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ABSTRACT: 

Today, a plethora of data sets can be harvested from digital learning experiences, learning management systems 
and the entire digital student life, which store learning content and track user behaviours. As a result, educators 
have access to very large and detailed datasets that open the entire student experience to greater scrutiny and 
analysis. Most recently, learning analytics approaches are creating new ways of understanding trends in student 
behaviours  that can be used to improve learning design, strengthen student retention and provide early warning 
signals concerning individual students that can help to personalise the learner's experience in new ways and to 
new levels of detail. This paper summarises lessons learnt from a learning analytics project at Curtin University 
in Western Australia, and proposes a dynamic learning analytics model (DLA) for higher education that goes 
beyond descriptive and predictive analytics reports created by experts. The model focuses on the dynamic 
interaction of stakeholders with their data in analytical processes supported by visualization and machine 
learning approaches such as self-organizing maps, to generate conversations and stimulate shared inquiry and 
solution-seeking. The findings from the study can be applied to help shape how educational institutions design 
learning analytics processes to support innovations in personalized learning and support services and achieve 
both higher rates of, and smarter student retention through more highly targeted recruitment, learning 
opportunities and services. 

 

1.0: AN INTRODUCTION TO DYNAMIC LEARNING ANALYTICS 

While data analytics capabilities have been developing over the last ten to twenty years there has broadly been a 
disconnect between business intelligence and the use of data for supporting learning-based hypotheses. For 
example, while data has been gathering in educational databases, the capability and know-how for using it to 
advance learning and improve the student experience has barely begun and only rarely been investigated 
(Ferguson, 2012). With the build-up of data from learning management systems, customer relationship 
management systems and student-based systems, some universities have begun to investigate how to increase 
student retention, improve student-centred services and to develop more interactive learning experiences. 

The move of universities for example towards a more service-centred ethos often driven by rising costs of 
education and the introduction of student fees, has created an environment in which data has taken on an 
increasing value as a proactive tool for ensuring student recruitment, for lifting the quality of service delivery, 
and finding new ways to make cost savings throughout the sector. In general few of these studies have been 
visible in the literature and while some of this data has invariably been left undisclosed due to competitive 



 

 

advantage, overall the comparatively recent nature of the software tools and the high costs of data analysis, as 
well as the lack of interoperability of datasets and diversity of vendor offerings have left much of this evidence 
untapped and unpublished. 

Recently the central teaching and learning research facilities at Curtin University have undertaken a study that 
brought together large and diverse datasets (n=51,182 with 61 million data elements) to explore the causes and 
conditions of retained and non-retained students. In the course of the study the research team has utilized 
various methodologies and approaches to ensure that the dataset can be used to investigate a number of inter-
related hypotheses to confront a number of ideas and biases about the influences on student retention. A related 
intention was to establish a model so that steps could be taken to improve provision for vulnerable groups of 
students who are most likely to leave university in advance of course completion, some as early as first semester 
of their studies. It is important to point out that this study was not ‘singular hypothesis-driven’ research as is 
often the case. Researchers are often channeled into thinking that all questions can be answered in binary terms 
or in 2 by 2 matrices in an experimental or quasi-experimental framework, or that only the alternative is 
narrative-based qualitatively rich description. Our method assumes that driving factors in real complex systems 
require handling multiple variables and multiple hypotheses with the substantial aide of computational resources 
for machine learning. This paper outlines the foundations of what we have termed ‘dynamic learning analytics.’ 
The method is dynamic is at least two senses. First, it utilizes continual engagement of people who need to 
understand the systems in which they work, and is thus dynamic in the sense that those people have varying and 
changing mental models of the contexts, interactions and impacts taking place in the systems they inhabit. This 
sense covers the dynamic perspectives of students, instructors, curriculum planners, researchers, administrators 
and others. Second, the flows and interactions of data within those systems give rise to constantly changing data, 
so the relationships, inferences, and possible actions related to the data have to be dynamic in order to apply the 
findings from analytics processes. Dealing with ever-changing data requires new ways of working and thinking, 
which we present below. 

