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Abstract. Garbled circuits, a classical idea rooted in the work of Andrew Yao, have long been understood as a
cryptographic technique, not a cryptographic goal. Here we cull out a primitive corresponding to this technique.
We call it a garbling scheme. We provide a provable-security treatment for garbling schemes, endowing them
with a versatile syntax and multiple security definitions. The most basic of these, privacy, suffices for two-
party secure function evaluation (SFE) and private function evaluation (PFE). Starting from a PRF, we
provide an efficient garbling scheme achieving privacy and we analyze its concrete security. We next consider
obliviousness and authenticity , properties needed for private and verifiable outsourcing of computation. We
extend our scheme to achieve these ends. We provide highly efficient blockcipher-based instantiations of both
schemes. Our treatment of garbling schemes presages more efficient garbling, more rigorous analyses, and more
modularly designed higher-level protocols.
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1 Introduction

Overview. This paper is about elevating garbled circuits from a cryptographic technique to a crypto-
graphic goal. While circuit garbling has traditionally been viewed as a method for achieving SFE (secure
function evaluation) or some other cryptographic goal, we view it as an end goal in its own right, defining
garbling schemes and formalizing several notions of security for them, these encompassing privacy, au-
thenticity, and obliviousness. This enables more modular use of garbled circuits in higher-level protocols
and grounds follow-on work, including the development of new and highly efficient schemes.

History. The idea of a garbled circuit is due to A. Yao, who described the technique in oral presenta-
tions [21, p. 27] about SFE [60, 61]. The first written account of the method is by Goldreich, Micali, and
Wigderson [22]. The protocol they describe, crediting Yao [60], involves associating two tokens to each
wire of a boolean circuit, these having hidden semantics of 0 and 1. Means are then provided to propagate
tokens across a gate, preserving the hidden semantics. More specifically, there’s a four-row table for each
gate of the circuit, each row employing public-key encryption3 to encrypt a pair of random strings whose
xor is the token for the outgoing wire.

The term garbled circuit4 is from Beaver, Micali, and Rogaway [11], where the method was first based
on a symmetric primitive. Garbled circuits took on a modern, PRF-based instantiation in work by Naor,
Pinkas, and Sumner on privacy-preserving auctions [46].

Yao’s idea has been enormously impactful, engendering numerous applications, implementations, and
refinements.5 Still, there has been little definitional attention paid to garbled circuits themselves. A
2004/2009 paper by Lindell and Pinkas [39, 41] provides the first proof of Yao’s protocol—to the extent
one can say that a particular scheme is Yao’s—but, even there, the authors do not formalize garbled
circuits or what it means to securely create one. Instead, they prove that a particular garbled-circuit-
using protocol, one based on double encryption,6 is a secure two-party SFE. Implemented SFE methods
do not coincide with what’s in Lindell and Pinkas [41], and absence of a good abstraction boundary makes
daunting the task of providing a full proof for what’s actually in optimized SFE implementations.

Scattered throughout the enormous literature dealing with garbled circuits, several papers do work
to abstract out what these provide. A first set of such work begins with Feige, Kilian, and Naor [18]
and is followed by [9, 16, 31, 34]. Each paper aims to modularly use garbled circuits in some intending
application. To that end, they single out, definitionally, precisely what they need, usually arriving at
something close to what we will later call “prv.sim security over Φcirc.” None of the papers pick up
definitions from any other, nor does any prove that any particular construction satisfies the notion given.
The conceptualization of garbling as involving a component that creates garbled circuits and another that
evaluates them is found in all of these works, and in Schneider’s [55, 56]. A second line of definitions begins
with Ishai and Kushilevitz [28] and continues with [2, 4, 6, 7, 29, 30, 53]. These works define various flavors
of randomized encodings. Their authors do see randomized encodings as a general-purpose primitive, and
the definitions elegantly support a variety of theory-centered work. However, they lack the fine-grained
syntax that we shall need to investigate obliviousness, authenticity, and precise measures of efficiency.
Finally, in concurrent work, Kamara and Wei offer definitions to support their idea of garbling structured
circuits [32]. See Appendix A for further discussion of selected related work.

3 It seems to have been almost forgotten that garbled circuits were originally conceived as a technique based on public-key
techniques. Abadi and Feigenbaum (1990), for example, explain that an advantage of their approach is that only one
composite N = pq is needed for the entire circuit, not a different one for each gate [1]. Garbled circuits have long since
lost their association to public-key encryption, let alone a specific public-key technique.

4 Synonyms in the literature include encrypted circuit and scrambled circuit.
5 There are more than 2,700 Google-scholar-known citations to [60, 61].
6 This approach for making the rows of the garbled gate is first mentioned by Goldreich [21].
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Fig. 1. Components of a garbling scheme G = (Gb,En,De,Ev, ev). Function Gb maps f and k to (F, e, d), strings encoding
the garbled function, the encoding function, and the decoding function. Possession of e and x lets one compute the garbled
input X = En(e, x); having F and X lets one calculate the garbled output Y = Ev(F,X); and knowing d and Y lets one
recover the final output y = De(d, Y ), which must equal ev(f, x).

Contributions. We formalize what we call a garbling scheme. The notion is designed to support a
burgeoning and practical area: the myriad applications of garbled circuits. Our definitions and results
enable easy and widespread applications with modular, simplified, and yet more rigorous proofs of security.

Roughly said, a garbling algorithm Gb is a randomized algorithm that transforms a function f :
{0, 1}n → {0, 1}m into a triple of functions (F, e, d)← Gb(f). We require that f = d◦F ◦ e. The encoding
function e turns an initial input x ∈ {0, 1}n into a garbled input X = e(x). Evaluating the garbled
function F on the garbled input X gives a garbled output Y = F (X). The decoding function d turns
the garbled output Y into the final output y = d(Y ), which must coincide with f(x). Informally, one
has probabilistically factored f into d ◦ F ◦ e. Formally, it is problematic to regard Gb as operating on
functions. Thus a garbling scheme G=(Gb,En,De,Ev, ev) is regarded as a five-tuple of algorithms, with
strings d, e, f , and F interpreted as functions under the auspices of functions De, En, ev, and Ev. See
Fig. 1.

Our syntactic framework is representation-independent. Besides circuits, one can garble DFAs, RAMs,
OBDDs, TMs, whatever. See Section A, “Eclectic representations.”

Of course none of this says anything about the desired security notion. We define several. The most
important is privacy : a party acquiring (F,X, d) shouldn’t learn anything impermissible beyond that
which is revealed by knowing just the final output y. To formalize that which it is permissible to reveal,
a side-information function, Φ, parameterizes the definition; an adversary should be able to ascertain
from (F,X, d) nothing beyond Φ(f) and y. By varying Φ one can encompass the customary setting for
SFE (let Φ(f) = f ; circuit f is not concealed) and PFE (private function evaluation) (let Φ(f) be the
number of gates of f ; leak just the circuit’s size). We formalize privacy in multiple ways, giving an
indistinguishability definition, prv.ind, and a simulation-based one, prv.sim. We show that whether or
not they are equivalent depends on the side-information function Φ. For the most important ones the
notions are equivalent (in general, they are not).

We provide a simple garbling scheme, Garble1, for achieving privacy. The scheme is conveniently
described in terms of a dual-key cipher (DKC), a notion we put forward. We define a DKC’s security
and prove privacy for Garble1 under this assumption. Garble1 is described with uncustomary precision,
including a detailed and precise definition of circuits. We show how to make a DKC from a pseudorandom
function (PRF), and how to realize the PRF using a conventional blockcipher, say AES128. In this way
we obtain a provably secure, blockcipher-based garbling scheme where circuit evaluation takes two AES
calls per gate.

We go on to suggest a still more efficient instantiation for the dual-key cipher, one where evaluating
a garbled circuit needs only one AES128 call per gate and all blockcipher invocations use the same key.
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Fig. 2. Relations among security notions. A solid arrow is an implication; an if-labeled arrow, a conditional implication;
a hatched arrow, a separation. Implications and separations are found in Section 4.

This is the fastest approach now known for garbling circuits. We do not prove or implement such a scheme
secure in the current paper; see the discussion below.

Beyond privacy we consider obliviousness: a party acquiring F and X, but not d, shouldn’t learn
anything about f , x, or y. As with privacy, we formalize obliviousness in different but “usually” equivalent
ways. Next we explore authenticity : a party who learns F and X should be unable to produce a garbled
output Y ∗ different from F (X) that is deemed to be valid: d(Y ∗) ̸= ⊥. Our interest in obliviousness and
authenticity was sparked by Gennaro, Gentry, and Parno [20]; the notions arise in the context of private,
verifiable outsourcing of computation.

We prove implications and separation among all security notions we have mentioned, painting a
complete picture of definitions for this space. See Fig. 2.

We define a protocol, Garble2, to simultaneously achieve privacy, obliviousness, and authenticity. The
assumption required is the same as before. The scheme is only a bit more complex than Garble1, the
efficiency, only a little worse.

Discussion. Once viewed as a “theoretical” approach for multiparty computation, a long line of work,
beginning with Fairplay [43], has made clear that circuit garbling is now a practical technique. State-
of-the-art implementations by Huang et al. and Kreuter et al. can handle complex functionalities and
hundreds of millions of gates [26, 27, 37]. We aim to support such work, and applications further afield.
With a protocol’s garbling scheme delineated, implementations can more reasonably offer proofs for the
actual scheme employed, the “messy” optimizations stripped of surrounding interaction and protocol
aims. In general, an approach where the garbling scheme is conceptually separated from its use seems
essential for managing complexity in this domain. As an analog, authenticated encryption took off after
it was reconceptualized as a primitive, not a method formed of encryption schemes and MACs.

Garble1 and Garble2 are close to numerous other protocols (especially [46]) that incarnate Yao’s idea.
Given this, one might assume that, once good definitions are written down, proving security would be
easy, based on prior work [41]. From our experience, this is not the case; the proofs we provide are not
implicit in prior work.

One thing novel about our schemes is that they admit efficient AES-based instantiations whose quan-
titative security may be inferred via the concrete security bounds associated to our theorems. In the
past, SFE schemes supported by proofs would use objects less efficiently realizable in practice [41], or, for
practical realizations, would abandon proven-secure schemes and use hash-based ones, sometimes with
an unproven claim that security is maintained in the random-oracle model. Given the increasing ubiq-
uity of AES hardware support, we believe that optimized, proven, blockcipher-based schemes are a good
direction.

This paper is the first of several we envision. In it we aim to instill fresh, practice-oriented foundations
in an area where, historically, omitted definitions and proofs have been the norm. The current work main-
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tains a circumscribed focus: to investigate the definitions central to the reconceptualization of garbling
schemes as a sui generis cryptographic goal. Upcoming work will explore several directions:

We can construct extremely efficient garbling schemes, like the one-call, fixed-key, AES128-based
scheme we mentioned. This can be done in a way that does not preclude the free-xor and row-
elimination techniques that have proven so effective [26, 35, 50]. Proofs remain complex, even in the
random-permutation model. Implementations are underway, these achieving about 15 nsec/gate.

We can generalize security to the adaptive (=dynamic) setting. This is needed for one-time programs
[23] and secure outsourcing [20]. For one flavor of adaptivity, prv1/obv1/aut1, the input x may depend
on the garbled function F . For finer-grained notions, prv2/obv2/aut2, each bit of x can depend on
previously acquired Xi-values. Transformations turn prv/obv/aut schemes into prv1/obv1/aut1 ones
and these into prv2/obv2/aut2 ones.

Building on the oft-described metaphor of lockboxes and keys (eg, [41, pp. 163–164]), we can formulate
garbling-scheme security using a formal treatment of dual-key enciphering. We choose to do this by
absorbing the functionality of the ideal primitive into the code-based definition. Privacy, obliviousness,
and authenticity become yes/no matters—no probabilities.7

For all of these directions, the framework developed here serves as the needed starting point.
A thesis underlying our definitions is that they work—that most (though not all) applications de-

scribed as using garbled circuits can be built from an arbitrary garbling scheme, instead. To date we have
surveyed 20 papers containing protocols that can be recast to use a generic garbling scheme. See Fig. 3.
In all cases we gain in simplicity and modularity. Applications benefit from the increased efficiency of our
garbling schemes. The improvement is particularly marked in the application to KDM encryption (secu-
rity with respect to key-dependent messages), where use of our abstraction leads to substantial efficiency
gains over the use of the abstractions in previous work [2, 9].

2 Preliminaries

This section provides basic notation, definitions and conventions. A reader might skip this on first reading
and refer back as necessary.

2.1 Notation

We let N be the set of positive integers. A string is a finite sequence of bits and ⊥ is a formal symbol
that is not a string. If A is a finite set then y�A denotes selecting an element of A uniformly at random
and assigning it to y. If A is an algorithm then A(x1, . . . ; r) denotes the output of A on inputs x1, . . .
and coins r, while y ← A(x1, . . .) means we pick r uniformly at random and let y ← A(x1, . . . ; r). We
let [A(x1, . . .)] denote the set of y that have positive probability of being output by A(x1, . . .). We write
Func(a, b) for {f:{0, 1}a → {0, 1}b}. Polynomial time (PT) is always measured in the length of all inputs,
not just the first. (But random coins, when singled out as an argument to an algorithm, are never regarded
as an input.) As usual, a function ε : N → R+ is negligible if for every c > 0 there is a K such that
ε(k) < k−c for all k > K.

2.2 Code-based games

Our definitions and proofs are expressed via code-based games [14] so we recall here the language and
specify the particular conventions we use. A code-based game—see Fig. 5 for an example—consists of an

7 In fact, the only hint of an intended model for Yao’s work on two-party SFE is an idealized one supporting perfect,
deterministic, public-key encryption [61, Section 3.2]. Formal treatments may be possible beyond garbling schemes, to the
applications that routinely use them.
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Protocol Application Needs Over Also needs

Y86 [21] 2-party SFE (semi-honest) prv Φcirc oblivious transfer (OT)

AF90 [1] PFE (semi-honest) prv Φsize OT

FKN94 [18] server-aided SFE (semi-honest) prv Φcirc none

NPS99 [46] privacy-preserving auctions prv Φcirc proxy OT

KO04 [34] 2-party SFE (malicious) prv Φcirc OT, ZK proofs, commitment, trapdoor perm

FAZ05 [19] private credit checking prv Φsize sym encryption

FM06 [44] 2-party SFE (malicious) prv Φcirc OT, commitment

AL07 [8] 2-party SFE (covert) prv Φcirc OT, commitment

LP07 [40] 2-party SFE (malicious) prv Φcirc OT, commitment

GKR08 [23] one-time programs prv2 Φsize none (model provides one-time memory)

GMS08 [24] 2-party SFE (covert) prv Φcirc OT, commitment, PRG, CR hash

BFK+09 [10] private medical diagnostics obv Φcirc OT, sym encryption, homomorphic enc

PSS09 [47] private credit checking prv Φtopo sym encryption

BHHI10 [9] KDM encryption prv Φsize KDM encryption (wrt to linear functions)

GGP10 [20] secure outsourcing aut1 + obv1 Φcirc fully homomorphic encryption (FHE)

HS10 [25] 2-party guaranteed SFE prv Φcirc OT, auth encryption, asym enc, signature

KM10 [33] secure text processing prv Φtopo OT, oblivious PRF

SS10 [53] worry-free encryption prv Φsize asym encryption, signature

A11 [2] KDM encryption prv Φsize KDM encryption (wrt to projections)

KMR11 [31] server-aided SFE (malicious) aut + obv Φcirc coin-tossing protocol, commitment

LP11 [42] 2-party SFE (malicious) prv Φcirc OT, commitment

Fig. 3. Recasting protocols in more generic terms. All of the above protocols appear to be alternatively describable
from a garbling scheme meeting our definitions. All but [20] need the scheme to be projective.

Initialize procedure, procedures that respond to adversary oracle queries, and a Finalize procedure.
All procedures are optional. In an execution of game Gm with an adversary A, the latter is given input 1k

where k is the security parameter, and the security parameter k used in the game is presumed to be the
same. Procedure Initialize, if present, executes first, and its output is input to the adversary, who may
now invoke other procedures. Each time it makes a query, the corresponding game procedure executes,
and what it returns, if anything, is the response to A’s query. The adversary’s output is the input to
Finalize, and the output of the latter, denoted GmA(k), is called the output of the game. Finalize may
be absent in which case it is understood to be the identity function, so that the output of the game is
the output of the adversary. We let “GmA(k)⇒ c” denote the event that this game output takes value c
and let “GmA(k)” be shorthand for “GmA(k)⇒ true.” Boolean flags are assumed initialized to false and
BAD(GmA(k)) is the event that the execution of game Gm with adversary A sets flag bad to true.

2.3 Circuits

While our definitions for garbling schemes are representation-independent, the garbling schemes we specify
assume a circuit-based representation. Here we specify the conventions and definitions that make this
formal.

