this way we avoid the cost of creating a language from 

scratch while enabling the evaluation of the new feature. 

One such prototyping activity involves a language called 
Appl/A [27], and the writing of process programs making use 

of Appl/A. Appl/A is a superset of Ada that enables the defi- 

nition of relations among software objects. Ada was chosen as 

the base language for Appl/A because it seems to be sufficiently 

powerful to support many sorts of capabilities needed in process 

programming and also because it is the language targetted for 

support by the early versions of Arcadia. Thus we hope that 

Arcadia may be useful at an early date in providing support for 

the maintenance of some of its own critical modules. We chose 
to enhance Ada with a relation capability because we believe 

that contemporary languages have failed to provide appropriate 

mechanisms to represent explicitly interconnections among com- 

plex objects, a capability that seems to underlie most realistic 

software processes. 

In Appl/A we are experimenting with a relation management 

capability in an attempt to see just what features that capability 

should offer. Appl/A supports the definition of relations as sets 
of arbitrary tuples of software objects. It enables users to specify 

just how the various components of these tuples should be related 

to each other, and how the consistency of these components can 

be verified and maintained. As such, we believe that AppJ/A 

provides a very basic capability that is needed in any process 

programming language. 

The primary vehicle for studying process programming and for 
the evaluation of process programming language features, such as 

those supported by Appl/A, has been the development of realistic 
process programs. In one such experiment we are using process 

programming to describe process models such as Boehm’s spiral 

model [6,7]. In another experiment, the PMDBf project, we are 

extending the PMDB model to include process descriptions em- 
phasizing selected aspects of the life-cycle process, such as change 

control, configuration management and project management and 
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control. In this project, we will focus on typing issues, mecha- 

nisms in support of change, and architectural interface concerns. 

In the Bopeep (But One Prototype End-to-End Process) 

project we are developing process programs covering key soft- 

ware development and maintenance phases such as requirements 

specification, design, testing, and maintenance. For example, in 

this project we have written a series of requirements specifica- 
tion process programs that treat requirement development as an 

activity aimed at creating a directed graph of requirements ele- 

ments, where each element is viewed as essentially a template. 

The fields of the template specify such types of requirements as 

functionality, robustness, efficiency, and accuracy. It is the job of 

the requirements analyst to specify which elements contain which 

fields and then to put values into the appropriate fields. The re- 

quirements analyst ‘must also indicate any relationships among 

the v&rious requirements elements and between requirements el- 
ements and other software objects. 

For the design phase, we are writing process programs that 

attempt to codify such design methodologies as Object Oriented 

Design [8] and Parnas’ Rational Design Methodology [42]. Not 

surprisingly, We are finding that many of the structures and 

mechanisms used in developing the requirements processes are 

also helpful in developing the design process programs. 

Our experimentation is leading to the creation of a library of 

prototype process programs that are helping us understand these 

processes. It also helps us to evaluate the features incorporated 

into Appl/A as well as understand what other process program- 

ming language features are needed. 

Although Appl/A has proven to be quite useful, our experi- 

ments have indicated that there are important process program- 

ming features that are not supplied by Appl/A, nor indeed by 
any language built atop Ada. One obvious feature is a type hier- 

archy. While different nodes of a requirement element may be of 

different types, it is clear that they must all share some common 

features (e.g., author, date, parent, and children attributes), and 

that they are probably beneficially modelled as being subtypes 

of a common parent type. 

It is also clear that certain types of dynamism are important. 

For example, often it is useful to be able to design a new require- 

ments element “on the fly,” as the need for a somewhat different 

requirements element description becomes apparent. To do this, 

a new element type must be created dynamically, then instanti- 

ated, and then filled with attribute values. In fact, the way in 

which a new type is filled with values might also be expected to 

vary with the type, indicating that subprocesses should also be 

dynamically defined and instantiated. Test planning provides an- 

other example of the need for dynamism. During test planning, 

the test plan is created as a software object. This may entail such 

subactivities as development of test cases, encoding of algorith- 

mic strategies for the systematic execution of the test cases, and 

development of procedures for capturing test results. Much later 

in the development process, after code has been developed, this 

test plan object must be executed. This entails treating the test 

plan object as a process, rather than as an operand. We believe 

that such dynamic capabilities are important to a wide range 

of software processes. The passive/active nature of some soft- 

ware processes points to the desirability of a language in which 
code and data can be freely interchanged. (Lisp is an example 
of a language having this property.) Thus we are investigating 

how this property might be blended with other desirable process 

programming language features. 