We first outline the main areas of consideration of the study, and provide background from a previous study 
undertaken in 2010 (Deloitte, 2010). The paper then introduces the dynamic learning analytics model (DLA) for 
building capacities in universities for improving the student experience, increasing student retention and 
providing an evidence-based structure for educational course design and support built around the personalised 
learner. This view of the student as the unit of analysis is a fundamental shift to a grain size of ‘one’, which is 
possibly unique for a retention study of this size. The model process outlined here will guide the creation of a 
dashboard system for admissions, tutors and student support services. 

2.0: LEARNING ANALYTICS: BACKGROUND  

Learning analytics is emerging as a key area of study in education science. The study area is in its infancy, with 
few scientific studies currently available and few theoretical pieces published to date. Early papers include 
reviews of the field e.g. Siemens and Long (2011); Ferguson, (2012); and Buckingham Shum and Ferguson 
(2012). Other papers such as: Buckingham Shum and colleagues (2012) have considered the broader issues 
around the use of 'big data' systems for supporting learning. The first Association for Computing Machinery 
international conference in learning analytics was held in 2011 (e.g. Duval, 2011; De Liddo et al., 2011) and the 
earliest models of learning analytics begun with a social learning analytics approach developed by Ferguson and 
Buckingham Shum (2012). There is also evidence in the literature of new analytics tools being developed (Ali et 
al., 2012) and there are some early indications of how learning analytics might support personalization of the 
learning experience. Work by one of the authors has described a more general paradigm shift from knowledge 
based learning approaches to more experiential learning experiences that utilise mobile and immersive content 
that can be built around the learner (de Freitas, 2014). Another of the authors has been developing theory for the 
analysis of user behavioral data from digital learning experiences while acquiring analysis experience with big 
data sets (Gibson & Clarke-Midura, 2013). 

Educational systems need to be more receptive and adaptable to new markets of independent learners and 
learners from non-traditional pathways and higher education institutions in particular need to be prepared to 
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alter their infrastructure to provide open access, technology enhanced, personalised learning and support 
services to meet the demands for universal education (Consortium, 2013). This paradigm shift to immersive and 
personalised learning experiences necessitates dramatic changes in the infrastructure of our learning institutions. 
Gibson (2012) suggests a more responsive infrastructure is needed that is resilient to rapid changes and 
consequent employment re-profiling to ensure that higher education has the staff needed to teach in a more 
dynamic and flexible context.  

In addition, while the debates about moving towards research intensivity are critical for competing on an 
international stage, most universities will also need to focus upon ensuring that the quality of their teaching and 
learning services is maintained and improved upon in order to increase student success and satisfaction. In this 
study for example, we estimated a financial impact of over two million dollars saved for every fifty 
undergraduate students retained into year two onward until graduation. On the way to bottom line impacts, data 
analytics can play a significant role in ensuring that current students get the highest quality of teaching and 
learning and the best support and personalised service to ensure that they are retained, achieve to their highest 
capabilities and enter into the workforce ready to compete on the global stage. 

3.0: THE STUDENT RETENTION STUDY  

Our ongoing research into student retention aims to understand why various students drop out, so that 
appropriate support and academic guidance can be provided. It is important to note at the outset that our 
definition of retention is critical to the study. One traditional metric of retention is to simply count the non-
graduating students from one year who do not show up the following year (‘year-on-year retention’). However 
that method is useless for timely intervention with current students who may be thinking of dropping out, since 
their data is not considered until they have left the institution. In addition, some students take a year or two off, 
but then return, but they are counted in the year-to-year method as a drop-out in one year and a new student 
again in a subsequent year. We developed a scope of data that accounts for these kinds of patterns in the lifetime 
student journey with the institution, resulting in a time agnostic retention measure (‘lifetime retention’), having 
come to the conclusion that it is the student journey we are most interested in as we seek to personalise the 
student’s lifetime educational experience.  