There are several reasons why it is important to cleanly define circuits (which, for many reasons, are
not just DAGs). First, there are many “boundary cases” where only conventions can decide if something
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Fig. 4. Left: A conventional circuit f = (n,m, q,A,B,G). It has n=2 inputs, m=2 outputs, and q=3 gates. Gates are
numbered 3, 4, 5, according to their outgoing wires. The diagram encodes A(3)=1, B(3)=2, A(4)=1, B(4)=3, A(5)=3, and
B(5)=2. The gate symbols indicate that G1(·, ·) = XOR and G2(·, ·) = G3(·, ·) = AND. Right: A topological circuit f−

corresponding to the circuit on the left.

is or is not a valid circuit.8 The boundary cases matter; we have repeatedly found that degenerate or
under-analyzed circuit types materially impact if a garbling scheme is correct.9 Beyond this, a lack of
agreement on what a circuit is makes even informal discourse problematic.10 Finally, we have found that
it is simply not possible to properly specify a circuit-garbling algorithm or a circuit-evaluation function,
nor to carry out code-based game-playing proofs, without circuits being formalized. As an added payoff,
if one establishes good conventions for circuits, then these same conventions can be used when defining
a garbled circuit and its evaluation function.

Syntax. A (conventional) circuit is a 6-tuple f = (n,m, q,A,B,G). Here n ≥ 2 is the number of inputs,
m ≥ 1 is the number of outputs, and q ≥ 1 is the number of gates. We let r = n + q be the number of
wires. We let Inputs = {1, . . . , n}, Wires = {1, . . . , n+ q}, OutputWires = {n+ q−m+1, . . . , n+ q}, and
Gates = {n + 1, . . . , n + q}. Then A : Gates → Wires\OutputWires is a function to identify each gate’s
first incoming wire and B : Gates → Wires\OutputWires is a function to identify each gate’s second
incoming wire. Finally G : Gates × {0, 1}2 → {0, 1} is a function that determines the functionality of
each gate. We require A(g) < B(g) < g for all g ∈ Gates. See the left side of Fig. 4 for an illustration of
a circuit.

The conventions above embody all of the following. Gates have two inputs, arbitrary functionality,
and arbitrary fan-out. The wires are numbered 1 to n + q. Every non-input wire is the outgoing wire
of some gate. The ith bit of input is presented along wire i. The ith bit of output is collected off wire
n+ q −m+ i. The outgoing wire of each gate serves as the name of that gate. Output wires may not be
input wires and may not be incoming wires to gates. No output wire may be twice used in the output.
Requiring A(g) < B(g) < g ensures that the directed graph corresponding to f is acyclic, and that no
wire twice feeds a gate; the numbering of gates comprise a topological sort.

We will routinely ignore the distinction between a circuit f = (n,m, q,A,B,G) as a 6-tuple and
the encoding of such a 6-tuple as a string; formally, one assumes a fixed and reasonable encoding, one
where |f | is O(r log r) for r = n+ q.

Evaluating a circuit. We define a canonical evaluation function evcirc. It takes a string f and a string
x = x1x2 · · ·xn:

8 For example: Can an input wire be an output wire? Can an output wire be an incoming wire to another gate? Can an
output wire be used twice in forming the output? Can a wire twice feed a gate? Can constants feed a gate? Can gates
compute asymmetric functions like G(x, y) = x ∨ y?

9 For example, the scheme of Naor, Pinkas, and Sumner [46] cannot handle a wire being used twice as an input to another
gate (as when making a NOT gate from a NAND), a restriction that is nowhere explicitly said. The scheme of Beaver,
Micali, and Rogaway [11] was buggy [57] because of a dependency in gate-labels associated to fan-out ≥ 2 gates.

10 For example, is there a single wire emanating from each gate, that one wire connected to all gates it feeds, or is there a
separate wire from the output of a gate to each gate it feeds? (For us, it’ll be the first.) These are very different meanings
of wire.
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01 proc evcirc(f, x)
02 (n,m, q,A,B,G)← f
03 for g ← n+ 1 to n+ q do a← A(g), b← B(g), xg ← Gg(xa, xb)
04 return xn+q−m+1 · · ·xn+q

At line 02 we adopt the convention that any string f can be parsed as a circuit. (If f does not encode
a circuit, we view it as some fixed, default circuit.) This ensures that evcirc is well-defined for all string
inputs f . At line 03, values xa and xb will always be well defined because of A(g) < B(g) < g. Circuit
evaluation takes linear time.

Topological circuits. We say f− is a topological circuit if f− = (n,m, q,A,B) for some circuit
f = (n,m, q,A,B,G). Thus a topological circuit is like a conventional circuit except the functionality
of the gates is unspecified. See the right side of Fig. 4. Let Topo be the function that expunges the
final component of its circuit-valued argument, so f− = Topo(f) is the topological circuit underlying
conventional circuit f .

3 Garbling Schemes and Their Security

We define garbling schemes and security notions for them. See Section 2 should any notation seem non-
obvious.

3.1 Syntax

A garbling scheme is a five-tuple of algorithms G = (Gb,En,De,Ev, ev). The first of these is probabilistic;
the remaining algorithms are deterministic. A string f , the original function, describes the function
ev(f, ·) :{0, 1}n → {0, 1}m that we want to garble.11 The values n = f.n and m = f.m depend on f and
must be easily computable from it. Specifically, fix linear-time algorithms n and m to extract f.n = n(f)
and f.m = m(f).12 On input f and a security parameter k ∈ N, algorithm Gb returns a triple of
strings (F, e, d)← Gb(1k, f). String e describes an encoding function, En(e, ·), that maps an initial input
x ∈ {0, 1}n to a garbled input X = En(e, x).13 String F describes a garbled function, Ev(F, ·), that maps
each garbled input X to a garbled output Y = Ev(F,X). String d describes a decoding function, De(d, ·),
that maps a garbled output Y to a final output y = De(d, Y ).

We levy some simple requirements on garbling schemes. First, |F |, |e|, and |d| may depend only
on k, f.n, f.m, and |f |. Formally, if f.n = f ′.n, f.m = f ′.m, |f | = |f ′|, (F, e, d) ∈ [Gb(1k, f)], and
(F ′, e′, d′) ∈ [Gb(1k, f ′)], then |F | = |F ′|, |e| = |e′|, and |d| = |d′|. This is the length condition. Second, e
and d may depend only on k, f.n, f.m, |f | and the random coins r of Gb. Formally, if f.n = f ′.n,
f.m = f ′.m, |f | = |f ′|, (F, e, d) = Gb(1k, f ; r), and (F ′, e′, d′) = Gb(1k, f ′; r), then e = e′ and d = d′. This
is the nondegeneracy condition. Finally, if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n, and (F, e, d) ∈ [Gb(1k, f)],
then De(d,Ev(F,En(e, x))) = ev(f, x). This is the correctness condition.

We say that a garbling scheme G = (Gb,En,De,Ev, ev) is a circuit-garbling scheme if ev interprets f as
a circuit: formally, ev = evcirc for the canonical circuit-evaluation function that we defined in Section 2.3.

11 By way of example, the string f may encode a circuit that ev(f, ·) can evaluate at input x.
12 For concreteness, one can define n(f) and m(f) to be n and m if f is a tuple (n,m, . . .) and define n(f) = m(f) = 1

otherwise. Of course other encoding conventions are also fine.
13 By way of example, the encoding function e might be a sequence of 2n strings, called tokens, a pair for each bit of x. The

garbled input X might then be a sequence of n strings, or tokens, one for each bit of x.
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proc Garble(f0, f1, x0, x1) Game PrvIndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
if ev(f0, x0) ̸= ev(f1, x1) then return ⊥
(F, e, d)← Gb(1k, fb); X ← En(e, xb)
return (F,X, d)

proc Garble(f, x) Game PrvSimG,Φ,S

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then (F, e, d)← Gb(1k, f); X ← En(e, x)

else y ← ev(f, x); (F,X, d)← S(1k, y, Φ(f))
return (F,X, d)

proc Garble(f0, f1, x0, x1) Game ObvIndG,Φ

if Φ(f0) ̸= Φ(f1) then return ⊥
if {x0, x1} ̸⊆ {0, 1}f0.n then return ⊥
(F, e, d)← Gb(1k, fb); X ← En(e, xb)
return (F,X)

proc Garble(f, x) Game ObvSimG,Φ,S

if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then (F, e, d)← Gb(1k, f); X ← En(e, x)

else (F,X)← S(1k, Φ(f))
return (F,X)

proc Garble(f, x) proc Finalize(Y ) Game AutG
if x ̸∈ {0, 1}f.n then return ⊥ if x ̸∈ {0, 1}f.n then return 0

(F, e, d)← Gb(1k, f); X ← En(e, x) return (De(d, Y ) ̸= ⊥ and Y ̸= Ev(F,X))
return (F,X)

Fig. 5. Games for defining the prv.ind, prv.sim, obv.ind, obv.sim, and aut security of a garbling scheme
G = (Gb,En,De,Ev, ev). Here S is a simulator, Φ is an information function and k is the security parameter input to the
adversary. In the first four games, procedure Initialize() picks a bit b� {0, 1}, and procedure Finalize(b′) returns (b = b′).

3.2 Projective schemes

A common approach in existing garbling schemes is for e to encode a list of tokens, one pair for each
bit in x ∈ {0, 1}n. Encoding function En(e, ·) then uses the bits of x = x1 · · ·xn to select from e =
(X0

1 , X
1
1 , . . . , X

0
n, X

1
n) the subvector X = (Xx1

1 , . . . , Xxn
n ). Formally, we say that garbling scheme G = (Gb,

En,De,Ev, ev) is projective if for all f , x, x′ ∈ {0, 1}f.n, k ∈ N, and i ∈ [1..n], when (F, e, d) ∈ [Gb(1k, f)],
X = En(e, x) and X ′ = En(e, x′), then X = (X1, . . . , Xn) and X ′ = (X ′

1, . . . , X
′
n) are n vectors, |Xi| =

|X ′
i|, and Xi = X ′

i if x and x′ have the same ith bit.

Our definitions of security do not require schemes be projective. However, this property is needed
for some important applications. For example, SFE can be achieved by combining a projective garbling
scheme and a scheme for oblivious transfer.

3.3 Side-information functions

Privacy is rarely absolute; semantically secure encryption, for example, is allowed to reveal the length of
the plaintext. Similarly, a garbled circuit might reveal the size of the circuit that was garbled, its topology
(that is, the graph of how gates are connected up), or even the original circuit itself. The information that
we expect to be revealed is captured by a side-information function, Φ, which deterministically maps f
to a string ϕ = Φ(f). We will parameterize our advantage notions by Φ, and in this way simultaneously
define garbling schemes that may reveal a circuit’s size, topology, identity, or more. We require that f.n
and f.m be easily determined from ϕ = Φ(f); formally, there must exist linear-time algorithms n′ and m′

that compute f.n=n′(ϕ)=n(f) and f.m=m′(ϕ)=m(f) when ϕ=Φ(f). We also require that |f | be easily
determined from Φ(f).

Specific side-information functions are useful for circuit garbling. Side-information function Φsize re-
veals the number of inputs, outputs, and gates of a circuit f ; formally, Φsize(f) = (n,m, q) for a circuit
f = (n,m, q,A,B,G). Side-information function Φtopo reveals the topological circuit but not the function-
ality of each gate: Φtopo(f) = (n,m, q,A,B), with notation and conventions as above. Side-information
function Φcirc reveals the entire circuit: Φcirc(f) = f .
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3.4 Privacy

Let G = (Gb,En,De,Ev, ev) be a garbling scheme, k ∈ N a security parameter, and Φ a side-information
function. We define an indistinguishability-based notion of privacy via game PrvIndG,Φ (top-left of Fig. 5)
and a simulation-based notion of privacy via game PrvSimG,Φ,S (top-right of Fig. 5, where S is a simu-
lator). Executing either game with an adversary requires one to specify the garbling scheme, adversary,
security parameter, and side-information function. Executing game PrvSim additionally requires one to
specify the algorithm S. Notation and conventions for games are specified in Section 2.

Refer first to game PrvIndG,Φ. Initially, procedure Initialize() samples a bit b at random. AdversaryA
gets input 1k and must make exactly one Garble query. That query is answered as specified in the game,
the security parameter used here being the same as the one provided to the adversary. The adversary
must eventually halt, outputting a bit b′, and the game’s Finalize procedure determines if the adversary
has won on this run, namely, if b = b′. The corresponding advantage is defined via

Advprv.ind, Φ
G (A, k) = 2Pr[PrvIndAG,Φ(k)]− 1,

the probability, normalized to [0, 1], that the adversary correctly predicts b. Protocol G is prv.ind secure

over Φ if for every PT adversary A the function Advprv.ind, Φ
G (A, ·) is negligible.

Explaining the definition, the game picks challenge bit b and the adversary chooses (f0, x0) and
(f1, x1) such that Φ(f0) = Φ(f1) and, also, ev(f0, x0) = ev(f1, x1). The game then garbles fb to (F, e, d)
and encodes xb as the garbled input X = Ene(xb). The adversary is given (F,X, d), which determines
y = De(d,Ev(F,En(e, xb))) = ev(fb, xb). The adversary must guess b. In a scheme we deem secure, it
should be unable to ascertain which of (f0, x0), (f1, x1) got garbled.

Next we define prv.sim security via game PrvSimG,Φ,S associated to garbling scheme G, information
function Φ and an algorithm S called a simulator. Initially, procedure Initialize() samples a bit b at
random. The adversary B is run on input 1k and must make exactly one Garble query. The query is
answered as specified in Fig. 5, with k being the same as the input to the adversary. The adversary must
eventually output a bit, and the game’s Finalize procedure indicates if the adversary has won—again,
if the adversary correctly predicted b. The adversary’s advantage is

Advprv.sim, Φ,S
G (B, k) = 2Pr[PrvSimB

G,Φ,S(k)]− 1 ,

the probability, normalized to [0, 1], that the adversary wins. Protocol G is prv.sim secure over Φ if for
every PT adversary B there is a PT algorithm S such that Advprv.sim, Φ,S

G (B, k) is negligible.
Let us again explain. For the prv.sim notion we let the adversary choose (f, x). Either we garble it to

(F, e, d)← Gb(1k, f) and X ← En(e, x), handing the adversary (F,X, d), or else we ask the simulator to
devise a “fake” (F,X, d) based solely on k, ϕ = Φ(f), and y = ev(f, x). From this limited information the
simulator must produce an (F,X, d) indistinguishable, to the adversary, from the ones produced using
the actual garbling scheme.

The indistinguishability definition for garbling schemes is simpler due to the absence of the simulator,
but we consider this notion “wrong” when the side-information function is such that indistinguishability
is inequivalent to the simulation-based definition. See Section 4.

3.5 Obliviousness

Informally, a garbling scheme achieves obliviousness if possession of a garbled function F and garbled
input X lets one compute the garbled output Y , yet (F,X) leaks nothing about f or x beyond Φ(f). The
adversary does not get the decoding function d and will not learn the output De(d,Ev(F,X)). Contrasting
this with privacy, there the agent evaluating the garbled function does learn the output; here, she learns
not even that, as a needed piece of information, d, is withheld. Privacy and obliviousness are both secrecy
notions, and cut from the same cloth. Yet they will prove incomparable: a private scheme could divulge
the output even without d; an oblivious scheme could reveal too much once d is shown.
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As with privacy, we formalize two notions, obv.ind and obv.sim, via the games of Fig. 5. The for-
malizations consider games ObvIndG,Φ and ObvSimG,Φ,S , run with adversaries A and B, respectively. As
usual the adversary gets input 1k and the security parameter used in the game is also k. The adversary
makes a single call to the game’s Garble procedure and outputs a bit b′. We define

Advobv.ind, Φ
G (A, k) = 2Pr[ObvIndAG,Φ(k))]− 1 and

Advobv.sim, Φ,S
G (B, k) = 2Pr[ObvSimB

G,Φ,S(k)]− 1

as the probability, normalized to [0, 1], that adversary’s output is a correct guess of the underlying bit b.

Protocol G is obv.ind secure over Φ if for every PT adversary A, we have that Advobv.ind, Φ
G (A, k) is

negligible. It is obv.sim secure over Φ if for every PT adversary B there exists a PT simulator S such that
Advobv.sim, Φ,S

G (B, ·) is negligible.
Let us explain the difference between prv.ind and obv.ind. First, we no longer demand that ev(f, x0) =

ev(f, x1): the adversary may now name any (f0, x0) and (f1, x1) as long as the functions have the same
side information. Second, the decoding function d is no longer provided to the adversary. The adversary
must guess if (F,X) stems from garbling (f0, x0) or (f1, x1).

Similarly, the difference between prv.sim and obv.sim is two-fold. First, in the obliviousness notion the
simulator is denied y = ev(f, x); it must create a convincing (F,X) without that. Second, the simulator
no longer returns to the adversary the (simulated) decoding function d; the return value is (F,X) and
not (F,X, d).

3.6 Authenticity

So far we have dealt exclusively with secrecy notions. One can formalize an authenticity property as
well [20], which we do via game AutG of Fig. 5. Authenticity captures an adversary’s inability to create
from a garbled function F and its garbled input X a garbled output Y ̸= F (X) that will be deemed
authentic.

Fix a garbling scheme G = (Gb,En,De,Ev, ev), adversary A, and security parameter k ∈ N. Run
adversary A on input 1k, allowing it a single call to the Garble procedure of the game. The adversary
outputs a string Y , and, when it does, the game’s Finalize procedure is called to decide if the adversary
has won. The adversary’s aut-advantage is defined as Advaut

G (A, k) = Pr[AutAG (k)]. Protocol G is aut-
secure if for all PT adversaries A, Advaut

G (A, ·) is negligible.