It should also be noted that this work is leading to the im- 

pression that a strictly imperative, algorithmic language is not 

likely to be suitable as a process programming language. Al- 

though many aspects of many kinds of software process seem to 

be inherently procedural and algorithmic, there are other soft- 

ware activities that seem best described with a declarative or 

rule based paradigm. The processing that systems such as Make 

[22] and Odin [17] carry out is guided by rules that specify how 

software objects should be kept consistent with each other. In 
our prototyping we have found a number of applications for this 

sort of capability. We have found, for example, that it is far 

easier to specify that certain attributes of certain requirements 

elements must satisfy a certain logical relation to each other and 

that there are certain well-defined activities (such as the invo- 

cation of a tool) that need to be carried out to restore needed 

consistency. These sorts of specifications are far easier to make 

than imbedding active code to restore needed consistency in a 

variety of places distributed throughout the algorithmic part of 

process programs. 

On a more ambitious level, we believe that design creation pro- 

cesses might also be easier to code if it were possible to specify 

certain parts of the process by means of rules. In design cre- 

ation the goal is to create a design specification. Often (e.g., in 

the case of the Software Cost Reduction methodology [42]), it 

is quite possible to specify the goal object - namely a complex 

structure of carefully prescribed design elements - but it is not 

clear how to give complete procedural details on how to construct 

it. In such cases it is often reasonable to create rules that guide 

and constrain activities, such as the selection of good candidates 

for design elaboration, or that can intelligently raise issues about 

apparent inconsistencies among design elements. Thus some as- 

pects of design seem to be rule-based. Other aspects, such as the 

orderly elaboration of details of design elements and their corre- 

lation with each other, are more procedural. This suggests that a 

process programming language might ideally be a language that 

combines procedural and rule-based paradigms. Appl/A takes a 

cautious step in that direction by enabling the specification of 

certain fields of relations - e.g., consistency conditions among 

software objects - as rules. This ability to mix procedural cod- 

ing with rule coding has proven useful. 

The process programs we have built to date have been pieces 

of software of significant size and complexity. The code for these 

processes has spanned dozens of pages, and in many cases, lowest 

level details have still not been specified. Thus these process 

programs still leave a great deal of initiative and creativity to 

humans. We expect that lower levels of detail will be inserted 

over time, thereby making the process programs more complete 

and more highly dependent upon tools. It is interesting to note 
that, although our original intent was to simply produce code, we 

found that it was necessary to develop requirements specifications 

and designs first. In retrospect, this is totally appropriate as 

process programs are complex software, and we have been trained 

to approach the development of complex software by starting 

with the creation of precede artifacts. In particular the design 

has proven to be more useful in understanding the nature of the 

processes we have written than the code itself. 

We expect that firm understandings of the requirements for 

a process programming language and of the key software devel- 

opment and maintenance processes will continue to develop in 
parallel over a period of years. 



3 OBJECT MANAGEMENT 

3.1 Object Management Requirements and Re- 

lated Work 

An environment user’s primary objective is to create and/or 

maintain a software product. No matter what process program 
might be used in creating and maintaining it, a software product 

typically will be a very complex and highly interrelated collection 

of objects. Those objects will be of widely different kinds, rang- 

ing from source code and executable modules to documentation 

and test plans. Each kind of object will have an associated set 

of applicable operations, but operations applicable to one kind 

of object will generally not be appropriate for use with other 

kinds. This suggests that an environment’s infrastructure should 

provide support for managing typed objects and a rich set of 

relationships among them. 

Most environment builders have had to rely on a traditional 

file or database system for managing the objects associated with 

their environment. It is now widely believed, however, that a 

much richer set of capabilities for controlling object creation, ac- 

cess, and organization is essential to a software environment. In 

particular, a suitably powerful object management system will 

enhance the environment’s support for change, integration, soft- 

ware reuse, and cooperative work by multiple developers. 

As Figure 1 indicates, the object management system will be 

a major component of the Arcadia environment infrastructure. 

It will be responsible for managing two distinct categories of ob- 

jects: the conaponents of the software products being produced by 

users of the environment, and the tools and information struc- 

tures that constitute the environment itself. From the process 

programming perspective, the former can be viewed as the (in- 

put and output) data manipulated by a process program while 

the latter are the operators and internal data structures of the 

process program. 

Thus, the object management system will provide the under- 

lying mechanism upon which the data management capabilities 

of a process programming language can be implemented by its 

interpreter. A particular process programming language might 

present its users exactly the same object management capabili- 

ties that the environment’s object management system provides, 

as an assembly language presents its users exactly the same data 

types provided by the underlying machine. It seems likely, how- 

ever, that a process programming language might offer a different 

view of objects than that provided by the environment’s object 

manager. In either case, the properties of the object manage- 

ment system will influence the data management aspects of an 

environment’s process programming languages. 

Work on environments during the last decade has elucidated 

some of the important requirements for an object management 

system. In particular it seems clear that an object management 

system for a software environment should provide support for: 

l types, 

l relationships, 

l persistence, and 

l concurrency and distribution. 

Each requirement poses interesting problems. The capabilities 

sought for each of these areas and the problems we foresee are 

discussed below. 