An initial study was undertaken in 2010 and a second study has recently concluded in 2013. The main findings 
from both studies support hypotheses on student retention in the wider literature e.g. (Olsen, 2007), confirming 
the importance of academic and curriculum engagement for supporting students in the first year of 
undergraduate study. Curtin University completion rates for undergraduates are in line with the leading 
Australian universities. However, we aim to improve to 90% year-on-year retention within two years, but with 
some untested assumptions, we needed more knowledge about the nebulous points of retention. Many students 
were dropping out in the second year of study and we needed to know more about this; and to develop 
accompanying methods to provide an early warning system for vulnerable students and to assess whether pre-
university factors such as type of schooling could have a direct bearing on completion rates. We also wanted to 
understand about whether online support could be used to support learners more - or used as an indication of 
vulnerability. 

The 2013 study used a mixed methodology approach with quantitative and qualitative methods of data 
collection. Data sources included post hoc data from the university’s student management system, the learning 
management system, post-unit student evaluation surveys, online libraries, external demographic data sets, 
interviews and focus group sessions. Included were online students who had also attended an on-campus unit, 
all part time students and onsite students at the main Bentley campus who were actively enrolled during the 
period 2010 through October 2013. The analytics team also included census data, social economic status indexes 
and geocoded metrics as additional datasets. Some data sets were considered but not used in the study, including 
timetabling and class attendance information as these were too sparse for this study. The data sets were brought 
together into a combined analytics data set called the Student Discovery Model (SDM) where the data was 
linked. Once linked, the data was enhanced with additional intelligence, categorization, rule sets and other 



 

 

statistical techniques. The data preparation phase expanded and clarified the data asset for optimal analysis. The 
SOM model was then developed and tuned. 

While all available data sources were being combined, rendered anonymous, cleaned, and made ready for data 
exploration, an initial series of workshops and focus groups with staff and separately with students led by an 
independent facilitator collected divergent ideas about the perceived causes and conditions of student attrition. 
The focus group sessions were designed to provide hypotheses to be used to structure and query the data in 
iterative sessions with experts, staff and students. The expert team then reviewed over 250 hypotheses generated 
by the divergent workshops and tested 50 that had relevant data against the best-fit SOM model of the data. 
Hypotheses were interactively explored and tested for plausibility in a second series of interactive convergent 
thinking workshops, which showed how interactive data exploration is made possible with data visualization 
supported by both statistical and data mining methods. Attendees at this second round of workshops actively 
manipulated the models in real time to test specific avenues of inquiry within a hypothesis. 

Importantly the SOM models are relational, dynamic and can reflect changes over the period of study (e.g. a 
change in data scope adjusts that frame’s SOM). In addition to providing the data for this study, the final 
analytic dataset of 13 million elements (the Student Discovery Model) now allows substantial follow-on 
research using alternative data mining and pattern discovery methods; research that will be conducted by the 
Curtin Teaching and Learning research group, which was established to build the university’s capacity in 
learning analytics. 

In line with other universities internationally, the issue of student retention is understood as a complex one 
involving support, social and pedagogic as well as performance factors. In what follows, we detail some of the 
findings of the 2013 study.  

4.0: METHODOLOGY, RESULTS AND DISCUSSION 

The Dynamic Learning Analytics (DLA) process utilizes a mixed methods methodology (Creswell, 2003) based 
upon qualitative focused workshops designed to extract hypotheses through engagement with students and staff, 
iterated with quantitative data discovery and statistical modelling by an expert team. In the 2013 retention study, 
the DLA process netted two hundred fifty-six hypotheses distilled from the qualitative data collection phase. 
Following a review of the available data and as a result of its iterative and dynamic continuous reconsideration, 
fifty retention hypotheses were selected as possible retention drivers and indicators. These hypotheses were 
assessed within the Student Discovery Model (SDM). Where required, additional insights were generated 
through traditional statistics analysis and data mining methods of the modelling data set. The iterative DLA 
model process is designed to produce a qualitatively driven and successively refined quantitative study of a very 
large dataset (see: Figure 1). 