3.7 Sets of garbling schemes

To compactly and precisely express relations between notions we will write them as containments and
non-containments between sets of garbling schemes. To this end, for xxx ∈ {prv.ind, prv.sim, obv.ind,
obv.sim} we let GS(xxx, Φ) be the set of all garbling schemes that are xxx-secure over Φ. Similarly, we
let GS(aut) be the set of all garbling schemes that are aut-secure.

We also let GS(ev) be the set of all garbling schemes G = (Gb,En,De,Ev, ev) whose evaluation function
is ev. This captures garbling schemes for a particular class of functions. As per our previous notation,
GS(evcirc) now denotes the set of all circuit-garbling schemes.

3.8 Remarks

We end this section with discussion of our definitions.

Universal circuits. Fix one of our privacy or obliviousness notions and a projective garbling scheme G
secure for Φtopo. Then, using universal circuits, it is easy to construct a garbling scheme G$ secure in
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the same sense but now with respect to Φsize. This has long been understood in folklore, and is easily
formalized using the language we have introduced. See Appendix B for details on universal circuits and
the overhead they entail. Because of the ready translation from security with respect to Φtopo to security
with respect to Φsize, the schemes we present in the remainder of this paper, Garble1 and Garble2, will
have side-information Φtopo.

Non-degeneracy. In garbling f by Gb we intend to partition f into e, F, d where e describes how
to obscure the input x and where d describes how to unobscure the answer Y . We do not want En(e, ·)
or De(d, ·) to actually compute f(x). But this could happen if we permitted decompositions like e= f ,
F =d=ε, En(e, x) = ev(f, x), and Ev(F,X) = De(d,X) = X. The nondegeneracy condition outlaws this,
formalizing a sense in which e and d are independent of f . Note that we do allow e and d to depend
on m, n, and even |f |.

Invalid queries. Referring to Fig. 5, we note that the bit b is well-defined—it is set in the Initialize
procedure—even if the adversary’s query to Garble is invalid (meaning that it returns ⊥) in games
PrvInd or ObvInd. If this were not the case then the semantics of the Finalize procedure would be
unclear: one would be asking if b = b′, but b would be undefined.

Strict correctness. Our correctness condition is strict : you always get ev(f, x) by computing
De(d,Ev(F,En(e, x))). One can certainly relax this requirement, and you would have to in order to
regard what goes on within Lindell and Pinkas [41], say, as a garbling scheme. Yet strict correctness
is not hard to achieve. Our definition could certainly be extended to say that a scheme is correct if
Pr[(F, e, d)← Gb(1k, f) : De(d,Ev(F,En(e, x))) ̸= ev(f, x)] is negligible as a function of k for all f .

An undesirable way to do asymptotics. It is important not to conflate the security parameter k
and f ’s input length n. These are conceptually distinct, and it makes perfect sense to think of f , and
therefore n, as fixed, while the security parameter varies. In our treatment, the security parameter k is
provided to the adversary and it selects the functions to use in its attack and so, as a result, the input
length n is polynomially bounded if the adversary is. The security parameter limits the input length—the
input length does not define the security parameter.

Indistinguishability without side-information. The side-information function Φ does more than
allow one to capture that which may be revealed by F ; our prv.ind definition would be meaningless if
we had effectively dialed-in Φ(f) = f , the “traditional” understanding for 2-party SFE. Suppose here
that we wish only to garble SHA-256, so ev(f, x) = SHA-256(x) for all f, x. Then the adversary can’t
find any distinct x0 and x1 such that ev(f, x0) = ev(f, x1)—which means that good prv.ind security
will be achieved no matter what the garbling scheme does. An interpretation of this observation is that
prv.ind is an unacceptable definition when Φ(f) = f—one must ensure that less leaks about f before the
definition starts to say something useful. When the adversary needs only to find (f0, x0) ̸= (f1, x1) such
that ev(f0, x0) = ev(f1, x1), and when Φ is designed to make sure this is an easy job for her, the definition
is more meaningful.14

Idealized models. As in many cryptographic domains, it seems possible to obtain better efficiency
working in idealized models [13]. All of our security definitions easily lift to ideal-model settings. In the
random-oracle model (ROM) [13], we provide any adversary, and any algorithms among the first four
components of G = (Gb,En,De,Ev, ev), with access to a random oracleHash. We then distinguish between
the PROM (Programmable-ROM) and the NPROM (Non-Programmable ROM) whose procedures Hash
are given in Fig. 6 (left and right, respectively). In the latter model, the simulator too has oracle access to
the random oracle, but in the former model, it does not have such access and will instead itself reply to the
queries made by the adversary to its random oracle. In the code, ro is a formal symbol indicating to the

14 An asymptotic version of the counterexample is in Proposition 8.
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proc Hash(ℓ, w)

if H[ℓ, w] = ⊥ then

if b = 1 then H[ℓ, w]� {0, 1}ℓ
else H[ℓ, w]�S(ℓ, w, ro)

return H[ℓ, w]

proc Hash(ℓ, w)

if H[ℓ, w] = ⊥ then H[ℓ, w]� {0, 1}ℓ
return H[ℓ, w]

Fig. 6. Extending garbling-scheme security to ROM. Games of our security notions may be extended to include
either the procedure on the left (the PROM) or the right (the NPROM). The adversary and scheme algorithms have oracle
access to Hash. In the NPROM case, the simulator also has access to Hash. In the PROM case the simulator does not have
access to Hash and instead, when the challenge bit b is 0, must itself answer queries to Hash as indicated above.

simulator that it is being asked to answer a query to Hash. In the ideal-cipher model we provide, instead,
an ideal cipher E : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ and its inverse D : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ, each key K
naming an independent random permutation E(K, ·), where ℓ may depend on the security parameter.
In the ideal-permutation model we provide, instead, a random permutation π : {0, 1}ℓ → {0, 1}ℓ and its
inverse π−1 : ×{0, 1}ℓ → {0, 1}ℓ. Security results for any of these models would bound the adversary’s
advantage in terms of the number and type of its oracle queries.

4 Relations

We show that prv.sim always implies prv.ind, and prv.ind implies prv.sim under certain added condi-
tions on the side-information function. We show that the same holds for obv.ind and obv.sim, under a
weaker assumption on the side-information function. The conditions on the side-information function are
relatively mild. We will also justify the non-implications for the security notions compactly summarized
in Fig. 2. As part of this we will show that prv.ind does not always imply prv.sim and obv.ind does not
always imply obv.sim.

4.1 Invertibility of side-information functions

Let Φ be a side-information function. An algorithm M is called a Φ-inverter if on input ϕ in the range
of Φ it returns a preimage under Φ of that point, meaning a string f such that Φ(f) = ϕ. Such an
inverter always exists, but it might not be efficient. We say that Φ is efficiently invertible if there is a
polynomial-time Φ-inverter. Similarly, an algorithm M is called a (Φ, ev)-inverter if on input (ϕ, y), where
ϕ = Φ(f ′) and y = ev(f ′, x′) for some f ′ and x ∈ {0, 1}f ′.n, returns an (f, x) satisfying Φ(f) = ϕ and
ev(f, x) = y. We say that (Φ, ev) is efficiently invertible if there is a polynomial-time (Φ, ev)-inverter.

The following theorem summarizes the invertibility attributes of the circuit-related size-information
functions we defined earlier. It shows that all side-information functions Φcirc, Φtopo, and Φsize are efficiently
invertible, and that, (Φsize, evcirc) and (Φtopo, evcirc) are efficiently invertible.

Proposition 1 For Φ ∈ {Φsize, Φtopo, Φcirc}, there is a linear-time inverter. For Φ ∈ {Φsize, Φtopo} there is
a linear-time (Φ, evcirc)-inverter.

In contrast, there is no efficient (Φcirc, evcirc)-inverter (under a computational assumption); consider the
case where f is drawn from a family implementing a one-way function.

Proof (Proposition 1). We first specify a linear-time (Φtopo, evcirc)-inverter Mtopo. It gets input a topo-
logical circuit f− and an m-bit binary string y = y1 · · · ym and proceeds as follows:
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proc Mtopo(f
−, y)

(n,m, q,A,B)← f−, y1 · · · ym ← y
for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do

if g ≤ n+ q −m then Gg(i, j)← 0 else Gg(i, j)← yg−(n+q−m)

f ← (n,m, q,A,B,G), x← 0n

return (f, x)

We have Topo(f) = f− and evcirc(f, x) = y as desired. Next we specify a linear-time (Φsize, evcirc)-inverter
Msize. It gets input (n,m, q) and an m-bit binary string y = y1 · · · ym and proceeds as follows:

proc Msize((n,m, q), y)
for g ∈ {n+ 1, . . . , n+ q} do Ag ← 1, Bg ← 2
f− ← (n,m, q,A,B), (f, x)←Mtopo(f

−, y)
return (f, x)

We have Φsize(f) = (n,m, q) and evcirc(f, x) = y as desired. Now a linear-time Φtopo-inverter, on input
f− = (n,m, q,A,B), can let y ← 0m and return Mtopo(f

−, y). Similarly, a linear-time Φsize-inverter, on
input (n,m, q), can let y ← 0m and return Msize((n,m, q), y). Finally, a linear-time Φcirc-inverter is trivial,
returning f on input f . ⊓⊔

4.2 Equivalence of prv.ind and prv.sim

The following says that prv.sim implies prv.ind security, and conversely if (Φ, ev) is efficiently invertible.

Proposition 2 [prv.ind ≈ prv.sim] For any PT Φ: (1) GS(prv.sim, Φ) ⊆ GS(prv.ind, Φ) and (2) If (Φ, ev)
is efficiently invertible then GS(prv.ind, Φ) ∩ GS(ev) ⊆ GS(prv.sim, Φ) ∩ GS(ev).

The first part says that if garbling scheme G is prv.sim secure over Φ then G is prv.ind secure over Φ.
The second part says that if garbling scheme G = (Gb,En,De,Ev, ev) is prv.ind secure over Φ and (Φ, ev)
is efficiently invertible then G is prv.sim secure over Φ. Proposition 8 proves that efficient invertibility of
(Φ, ev) is required to prove that prv.ind implies prv.sim, so the notions are not always equivalent.

The reductions underlying Proposition 2 are tight. This is evidenced by Eq. (1) and Eq. (2) in the
proof and the fact that the running times of the constructed adversaries or simulators are about the same
as that of the starting adversary.

Proof (Proposition 2). For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(prv.sim, Φ). We want to show that
G ∈ GS(prv.ind, Φ). Let A be a PT adversary attacking the prv.ind-security of G over Φ. We construct
a PT prv.sim-adversary B as follows. Let B(1k) run A(1k). Without loss of generality, suppose that A
queries (f0, f1, x0, x1) such that Φ(f0) = Φ(f1), x0, x1 ∈ {0, 1}f0.n, and ev(f0, x0) = ev(f1, x1); otherwise

Advprv.ind, Φ
G (A, k) = 0 and it will be trivial to construct B such that Advprv.sim, Φ,S

G (B, k) = 0 for any
simulator S. Adversary B picks a bit c at random and queries fc, xc to its own Garble oracle to get
back (F,X, d) and returns this to A. The latter now returns a bit b′. Adversary B returns 1 if b′ = c, and
returns 0 otherwise. Let S be any algorithm playing the role of the simulator. Then

Pr
[
PrvSimB

G,Φ,S(k) | b = 1
]
=

1

2
+

1

2
Advprv.ind, Φ

G (A, k)

Pr
[
¬PrvSimB

G,Φ,S(k) | b = 0
]
=

1

2

where b denotes the challenge bit in game PrvSimG,Φ,S . Subtracting, we see that

Advprv.ind, Φ
G (A, k) ≤ 2 ·Advprv.sim, Φ,S

G (B, k) . (1)
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By assumption there is a PT S such that the RHS is negligible. Hence the LHS is negligible as well.

For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(prv.ind, Φ) and let M be a (Φ, ev)-inverter. We want
to show that G ∈ GS(prv.sim, Φ). Let B be a PT adversary attacking the prv.sim-security of G over Φ.
Without loss of generality, suppose that B queries (f, x) such that x ∈ {0, 1}f.n. We define a simulator S
that on input 1k, y, ϕ, lets (f, x) ← M(ϕ, y) then (F, e, d) ← Gb(1k, f). It outputs (F,En(e, x), d). We
define adversary A(1k) to run B(1k). When the latter makes its query f1, x1 to Garble, adversary A
lets (f0, x0) ← M(Φ(f1), ev(f1, x1)) and then queries f0, f1, x0, x1 to its own Garble oracle to get back
(F,X, d), which it returns to B. When the latter outputs a bit b′ and halts, so does A. Then

Pr
[
PrvIndAG,Φ(k) | b = 1

]
= Pr

[
PrvSimB

G,Φ,S(k) | c = 1
]

Pr
[
¬PrvIndAG,Φ(k) | b = 0

]
= Pr

[
¬PrvSimB

G,Φ,S(k) | c = 0
]

where b and c denote the challenge bits in games PrvIndG,Φ and PrvSimG,Φ,S , respectively. Subtracting,
we get

Advprv.sim, Φ,S
G (B, k) ≤ Advprv.ind, Φ

G (A, k) . (2)

But the RHS is negligible by assumption, hence the LHS is as well. ⊓⊔

A corollary of Propositions 1 and 2 is that prv.sim and prv.ind are equivalent for circuit-garbling schemes
over side-information functions Φtopo and Φsize, which we summarize as:

Corollary 1. For Φ ∈ {Φtopo, Φsize}, GS(prv.ind, Φ) ∩ GS(evcirc) = GS(prv.sim, Φ) ∩ GS(evcirc).

Equivalence in idealized models. In idealized models, define prv.nprom as prv.sim security in which
the simulator has oracle access to the ideal primitives, and prv.prom as prv.sim security in which the
simulator doesn’t have access to the ideal primitives and will instead itself reply to the oracle queries
made by the adversary. Proposition 2 implies that if (Φ, ev) is efficiently invertible then prv.prom and
prv.nprom are equivalent. It suffices to show that prv.prom security implies prv.nprom, since the latter
obviously implies the former. By part (1) of Proposition 2, prv.prom security implies prv.ind security. The
proof still holds, even if the simulator S uses the programmability power to collude with the prv.prom
adversary B to fool the prv.ind adversary A, because what (S,B) receives is independent of A’s challenge
bit. Because (Φ, ev) is efficiently invertible, by part (2) of Proposition 2, prv.ind security then implies
prv.nprom security.

4.3 Equivalence of obv.ind and obv.sim

The following says that obv.sim implies obv.ind security, and conversely if Φ is efficiently invertible. The
invertibility condition is thus weaker than in the privacy case. Proposition 3 also implies that if Φ is
efficiently invertible then obv.prom and obv.nprom are equivalent, where the latter is defined as obv.sim
security in which the simulator has oracle access to the ideal primitives, and the former as obv.sim security
in which the simulator doesn’t have access to the ideal primitives and will instead itself reply to the oracle
queries made by the adversary.

Proposition 3 [obv.ind ≈ obv.sim] For any PT Φ: (1) GS(obv.sim, Φ) ⊆ GS(obv.ind, Φ) and (2) If Φ is
efficiently invertible then GS(obv.ind, Φ) ⊆ GS(obv.sim, Φ).

Proposition 9 shows that Φ being efficiently invertible is required to prove that obv.ind implies obv.sim.
But the side-information function Φ we use is artificial; for any “reasonable” one we know, obv.ind and
obv.sim will be equivalent.
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Proof (Proposition 3). The proof is analogous to that of Proposition 2 but for completeness we pro-
vide details. For part (1), let G = (Gb,En,De,Ev, ev) ∈ GS(obv.sim, Φ). We want to show that G ∈
GS(obv.ind, Φ). Let A be a PT adversary attacking the obv.ind-security of G over Φ. We construct a PT
obv.sim-adversary B as follows. Let B(1k) run A(1k). Without loss of generality, suppose that A queries
(f0, f1, x0, x1) such that Φ(f0) = Φ(f1) and x0, x1 ∈ {0, 1}f0 . Adversary B picks a bit c at random and
queries fc, xc to its own Garble oracle to get back (F,X, d) and returns this to A. The latter now returns
a bit b′. Adversary B returns 1 if b′ = c, and returns 0 otherwise. Let S be any algorithm playing the role
of the simulator. Then

Pr
[
ObvSimB

G,Φ,S(k) | b = 1
]
=

1

2
+

1

2
Advobv.ind, Φ

G (A)

Pr
[
¬ObvSimB

G,Φ,S(k) | b = 0
]
=

1

2

where b denotes the challenge bit in game ObvSimS . Subtracting, we see that

Advobv.ind, Φ
G (A, k) ≤ 2 ·Advobv.sim, Φ,S

G (B, k) . (3)

By assumption there is a PT S such that the RHS is negligible. Hence the LHS is negligible as well.
For part (2), let G = (Gb,En,De,Ev, ev) ∈ GS(obv.ind, Φ) and let M be a Φ-inverter. We want to

show that G ∈ GS(obv.sim, Φ). Let B be a PT adversary attacking the obv.sim-security of G over Φ.
Without loss of generality, suppose that B queries (f, x) such that x ∈ {0, 1}f.n. We define a simulator S
that on input 1k, y, ϕ, lets f ← M(ϕ, y) then (F, e, d) ← Gb(1k, f). It outputs (F,En(e, x), d). We define
adversary A(1k) to run B(1k). When the latter makes its query f1, x1 to Garble, adversary A lets
f0 ← M(Φ(f1), ev(f1, x1)) and x0 ← 0f0.n and then queries (f0, f1, x0, x1) to its own Garble oracle to
get back (F,X, d), which it returns to B. When the latter outputs a bit b′ and halts, so does A. Then

Pr
[
ObvIndAG,Φ(k) | b = 1

]
= Pr

[
ObvSimB

G,Φ,S(k) | c = 1
]

Pr
[
¬ObvIndAG,Φ(k) | b = 0

]
= Pr

[
¬ObvSimB

G,Φ,S(k) | c = 0
]

where b and c denote the challenge bits in games ObvIndG,Φ and ObvSimG,Φ,S , respectively. Subtracting,
we get

Advobv.sim, Φ,S
G (B, k) ≤ Advobv.ind, Φ

G (A, k) . (4)

But the RHS is negligible by assumption, hence the LHS is as well. ⊓⊔

Again a corollary of Propositions 1 and 3 is that obv.sim and obv.ind are equivalent for circuit-garbling
schemes over side-information functions Φcirc, Φtopo and Φsize:

Corollary 2. GS(obv.ind, Φ) = GS(obv.sim, Φ), for any Φ ∈ {Φtopo, Φsize, Φcirc}.