Type systems. We view a type system as the primary mech- 

anism for describing and maintaining objects. The object man- 

ager should be able to enforce the type system, hiding the inter- 

nal structure of typed objects behind well-defined interfaces and 

strictly controlling the operations that can be performed on those 

objects. If all objects are instances of abstract data types, it is 

easier to share objects or to change their implementations. Thus, 

basing the object management system on a typing system that 

fully supports data abstraction will contribute to environment 
flexibility and software reuse. 

Current approaches to object management in environments fall 

far short of providing full support for typed objects. Typically, 

the components of a product are treated simply as files and tools 

are viewed as operators applicable to the contents of those files. 

Usually in such systems, only a predetermined and limited num- 

ber of different kinds of components (e.g., source file, object file) 

and operations (e.g., compiler, linker) are available. Make and 

to an even greater extent Odin [17] improved on this simple view 

by using file name extensions as a weak form of typing mecha- 

nism for files. It also allowed users to define which tools could 

operate on or produce files of various types. The System Mod- 

eller, developed as part of the Cedar system [32] used the term 

“object” for referring to the files containing product components, 

but did not treat the objects as instances of abstract data types. 

The Common APSE Interface Set (CAB) [lo] defines a system 

model with three kinds of nodes-file, structural, and process- 

but does not treat those nodes as typed objects. Recent revisions 

to the CAIS model [ll] add a rich form of typing that specifically 

addresses the issue of tool evolution and environment interoper- 

ability. Ganddfs SVCE mechanism [25] employs strong type 

checking to determine consistency of syntactic units during ver- 

sion control. While clearly improving on the simple use of files, 

all of these systems provide only partial support for typed ob- 

jects. Meanwhile, work on support for typed objects within the 

traditional database community [61,13,77], while encouraging, is 

still in its primitive stages and far from providing the flexibility 

and power needed for object management in a software environ- 

ment 141. Recent work on rich type systems, particularly in the 

context of object-oriented languages, is also encouraging, but also 

still in its infancy. No consensus has yet emerged on a desirable 

and appropriate set of features for such a type system. 

Thus, the kind of type system needed to describe the objects 
populating a software environment is one of the major object 

management research issues. The type system needs to be flex- 

ible and powerful enough to capture the relevant properties of 

environment objects. Tools, processes, and perhaps even types 

themselves need to be treated as typed objects. Once the capa- 

bilities of the type system are clearly delineated, suitable mecha- 

nisms for realizing those capabilities must be found. While there 

are many intriguing proposals for type mechanisms, it is not clear 

which of these (e.g., single vs. multiple inheritance, specification 

vs. representation inheritance, generics, static vs. dynamic bind- 

ing) form a compatible set providing the capabilities needed for 

environments. 

Relationship systems. Closely related to the ability to pre- 

cisely define and maintain the typed objects in the environment 
is the ability to capture and maintain the relationships among 

those objects. Much environment work in the last ten years has 

focused on mechanisms for describing, reasoning about, or ex- 

ploiting relationships among objects. Examples of relationships 

include those connecting various versions of a module, or those 
between the modules constituting a configuration, or those be- 
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tween a module and all the others that it calls, or those joining 

activities in a work breakdown structure. Examples of tools that 

reason about or exploit relationships among objects include ver- 

sion control systems [67,46], automated system building tools 

[22], call gra.ph analyzers, and work activity management sys- 

tems [23]. Explicitly indicating the relationships among an envi- 

ronment’s tools and information structures should make it easier 

to modify the environment since the effect of changes can be de- 

termined. Moreover, capabilities that rely on relationships, such 

as inference and derivation, will enhance environment integration 

by allowing users to interact with the environment at a high level, 

leaving the intermediate steps to be automatically determined. 

Generic relationship capabilities will also enhance integration by 

providing a uniform set of capabilities across different kinds of 

relationships. 

A weakness in previous work is that there has been no system- 

atic treatment of the numerous and complex relationships that 

exist among environment objects. The CAIS notions of primary 

and secondary relationships (also found in the node structure of 

the ALS [SS]), Odin’s derivation graphs, and the system mod- 

els of Cedar represent important starting points. The concept 

of configuration threads found in DSEE [33] and the relationship 

capabilities for module interconnection languages provided by In- 

tercol 1681, Inscape [45], and PIG [74] are additional examples of 

partial treatments specialized to one class of relationships. 

Thus, determining suitable primitives and constructors for 

defining the relationships needed in environments is another im- 

portant object management research issue. It is not clear whether 

the diverse relationships needed in software development and 

maintenance can be captured in a single model or not. More- 

over, how should the relationship structure and the type system 
interact? Associated with the relationship system is a set of ca- 

pabilities, such as consistency checking, derivation tracking, and 
inferencing. Work needs to be done on identifying these capa- 

bilities and in exploring how generic such capabilities can be. 