Pat Halloran� 4/14/14 8:22 PM
Comment [1]: Need to be careful ... is it a 
model or a process? Maybe try..  
In the 2013 retention study, the process DLA 
followed netted two.. etc  
Pat Halloran� 4/14/14 8:22 PM
Comment [2]: Same as previous comment 
..is DLA a methodology  



 

 

 

Figure 1: Study methodology: Using Qualitative and Quantitative approaches 

The SDM was developed to map attributes of behaviour represented and to assess the different hypotheses and 
factors affecting retention. The initial model contained 1,272 measures of behaviour (modelling attributes). 
Based on the iterative DLA process of expert and stakeholder interactions as well as upon traditional statistical 
considerations such as data reduction of multi-collinear effects, the final model used 273 of these measures 
(training attributes) to place students within the Self Organising Map (SOM). The cluster process identified 
eight mathematically calculated behaviour types. After the SOM algorithm described below had classified the 
students into behaviour groupings, stakeholders were asked to name the most salient features of each group to 
provide a short-hand name would capture that sub-group, such as: the first year experience, ‘at risk’ group, 
international and mainstream students. These clusters were then held constant during hypothesis testing and 
real-time exploration of the factors and attributes associated with retention. 

The Student Discovery Model is the product of applying a semi-supervised Kohonen learning algorithm using 
training attributes that were sourced and optimised for modelling from various Curtin student information 
systems. Supervised machine learning is guided by a target variable that one seeks to explain, hold constant, or 
discover components of (as in multifactorial analysis, but conducted with nonlinear and categorical methods). 
Unsupervised machine learning methods are guided by a metric of organization or fitness, so that all the 
variables are considered against that metric, rather than in relationship to one or a subset of the variables. By 
‘semi-supervised’ we mean a mixed methodology that cycles between supervised and unsupervised machine 
learning methods along with continuous human guidance as the dimensionality of the variable space is reduced, 
particularly as the space is discovered to have multicolinearities and other data issues that impact on prediction, 
modeling and interpretation of the data. Because we manually include or exclude data based on context (e.g. 
their weighting or whether we train on them or not) it is referred to as semi-supervised training. The hypotheses 
generated by actively engaged stakeholders help the expert team make those tuning decisions, which in turn help 
to maximize map coverage and avoid data elements that overtrain the model on particular variables. 

Derived from the divergent thinking workshops (three with students and one with staff), 51 hypotheses were 
produced. These hypothesis were clustered and the top five were then tested against the Student Discovery 
Model and brought back to the stakeholder groups for confirmation and further exploration. 

The dataset was drawn from a variety of sources of student information across the campus. The university 
learning management system (Blackboard) provided data tracking students use of course work and materials 
producing 50 billion elements of data; the student management system (Student One) producing hundred of 
thousands of rows of authoritative student data including registration and academic results data; unit evaluation 
(eVALUate) and CASS data from student surveys; additional data used included socioeconomic data from 



 

 

recent 2011 Australian census, and geo-location data of students for testing hypotheses related to distance to 
campus impacts on study time and as a measure of work-life-school balance. All the data was cleared for use 
and utilized under Curtin research ethics procedures and processes including careful blind anonymisation of 
data, and secure use of datasets in accordance with data protection legislation.  

Privacy and anonymisation are key aspects of any big data project and this project is one of the largest 
undertaken at a higher education institution involving data over a three year period. Student IDs have been 
anonymised in a two-step process to further secure and permanently maintain privacy. We are taking great care 
to ensure that all stakeholders (e.g. students, parents, public, staff, researchers) feel that we have not and will not 
cross the ‘creepy line’ of privacy (Wolverton, 2013) which is increasingly a feature of modern digital society. 
The final modelling dataset file contains over 1270 attributes for over 51,000 students in scope, and is the same 
source used to construct the SDM. Data was also checked to ensure rigor and accuracy, and hypotheses were 
used to build up an understanding of the underlying SDM. Evidence in support of confirming or disconfirming 
hypotheses was gathered in an iterative process designed to confirm or dispel widely held ideas using multiple 
rather than a single data sources. All hypotheses in the DLA model are used as guidance for data methods and 
conclusions are provisional, subject to further confirmation or disconfirmation against the wider retention 
literature as well as our own future studies. 