4.4 Separations

We justify the non-implications for the security notions compactly summarized in Fig. 2. We state these
as non-containments A ̸⊆ B between sets of garbling schemes. We always assume A ̸= ∅, since otherwise
the claim trivially fails.

The following says that privacy does not imply obliviousness, even when we take the strong form of
privacy (simulation-style) and the weak form of obliviousness (ind-style):

Proposition 4 For all Φ and for ev = evcirc: GS(prv.sim, Φ) ∩ GS(ev) ̸⊆ GS(obv.ind, Φ).

Proof (Proposition 4). By assumption GS(prv.sim, Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev,
ev) be a member of this set. We construct a garbling scheme G ′ = (Gb′,En,De,Ev′, ev) such that
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G ′ ∈ GS(prv.sim, Φ)∩GS(ev) but G ′ ̸∈ GS(obv.ind, Φ). The construction is as follows. Let Gb′(1k, f) pick
(F, e, d)← Gb(1k, f) and return ((F, d), e, d). Let Ev′((F, d), X) = Ev(F,X). Including d in the description
of the garbled function does not harm prv.sim-security because an adversary is always given the descrip-
tions of the garbled function and the decoding function simultaneously, so G ′ inherits the prv.sim-security
of G. On the other hand, G ′ fails to achieve obv.ind. An adversary simply makes query (OR,OR, x0, x1)
where x0 = 00 and x1 = 11. On receiving reply ((F, d), X), it outputs 0 if De(d,Ev(F,X)) = ev(OR, x0)
and outputs 1 otherwise. This works because 0 = ev(OR, x0) ̸= ev(OR, x1) = 1 and correctness guaran-
tees that De(d,Ev(F,X)) = ev(OR, xb) where b is the challenge bit. ⊓⊔

The following says that obliviousness does not imply privacy, even when we take the strong form of
obliviousness (simulation-style) and the weak form of privacy (ind-style):

Proposition 5 Let Φ = Φtopo and ev = evcirc. Then, GS(obv.sim, Φ) ∩ GS(ev) ̸⊆ GS(prv.ind, Φ).

Proof (Proposition 5). By assumption GS(obv.sim, Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev,
ev) be a member of this set. We construct a garbling scheme G ′ = (Gb′,En,De′,Ev, ev) such that
G ′ ∈ GS(obv.sim, Φ) ∩ GS(ev) but G ′ ̸∈ GS(prv.ind, Φ). The construction is as follows. Let Gb′(1k, f)
pick (F, e, d) ← Gb(1k, f) and return (F, e, (d, e)). Let De′((d, e), Y ) = De(d, Y ). Including e in the
description of the decoding function does not harm obv.sim-security because an adversary is never
given the description of the decoding function, so G ′ inherits the obv.sim-security of G. On the other
hand, G ′ fails to achieve prv.ind. An adversary simply makes query (f0, f1, 11, 11) where f0 = AND and
f1 = OR, which is valid because ev(f0, 11) = ev(f1, 11). On receiving reply (F,X, (d, e)), it outputs 0
if De(d,Ev(F,En(e, 01))) = 0 and 1 otherwise. This works because 0 = ev(f0, 01) ̸= ev(f1, 01) = 1 and
correctness guarantees that De(d,Ev(F,En(e, 01))) = ev(fb, 01) where b is the challenge bit. ⊓⊔

The following says that privacy and obliviousness, even in conjunction and in their stronger forms
(simulation-style), do not imply authenticity.

Proposition 6 For all Φ and for ev = evcirc: GS(prv.sim, Φ) ∩ GS(obv.sim, Φ) ∩ GS(ev) ̸⊆ GS(aut).

Proof (Proposition 6). By assumption GS(prv.sim, Φ) ∩ GS(obv.sim, Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,
En,De,Ev, ev) be a member of this set. We construct a garbling scheme G ′ = (Gb,En,De′,Ev′, ev) such
that G ′ ∈ GS(prv.sim, Φ)∩GS(obv.sim, Φ)∩GS(ev) but G ′ ̸∈ GS(aut). The construction is as follows. Let
Ev′(F,X) = Ev(F,X)∥0 and De′(d, Y ∥b) = De(d, Y ) if b = 0 and 1 otherwise, where b ∈ {0, 1}. Appending
a constant bit to the garbled output does not harm prv.sim security or obv.sim-security. On the other
hand, G ′ fails to achieve aut. An adversary simply makes query (OR, 00) and then outputs 1∥1. ⊓⊔

The following says that authenticity implies neither privacy nor obliviousness, even when the latter are
in their weaker (ind style) form.

Proposition 7 Let Φ = Φtopo and ev = evcirc. Then GS(aut)∩GS(ev) ̸⊆ GS(prv.sim, Φ)∪GS(obv.sim, Φ).

Proof (Proposition 7). By assumption GS(aut)∩GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev, ev) be a member
of this set. We construct a garbling scheme G ′ = (Gb′,En,De,Ev′, ev) such that G ′ ∈ GS(aut) ∩ GS(ev)
but G ′ ̸∈ GS(prv.sim, Φ) ∪ GS(obv.sim, Φ). The construction is as follows. Let Gb′(1k, f) pick (F, e, d)←
Gb(1k, f) and return ((F, f), e, d). Let Ev′((F, f), X) = Ev(F,X). Appending f to F does not harm
authenticity as the adversary has chosen f , and thus already knows it, in its attack. On the other hand,
the garbled function leaks f so privacy and obliviousness both fail over Φtopo. ⊓⊔
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We saw in Proposition 2 that prv.ind implies prv.sim if (Φ, ev) is efficiently invertible. Now we show that
this assumption is necessary by showing that in general prv.ind does not imply prv.sim. We say that
P : {0, 1}∗ → {0, 1}∗ is a permutation if: (1) for every x ∈ {0, 1}∗ we have |P (x)| = |x|; (2) for every
distinct x0, x1 ∈ {0, 1}∗ we have P (x0) ̸= P (x1). We say that P is one-way if for every PT adversary I
the function Advow

P (I, ·) is negligible, where for each k ∈ N we have let

Advow
P (I, k) = Pr[I(P (x)) = x] ,

the probability over x� {0, 1}k. We associate to P the evaluation function evP (f, x) = P (x) for all
f, x ∈ {0, 1}∗.

Proposition 8 Let Φ be the identity function. Let P be a one-way permutation and let ev = evP . Then
GS(prv.ind, Φ) ∩ GS(ev) ̸⊆ GS(prv.sim, Φ).

We note that the (Φ, ev) in Proposition 8 is not efficiently invertible due to the one-wayness of P , so this
separation is consistent with Proposition 2.

Proof (Proposition 8). We build G = (Gb,En,De,Ev, ev) so that G ∈ GS(prv.ind, Φ) ∩ GS(ev) but G ̸∈
GS(prv.sim, Φ). Let Gb(1k, f) = (f, ε, ε) for any f . Let En(ε, x) = x and De(ε, Y ) = Y for all x, Y ∈ {0, 1}n.
We claim that Advprv.ind, Φ

G (A) = 0 for any (even computationally-unbounded) adversary A. Consider
an adversary A that makes Garble query (f0, f1, x0, x1). For the response to not be ⊥ it must be that
f0 = f1 and ev(f0, x0) = ev(f1, x1), meaning P (x0) = P (x1). Since P is a permutation, it follows that
x0 = x1, and thus the advantage of the adversary must be 0. However, one can trivially break the prv.sim
security of G, with respect to any PT simulator S as follows. Adversary A(1k) lets f ← ε and x� {0, 1}k.
It then queries (f, x) to the oracle Garble. On receiving (F,X, d), it outputs 1 if X = x, and 0 otherwise.
The simulator S gets input f and y = ev(f, x) = P (x) and produces (F,X, d). The probability that X = x
is negligible by the one-wayness of P , so the adversary’s output is 1 with negligible probability when the
challenge bit is 0. ⊓⊔

We saw in Proposition 3 that obv.ind implies obv.sim if Φ is efficiently invertible. Now we show that
this assumption is necessary by showing that in general obv.ind does not imply obv.sim. Let π be a
bijection from Func(2, 1) to {0, 1}4. Such a bijection exists, as |Func(2, 1)| = 16. Let P be a one-way
permutation. We associate to P and π the following side-information function ΦP,π. For each circuit
f = (n,m, q,A,B,G), let ΦP,π(f) = (Topo(f), P (L)), where L = L1 · · ·Lq and Li = π(Gn+i) for each
1 ≤ i ̸= q.

Proposition 9 Let P be a one-way permutation and π a bijection from Func(2, 1) to {0, 1}4. Let Φ =
ΦP,π and ev = evcirc. Then GS(obv.ind, Φ) ∩ GS(ev) ̸⊆ GS(obv.sim, Φ).

We note that the one-wayness of P means Φ is not efficiently invertible, so this separation is consistent
with Proposition 3. We also note that although Φ might look strange it is functionally equivalent to Φcirc

in the sense that Φ(f0) = Φ(f1) iff Φcirc(f0) = Φcirc(f1). This is true because Φ reveals the topology
by definition, and since π, P are bijections, P (π(G)) uniquely determines G. This implies GS(xxx, Φ) ∩
GS(ev) ⊆ GS(xxx, Φcirc)∩GS(ev) for both xxx ∈ {obv.ind, obv.sim}. (It does not imply the sets are equal
because P is one-way.) On the other hand GS(xxx, Φtopo) ∩ GS(ev) ⊆ GS(xxx, Φ) ∩ GS(ev) so the sets
in the Proposition contain interesting and natural schemes even though they might look strange at first
glance.

Proof (Proposition 9). By assumption GS(obv.ind, Φ) ∩ GS(ev) ̸= ∅ so we let G = (Gb,En,De,Ev, ev)
be a member of this set. We construct a garbling scheme G ′ = (Gb′,En,De,Ev′, ev) such that G ′ ∈
GS(obv.ind, Φ) ∩ GS(ev) but G ′ ̸∈ GS(obv.sim, Φ). The construction is as follows. Let Gb′(1k, f) pick
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(F, e, d)← Gb(1k, f) and return (f∥F, e, d). Let Ev′(f∥F,X) return Ev(F,X). We claim that G ′ is obv.ind
secure over Φ but not obv.sim secure over Φ.

To justify the first claim, consider an adversary A that makes Garble query (f0, f1, x0, x1). For the
response to not be ⊥ it must be that Φ(f0) = Φ(f1) and hence, by the functional equivalence noted
above, that Φcirc(f0) = Φcirc(f1). Thus f0 = f1. Prepending f to F therefore does no harm to the obv.ind
security.

We justify the second claim by presenting an adversary B that trivially breaks the obv.sim security
of G ′, with respect to any PT simulator. Adversary B(1k) picks an arbitrary topological circuit f− of k
gates and chooses L� {0, 1}4k. Let L = L1 · · ·Lk, where each Li ∈ {0, 1}4. Let Gn+i = π−1(Li) for every
1 ≤ i ≤ k, and let f = (f−, G). The adversary then queries (f, 0f.n) to Garble. When receiving the
reply (F ′, X), it returns 1 if the first |f | bits of F ′ equal f , and returns 0 otherwise, so that it always
returns 1 when the challenge bit in the game is 1. A simulator S gets input 1k and ϕ = (f−, P (L)) and
produces an output (F ′, X). Let f− = (n,m, k,A,B). Note that if the simulator can produce G, it also
can produce L = L1 · · ·Lq with each Li = π(Gn+i). The probability that the first |f | bits of F ′ equal
f = (f−, G) is therefore negligible by the one-wayness of P , because L’s sampling is independent of f−.
So the adversary’s output is 1 with negligible probability when the challenge bit is 0. ⊓⊔

5 Achieving Privacy: Garble1

We provide a simple, privacy-achieving circuit-garbling scheme, Garble1. It is described in terms of a
new primitive, a dual-key cipher (DKC). We will prove security of Garble1 assuming the security of its
DKC. We will then show how to instantiate a DKC using a PRF. Instantiating this PRF via AES leads
to an efficient garbling scheme. Differently instantiating the DKC directly with AES can give even better
efficiency.

Dual key ciphers. Before describing Garble1 we will need to specify the syntax of a DKC. These
objects formalize a two-key lockbox—one where you need both keys to open the box. This has long
been used as a metaphor to explain how garbling schemes work (e.g., [41, pp. 163–164]), but Lindell
and Pinkas also give a notion of double-encryption security for two-key probabilistic encryption schemes
[41, pp. 170]. Dual-key ciphers provide a very different way to formalize an object sufficient to construct
garbling schemes.

Formally, a dual-key cipher is a function E that associates to any k ∈ N, any keys A,B ∈ {0, 1}k and
any tweak T ∈ {0, 1}τ(k) a permutation ET

A,B : {0, 1}k → {0, 1}k. Let DT
A,B : {0, 1}k → {0, 1}k denote

the inverse of this permutation. It is required that the maps (A,B, T,X) 7→ ET
A,B(X) and (A,B, T, Y ) 7→

DT
A,B(Y ) be polynomial-time computable. We refer to τ as the tweak length of E.
The definition above describes syntax alone. We postpone giving a security definition until we’ve

defined Garble1.

5.1 Definition of Garble1

Let E be a dual-key cipher with tweak length τ . We associate to E the garbling scheme Garble1[E] as
shown in Fig. 7 and illustrated in Fig. 8. Wires carry k-bit tokens. A token X will encode a one-bit type.
Rather arbitrarily, the type is the final bit of the token, namely its LSB. When we write T ← g ∥ a ∥ b
(line 106 and 155) where g ∈ N and a, b ∈ {0, 1}, we mean that g mod 2τ(k)−2 is encoded as a (τ(k)−2)-bit
string and a ∥ b is concatenated, yielding a τ(k)-bit tweak. The ev function (lines 140–145) is precisely
evcirc; the code is repeated for completeness and to make visible the commonality with Ev (lines 150–156).

To garble a circuit, we begin selecting two tokens for each wire, one of each type. One of these will
represent 0—the token is said to have semantics of 0—while the other will represent 1. The variable Xb

i
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100 proc Gb(1k, f)

101 (n,m, q,A′, B′, G)← f

102 for i ∈ {1, . . . , n+ q −m} do t� {0, 1}, X0
i � {0, 1}k−1t, X1

i � {0, 1}k−1t

103 for i ∈ {n+ q −m+ 1, . . . , n+ q} do X0
i � {0, 1}k−10, X1

i � {0, 1}k−11

104 for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do
105 a← A′(g), b← B′(g)

106 A← Xi
a, a← lsb(A), B ← Xj

b , b← lsb(B), T ← g ∥ a ∥ b, P [g, a, b]← ET
A,B

(
X

Gg(i,j)
g

)
107 F ← (n,m, q,A′, B′, P )

108 e← (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)

109 d← ε

110 return (F, e, d)

120 proc En(e, x)

121 (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

122 x1 · · ·xn ← x, X ← (Xx1
1 , . . . , Xxn

n )

123 return X

130 proc De(d, Y )

131 (Y1, . . . , Ym)← Y

132 for i ∈ {1, . . . ,m} do yi ← lsb(Yi)

133 return y ← y1 · · · ym

140 proc ev(f, x)

141 (n,m, q,A,B,G)← f , x1 · · ·xn ← x

142 for g ← n+ 1 to n+ q do

143 a← A(g), b← B(g)

144 xg ← Gg(xa, xb)

145 return xn+q−m+1 · · ·xn+q

150 proc Ev(F,X)

151 (n,m, q,A′, B′, P )← F , (X1, . . . , Xn)← X

152 for g ← n+ 1 to n+ q do

153 a← A′(g), b← B′(g)

154 A← Xa, a← lsb(A), B ← Xb, b← lsb(B)

155 T ← g ∥ a ∥ b, Xg ← DT
A,B

(
P [g, a, b]

)
156 return (Xn+q−m+1, . . . , Xn+q)

Fig. 7. Garbling scheme Garble1. Its components are (Gb,En,De,Ev, ev) where ev, shown for completeness, is the canon-

ical circuit evaluation. We assume a DKC E with tweak length τ and let D denote its inverse. At line 102, we use {0, 1}k−1t

and {0, 1}k−1t to refer to the sets of k-bit binary strings whose last bit is t and t respectively.

names the token of wire i with semantics (not type!) of b. Thus the encoding function e (see lines 120–123)
will map x = x1 · · ·xn ∈ {0, 1}n to X = (Xx1

1 , . . . , Xxn
n ). For each wire i that is not an output wire, we

select, at line 102, random tokens of opposite type, making the association between a token’s type and
its semantics random. For each wire i that is an output wire, we again select random tokens of opposite
types, but this time the token’s type is the token’s semantics.