For example, can generic consistency checking tools applicable 

to the relationship structure subsume the specialized consistency 

analyses associated with interface control or configuration man- 

agement? Another important concern is when and how such 

capabilities are initiated. Some must be requested by the envi- 

ronment user, either directly or via an executing process. Others 

can be more effective if triggered by resulting events. Thus, sup- 

port for “active” objects or daemons that are triggered by process 

or user-specified events in the environment is needed. 

Persistence. The object manager must be able to preserve the 

components of software products and the constituents of software 

environments for arbitrary periods of time. Moreover, it should 

preserve both the structure and the restrictions imposed by the 

type system on how these objects can be manipulated. Under 
such a scheme, the traditional distinction between primary and 

secondary storage representations of objects is hidden within the 

typed object abstraction. This can free both environment users 

and environment builders from concern about distinctions be- 

tween internal and external representations of objects and con- 

versions between those representations. Thus, the object man- 

ager should support persistence, enabling objects to continue to 

exist beyond the lifetime of any of the tools or process programs 
that manipulate them and preserving the integrity of their types 

and relationships to other objects. 
Current approaches to persistence, based on files or databases, 

require explicit action by the tools. Using a file system, a tool 

must take responsibility for converting the internal form of an 

object to an acceptable (e.g., linear) external form and, when 

needed, converting it back. There are few restrictions to assure 

that the type of an object is not violated (e.g., that its contents 

are not altered using an editor while it resides in the file) or 

changed (e.g., that a stack is not read back as an array). Using 

a database system, the tool must make calls on the database 

to explicitly store and retrieve information. Current databases 

provide support for only a limited number of types, so once again 

the tool must provide the conversion algorithms and there is no 

guarantee of type integrity. There has been some interesting work 

on merging database support into programming languages [2,18, 

381, although implemented prototypes have been very restrictive 

about the supported types [2] or the underlying program model 

[181. 
Thus, providing persistence for arbitrarily complex, typed ob- 

jects is an important research issue. To permit maximum flexi- 

bility in the creation of objects and their relationships, the per- 

sistence of an object should be a property orthogonal to all other 

object properties. It is not clear how persistence should be recog- 

nized in a program (e.g., declared as part of the type or explicitly 

requested with the instantiation of an object) or how invisible 

persistence can be (e.g., no need to explicitly “commit” or “lin- 

earize” objects). Supporting a rich type system and providing 

an invisible line between memory and secondary storage raise 

challenging problems. 

Concurrency and distribution. To allow multiple users to 

work conveniently on the same software development project re- 

quires support for concurrent and distributed object manage- 

ment. Assuming a network of workstations, different members 

of a development project may simultaneously invoke the same 
or different tools to operate on one or more of the same objects. 

Thus, the object manager must be able to mediate concurrent use 
of objects and to maintain consistency of both the objects and 

their relationships. Ideally, the object manager should make the 

distributed nature of the object base and the concurrent access 

to its objects invisible to users and tools in the environment. 

A variety of approaches for handling distribution and concur- 

rency have emerged from programming language [1,29,34] and 

file system and database research [26,69,54]. Unfortunately, no 

single model for dealing with these issues is universally accepted 

within one of these domains, let alone for objects that move be- 

tween them. Moreover, some of the more popular approaches 

are ill-suited for use in an environment object management sys- 

tem. Locking schemes, for example, typically apply to entire 

objects and do not permit concurrent access to disjoint subsets 

of an object’s components, which may be a frequent occurrence in 

an environment. Transaction schemes generally presuppose rel- 
atively short duration transactions, while a software developer’s 

transactions may last for days or weeks. The rollback approach 

to conflict resolution is also of questionable value in an environ- 

ment, where a rollback could discard considerable human effort. 

Thus, determining appropriate constructs for expressing dis- 

tribution and concurrency constraints and the underlying mech- 

anisms needed to support these constraints is yet another major 

object management research issue. It is not clear what stor- 

age management primitives need to be provided to adequately 

capture the distribution and concurrency needs of an environ- 
ment. As with types, relationships, and support for persistence, 

the appropriate descriptive notations must be developed as well. 

Also, where should the desired concurrent/distributed behavior 
be described-in the tools that create the actual instances of 

the objects, in the abstract data types that define the objects, 
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or in the process programs that describe how the objects are to 

co-exist within the environment? 

3.2 Arcadia Object Management Research 

As indicated above, much work has previously been done on 

problems related to object management. That work, however, 

has generally been directed toward solving individual problems, 

leading in some cases to incompatible solutions, and has not yet 

resulted in consensus on the appropriateness of those solutions. 

Moreover, much of the work has been oriented toward domains 

with needs other than those of software development and main- 

tenance. 

The approach to developing an object management system 

that is being taken in the Arcadia project is therefore one of 

synthesis and extension. In particular, we are initially looking to 

programming language technology for guidance in the design of a 

type system and the expression of distribution and concurrency 

constraints and initially looking to database technology for guid- 

ance in the design of mechanisms for persistence, relationships, 

and distribution. 