4.2: CURTIN RETENTION STUDY: SUBJECTS 

To understand the scope of this study, it is important to point out the re-conceptualization of subjects, not as a 
group to be studied, but as a unit-of-one with a time-based personalized journey of touch points with the 
university. The students’ journey starts sometime before we get to know them. Our information about the 
student begins with first contact in marketing, where we may have vast numbers but very little information, and 
progresses through the admissions process, where both the university and the student must make a decision 
whether to engage with each other. During these pre-enrolment phases, our knowledge of each individual 
student begins to grow and helps both parties make a decision about whether to engage in more depth. In future 
research using the DLA method for example, we will turn attention to these earlier phases to study the impact of 
new methods of outreach via processes such as games, challenges and MOOCs and their related learning 
analytics. When enrolment occurs, our information about the student rapidly expands each year until completion 
of a degree program. This phase is the scope of the current study. Eventually, we intend to extend our 
relationship from that point onward with alumni, some of whom may want retraining, advanced degrees, 
assistance with employment networking, or to foster contacts with international business, government and other 
students. This student experience timeline might last from four to forty years or more. The current study 
concentrated on a small window on that journey, but note that even within the three-year timeframe of the study, 
there is a journey, there is changing and deepening knowledge of the student each year, and therefore in a real 
sense, there are different subjects each year that need to be reconciled back to the unit-of-one unit of analysis. 

There are more than 500,000 students in potential scope for this or any historical learning analytics study at 
Curtin. So, while the process of retention is taken to begin earlier than enrolment (e.g. whether the student is 
about to make a good decision and is well matched to the institution’s expectations for students), this study 
focused on enrolled students in a three-year time window and the data available to support this aspect of the 
student’s journey (see: Figure 2). In scope for analysis therefore, were 51,181 students who: 

• Had at least one active enrolment in a unit during 2010-2013; 

• Were enrolled in an undergraduate course; 

• Were based on the Bentley, Perth campus.  
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Figure 2: Curtin Retention study within the journey of the student’s experience. 

 

4.3: CURTIN RETENTION STUDY: RESULTS 

The 2013 study provided a number of results to be documented here, based on the SOM produced by data 
mining, machine learning and statistical decision making guided by the overarching group inquiry into student 
retention issues. For our purposes here and as a model for how data analytics can be used more generally in 
higher education, we have extracted some of the most salient results in this section. The focus here will be on 
retention results, but over time we intend to apply the DLA model to a host of other questions with impacts on 
teaching, learning and higher education policy and leadership.  

The five main hypotheses clusters selected were: previous education, cultural background, online engagement, 
student’s mindset as evidenced in satisfaction surveys, and similarity with the rest of the cohort (Figure 3). After 
testing we found the hypothesis that: 

1) being an international student could affect attrition adversely was found to have an inverse effect 
within the model. International students had a higher retention rate than local students. This finding 
confirms findings in the literature (Olsen, 2007). 

2) greater use of online materials relative to the students immediate cohort in addition to onsite 
attendance decreases attrition was supported by the analysis. 

3) students from private school are better prepared to study and will have higher retention was found to 
have no effect with the model. In fact, retention rates for students from both public and private schools 
were almost identical on the whole. We observed in the SOM four smaller subsets of behaviours where 
there are some differences that may be investigated for specific micro targeting. 

4) students that who are happy with their academic performance are less likely to attrite was supported 
by the study. 

5) The hypothesis that: students closer to the average age of their cohort are more likely to be retained is 
supported by the study. Although interestingly students who take a gap year had slightly higher 
retention rates. 
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Figure 3: Results of selected conclusions of 5 retention hypotheses tested against the Student Discovery Model. 

4.3: CURTIN RETENTION STUDY: DISCUSSION 

In this section we briefly discuss some of the findings and our observations. 

Blended learning: Use of Blackboard resources and library resources was observed to be associated with higher 
rates of graduation. Library resource use is not as widespread as Blackboard use. Comparing on-campus use to 
off-campus use did not indicate there was a meaningful difference in relation to retention. Increased Blackboard 
use at all distances increases rates of graduation. Of concern, the general pattern of observations shows once 
distance to campus exceeds 30 kms graduation rates begin to fall. 