Lines 104–106 compute q garbled tables, one for each gate g. Table P [g, ·, ·] has four rows, entry a, b
the row to use when the left incoming token is of type a and the right incoming token is of type b.
The token that gets encrypted for this row (line 106) is the token for the outgoing-wire with the correct
semantics. At lines 154–155, given two tokens Xa and Xb we use their types to determine which row
of the garbled table we need to decrypt. The description of the decoding function d (line 109) is empty
because no information is needed to map an output token to its semantics, the type being the semantics.

5.2 Security notion for dual-key ciphers

We already defined the syntax of a DKC, a permutation ET
A,B : {0, 1}k → {0, 1}k for each A,B, T . Our

definition of security will allow the adversary to select whichever of the two keys it wants to learn. We
will hand it not only that key but, also, the last of the undisclosed key. (This corresponds to the type
bit in runs of Garble1). We consider only nonadaptive, known-plaintext attacks. These plaintexts will be
either the disclosed keys or truly random strings. We prohibit encryption cycles. During the adversary’s
attack, the tweaks used must be nonces—values used at most once.

More formally, the security of a DKC E : {0, 1}k × {0, 1}k × {0, 1}τ(k) × {0, 1}k → {0, 1}k is specified
using the game of Fig. 9. The game starts by choosing a bit b� {0, 1} and a key K� {0, 1}k. It chooses
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A =  A1

E   (M)

B =  B0

C = C0

D = D1

M =  M1

N =  N0
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Fig. 8. Garbled circuit corresponding to the conventional circuit of Fig. 4. For each wire i, the token with
semantics 0 (that is, X0

i ) is written on top; the token with semantics 1 (that is, X1
i ) is written on bottom. Possession of

token A and C, for example, lets one decrypt the third row of the leftmost garbled gate (since A ends in 1 and C ends in 0)
to recover token N . The final output is the concatenation of the LSBs of the output wires.

proc Initialize()

b� {0, 1}, K� {0, 1}k, R1, R2, . . . � {0, 1}k
for i ∈ {1, 2 . . .} do

K2i � {0, 1}k−1 0

K2i−1 � {0, 1}k−1 1
return lsb(K)

proc Encrypt(i, j, pos, T ) Game DKC

if used[T ] or i ≥ j then return ⊥
used[T ]← true
if pos = 1 then (A,B)← (K,Ki) else (A,B)← (Ki,K)
if b = 1 then X ← Kj else X ← Rj

return (Ki,Kj ,ET
A,B(X))

Fig. 9. Security of a dual-key cipher. Cipher ET
A,B has a tweak and two keys, only one of which, K, its position chosen

by the adversary, is secret. The final bit of K is disclosed. Procedure Finalize(b′) returns (b = b′).

infinitely many random strings K1,K2, . . . such that the last bit of Ki is i mod 2. It chooses infinitely
many random strings R1, R2, . . .. Except for the last bit of K, the key K shall be kept secret. The
strings K1,K2, . . . are initially secret, but the adversary A will eventually learn them through its queries.
The random strings R1, R2, . . ., used only in the “reference game” when b = 0, are secret. We require
that the adversary A be nonadaptive, that is, it prepares all queries before interrogating the DKC oracle.
In each query, adversary A has to specify an integer i indicating that it wants to use {K,Ki} as keys of
the dual-key cipher for this query, and an integer j, indicating that it wants to encrypt the string Kj .
We require that i < j to avoid encryption cycles. It also specifies a boolean pos to indicate the position,
left or right, of the secret key K. Finally, it provides a tweak T , which must be a nonce. If b = 1 then the
oracle returns the encryption of Kj to the adversary. If b = 0 then the oracle returns the encryption of Rj .
When adversary A outputs a bit b′ its advantage is Advdkc

E (A, k) = 2Pr[DKCA(k)] − 1. We say that E
is a secure dual-key cipher if ε(k) = Advdkc

E (A, k) is negligible for every nonadaptive PPT adversary A
whose input is 1k and the bit returned by Initialize.

Discussion. By way of further explanation, ciphertexts ET1
K,K1

(X1),ET2
K2,K

(X2), . . . should be indistin-
guishable from random strings as long as K is secret and the tweaks T1, T2, . . . are nonces—even if random
values Ki and Xj are all disclosed. We demand that this hold even if the last bit of K is released to the
adversary and the adversary can actively choose the last bit of each Ki.

A subtle issue arises when the adversary happens to possess, say ET1
K1,K

(X) and ET2
K2,K

(X). One may
be tempted to require that the two ciphertexts be indistinguishable from two independent uniformly
random strings. This, however, would not allow instantiations like ET

A,B(X) = EA(EB(X)) for an ideal
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cipher E. Instead, we choose a secret Y �M, where M is the message space, and demand that the
strings ET1

K1,K
(X) and ET2

K2,K
(X) be indistinguishable from ET1

K1,K
(Y ) and ET2

K2,K
(Y ).

The definitional intricacies for dual-key ciphers arise from wanting to require of a DKC little more
than what is actually needed to prove Garble1. Too strong a definition for DKC security and interesting
instantiations will be lost.

5.3 Security of Garble1

Our definition of DKC security suffices to prove security for Garble1. The result is stated below and
proven in Section 5.4.

Theorem 10. Let E be a secure dual-key cipher. Then G = Garble1[E] ∈ GS(prv.ind, Φtopo).

The theorem is underlain by an explicit, blackbox, uniform reduction U such that if A(1k) outputs
circuits of at most r wires and fan-out at most ν, then D = UA achieves advantage Advdkc

E (D, k) ≥
1
2rAdvprv.ind, Φtopo

G (A, k) and makes Q ≤ 2ν oracle queries, with E[Q] < 4. It runs in time about that of
A plus the time for 4r computations of E on k-bit keys. The small overhead implicit in the word “about”
is manifest in the proof. The above assumes that r ≤ 2τ(k)−2. In asymptotic statements, r and ν are
understood as polynomials r(k) and ν(k).

We comment that Garble1 does not satisfy obliviousness or authenticity. To defeat obliviousness, an
adversary can just make the query (AND, OR, 00, 11) to receive (F,X), and then evaluate Y = Ev(F,X),
returning 1 if De(ε, Y ) = 1 and 0 otherwise. This adversary has advantage 1. To defeat authenticity, an
adversary can query (OR, 11), and then output (0k, 0k). Again it has advantage 1. We will soon describe
Garble2 that satisfies obliviousness and authenticity in addition to privacy.

The primitive used by Lindell and Pinkas [41] as a basis for encryption of gate rows is a randomized,
IND-CPA secure symmetric encryption scheme with an elusive and efficiently verifiable range. Dual-
key ciphers, in contrast, are deterministic. Our PRF-based instantiation avoids probabilistic encryption.
Besides speed it results in shorter ciphertexts for each row of each gate. The additional properties of
encryption assumed by LP [41] are to allow the evaluator to know which gate entry is the “correct” one.
Our solution via type bits (the “point-and-permute” technique, which dates to Rogaway [51]) is well
known.

5.4 Proof of security of Garble1

We adopt the following convention for the code-based games. Any procedure with the keyword “private”
is the local code of the caller, and cannot be invoked by adversary A. It can be viewed as a function-like
macro in C/C++ programming language. That is, it still has read/write access to the variables of the
caller, even if these variables are not its parameters. In addition, any variable created by the callee still
persists and is available to the caller after the callee is terminated. In this proof, the word “correct”
means “as specified in game PrvIndGarble1[E],Φtopo

”.

Overview. Without loss of generality, assume that A outputs (f0, f1, x0, x1) that satisfies Φtopo(f0) =
Φtopo(f1) = (n,m, q,A′, B′), x0, x1 ∈ {0, 1}n, and ev(f0, x0) = ev(f1, x1). We reformulate the game
PrvIndGarble1[E],Φtopo

as game Real, and specify another game Fake whose output is independent of its

challenge bit; thus Pr[FakeA(k)] = 1/2. We also describe hybrid games Hy0, . . . ,Hyn+q−m such that the
first and last hybrid games are Real and Fake respectively. We then design a DKC adversary D that
runs A. Informally, D chooses a bit c� {0, 1} and an index ℓ� {1, . . . , q + n}, and uses the oracle
Encrypt to garble (fc, xc). When A halts with output c′, adversary D returns 1 if c′ = c. If ℓ > q+n−m
then D never queries Encrypt; consequently, whatever A receives is independent of the challenge bit of
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game DKC, and thus D’s advantage is 0. Suppose that ℓ ≤ q + n −m. Then, D aims to simulate game
Hyℓ−1 if the challenge bit b of game DKC is 1, and simulate game Hyℓ if b = 0. Hence, for each fixed
topological circuit (n,m, q,A′, B′),

Pr
[
DKCD(k) | b = 1

]
=

1

n+ q

n+q−m∑
ℓ=1

Pr
[
HyAℓ−1(k)

]
Pr

[
¬DKCD(k) | b = 0

]
=

1

n+ q

n+q−m∑
ℓ=1

Pr
[
HyAℓ (k)

]
Subtracting, we bound

Advdkc
E (D, k) = Pr

[
DKCD(k) | b = 1

]
− Pr

[
¬DKCD(k) | b = 0

]
≤ 1

n+ q

(
Pr

[
HyA0 (k)

]
− Pr

[
HyAn+q−m(k)

])
=

Pr
[
RealA(k)

]
− 1/2

n+ q

=
Advprv.ind, Φtopo

G (A, k)
2(n+ q)

.

Game Real. Consider game Real in Fig. 10. We claim that it coincides with game PrvIndGarble1[E],Φtopo
.

To justify this, recall that in the Garble1 scheme, each wire i carries tokens X0
i and X1

i with semantics 0
and 1 respectively. If wire i ends up having value (semantics) vi in the computation y ← ev(fc, xc),
where c is the challenge bit of game PrvIndGarble1,Φtopo , then token Xvi

i becomes visible to the adversary
while Xvi

i stays invisible. Game Real makes this explicit. It picks for each wire i a “visible” token and
an “invisible” one. It then ensures that the tokens the adversary gets are the visible ones. Procedure
ev(f, x, i) at line 03 returns the bit value of wire i in the evaluation of circuit f on input x. Formally,

proc ev(f, x, i)
(n,m, q,A,B,G)← f
for g ← n+ 1 to n+ q do a← A(g), b← B(g), xg ← Gg(xa, xb)
return xi

Let us give the high-level description of procedures Garb and Garb$. Let ti be the last bit of the
visible token at wire i. If one has all visible tokens then one can open P [g, ta, tb] for every gate g,
where a and b are the first and second incoming wires of g respectively. Procedure Garb(Y, α, β) writes
to row P [g, ta ⊕ α, tb ⊕ β]. (As a “private” procedure, it inherits variables g, a, b, and t1, . . . , tn+q from
its caller.) The written value is the encryption of Y , instead of the correct token, but with the correct
keys and tweak. On the other hand, procedure Garb$(rnd, α, β) uses the correct keys and tweak to
build P [g, ta ⊕ α, tb ⊕ β]. If rnd = false then the plaintext is the correct token as well. Otherwise, it is a
uniformly random string. This plaintext, real or random, will be handed to the caller of Garb$.

Game Fake. Consider game Fake in Fig. 10. The game is identical to Real at garbled rows that
may be opened by the visible tokens. For other garbled rows, it sets the plaintexts in those rows to
be independent random strings instead of the correct tokens. (In the code, we always enable the flag
rnd of procedure Garb$ whenever we call it.) We claim that game Fake’s output is independent of its
challenge bit c. To justify this, from the topological circuit f− = (n,m, q,A′, B′) and the final output
y1 · · · ym = y = ev(fc, xc), which are independent of c, we can rewrite game Fake as below. There, we
refer to the visible token of wire i as Vi, and its invisible counterpart as Ii, omitting the semantics of
these tokens. Plaintexts Y are random, except for garbled rows that can be opened by visible tokens.
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00 proc Garble(f0, f1, x0, x1) Game Real / Game Fake
01 (n,m, q,A′, B′, G)← fc
02 for i ∈ {1, . . . , n+ q} do
03 vi ← ev(fc, xc, i)
04 if i ≤ n+ q −m then ti � {0, 1} else ti ← vi
05 Xvi

i � {0, 1}k−1ti, Xvi
i � {0, 1}k−1ti

06 for g ∈ {n+ 1, . . . , n+ q} do
07 a← A′(g), b← B′(g), Garb(X

vg
g , 0, 0)

08 Garb$(false, 1, 0), Garb$(false, 0, 1), Garb$(false, 1, 1) ←− Use in game Real

09 Garb$(true, 1, 0), Garb$(true, 0, 1), Garb$(true, 1, 1) ←− Use in game Fake

10 F ← (n,m, q,A′, B′, P )
11 return (F, (Xv1

1 , . . . , Xvn
n ), ε)

00 proc Garble(f0, f1, x0, x1) Game Hyℓ

01 (n,m, q,A′, B′, G)← fc
10 for i ∈ {1, . . . , n+ q} do
11 vi ← ev(fc, xc, i)
12 if i ≤ n+ q −m then ti � {0, 1} else ti ← vi
13 Xvi

i � {0, 1}k−1ti, Xvi
i � {0, 1}k−1ti

20 for g ∈ {n+ 1, . . . , n+ q} do
21 a← A′(g), b← B′(g), Garb(X

vg
g , 0, 0)

22 Garb$(a ≤ ℓ, 1, 0), Garb$(b ≤ ℓ, 0, 1), Y ← Garb$(a ≤ ℓ, 1, 1)
23 if a ≤ ℓ < b and Gg(va, 0) = Gg(va, 1) then Garb(Y, 1, 0)
24 F ← (n,m, q,A′, B′, P )
25 return (F, (Xv1

1 , . . . , Xvn
n ), ε)

30 private proc Garb(Y, α, β)
31 T ← g ∥ (ta ⊕ α) ∥ (tb ⊕ β)

32 A← Xva⊕α
a , B ← X

vb⊕β
b

33 P [g, ta ⊕ α, tb ⊕ β]← ET
A,B(Y )

40 private proc Garb$(rnd, α, β)

41 if rnd then Y � {0, 1}k else Y ← X
Gg(va⊕α,vb⊕β)
g

42 Garb(Y, α, β)
43 return Y

Fig. 10. Games Real, Fake, and Hyℓ (for 0 ≤ ℓ ≤ n + q − m) used in the proof of Theorem 10. Each game has
a procedure Initialize() that samples a challenge bit c� {0, 1}. All variables are global. Each game has local procedures
Garb and Garb$ to which the adversary A has no access. The procedure Finalize(c′) of each game returns (c = c′). At
line 03 we let ev(f, x, i) return the bit value of wire i in the evaluation of f on input x.

for i ∈ {1, . . . , n+ q} do
if i ≤ n+ q −m then ti � {0, 1} else ti ← yi−(n+q−m)

Vi � {0, 1}k−1ti, Ii � {0, 1}k−1ti

for g ∈ {n+ 1, . . . , n+ q} do
a← A′(g), b← B′(g)

for (A,B) ∈ {Va, Ia} × {Vb, Ib} do
if A = Va and B = Vb then Y ← Vg else Y � {0, 1}k

T ← g ∥ lsb(A) ∥ lsb(B), P [g, lsb(A), lsb(B)]← ET
A,B(Y )

F ← (n,m, q,A′, B′, P )

return (F, (V1, . . . , Vn), ε)

Hybrids. Now consider the hybrid games Hyℓ of Fig. 10, defined for 0 ≤ ℓ ≤ n + q − m. For better
readability, we describe them in two equivalent ways. We first give the recursive approach: game Hy0
coincides with game Real, and we will describe how to go to game Hyℓ from game Hyℓ−1, for every
ℓ ∈ {1, . . . , n+q−m}. This will help explain the strategy of our constructed DKC adversary. Alternatively,
we describe each hybrid game directly, which explains how to write the code.

We first give the recursive construction. In each game, every garbled row always has the correct keys
and tweak. Fix ℓ ∈ {1, . . . , n + q − m}. In game Hyℓ, first run the code of game Hyℓ−1, and then do
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Fig. 11. Garbled circuits of hybrid games, assuming that we garble (fc, xc) = (OR, 00). There are three games:
Real(Hy0),Hy1, and Fake(Hy2). On the left, we draw the common form of the garbled circuit for these games. The keys and
tweak for each row are the same for every game, but the plaintexts Y0, Y1, Y2 will be different. For each wire i, the token
with semantics 0, that is, X0

i is written on top; the token with semantics 1, that is X1
i is written on bottom; visible tokens

are colored. The table on the right tells what Y0, Y1, Y2 are, for each game; strings P,Q, and R are uniformly random. For
example, the cell at the second row and second column indicates that in game Real, plaintext Y0 is token N of wire 3.

the following update ∆ℓ. For each token, associate it to a fresh uniformly random k-bit string. The two
games Hyℓ−1 and Hyℓ differ only at garbled rows that use the invisible token of wire ℓ as a key. Consider
such a row. If the current plaintext is a token then replace it with its associated random string above.
Otherwise, sample a fresh uniformly random k-bit string, and let it be the new plaintext. See Fig. 11
for illustration. In other words, for each gate g, if we hop on the chain ∆1, . . . , ∆n+q−m, we’ll visit g
exactly twice, the first time in ∆a, and the second time in ∆b, where a and b are the first and second
incoming wires of g respectively. In the first visit, we modify rows P [g, ta, 0] and P [g, ta, 1], changing the
plaintexts from two tokens to random strings—the latter will be identical if the former are the same,
namely Gg(va, 0) = Gg(va, 1), otherwise they will be independent. In the second visit, we modify rows
P [g, ta, tb] and P [g, ta, tb], changing their plaintexts from a token and a random string respectively to two
fresh, independent random strings.