It is clear that some new solutions are required to satisfy the 

special needs of software environments. To sharpen our under- 

standing of those needs, in addition to examining process pro- 

grams for a wide variety of activities, we are also examining a 

wide variety of tools that would make use of the object man- 

agement system, and reflecting on our experience building Odin, 

Keystone [16], and Graphite [15], which can be viewed as primi- 

tive object management systems. We are also developing formal 

models for describing and evaluating the various capabilities in- 

tended for inclusion into the object management system. Finally, 

we are building a number of prototypes that allow us to gain di- 

rect experience with proposed capabilities. 

Our conceptual view of the object management system is that 

it consists of three basic levels. At the top level are descriptive 

capabilities for specifying the types of objects, the relationships 
among objects, and the persistence characteristics of objects. At 

the middle level are capabilities for managing actual object in- 

stances and relationships, such as those to guarantee type con- 

sistency and to automatically trigger inferencing over relation- 

ships. The bottom level provides facilities for such things as 
storage management, concurrency control, and transaction man- 

agement. We are using the models and prototypes to perform 
experiments within and across these levels. 

Oros [50] is one model that we have developed as part of our 

investigation of the typing and relationship issues at the top level. 

It is being used to describe and evaluate the type system that 

we believe is appropriate for object management. Oros has a 

number of innovative characteristics. One is that objects, rela- 

tionships, and operations are all treated as having co-equal im- 

portance, which reflects situations that we have encountered in 

trying to describe actual environment data types. Such equality 

is not found, for example, in the type systems of so-called object- 

oriented languages, where operations are unavoidably subservient 

to objects and relationships are not dealt with at all. Another 

characteristic of Oros is that relationships can be used as inte- 

gral parts of a type definition. In other words, Oros allows the 

definition of types in terms of how their instances are related to 

instances of other types, not just the usual description in terms 

of the operations appropriate to instances of the type. As a 

simple example of the utility of this, consider the definition of a 

type for source-code modules. In a traditional definition, the fact 

that the instances of this type are related to instances of another 
type for target-code modules (thus the use of the terms “source” 

and “target”) is only expressible implicitly. Oros permits this 

implicit aspect of the definition to be made explicit. A third 

characteristic of Oros is that it allows a distinction to be made 

between operations and relationships that are truly definitional 

of a type and those that are merely auxiliary. For example, if 

we view the translation of a source to a target as an operation, 

then that translation is to a great extent a definitional operation 

of the source (and, indeed, target) type. On the other hand, a 

pretty-printer viewed as an operation of the source type might 

be more appropriately considered auxiliary. We have found this 

distinction useful in a number of ways, but especially so in help- 

ing us address the problem of changing types in an environment, 

where a change to an auxiliary operation or relationship can be 

made to have a different impact than a change to a definitional 

operation or relationship. 

Appl/A, which was mentioned in Section 2, and PGraphite [72] 

are two prototypes also at the top level of our conceptual layering 

of the object management system. Appl/A is exercising our ideas 

concerning relationships. It is intended as a vehicle for exploring 

the suitability of various automated constraint-satisfaction and 

inferencing techniques in the domain of process programming. 

Specifically, it provides a general framework for specifying goals 

in terms of “active” relationships over objects and provides mech- 

anisms, such as backward and forward inferencing, for satisfying 

those goals. PGraphite is helping us to explore the interaction 

between typing and persistence, and thus complements the work 

on Appl/A. It concentrates on one kind of object, the directed 

graph, which is an extremely common data structure in environ- 

ments. PGraphite provides a mechanism for the specification of 

types for directed graphs and automates the generation of im- 

plementations for those types in Ada. It also provides a means 

to indicate the persistence of particular objects as an orthogonal 

property of those objects. Finally, PGraphite provides a mech- 

anism for specifying transactions against a persistent store as a 

“hook” for utilizing lower-level concurrency control and transac- 

tion management systems (see below). 
Cactis [30] is a prototype at the middle level of our conceptual 

layering. It is a manager of object instances and relationships 

cognizant of the fact that the values contained in some objects 

and the relationships among those objects may depend upon the 

values in other objects and the relationships among those other 

objects. Cactis emphasizes efficient, automatic updating of val- 

ues and relationships in response to changes to the values and re- 

lationships upon which they depend. One early client of Cactis’s 

services is Appl/A, which uses Cactis to manage relationships. 

In addition to its role as a top-level prototype, PGraphite is 

providing insights at the middle level into the kinds of informa- 

tion about an object’s type that must be available at run time 

to realize a general persistence mechanism. A version of Appl/A 

built upon PGraphite, where PGraphite would manage the per- 

sistence of Appl/A relationships, is planned for the near future. 

Much work has already been done by others on the stor- 

age management, concurrency control, and transaction manage- 

ment capabilities of the bottom level of our conceptual layering 

[55,4,56,13] and we plan to make as much use of those results as 

possible. The problem we face is how to connect to those varied 

and evolving systems in such a way that we can easily experiment 

with the higher-level capabilities. Thus, our primary challenge 

at this level is to develop an appropriate interface mechanism. 