Since the majority of units of study have an LMS site as well as a face-to-face component, and some programs 
that are largely online still require someone to set foot on the Bentley campus at some point in time, the study 
included a great number of online students in the study – as long as they had taken at least one unit on the 
Bentley campus. Comparing the attrition and graduation rates for both external and online study methods shows 
higher rates of attrition and lower rates of graduation for students who spend more time online. We observed 
increased rates of graduation as the regularity of LMS use increased. It should be noted that as a cohort people 
who use the LMS perform better than those who don't. Comparing the student’s age, socioeconomic score and 
LMS usage led to the observation that for non-mature age students, socioeconomic scores have little to no 
impact on LMS usage. Age was found to be more a determinant of online engagement than socioeconomic 
factors. Interestingly, for mature age students socioeconomic factors were observed to have an additional effect. 
The combination of mature age and low socioeconomic score resulted in lower observed LMS usage than 
mature age alone. 

Retention rates: Bear in mind that our definition of retention is ‘lifetime retention’ so comparisons to ‘year-on-
year’ retention rates in other research should be made with caution. In our study and using our lifetime retention 
definition, Commonwealth supported students show higher rates of attrition compared to International Fee 
paying students over the students entire undergraduate study period. Also, Domestic Fee paying students show 
lower rates of attrition compared to Domestic Commonwealth supported students. It should be noted that there 
are only a small number of domestic fee paying students in scope. Numbers are as follows: international (7,916 
students, 82% of commencements have completed a course), domestic HECS/HELP (17,073 students, 52% of 
commencements have completed a course), domestic fee paying (1,786 students, 75% of commencements have 
completed a course). The balance of students in scope were still in the middle of their program. This supports 



 

 

the hypothesis that fee payment engenders higher levels of retention. Part-time students also had the lowest 
levels of retention when measured over the entire study period, clearly then, motivation or impetus to study and 
social interactions are central components of retention. 

Academic performance: As expected, there is a strong relationship between a student’s marks and academic 
performance with their chances of graduation. Students with average marks in the 50's are up to 20% less likely 
to graduate compared to students with average marks in the 60's or 70's. This relationship is strong in all 
periods, but becomes stronger as the students progress further through their course. The relationship is not 
linear, but rather functions with a peak at about 80. We observed that above the peak, attrition starts to increase 
again. This cohort of high performing students that are leaving will require a unique retention response.  

International students: Looking at the graduation and attrition statistics for international students, the hypothesis 
generated by the stakeholders did not match the data observations. International students with behaviour profiles 
distinct from domestic students are more likely to graduate and less likely to attrite compared to international 
students who behave and make decisions more like domestic students. This, we believe is a new finding that 
further explains the difference, but recognizes that some international students who behave like their Australian 
counterparts then begin to share the lower retention rates of Australians.  

Gap year students: Regional gap year was tested as another hypothesis. Investigating gap year in general, the 
indications are that students who commence University ages 19 or 20, as opposed to school leaving age of 18 
are less likely to attrite. However this is skewed by international students who are an intrinsically older cohort. 
Removing international students reduces the performance between gap and non-gap year students, however gap 
year students still show higher rates of graduation. 

Public versus Private school background: We did not observe any impact on lifetime retention based on the 
student’s high school being with Public or Private. Graduation rates in decreasing order are: International 
(82.2%), domestic public school (58.3%), domestic private school (58.0%), domestic other and unknown 
(47.0%) 

While these observations and conclusions are in need of further validation through other replicated and 
comparable studies and against the main literature findings, this study does illustrate how quantitative and 
qualitative approaches can be combined to cross-validate endogenous hypotheses as well as literature and 
theory-based findings. While this study’s approach relied upon hypotheses derived from workshop activities, 
other approaches could start from hypotheses or assumptions derived from the literature. 

5.0: DYNAMIC LEARNING ANALYTICS (DLA) FOR HIGHER EDUCATION 

We have developed a Dynamic Learning Analytics model (DLA) set of principles that can be utilised by other 
higher education institutions to use the dynamic analytics process to improve decision-making and business 
practices.  
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Figure 4. Dynamic Learning Analytics Model Principles 

1) Develop a learning analytics strategy. Having a university-wide analytics strategy will ensure join up of 
datasets across the institution as part of clustering business intelligence, teaching and learning practices and 
support services data to inform development around key objectives and mission (e.g. improving learner 
retention, enriching the student experience, improving the quality of teaching and learning, personalizing 
support). The components of the strategy include people with the right skills, processes and governance to 
manage data analytics projects, a culture of collaboration, an infrastructure that is capable of collecting, 
filtering and storing massive data, and a robust ‘sensor net’ of data that provides windows into student 
behaviors, attributes and key events. 