Let us move on to the direct construction. Fix ℓ ∈ {0, . . . , n + q −m}. We will describe game Hyℓ.
Each garbled row will be built from the correct keys and tweak. For rows that can be opened by visible
tokens, their plaintexts are always the correct tokens. For other rows, consider a gate g with first and
second incoming wires a and b respectively. Note that in ∆1, . . . , ∆n+q−m, the first update to P [g, ta, 0]
and P [g, ta, 1] is in ∆a. Hence if a ≤ ℓ then the plaintexts of these two rows will be the correct tokens.
Else they are random strings—identical if Gg(va, 0) = Gg(va, 1) and ℓ < b, and independent otherwise.
Likewise, if b ≤ ℓ then the plaintext in row P [g, ta, tb] is the correct token, otherwise it is a random string
independent of anything else.

We claim that game Hyn+q−m coincides with game Fake. It is easily verified, as when ℓ = n+ q −m,
at line 22, procedure Garb$ is always invoked with rnd = true, and line 23 is never executed.

DKC adversary. Adversary D, given 1k and a bit τ from procedure Initialize(), runs A(1k). When
the latter makes a Garble(f0, f1, x0, x1) query, it replies via the code of Fig. 12. Recall that D chooses
a bit c� {0, 1} and an index ℓ� {1, . . . , q+n}, and uses the oracle Encrypt to garble (fc, xc). When A
halts with output c′, adversary D returns 1 if c′ = c. If ℓ > q+ n−m then D never queries Encrypt, as
lines 22–23 never get executed. Consequently, whatever A receives is independent of the challenge bit of
game DKC, and thus D’s advantage is 0. Suppose that ℓ ≤ q + n −m. Then, D aims to simulate game
Hyℓ−1 if the challenge bit of game DKC is 1, and simulate game Hyℓ otherwise. Below, we will give a
high-level description of the code of D.

Initially, the adversary D picks the types ti for every wire i ̸= ℓ as in game Real. We want the key K
of game DKC to play the role of the invisible token of wire ℓ, so tℓ is the complement of the bit τ given
from procedure Finalize() of game DKC. Adversary D first walks through gates that ℓ is an incoming
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00 proc Garble(f0, f1, x0, x1) // as defined by adversary D
01 c� {0, 1}, (n,m, q,A′, B′, G)← fc, ℓ� {1, . . . , q + n}
10 for i ∈ {1, . . . , n+ q} do ti ← vi ← ev(fc, xc, i)
11 for i← {1, . . . , n+ q −m} do ti � {0, 1}
12 for g ∈ {n+ 1, . . . , n+ q} do
13 a← A′(g), b← B′(g), tℓ ← τ //τ = lsb(K)
14 if a = ℓ then Query(false, 1, 0), Query(false, 1, 1)
15 if b = ℓ then Query(false, 0, 1), Yg ← Query(true, 1, 1)
20 for i ∈ {1, . . . , n+ q} do
21 if Xvi

i = ⊥ and i ̸= ℓ then Xvi
i � {0, 1}k−1ti

22 if Xvi
i = ⊥ then Xvi

i � {0, 1}k−1ti
30 for g ∈ {n+ 1, . . . , n+ q} do
31 a← A′(g), b← B′(g), Garb(X

vg
g , 0, 0)

32 if a ̸= ℓ and b ̸= ℓ then

33 Garb$(a ≤ ℓ, 1, 0), Garb$(b ≤ ℓ, 0, 1), Y ← Garb$(a ≤ ℓ, 1, 1)
34 if a ≤ ℓ < b and Gg(va, 0) = Gg(va, 1) then Garb(Y, 1, 0)
35 elsif a = ℓ then Garb$(false, 0, 1)
36 else Garb$(true, 1, 0), if Gg(va, 0) = Gg(va, 1) then Garb(Yg, 1, 0)
37 F ← (n,m, q,A′, B′, P )
38 return (F, (Xv1

1 , . . . , Xvn
n ), ε)

40 private proc Query(rnd, α, β)
41 T ← g ∥ (ta ⊕ α) ∥ (tb ⊕ β)
42 γ ← vg ⊕Gg(va ⊕ α, vb ⊕ β)
43 if a = ℓ then
44 pos ← 1, i← 2b+ (tb ⊕ β)
45 else
46 pos ← 0, i← 2a+ (ta ⊕ α)
47 if rnd then
48 j� {2(g + n+ q), 2(g + n+ q) + 1}
49 else
50 j ← 2g + (tg ⊕ γ)
51 (Ki,Kj , Z)← Encrypt(i, j, pos, T )
52 P [g, ta ⊕ α, tb ⊕ β]← Z
53 if a = ℓ then

54 X
vb⊕β
b ← Ki

55 else
56 Xva⊕α

a ← Ki

57 if rnd then X
vg⊕γ
g ← Kj

58 return Kj

Fig. 12. Constructed DKC adversary D. Procedure Garble used by adversary D attacking E, based on the adversary A
attacking the prv.ind-security of Garble1. All variables are global. Adversary D also makes use of procedures Garb and
Garb$ in Fig. 10. Adversary A has no access to procedure Query that is a local procedure of D. At line 13, the bit τ is
the last bit of the key K of game DKC given to D by Initialize().

wire. It will query the oracle Encrypt (via procedure Query) to write to garbled rows that are supposed
to use the invisible token at wire ℓ as a key; these rows are determined by τ .

We need make sure that in both games Hyℓ−1 and Hyℓ, there is no garbled row that uses the invisible
token of wire ℓ as its plaintext. This claim is obvious if ℓ ≤ n, namely, wire ℓ is an input wire. If ℓ > n then
due to the topological ordering of gates, both incoming wires of gate ℓ must stay in the set {1, . . . , ℓ− 1},
and the sequence ∆1, . . . , ∆ℓ−1 therefore must change the plaintexts in all rows of gate ℓ that can’t be
opened by visible tokens to random strings, expelling the invisible token of wire ℓ.

We now give the high-level description of the “private” procedure Query(rnd, α, β). The assumption
is that ℓ must be one of the incoming wires a and b of gate g. This procedure will write to the row
P [g, ta ⊕ α, tb ⊕ β]; the keys and tweak of this row are always correct; the flag rnd will indicate if the
plaintext, in game Hyℓ−1, is the correct token (rnd = false) or a random string (rnd = true). The written
value Z is obtained from the answer (Ki,Kj , Z) of Encrypt; we will describe how to choose i and j for
querying later. Then Z is the encryption of either Kj (if the challenge bit of game DKC is 1) or a random
string Rj (if the challenge bit is 0), and the keys will be K and Ki. Let {w} = {a, b}\{ℓ}. Recall that D
did not initialize the tokens except the types. Assign value Ki to the token of wire w that is a correct
key of P [g, ta ⊕ α, tb ⊕ β]; let t be the type of this token. As the type of Ki is i mod 2, initially, choose
i = 2w + t. If rnd is false then we want to assign Kj to the token of wire g that is the correct plaintext
of P [g, ta ⊕ α, tb ⊕ β]; let the type of this token be t′. Then, choose j = 2g+ t′. On the other hand, if rnd
is true then we just want Kj to be a fresh random string, so pick j� {2(n+ q + g), 2(n+ q + g) + 1}.

How should D call Query? If ℓ = a then we want to write to rows P [g, ta, 0] and P [g, ta, 1]. Let
rnd = false for both of them. Consequently, if the challenge bit of game DKC is 1 then the plaintexts
of two rows above are the correct tokens, which is what we need for game Hyℓ−1, since Hyℓ−1 doesn’t
modify these rows of gate g. If, on the other hand, the challenge bit is 0 then from the description of game
DKC, the plaintexts of two rows above are random strings—either independent or identical, depending
on whether the two tokens in game Hyℓ−1 are different or the same. This gives what we need to construct
game Hyℓ. Now consider the case ℓ = b. We want to write to rows P [g, ta, tb] and P [g, ta, tb]. For the
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former, similarly, let rnd = false. For the latter, note that in both games, the plaintext of this row is
a random string. Moreover, we claim that this string is independent of the plaintext of P [g, ta, tb]. Our
claim is true for game Hyℓ, as ∆b replaces the two plaintexts from a token and a random string to two
fresh, independent random strings. It is also true for game Hyℓ−1, as the plaintext of row P [g, ta, tb] is a
token. Hence let rnd = true. We obtain from the oracle Encrypt a random string Yg that will be the
plaintext of row P [g, ta, tb] if the challenge bit of game DKC is 1. Save it for a later use.

By calling Query, adversary D creates some tokens. The next step is to sample the other tokens
according to their types, except for the invisible token of wire ℓ. Now manually construct the still vacant
rows as follows. For gates that ℓ is not an incoming wire, as the two games Hyℓ−1 and Hyℓ agree on rows
of this gate, follow the code of game Hyℓ. Consider another gate g of first and second incoming wires a
and b respectively, with ℓ ∈ {a, b}. each row has correct keys and tweaks. If a row can be opened by
visible tokens then its plaintext is also the correct token. Otherwise, if ℓ = a then the only still vacant
row is P [g, ta, tb], whose plaintext is also the correct token in both games Hyℓ−1 and Hyℓ. If ℓ = b then
the only vacant row is P [g, ta, tb], whose plaintext is random in both games Hyℓ−1 and Hyℓ. But, is this
random string independent of anything else or must it be a prior random string? The latter happens in
game Hyℓ−1 if Gg(va, 0) = Gg(va, 1), as the plaintexts in rows P [g, ta, 0] and P [g, ta, 1] are identical. If so,
recall that previously, we saved a random string Yg. If the challenge bit of game DKC is 1 then Yg is the
plaintext of row P [g, ta, tb]. Otherwise Yg is independent of anything else. Now, let Yg be the plaintext of
row P [g, ta, tb]. This yields the intended construction for both games.

Having constructed D, we now argue that it is nonadaptive because (i) the only way that D can query
Encrypt is via Query and in the body of Query, we don’t make use of the prior answers of Encrypt,
(ii) the Query calls are deterministic for a fixed ℓ, and (iii) D creates the types before using Query.

Resources accounting. Let Q be the random variable denoting the number of queries of D to the
oracle Encrypt. Fix the topological circuit (n,m, q,A,B). Let νi be the number of gates that wire i is
an incoming wire. Hence νi ≤ ν, and

n+q−m∑
i=1

νi = 2q,

as both sides of this equality count the total number of incoming wires of all gates. Note that Q is
uniformly distributed over the (q + n)-element multiset {2ν1, . . . , 2νn+q−m, 0, . . . , 0}. Hence Q ≤ 2ν, and

E[Q] =
1

n+ q

n+q−m∑
i=1

2νi =
4q

q + n
< 4 .

5.5 Dual-key ciphers from a PRF

Our primary interest will be in instantiating a dual-key cipher via a PRF. Let F associate to key K ∈
{0, 1}k−1 a map FK : {0, 1}τ(k) → {0, 1}k. We require that the map K,T 7→ FK(T ) be polynomial-time
computable. We refer to τ as the input length.

The prf-advantage of an adversary D against F is Advprf
F (D, k) = 2Pr[PRFD

F (k)] − 1 where game
PRFF is as follows. Initialize picks a random bit b and a random (k− 1)-bit key K. The adversary has
access to procedure Fn that maintains a table Tbl[·] initially everywhere undefined. Given T ∈ {0, 1}τ(k),
the procedure returns F(K,T ) if b = 1. Otherwise, it picks and returns Tbl[T ]� {0, 1}k if Tbl[T ] = ⊥, or
returns Tbl[T ] if Tbl[T ] ̸= ⊥. Finalize(b′) returns (b = b′). We say that F is PRF-secure if Advprf

F (D, ·)
is negligible for all polynomial-time adversaries D.

Given a PRF F as above, we define the dual-key cipher E via ET
A,B(P ) = FA[1:k−1](T )⊕FB[1:k−1](T )⊕P .

This dual-key cipher has tweak length τ and is denoted E[F]. During evaluation, token types are revealed,
but the entire key of F remains secret.
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proc Initialize()

a, b� {0, 1}
return a

proc Encrypt(i, j, pos, T )

if used[T ] or i ≥ j then return ⊥
used[T ]← true

if Ki = ⊥ then A� {0, 1}k−1, Ki ← A ∥ (i mod 2)

if Kj = ⊥ then B� {0, 1}k−1, Kj ← B ∥ (j mod 2)

if Rj = ⊥ then Rj � {0, 1}k
X1 ← Kj , X0 ← Rj

return (Ki,Kj ,Fn(T )⊕ FA(T )⊕Xb)

Fig. 13. Proof of Theorem 11. The code is for the adversary B, which has a PRF oracle Fn.

The following result establishes that E[F] is a good DKC when F is a good PRF. The reduction is tight
and explicit. More specifically, the proof provides a blackbox reduction such that for any adversary A(1k)
attacking E[F] there is an adversary B(1k) attacking F for which Advprf

F (B, k) = 0.5Advdkc
E[F](A, k). If A

makes Q queries to Encrypt then B also makes Q queries to the PRF oracle Fn. The running time of B
is about that of A, where the meaning of “about” is manifest in the proof that follows the theorem.

Theorem 11. Let F be a PRF. Then E[F] is a secure dual-key cipher.

Proof. Fix an adversary A attacking E[F]. Consider the following adversary B attacking F. Adversary
B(1k) runs A(1k), and follows the code of Fig. 13. In words, initially, B samples b� {0, 1}. For each query
(i, j, pos, T ), if one of Ki,Kj , or Rj is not defined, it is sampled according to the distribution specified in
game DKC. Then, B returns Fn(T )⊕FA(T )⊕Xb to A, where A = Kj [1 : k− 1], X0 = Rj , and X1 = Kj .
Finally, when A outputs a bit b′, adversary B will output 1 only if b′ = b. Then

Pr[PRFB(k) | c = 1] = Pr[DKCA(k)] and Pr[¬PRFB(k) | c = 0] = 1/2

where c is the challenge bit of game PRF. To justify the second claim, note that if c = 0 then Fn(T ) ⊕
FA(T ) ⊕ Xb is a uniformly random string independent of Xb, and thus the answers to A’s queries are

independent of b. Subtracting, we obtain Advprf
F (B, k) = 1

2Advdkc
E[F](A, k). ⊓⊔

The instantiation of a DKC E by way of E[F] is by no means the only reasonable instantiation, nor the
only one that can be proven secure. We now investigate further instantiations, going all the way to a
blockcipher.

5.6 Dual-key ciphers from double encryption

We also prove the dkc-security of the instantiation E[E] in which ET
A,B(X) = EA(EB(X)), with E being

an ideal cipher. In the theorem below, we will show that if an adversary A makes Q queries to the
Encrypt oracle, and qE queries to E and E−1 then Advdkc

E[E](A, k) ≤ (10Q2 + 4Q+ 8qE)/2
k. The above

assumes that Q+ qE ≤ 2k−3.

Theorem 12. Let E be an ideal cipher. Then E[E] is a secure dual-key cipher.