Our prototype of that mechanism is called Mneme [36]. Mneme 

offers a simple and efficient abstraction of low-level objects, sup- 

porting flexibility in three ways: the high-end languages/systems 

that can map down to that abstraction, the low-end managers/ 
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servers that can help implement that abstraction, and the specific 

management policies (such as clustering of objects to optimize 

access) that can be specified by the Mneme user. A version of 

PGraphite is being built on top of Mneme so that we can exper- 

iment with a variety of realizations for PGraphite’s mechanism 

of persistent-store transactions. 

4 USER INTERFACE MANAGEMENT 

4.1 User Interface Management Requirements 

and Related Work 

The third major component of the environment infrastructure 

provides the human user pleasant and efficient access to the func- 

tions supported by both the fixed and variant parts of the en- 

vironment. Broad consensus exists on the qualities that distin- 

guish good user interfaces for software environments. Uniformity 

(or consistency) reduces the difficulty of learning new activities 

and moving between activities. The direct manipulation inter- 

action paradigm, using graphics and pointing devices, increases 

the communication bandwidth between tool and user. Permis- 

sive (or non-preemptive) interfaces allow the user to interleave 

activities in a natural way. 

Uniformity reduces the number of details a human user must 

remember, and increases skill transfer between activities. A uui- 

form interface makes the same set of operations available every- 

where they make sense, and allows the user to specify an oper- 

ation in the same manner wherever it is available. Interpreter- 

based programming environments made significant early progress 

toward uniformity by unifying the command language and pro- 

gramming language of the environment. More recently, editor- 

based programming environments have provided a uniform set of 

commands for manipulating program source code, blurring the 

distinction between editing, compiling, and debugging. Limited 

progress has been made in providing a uniform interface across a 

wider variety of activities. This progress has been made, for the 

most part, by imposing informal standards (like the Macintosh 

user interface guidelines [31]) and providing libraries of reusable 
components (scrollbars, menus, and the like). 

Uniformity becomes both more important and harder to main- 

tain as the scope of an environment grows. A flexible, extensible 

environment will contain tools contributed by a diverse commu- 

nity of developers and users. Moreover, both the toolset and 

interaction techniques can be expected to evolve during the life- 

time of the environment. 

A critical problem, then, is decoupling the human interface 

from tools so that each may evolve independently. Providing a 

set of reusable components is helpful, but may not be enough 

by itself. The SunView facilities [62], for instance, encourage 

similar visual appearance across tools, but they are not much 

help in establishing consistent interpretations of mouse and key- 

board actions within windows managed by tools. The X Toolkit 

translation manager[35] goes further, allowing input translation 

to be decoupled from individual components by providing a uni- 

form input translation scheme for new “widgets” as well as for 

those supplied with the basic library. These graphical toolkits 

can effectively encapsulate application-independent interaction, 

but they fall short of decoupling the human interface from the 
functionality within particular application domains. 

The interface between interaction and tool functionality (in the 
application domain) is the most troublesome interface in modu- 

larizing interactive graphics programs. Because graphics toolkits 
deal entirely with the graphical domain, they do not help clean 

up this interface. The problem of the interface between inter- 

action and application domain functionality becomes apparent 

when one notes that other tools, as well as human users, may 

use a tool component. As many have noted, a good human- 

tool interface is generally not a good tool-tool interface. It is as 

difficult for a tool to make use of the text manipulation facili- 

ties of a screen-oriented editor or the calculation capabilities of a 

spreadsheet as it would be for the human user to directly access 

a library of text and formula manipulation procedures. An all- 

purpose interface, like UNIX character streams, is unlikely to be 

satisfactory in either role. In current UNIX-based systems, the 

set of tool-usable tools is quite disjoint from the set of interactive 
tools. 

Direct manipulation, or more precisely the illusion of directly 

manipulating a set of objects, requires a rich visual represen- 

tation of state. This visual representation unburdens the users’ 

short-term memory, replacing recall tasks with easier recognition 

tasks. (Menus serve a similar purpose with respect to remember- 

ing commands.) Objects are referred to with a pointing device 

and through implicit pointing (e.g., cursor position.) Changes 

in the representation provide immediate confirmation of user ac- 

tions. The basic principles of direct manipulation are applicable 

to character displays, but modern bitmapped workstations are 

capable of richer visual representations of state. Pioneering work 

in the application of graphics to programming and software en- 

gineering include the Incense debugging system [37], the Balsa 

algorithm animation system [9], and the Pecan programming en- 

vironment [49]. 