2) Commit to create an infrastructure for big data integration. Learning analytics capabilities are powerfully 
linked to the institution's information architecture. A precondition for the consideration of continuous data 
processing and analysis by key stakeholders for example, which is at the heart of the DLA model, is access 
to near real-time, always-on, data collection in a fully integrated enterprise system.  

3) Learner-centred service ethos – the unit of one. Key to the rationale of the DLA model is the desire to 
create an adaptive response of the whole university system to enhance the individual’s learning and life 
experience. Adoption of a learner-centred service ethos is seen as necessary to develop more personalised 
systems and more effective and immersive learning experiences that make maximum use of data via 
learning analytics, since at its root, the most important analytics decision concerns how a particular student 
is experiencing the university.  

4) Dynamic look at the students' learning journey (e.g. marketing, admissions, recruitment, enrollment, 
retention, graduation, employment). It is critical to move from a mass of student data produced by (and then 
limited by) group means to a new more 1:1 personalised approach to data collection for each individual 
student. Systems and processes also need to evolve that provide solid links to the student's lifecycle taking 
on board pre-university and post-university trajectories and adapting individually according to each student, 
triggering supportive behaviours in the institution as a response to knowledge gained about the student, 
knowledge that changes over time. For example, from this study, we will next move toward a student 
retention response system that attempts to make use of all available attributes that define the differences 
among students in order to focus upon the subgroups with the highest risk of attrition. 

5) Adaptively model user behaviour. Once individual data is gathered, it needs to be modelled adaptively to 
the user's behaviour and identity. In the evidence-centered design framework (Mislevy, Steinberg, & 
Almond, 2003) the user model sends signals to the task model, which chooses the next best task for the 
user, based on a model of how the user’s performance data provides evidence of expected performance. The 
adaptation of the system is several-fold; it is to choose the next best learning engagement, it is to shape the 
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long term learning model of this user, and it is to subject the current model to learning analytics evaluation 
of the import of one’s actions compared to an expert model of performance.  

6) Linking learning analytics within a wider dynamic context. All data sources that can be tied to an individual 
student are potentially valuable nodes in a network for analysis. For example, learning performance data 
(e.g. grades and online resources utilization patterns), buying patterns on campus, (e.g. economic factors) 
and business drivers (e.g. student intake numbers), socio-economic status, general market datasets (e.g. geo-
demographic profiling), and census data may all be important related drivers of behavioral similarities 
among students. A wider context also means pulling data in from different domains (e.g. student learning 
domain, student management domain, load planning domain, student projected feedback based on surveys). 
With such large, complex and highly varied datasets streaming into collections at a fast rate, it is essential to 
use agile, mixed methodologies for data analysis. A wider contextual frame utilizes all variables as part of 
the individual’s characteristics (e.g. the individual in a set of psychological, social and environmental 
mutually-reinforcing relationships), and then applies iterative qualitative and quantitative methods to mine 
the data for patterns of similarity that subdivide the contexts for greater targeting of student behavior types 
(e.g. within a group of Australian-born students, those with high grades but low satisfaction) 

7) Qualitative driven crowd-sourced hypotheses formation. An earlier study in 2010 found that 'buy-in' from 
key players was hard to garner without a clear stakeholder user group associated with and owning the 
research (Deloitte, 2010). Based on this lesson, the DLA model uses qualitatively driven crowd sourced 
ideation to generate multiple hypotheses, and has been found to be more effective for building stakeholder 
engagement and understanding than pure research-focused or quantitative-focused approaches.  

8) Rigorous view of ethics and adherence to highest standards of ethical procedures. It is essential that all data 
be treated with the highest ethical standards, ensured both through university and national guidelines. The 
crucial elements of ethics and data are: anonymity of data, identity protection and secure data storage as 
required by law. We have developed a process for doubly-removed anonymity by first securing the student 
identity codes in the data preparation files, then having those codes hashed again by the data preparation 
team, so that to recover an identity would take a two-step process with two entities involved in un-
encryption of the data.  