Proof. Consider games G0–G5 in Fig. 14. In each game, adversary A has indirect access to E and E−1

by calling procedures Enc and Dec. Game G0 corresponds to game DKC, with strings Ki and Ri lazily
sampled. Suppose that A(1k) makes qE queries to Enc and Dec, and Q queries to Encrypt, with
qE +Q ≤ 2k−3.
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00 proc Initialize()

01 b� {0, 1}, K� {0, 1}k
02 Keys← {K}
03 return lsb(K)

04 proc Enc(A,B)
05 return EA(B)

06 proc Dec(A,B)
07 return E−1

A (B)

10 proc Encrypt(i, j, pos, T ) Game G0 G1

11 if used[T ] or i ≥ j then return ⊥
12 used[T ]← true, s← i mod 2, t← j mod 2
13 if Ki = ⊥ then

14 Ki � {0, 1}k−1s

15 if Ki = K then bad ← true, Ki � {0, 1}k−1s \Keys

16 Keys← Keys ∪ {Ki}
17 if Kj = ⊥ then

18 Kj � {0, 1}k−1t

19 if Kj = K then bad ← true, Kj � {0, 1}k−1t \Keys

20 Keys← Keys ∪ {Kj}
21 if Rj = ⊥ then Rj � {0, 1}k
22 X1 ← Kj , X0 ← Rj

23 if pos = 1 then X ← EKi(Xb) else X ← Xb

24 Y ← EK(X)
25 if pos = 1 then return (Ki,Kj , Y )
26 else return (Ki,Kj , EKi(Y ))

30 proc Initialize()

31 b� {0, 1}k, K� {0, 1}k
32 Keys← {K}
33 return lsb(K)

34 proc Enc(A,B)
35 if A ̸= K then return EA(B)

36 bad ← true, return ⊥
37 if B ̸∈ Dom(π) then

38 Y ← {0, 1}k\Ran(π), π[B]← Y
39 return π[B]

40 proc Dec(A,B)
41 if A ̸= K then return E−1

A (B)

42 bad ← true, return ⊥
43 if B ̸∈ Ran(π) then

44 X ← {0, 1}k\Dom(π), π[X]← B
45 return π−1[B]

50 proc Encrypt(i, j, pos, T ) Game G2 G3

51 if used[T ] or i ≥ j then return ⊥
52 used[T ]← true, s← i mod 2, t← j mod 2

53 if Ki = ⊥ then Ki � {0, 1}k−1s \Keys, Keys← Keys ∪ {Ki}
54 if Kj = ⊥ then Kj � {0, 1}k−1t \Keys, Keys← Keys ∪ {Kj}
55 if Rj = ⊥ then Rj � {0, 1}k
56 X1 ← Kj , X0 ← Rj

57 if pos = 1 and Y ← H[(i, j)] ̸= ⊥ then return (Ki,Kj , Y )
58 if pos = 0 and Y ← H[j] ̸= ⊥ then return (Ki,Kj , EKi(Y ))
59 if pos = 1 then X ← Enc(Ki, Xb) else X ← Xb

60 if X ̸∈ Dom(π) then Y � {0, 1}k\Ran(π), π[X]← Y
61 Y ← π[X]
62 if pos = 1 then H[(i, j)]← Y , return (Ki,Kj , Y )
63 else H[j]← Y , return (Ki,Kj , EKi(Y ))

70 proc Initialize()

71 b� {0, 1}k, K� {0, 1}k
72 Keys← {K}
73 return lsb(K)

74 proc Enc(A,B)
75 if A ̸= K then return EA(B)
76 return ⊥

77 proc Dec(A,B)
78 if A ̸= K then return E−1

A (B)
79 return ⊥

80 proc Encrypt(i, j, pos, T ) Game G4 G5

81 if used[T ] or i ≥ j then return ⊥
82 used[T ]← true, s← i mod 2, t← j mod 2

83 if Ki = ⊥ then Ki � {0, 1}k−1s \Keys, Keys← Keys ∪ {Ki}
84 if Kj = ⊥ then Kj � {0, 1}k−1t \Keys, Keys← Keys ∪ {Kj}
85 if Rj = ⊥ then Rj � {0, 1}k
86 X1 ← Kj , X0 ← Rj

87 if pos = 1 and Y ← H[(i, j)] ̸= ⊥ then return (Ki,Kj , Y )
88 if pos = 0 and Y ← H[j] ̸= ⊥ then return (Ki,Kj , EKi(Y ))
89 if pos = 1 then X ← EKi(Xb) else X ← Xb

90 Y � {0, 1}k
91 if X ̸∈ Dom(π) then π[X]← Y

92 else bad ← true, Y ← π[X]

93 if pos = 1 then H[(i, j)]← Y , return (Ki,Kj , Y )
94 else H[j]← Y , return (Ki,Kj , EKi(Y ))

Fig. 14. Games for the proof of Theorem 12. Procedure Finalize(b′) returns (b = b′). Games G1, G3, and G4 include
the corresponding boxed statements, but games G0, G2, and G5 do not.
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We explain the game chain up until the terminal game. �G0 → G1 : Instead of sampling keys K
and Ki independently, we sample them so that they are pairwise distinct. The two games are identical
until either game sets bad. Moreover,

Pr[BAD(GA
0 (k))] ≤

2Q∑
ℓ=1

ℓ/2k−1 = 2Q(2Q+ 1)/2k = (4Q2 + 2Q)/2k .

�G1 → G2 : Instead of calling EK(·) and E−1
K (·), we lazily implement an ideal permutation π. In

addition, we keep track of prior answers by an array H so that we can answer for “redundant” queries
without using π as follows. For each Encrypt query (i, j, 1, T ), we use the array H to store H[(i, j)]← Y ,
where Y is the answer to A. Later, if Amakes another query (i, j, 1, T ∗), we immediately return Y without
looking up π. Likewise, for each Encrypt query (i, j, 0, T ), we store H[j] ← Y , where EKi(Y ) is the
answer to A. Later, if A makes another query (i∗, j, 0, T ∗), we immediately return EKi∗ (Y ) without
using π. The changes are conservative.

�G2 → G3 : we take away from the adversary the power of querying Enc(K, ·) and Dec(K, ·). The
two games are identical until game G3 sets bad. Consider a query to Enc or Dec. Since all strings Ki

are different from K, the last bit of K is public, and each prior query to Enc or Dec removes at most a
value for K, there are at least 2k−1 − 2Q− qE equally likely values for K. Hence,

Pr[BAD(GA
2 (k))] ≤ qE/(2

k−1 − 2Q− qE) ≤ qE/2
k−2

where the second inequality is due to the assumption that Q+ qE ≤ 2k−3. �G3 → G4 : Instead of imple-
menting π as an ideal permutation, we implement it as an ideal function. By the PRP/PRF Switching
Lemma, Pr[GA

3 (k)]− Pr[GA
4 (k)] ≤ Q(Q− 1)/2k+1.

�G4 → G5 : Instead of calling Y ← π[X], we sample Y uniformly. The two games are identical untilG4

sets bad. Consider the ℓth Encrypt query (i, j, pos, T ), and let X be the string defined at line 89 on
this query. For game G4 to set bad, if pos = 1 then there must be no prior query (i, j, 1, T ∗), and if
pos = 0 then there must be no prior query (i∗, j, 0, T ∗); otherwise in this query, line 92 is unreachable and
bad won’t be set. The flag bad is triggered only if X ∈ Dom(π), where Dom(π) is the set of the points
that π[·] is defined prior to this query. For each P ∈ Dom(π), we claim that the chance that X = P is at
most 2−k. Hence by union bound,

Pr[BAD(GA
4 (k))] ≤

Q∑
ℓ=1

(ℓ− 1)/2k = Q(Q− 1)/2k+1 .

We can justify the claim above by the following tedious case analysis. Suppose that P was added to
Dom(π) by A’s querying (i∗, j∗, pos∗, T ∗).

Case 1: X = EKi(Kj) and P = EKi∗ (Kj∗). If i = i∗ then as mentioned above, j ̸= j∗ so that we can
reach line 92 to set bad, and thus Kj ̸= Kj∗ since Bad doesn’t happen. Then X ̸= P because EKi is a
permutation. On the other hand, if i ̸= i∗ then Ki ̸= Ki∗ . Then Pr[X = P ] = 2−k, since EKi and EKi∗

are independent ideal permutations, and A is nonadaptive.

Case 2: X = EKi(Rj) and P = EKi∗ (Rj∗). If i = i∗ then as mentioned above, j ̸= j∗ so that we
can reach line 92 to set bad. Then X = P only if Rj = Rj∗ , because EKi is a permutation. However,
Pr[Rj = Rj∗ ] = 2−k, since we sample Rj and Rj∗ independently, and A is nonadaptive. On the other
hand, if i ̸= i∗ then Ki ̸= Ki∗ . Hence Pr[X = P ] = 2−k, since EKi and EKi∗ are independent ideal
permutations, and A is nonadaptive.

Case 3: X ∈ {EKi(Kj), EKi(Rj)} and P ∈ {Kj∗ , Rj∗}. Then Pr[X = P ] = 2−k, as EKi is an ideal
permutation, and A is nonadaptive.
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Case 4: X ∈ {Kj , Rj} and P ∈ {EKi∗ (Kj∗), EKi∗ (Rj∗)}. As in Case 3, the chance that X = P is 2−k.

Case 5: X = Kj and P = Kj∗ . As mentioned above, j ̸= j∗ so that we can reach line 92 to set bad, and
thus Kj ̸= Kj∗ .

Case 6: X = Rj and P = Rj∗ . As mentioned above, j ̸= j∗ so that we can reach line 92 to set bad. But
Pr[Rj = Rj∗ ] = 2−k, because we sample Rj and Rj∗ independently, and A is nonadaptive.

Back to our games, note that the outputs of gameG5 are independent of the challenge bit b. (IfA asks a
redundant query then we give an answer consistent to the prior ones. Otherwise, we give a random answer.)
Hence Pr[GA

5 (k)] = 1/2, and thus Advdkc
E[E](A, k) = 2Pr[GA

0 (k)] − 1 = 2(Pr[GA
0 (k)] − Pr[GA

5 (k)]) ≤
(10Q2 + 2Q+ 8qE)/2

k. ⊓⊔

Unwinding the results. One needs to be careful in combining Theorems 10 and 12 to obtain a
good bound on the security of Garble1 when instantiated with a DKC made by double encryption. Let
adversary A attack Gb1[E[E]] and assume A(1k) outputs circuits of at most r ≤ 2τ(k)−2 wires and fan-out
at most ν. Suppose that it makes at most QE queries to E and E−1. The corresponding DKC adversary D
needs to use at most 4r calls to E for garbling, and thus makes at most qE = 8r+QE queries to E and E−1.
Then, from Theorems 10 and 12, there is a random variable 0 < Q ≤ 2ν such that

Advprv.ind, Φtopo

Garble1[E[E]](A, k) ≤
r

2k
· (20E[Q2] + 4E[Q] + 16qE)

≤ r

2k
· (20E[2νQ] + 4E[Q] + 16QE + 128r)

< 160rν/2k + 16r/2k + 16rQE/2
k + 128r2/2k .

The bound is quite satisfactory. Above, the expectation E[Q] appears in the first inequality because
our advantage notion satisfies the following linearity condition: if an adversary A behaves as adversary A1

with probability p, and behaves likeA2 otherwise, thenAdvprv.ind, Φtopo

G (A, k) = pAdvprv.ind, Φtopo

G (A1, k)+

(1− p)Advprv.ind, Φtopo

G (A2, k).

5.7 AES-based instantiations

We now consider concrete instantiations. This means we fix a value k of the security parameter and suggest
ways to realize E on k-bit keys based on blockciphers, specifically AES. Security for these instantiations
can be derived via the concrete security bounds that we stated above following Theorem 10. Different
choices of instantiation lead to different tradeoffs between assumptions and efficiency. We begin with ways
to instantiate F on (k − 1)-bit keys:

Let FK(T ) be the first k bits of EK(T ∥ 0) ∥EK(T ∥ 1) for a blockcipher E having block length and
key length of (k − 1); to be concrete, E = AES128, k = 129, |K| = 128, and τ = |T | = 127.
This construction is a good PRF under the standard assumption that E is a good PRP. With this
instantiation, evaluating a garbled gate costs four AES operations.

Let FK(T ) be EK∥0(T ) for a blockcipher having a k-bit key and block size, say E = AES128 and
k = τ = |T | = 128 and |K| = 127. Assuming that E is a good PRP is not enough to prove that F is
a good PRF, as zeroing out a bit of the key does not, in general, preserve PRF security [48]. Still, it
seems reasonable to directly assume this F is a good PRF. Costs are halved compared to the above;
now, evaluating a garbled gate requires two AES operations.

Next we suggest some further ways to make the dual-key cipher E directly, meaning not via a PRF. The
first follows the double-encryption realization of garbled gates attributed to Yao by Goldreich [21] (which
would have been understood that primitive to be probabilistic, not a blockcipher). The second method is
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200 proc Gb(1k, f)

201 (n,m, q,A′, B′, G)← f

202 for i ∈ {1, . . . , n+ q} do t� {0, 1}, X0
i � {0, 1}k−1t, X1

i � {0, 1}k−1t

203 for (g, i, j) ∈ {n+ 1, . . . , n+ q} × {0, 1} × {0, 1} do
204 a← A′(g), b← B′(g)

205 A← Xi
a, a← lsb(A), B ← Xj

b , b← lsb(B), T ← g ∥ a ∥ b, P [g, a, b]← ET
A,B

(
X

Gg(i,j)
g

)
206 F ← (n,m, q,A′, B′, P )

207 e← (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)

208 d← (X0
n+q−m+1, X

1
n+q−m+1, . . . , X

0
n+q, X

1
n+q)

209 return (F, e, d)

220 proc En(e, x)

221 (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

222 x1 · · ·xn ← x, X ← (Xx1
1 , . . . , Xxn

n )

223 return X

230 proc De(d, Y )

231 (Y1, . . . , Ym)← Y , (Y 0
1 , Y

1
1 , . . . , Y

0
m, Y 1

m)← d

232 for i ∈ {1, . . . ,m} do
233 if Yi=Y 0

i then yi ← 0

234 else if Yi=Y 1
i then yi ← 1 else return ⊥

235 return y ← y1 · · · ym

240 proc ev(f, x)

241 (n,m, q,A,B,G)← f , x1 · · ·xn ← x

242 for g ← n+ 1 to n+ q do

243 a← A(g), b← B(g)

244 xg ← Gg(xa, xb)

245 return xn+q−m+1 · · ·xn+q

250 proc Ev(F,X)

251 (n,m, q,A′, B′, P )← F , (X1, . . . , Xn)← X

252 for g ← n+ 1 to n+ q do

253 a← A′(g), b← B′(g)

254 A← Xa, a← lsb(A), B ← Xb, b← lsb(B)

255 T ← g ∥ a ∥ b, Xg ← DT
A,B

(
P [g, a, b]

)
256 return (Xn+q−m+1, . . . , Xn+q)

Fig. 15. Garbling scheme Garble2. Its components are (Gb,En,De,Ev, ev) where ev, shown for completeness, is canonical

circuit evaluation. We assume a dual-key cipher E with tweak length τ and let D denote its inverse.

extremely efficient—the most efficient approach now known. Implementation work is currently underway
to measure the magnitude of the gain:

Let ET
A,B(X) = EA(EB(X)) (the tweak is ignored), where E : {0, 1}k × {0, 1}k → {0, 1}k is a block-

cipher, say AES128. For a proof we would model E as an ideal cipher. Composition of encryption
schemes is understood by many researchers to be Yao’s original approach, although the earliest expo-
sitions make this seem doubtful.

Let ET
A,B(X) = Econst(K) ⊕ K ⊕ X where K = A ⊕ B ⊕ T and E = AES128, say, and const is a

fixed 128-bit string. Here k = τ = 128. With this instantiation evaluating a gate costs only 1 AES
operation. Even more important, all AES operations employ a single, fixed key. This allows one to
take full advantage of AES-NI hardware support to get extremely high speeds. For a proof, we would
model Econst(·) as a random permutation π, giving the adversary access to oracles for π and its inverse.

Other one-call, fixed-key schemes are possible, for obliviousness, authenticity, and adjustments to allow
the free-xor and row-reduction optimizations [35, 50].

Basing garbled-circuit evaluation on AES and employing AES-NI in an implementation was also
suggested by Kreuter, Shelat, and Shen [37]. They use AES-256, rekeying with gate evaluation.

6 Achieving Privacy, Authenticity and Obliviousness: Garble2

We now describe a scheme Garble2 that satisfies not only privacy but also obliviousness and authenticity.
The scheme is like Garble1 except, first, the last bit of a token is always uniform, even for output wires.
This will give obliviousness. Next, the string encoding the decoding function is made to list all the
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tokens for all the output wires, ordered to make clear which tokens have what semantics. This engenders
authenticity. See Fig. 15.

Talking through some of the pseudocode, line 202 now assigns a token with random semantics to each
and every wire. Lines 203–207 compute the garbled function F and encoding function e exactly as with
Garble1. Line 208 now records the vector of tokens for each of the m output wires. (Recall that, under
our conventions, the last m of the r total wires are the output wires, these providing the m output bits,
in order.) At lines 230–235 decoding procedure De, when presented a 2m-vector d and an m-vector Y ,
verifies that each component of the latter is in the corresponding set of two allowed values. If so, we
determine the correct semantics for this output bit using our convention that Y b

i has semantics b.

Garble2 simultaneously achieves privacy, obliviousness, and authenticity if instantiated in the same
manner as we instantiated Garble1. This is captured by the following result. Again, as per Corollary 2 it
does not matter whether we consider ind or sim, and for simplicity we pick the former.

Theorem 13. Let E be a secure DKC. Then G = Garble2[E] ∈ GS(prv.ind, Φtopo)∩GS(obv.ind, Φtopo)∩
GS(aut).

As usual this asymptotic claim is underlain by concrete blackbox reductions and concrete bounds as
follows. There are blackbox reductions Uxxx for xxx ∈ {prv.ind, obv.ind, aut} s.t. if A(1k) outputs circuits
of at most r wires and fan-out at most ν, and then D = UA achieves xxx-advantage of at least ε, then
D = UA

xxx achieves dkc-advantage at least ε/2r − 21−k, makes Q ≤ 2ν oracle queries, with E[Q] < 4. It
runs in time about that of A plus the time for 4r computations of E on k-bit keys.

Proof (Theorem 13). The privacy security can be proved by adapting the proof of Theorem 10 as follows.
First, for each output wire i, the type ti is chosen uniformly. Next, the games return (F, (Xx1

1 , . . . , Xxn
n ), d)

instead of (F, (Xx1
1 , . . . , Xxn

n ), ε), where d is defined as in line 208 of Fig. 15. In other words, for every
output wire i, in addition to the visible token of wire i, the games also return the invisible tokens of wire i,
which are independent of the challenge bit c . Moreover, since no incoming wire of some gate can be an
output wire, these invisible tokens won’t be used as keys for the dual-key cipher E. Hence the argument
in the proof of Theorem 10 still applies here.