Permissiveness is an essential aspect of direct manipulation, 

too seldom achieved in current systems. A permissive interface 

allows the user to choose the next action, arbitrarily interleav- 

ing interactions with each object depicted on the screen. The 

converse of permissiveness is preemption. A preemptive interface 

imposes an order on user actions. The prompt/input paradigm 
of gathering input is a classic example of preemption. Window 

systems are primarily a means of limiting preemption. Windows 
grafted onto a conventional system in the form of multiple virtual 

terminals provide a minimal degree of permissiveness, sufficient 

for the user to temporarily escape from the control of a single 

application. The multiple views of Pecan [49] and the Pi debug- 

ger [14] hint at the richer interaction possible when each tool may 

coordinate several threads of control. 

4.2 Arcadia User Interface Management Research 

User interface management is an active area of research, outside 

the context of software environments research as well as within 

it. In the Arcadia project, the Chiron system [75] is being de- 

veloped as a prototype UIMS component to demonstrate our 

research approach. Chiron adapts and extends some key ideas 

from current UIMS research to address the particular demands 

of flexible, extensible software environments. 
This subsection discusses our approaches to separating appli- 

cation functionality from interaction facilities, managing the dis- 

play, and establishing a uniform interface to all the functions 

supported by an environment. 

Separating functionality and interaction. Several current 

approaches to direct manipulation interfaces carefully separate 
the application domain (or model) from the presentation domain 

(or view). This separation is especially appropriate in software 

environments, since few software objects are inherently graphi- 

cal. Even in the case of diagrams (e.g., structure charts, data 

flow diagrams, SADT diagrams), the meaning of the diagram 

can be distinguished from its representations in terms of boxes, 



lines, and text. In the Arcadia-l prototype environment, tool 

components that manipulate model objects can be largely freed 

of concern with view objects. The Chiron system is used to 

build encapsulated tool components that maintain consistency 

between objects in the model and view domains, so that view 

objects accurately reflect the state of model objects and model 

objects properly respond to direct manipulation of view objects. 

In “editor” environments supporting a narrow set of objects 

and functions, a central tool component typically maps the ap- 

plication data structure (usually a parse tree) to a visual rep- 

resentation. Separation of concerns between application domain 
and presentation domain is achieved, but at the cost of requiring 

all environment facilities to operate on a single shared data struc- 

ture rather than a variety of data structures suited to different 

applicaiions. Environments of wide scope require a more flexible 

scheme. 

In the Arcadia-l prototype environment, each abstract data 

type in an application domain may have an associated artist for 

maintaining a corresponding view object. An artist encapsulates 

decisions about how each particular data type is depicted; there 

is no requirement for all tools to share a single data type or data 

model, beyond the requirement that objects be cleanly encapsu- 

lated as abstract data types. 

Artists for data structures were introduced by Myers [37] in 

the Incense symbolic debugging system. Loops [59,60] binds the 

equivalent of artists to objects using a specialized form of inher- 

itance called annotation. Chiron adopts a more formal version 

of annotation for binding artists to abstract data types. An an- 

notation on an abstract data type may add new operations, add 

local state ( instance uardables, in the nomenclature of object- 

oriented programming), and extend existing operations. New 

operations and extensions to existing operations may modify only 

new state.3 An artist adds new state to keep track of the depic- 

tion of an object, and extends existing operations to update the 

depiction when the object is modified (Figure 2). 

The essential characteristic of annotation as a mechanism for 

binding artists to abstract data types is that neither the seman- 

tics nor the syntax (signatures of operations) of an object are 

changed. A tool component need not be modified just because 

the object it is manipulating is depicted on the screen; the inter- 

face to tools is not corrupted by the interface to human users. 

Managing the display. The view objects created by artists 

could be actual bitmaps, but it is generally better to interpose 

an intermediate level of representation between application ob- 

jects and their concrete depiction on the screen. Chiron provides 

a diagram-oriented 2iD hierarchical structure for describing dis- 

plays, including nested and overlapping windows. Artists manip- 

ulate this abstract depiction. A separate rendering agent maps it 

into actual bitmap images (Figure 3). 

Operating on the abstract depiction has several advantages 

over purely procedural abstractions for operating on bitmaps. 

An artist may modify a display by making small changes to the 

abstract depiction, without concern for the extent of changes to 

the bitmap image (e.g., if moving a circle causes a previously 

obscured rectangle to become visible). More importantly, an ab- 

stract depiction can be used as a basis for input correlation, re- 

lating an input action (e.g., mouse click) with a particular appli- 

cation object. Whereas window systems typically provide input 

3Most current implementations of annotation-like mechanisms do not en- 
force this restriction, but it is essential for reasoning about annotated ab- 
stract data types. The property we desire is that proofs involving a type T 

remain valid when an annotation T’ is substituted for T. 

Artist 

Figure 2: An artist is logically “wrapped around” an abstract 

data type. 

correlation only down to the level of individual windows, Chiron 

provides correlation to the level of individual polygons, lines, and 

so forth. 