9) External as well as internal review and cross-validation processes. The need to continuously review 
findings against received literature, assumptions and hypotheses is critical and is within the time-honored 
traditions of all sciences. In addition, internal data reconciliation and cross-validating processes that are 
prevalent in machine learning helps ensure that false positives are discovered and removed and their ill-
founded causal conclusions are not adopted into the training attributes for modeling or the resulting policy 
and response-action systems. We recommend external evaluation and different validation approaches be 
used within any study and across studies, and be applied continuously so that as contexts change, so do the 
findings. 

 

6.0: CONCLUSIONS AND FUTURE STUDY 

The 2013 student retention study provides significant outcomes confirming that a set of indicators for the 
likelihood of attrition for certain students can be built to provide a simple dashboard for tutors, admissions and 
student support services, to create adaptive response services for supporting vulnerable students. The iterative 
approach to learning analytics using the DLA principles orchestrated a timely process with a capable set of tools 
for identifying user groups with similar behavioral patterns, modelling user requirements and indicating 
business trends. Based on those groups, patterns and trends, the study provides a foundational framework for 
creating more effective pedagogies, service mapping and ongoing gap analyses for real-time adaptation of the 
university’s curriculum and student life experience. The dynamic approach also shows how data-driven systems 
can be co-designed and constructed more closely in line with user group development.  



 

 

Here we posit the need for a paradigm shift in business intelligence from traditional predictive analysis based on 
means to what we term 'dynamic learning analytics,’ which captures the notion of a substantial change from the 
methodologies typically used. The newer method utilizes crowd ideation, group and individually driven 
hypotheses formation from across a wide spectrum of perception and student engagement in the university, and 
a continuous interactive link between qualitative and quantitative methodologies, bridged by the modeling 
exercise supported by nonlinear and cluster-based data methods. In addition, we posit here that changes in the 
educational landscape favour this more fluid and dynamic analytics approach, because the large, quickly 
amassing and highly varied datasets will continue to drive the need to bring information together in a highly 
variable and rapidly changing environment.  

Working with stakeholders from external businesses, student populations, academic research fields and service 
facilities also can provide broad and sometime contradictory targets and trajectories so focus group mediation 
sessions and cross-cutting interest areas are useful tools for assimilating the direction of analysis across an 
institution and it is critical to develop an analytics strategy to accompany these types of studies. 

Improvement stimulated by the dynamical learning analytics strategy espoused here will continue to provide a 
vital and productive resource for the university, impacting upon increasing student retention rates, and shaping 
the development of appropriate and well-timed adaptive curriculum content, academic guidance and student 
support services. The resulting data resource will provide us with a foundation for investigating a wide range of 
hypotheses developed for a range of different applications in core business support, setting academic and 
institutional priorities and creating new technical and human resource innovations for supporting the student 
experience. The DLA model will continue to be tested within different frames of reference both within SOM 
and within the wider data set.  

We caution again that ethical considerations are at the heart of all big data studies, maintaining the highest level 
of caution around data usage and data bias. Since ethics procedure are constantly in flux, and are not always 
considered at the heart of research studies in the digital media sphere, issues of data ownership and access are 
not always easily reconciled in practice and new research is needed here to ensure that guidelines are developed 
in parallel with institution-wide studies and access to datasets of this scale. While all cross-disciplinary study is 
welcomed in this ongoing project, adherence to core values and ethical standards are needed that match 
priorities regardless of academic disciplinary background. 

Finally, we envisage the evolution of an advanced and adaptive user model that can draw in from other datasets 
dynamically while providing a simple dashboard for support services and academic staff to apply new 
approaches with students individually and in groups. Our vision of learning in the future will draw in pedagogic, 
employability, work-integrated learning and skills-focused components to ensure a better integration of work, 
study and life to ensure that student time is well focused and used within a framework of seamless systems that 
will support and guide students through the best matching set of learning experiences adapted to their strengths, 
interests and aspirations. 
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