Input model. Approaches to processing user input can be 

classified according to whether input routines appear as subrou- 

tines to the application (called the prompting or internal con- 

trol model), or the application appears as a subroutine(s) to the 
input processor (&patching or external control model), or the 

input routines and application are logically concurrent, cooper- 

ating processes. The prompting model is inferior from the user’s 

point of view, because it is highly preemptive - the user has too 

little control over the program. The dispatch model, on the other 

hand, distorts the natural logic of some applications by forcing 

the programmer to “flatten” control structures. 

Chiron supports a concurrent model of input processing. Each 

object type may be associated with an agent for handling events 

on objects of that type, and these agents may proceed con- 

currently with other processing in tools and the user interface. 

Avoiding preemption by supporting concurrency is especially im- 

portant when interpreting process programs - when a process 

program calls for a human activity, the user still maintains con- 

trol and may freely interleave the new activity with other current 

activities. 

Approaches to uniformity. There is no complete technical 

fix to insure uniformity, if one is unwilling to sacrifice flexibility 

and extensibility in a software environment,. The most that can 

be done by the user interface component is to promote uniformity 

by a variety of means. 

Centralized interpretation of low-level input can be used to 

achieve a basic level of uniformity. For instance, if the lexeme 

select is bound to a single click of the leftmost mouse button, 

then the application will receive the event select, rather than a 
raw key click, when the button is pressed. Binding of lexemes 

to raw events should always be under control of the user, rather 
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Figure 3: Artists manipulate an abstract description of the display, and a rendering agent maps the abstract depiction to bitmap images. 

than the tool builder. Techniques adequate for administering 

this level of interpretation are well known (e.g., the TIP tables 

of Cedar). 

Central administration can also guarantee consistent interpre- 

tation of a small set of “global” commands, for instance, termi- 

nating a tool. Anyone who has attempted to kill an unfamiliar 

program in the UNIX system with keyboard incantations will 

appreciate the importance of such guarantees. 

Reusable components are a complementary approach to pro- 

moting uniformity. Application-independent components, such 

as scrollbars, are already in common use. In the Arcadia-l pro- 

totype environment, clean encapsulation of interaction facilities 

makes it feasible to provide reusable components for data ab- 

stractions in a particular application domain (e.g., Petri nets), 

as well. Since artists in an Arcadia environment are associated 

with abstract data types, the path of least resistance for tool de- 

velopers is to reuse an artist for all interactive tools dealing with 

a particular data abstraction. 

5 CONCLUSION 

The Arcadia consortium has been formed to explore a number 

of issues in software environments. We are attempting to make 

major strides in the development of fundamental technologies, 

develop prototypes, conduct careful empirical studies, and move 

the technology to industrial practice. 

This paper presents the approach being pursued by Arcadia re- 

searchers investigating software environment architectures. This 

project is exploring an architecture to support flexibility and ex- 

tensibility as well as tight internal and external integration. We 

feel these issues, while often in conflict with each other, are nec- 

essary ingredients for environments to fulfill their potential of 

assisting users in software development and maintenance activi- 

ties. Our research approach involves simultaneously investigating 

several challenging research areas and synergistically striving to 

develop compatible solutions in each. 

The environment architecture that we have proposed has sep- 

arated the basic components of the infrastructure, or fixed part, 

from the process programs, tools, and objects that constitute the 
variant part. The overriding job of the fIxed part is to facilitate 

tight integration over the flexible/extensible variant part. This 

clear separation of concerns has helped to modularize the prob- 

lem and to identify some important open questions and promising 

research directions. 

Our approach is based on the process programming paradigm, 

where software processes are formally captured by programs, 

which are then executed by the process program interpreter. For- 

mal descriptions of software processes, presented in an expres- 

sive language along with tools for creating and modifying such 

programs, provide a basis for flexibility and extensibility. The 

user interface management system supports external integration 

by providing a uniform method of communication between hu- 

mans and executing software processes. The object management 

system supports internal integration by providing typing, rela- 

tionships, persistence, distribution, and concurrency capabilities 

upon which process programs can be interpreted. We believe 

that among the most important results of the Arcadia effort will 

be understanding the tradeoffs that are possible and desirable 

in achieving effective user interface and software object manage- 

ment support in the face of the high degree of flexibility and 

extensibility afforded by process programming. 

The Arcadia project has just completed its first year of funding, 

and results are still very preliminary. Arcadia researchers realize 

that to be convincing and to gain as much insight as possible, 

realistic prototypes must be subjected to well-designed empirical 

evaluation. The Arcadia researchers are currently implementing 

prototypes of all the major components of the environment in- 

frastructure. Analysis tools are also being developed as part of 

this project and their insertion into the variant part, along with 

suitable process programs, will provide a challenging test for the 

architecture. In addition, an evaluation framework is being de- 

veloped to enable meaningful empirical studies to be undertaken. 

Finally, technology transfer activities are being explored so that 

realistic industrial feedback can be obtained. These combined 

activities should lead to valuable research results, significantly 

advancing our knowledge and capabilities in software environ- 

ments. 
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