For obliviousness security, we again adapt the proof of Theorem 10, with the following differences.
First, the games return (F, (Xx1

1 , . . . , Xxn
n )) instead of (F, (Xx1

1 , . . . , Xxn
n ), ε). Next, for every output wire i,

the type ti is uniformly random, and thus independent of the challenge bit c of each game, although we
may have ev(f0, x0) ̸= ev(f1, x1).

For authenticity security, we construct an adversary B such that

Advaut
G (A, k) ≤ Advprv.ind, Φtopo

G (B, k) + 21−k

where B’s running time is at most that of A plus an overhead linear to the size of A’s query. Moreover, B
let A do all the queries to the oracle Encrypt; so it has as many Encrypt queries as A. We then
apply the privacy proof to B. The adversary B(1k) runs A(1k). Suppose that A queries (f, x), with f =
(n,m, q,A,B,G). Without loss of generality, suppose that x ∈ {0, 1}n, otherwise A will have advantage 0,
and it’s trivial to construct B of advantage 0. Let y = y1 · · · ym = f(x). Adversary B then constructs a
circuit f ′ = (n,m, q,A,B,G′) as follows. For every gate g, if its outgoing wire j is an output wire then
G′

g is a constant function that always outputs yj−(n+q−m). Otherwise, G′
g = Gg. Adversary B queries

its oracle Garble with (f ′, f, x, x). Since f ′(x) = y and Φtopo(f
′) = Φtopo(f) and the side-information

function is Φtopo, the query (f ′, f, x, x) in game PrvIndG,Φtopo will not result in answer ⊥. Let (F,X, d)
denote the answer. Adversary B gives (F,X) to A as response to its query (f, x). It will output answer 1
if and only if the answer Y of A satisfies De(d, Y ) ̸= ⊥ and Y ̸= F (X). Then

Pr
[
PrvIndBG,Φtopo

(k) | b = 1
]
= Advaut

G (A, k), (5)
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where b is the challenge bit of game PrvIndG,Φtopo . We now show that

Pr
[
¬PrvIndBG,Φtopo

(k) | b = 0
]
≤ 21−k . (6)

Subtracting Eq. (5) and Eq. (6) will give the bound claimed in the theorem. Suppose that given (F,X),
adversary A outputs Y = (Y1, . . . , Ym). Let d = (Y 0

1 , Y
1
1 , . . . , Y

0
m, Y 1

m) and let i be the smallest integer
such that Yi ̸= Y yi

i . This integer i is well-defined if Y ̸= F (X) = (Y y1
1 , . . . , Y ym

m ). Consequently, if

De(d, Y ) ̸= ⊥ and Y ̸= F (X) then Yi must be Y yi
i . This uses the fact that Y yi

i ̸= Y yi
i , which is true

because the construction makes their type-bits unequal. Thus we have

Pr
[
¬PrvIndBG,Φtopo

(k) | b = 0
]
≤ Pr

[
Yi = Y yi

i | Y ̸= F (X)
]

. (7)

Let A∥a← Y yi
i , and let j = i+n+ q−m. Since the output bit at wire j is always yi, during the garbling

process of f ′, in line 205 of Fig. 15, we never encrypt token Y yi
i . Moreover, the token Y yi

i is not used as
a key of E. The string A is therefore independent of (F,X), and thus the right-hand side of Eq. (7) is at
most 21−k. ⊓⊔

7 Applications

We believe that most applications that employ garbled circuits can be recast to use an arbitrary garbling
scheme possessing one or more of the security properties we’ve defined. While a complete reworking of
all existing garbled-circuit-using applications is beyond the scope of this paper, we sketch two examples.
First we consider the classical use of garbled circuits for two-party SFE (Secure Function Evaluation)
and PFE (Private Function Evaluation). Then we consider their more recent use for securely encrypting
key-dependent messages.

7.1 Two-party SFE and PFE

The classic methods for SFE and PFE combine the garbled-circuit technique with oblivious transfer
(OT). The construction and proof are monolithic and complex, incorporating proofs of the garbled circuit
technique. Here we aim to show how use of our formalization can simplify this process to produce proofs
that are modular and thus simpler and more rigorous. We build SFE and PFE protocols by a modular
combination of an arbitrary garbling scheme and an arbitrary OT protocol, reducing the security of the
constructed protocol to the security of its two constituents. Besides simplicity we gain in flexibility of
instantiation, for we can plug in any garbling scheme meeting our definitions and immediately get new
SFE or PFE protocols that inherit the efficiency of the garbling scheme.

Classically, in SFE, a function f is public and the interaction results in party 1 learning f(x1∥x2)
(but no more) while party 2 learns nothing, where xi is the private input of party i ∈ {1, 2}. In PFE,
party 1 has a string x, party 2 has a function f and the outcome of the protocol is that party 1 learns
f(x) (but no more) while party 2 learns nothing. However, through the use of universal circuits, the two
versions of the problem are equivalent. Thus, we will treat only one. We pick PFE because it is more
directly obtained via garbling schemes.

It is part of our thesis that this type of program can and should be carried out rigorously and fully and
that our formalization of garbling schemes enables one to do this. To this end we provide self-contained
definitions of security for PFE (OT as a special case). These definitions are not the only possible ones,
nor necessarily the strongest, but we need to pin something down to provide a full treatment. The setting
here is that of honest but curious adversaries.

Two-party protocols. We view a two-party protocol as specified by a pair Π = (Π1,Π2) of PT
algorithms. Party i ∈ {1, 2} will run Π1 on its current state and the incoming message from the other
party to produce an outgoing message, a local output, and a decision to halt or continue. The initial state



34 Mihir Bellare Viet Tung Hoang Phillip Rogaway

proc GetView(x, f) Game PfeSimF,i,Φ,S

b� {0, 1}
if x ̸∈ {0, 1}f.n then return ⊥
if b = 1 then return view ← Viewi

Π(1k, x, f)
if i = 1 then return view ← S(1k, x, ev(f, x), Φ(f))
if i = 2 then return view ← S(1k, f, |x|)

Fig. 16. Game for defining the pfe.sim security of a PFE scheme F = (Π, ev). Procedure Finalize(b′) returns
(b = b′). The game depends on a security parameter k ∈ N.

of party i consists of the unary encoding 1k of the security parameter k ∈ N and the (private) input Ii of
this party, and the interaction continues until both parties halt. We will not further formalize this process
since the details are not important to what we do. What is important is that we are able to define the PT
algorithm Viewi

Π that on input (1k, I1, I2) returns the view of party i in an execution of Π with security
parameter k and inputs I1, I2 for the two parties, respectively. Specifically, the algorithm picks at random
coins ω1, ω2, executes the interaction between the parties as determined by Π with the initial state and
coins of party j ∈ {1, 2} being (1k, Ij) and ωj respectively, and returns (conv , ωi) where the conversation
conv is the sequence of messages exchanged. We let OutiΠ(1k, I1, I2) return the local output of party i at
the end of the protocol. This is a deterministic function of Viewi

Π(1k, I1, I2).

PFE. Party 1 has a string x and party 2 has a function f . The outcome of the protocol should be that
party 1 learns f(x). Security requires that party 2 learns nothing about x (beyond its length) and party 1
learns nothing about f (beyond side information we are willing to leak, such as the number of gates in
the circuit f).

Formally a private function evaluation (PFE) protocol is a tuple F = (Π, ev) where Π is a 2-party
protocol as above and ev is just like in a garbling scheme, meaning a PT deterministic map that associates
to any string f a function ev(f, ·) : {0, 1}f.n → {0, 1}f.m. The correctness requirement is that for all f
and all x ∈ {0, 1}f.n we have

Pr[Out1Π(1k, x, f) = ev(f, x)] = 1 .

The security notion we consider is privacy in the honest-but-curious setting, meaning the parties follow
the protocol and the intent is that their views do not allow the computation of any undesired information.
An adversary B is allowed a single GetView query in game PfeSimF ,i,Φ,S of Fig. 16, and its advantage is

Advpfe.sim,Φ,S
F ,i (B, k) = 2Pr[PfeSimB

F ,i,Φ,S(k)]− 1 .

We say that F is pfe.sim relative to Φ if for each i ∈ {0, 1} and each PT adversary B there is a PT

simulator S such that the function Advpfe.sim,Φ,S
F ,i (B, ·) is negligible.

Oblivious transfer. The construction will utilize a protocol for 1-out-of-2 oblivious transfer where
party 1 has a selection bit s, party 2 has inputsX0, X1, and the result is that party 1 getsXs while party 2
gets nothing. It is convenient to assume an extension where party 1 has bits x1, . . . , xn, party 2 has inputs
X0

1 , X
1
1 , . . . , X

0
n, X

1
n, and the result is that party 1 gets Xx1

1 , . . . , Xxn
n while party 2 gets nothing. Such an

extended protocol may be produced by sequential repetition of the basic protocol. Formally an OT proto-
col is a PFE schemeOT = (Πot, evot) whereΠot is a 2-party protocol and evot((X0

1 , X
1
1 , . . . , X

0
n, X

1
n), x) =

(Xx1
1 , . . . , Xxn

n ). Here, a function is described by a vector (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), and its evaluation on an

n-bit input x is (Xx1
1 , . . . , Xxn

n ). We assume a pfe.sim-secure scheme OT = (Πot, evot) relative to the side
information function Φot((X

0
1 , X

1
1 , . . . , X

0
n, X

1
n)) = (|X0

1 |, |X1
1 |, . . . , |X0

n|, |X1
n|).

The protocol. Let G = (Gb,En,De,Ev, ev) be a projective garbling scheme that is prv.sim-secure
over Φ. We define a PFE scheme F = (Π, ev) which allows the secure computation of exactly the class of
functions {ev(f, ·) : f ∈ {0, 1}∗} that G can garble. Party 2, on inputs 1k, f , begins by letting (F, e, d)←
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Gb(1k, f) and parsing e as (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) ← e. It sends F, d to party 1. Now the parties execute

the OT protocol with party 1 having selection string x and party 2 having inputs (X0
1 , X

1
1 , . . . , X

0
n, X

1
n).

As a result, party 1 obtains X = (Xx1
1 , . . . , Xxn

n ). It now outputs y ← De(d,Ev(F,X)) and halts.

Theorem 14. Assume G = (Gb,En,De,Ev, ev) is a projective garbling scheme that is prv.sim-secure
over Φ. Assume OT = (Πot, evot) is a OT protocol that is pfe.sim-secure relative to Φot. Let F = (Π, ev)
be the pfe scheme constructed above. Then F is pfe.sim-secure relative to Φ.

Proof (Theorem 14). Let i ∈ {1, 2} and let B be a PT adversary attacking F . We build a PT adversary BG
attacking G and a PT adversary BOT attacking OT . By assumption, these have simulators, respectively
SG ,SOT . We then use these simulators to build a simulator S for B such that for every k ∈ N we have

Advpfe.sim,Φ,S
F ,i (B, k) ≤ Adv

prv.sim, Φ,SG
G (BG , k) +Advpfe.sim,Φot,SOT

OT ,i (BOT , k) .

This yields the desired conclusion. We now proceed to the constructions and analyses. We consider
separately the cases i = 1 and i = 2, beginning with the former.

Adversary BG(1k) runs B(1k) to get itsGetView query x, f . It will compute and return a reply view to
this query as follows. Adversary BG queries its Garble oracle with f, x to get back (F,X1, . . . , Xn), d). It
records (F, d) as the first message in conv . (This message is from party 2 to party 1.) Now, for i = 1, . . . , n
it lets Xxi

i ← Xi and X1−xi
i � {0, 1}|Xi|. It then lets viewot ← View1

Πot(1k, x, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)). It

obtains this by direct execution of 2-party protocol Πot on inputs (X0
1 , X

1
1 , . . . , X

0
n, X

1
n) for party 2 and x

for party 1. Parsing viewot as (convot, ωot
1 ), it appends convot to conv and then returns view = (conv , ωot

1 )
as the answer to B’s query. Adversary B now outputs a bit b′, and B adopts this as its own output as
well.

Adversary BOT (1
k) runs B(1k) to get its GetView query x, f . It will compute and return a reply view

to this query as follows. Adversary BOT lets (F, e, d)← Gb(1k, f) and parses (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e. It

records (F, d) as the first message in conv . It makes query viewot ← GetView(x, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)).

Parsing viewot as (convot, ωot
1 ), it appends convot to conv and then returns view = (conv , ωot

1 ) as the
answer to B’s query. Adversary B now outputs a bit b′, and B adopts this as its own output as well.

By assumption, the two adversaries we have just built have simulators, respectively SG ,SOT . We
define simulator S for B. On input 1k, x, y, ϕ it lets (F, (X1, . . . , Xn), d)← SG(1k, y, ϕ) and records (F, d)
as the first message in conv . It lets viewot ← SOT (1

k, x, (X1, . . . , Xn), (|X1|, |X1|, . . . , |Xn|, |Xn|)). Parsing
viewot as (convot, ωot

1 ), it appends convot to conv and then returns view = (conv , ωot
1 ).

The case i = 2 is much easier because party 2 obtains nothing from party 1 besides what it gets from
the execution of the OT protocol and thus security follows directly from the assumption that the OT
protocol is secure. ⊓⊔

7.2 KDM-secure encryption

We re-establish Applebaum’s result [2] that projection-KDM security implies bounded-KDM security.
While our scheme is similar to the scheme of Applebaum or the scheme of of Barak, Haitner, Hofheniz,
and Ishai (BHHI) [9], it actually improves the efficiency by an order of magnitude. For simplicity, we
describe only the symmetric setting; the asymmetric setting is similar. In this section, ev always denotes
the canonical circuit evaluation.

KDM security. Let Π = (K, E ,D) be a symmetric encryption scheme of key space {0, 1}p and message
space {0, 1}s. Let k be the security parameter. Consider the game in Fig. 17. An adversary A, on 1k, make
queries KDM of the form (j, f) where j ∈ {1, . . . , ℓ} for some ℓ that determines the number of keys, and
string f encodes a function ev(f, ·) that maps a p · ℓ-bit string to an s-bit string. Finally, the adversary
outputs a bit b ′. Define Advkdm

Π,ℓ (A, k) = 2Pr[KDMA(k)]− 1. In the asymptotic statements, p, s, and ℓ
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proc Initialize()

K1,K2, . . .Kℓ �K(1k), b� {0, 1}
proc KDM(j, f) Game KDM

x← ev(f,K1 ∥ · · · ∥ Kℓ)

if b = 1 then return EKj (x) else return EKj (0
|x|)

Fig. 17. Game for defining the KDM security. Procedure Finalize(b′) returns (b = b′).

00 proc E ′(K,x)

01 n← max{p · ℓ, s}, z ← x0n−|x|

02 for i ∈ {n+ 1, . . . , n+ q + 1} do
03 A(i)← 1, B(i)← i− 1, Gi(a, b)← {return a}
04 for i ∈ {n+ q + 2, . . . , q + 2n} do
05 A(i)← 1, B(i)← i− n− q, Gi(a, b)← {return b}
06 ID← (n, n, q + n,A,B,G)

07 (F, e, d)�Gb(1k, ID), X ← En(e, z)
08 return (F, d, EK(X))

10 proc D′(K, y)

11 (F, d, Y )← y
12 X ← DK(Y ), z ← De(d,Ev(F,X))
13 return z[1 : s]

Fig. 18. Scheme Π ′ = (K, E ′,D′) = S2B[Π,G, q, ℓ] that is q-bounded KDM secure. The scheme is built based on a
projective garbling scheme G = (Gb,En,De,Ev, ev) and a projection-KDM secure encryption Π = (K, E ,D). In lines 02–06,
we construct an (n+ q)-gate circuit ID computing the identity in {0, 1}n.

are understood as polynomials p(k), s(k), and ℓ(k). We say that Π is KDM secure if ε(k) = Advkdm
Π,ℓ (A, k)

is negligible for any PPT adversary A and for any polynomial ℓ.
Often, the choice of functions f cannot be arbitrary. Below are the types of restrictive KDM security

that we discuss.

• Projection-KDM security. A function h : {0, 1}n → {0, 1}m is a projection if each of its output
bit depends on at most one input bit. Scheme Π is projection-KDM secure if ε(k) = Advkdm

Π,ℓ (A, k)
is negligible for any polynomial ℓ and for any PPT adversary A that makes queries (j, f) such that
ev(f, ·) is a projection.

• Bounded-KDM security. Scheme Π is q-bounded KDM secure, where q is a polynomial, if ε(k) =
Advkdm

Π,ℓ (A, k) is negligible for any polynomial ℓ and for any PPT adversary A that always make
queries (j, f) such that f encodes a circuit of at most q gates, where q is also understood as a
polynomial q(k) in the asymptotic statements.

In the symmetric-key setting, the LPN scheme of Applebaum, Cash, Peikert, and Sahai (ACPS) [3]
is a projection-KDM secure encryption scheme. In the asymmetric-key setting, one can use the scheme
of Boneh, Halevi, Hamburg, Ostrovsky (BHHO) [15] to instantiate a projection-KDM secure encryption
scheme 15. See the discussion of Applebaum [2, Appendix B] for how to obtain projection-KDM security
from known schemes.

The scheme. Suppose that we have a symmetric encryption scheme Π = (K, E ,D) that is projection-
KDM secure, of key space {0, 1}p and message space {0, 1}s. Fix ℓ and q. Let G = (Gb,En,De,Ev, ev)
be a circuit projective garbling scheme that is prv.ind secure relative to Φsize. We construct a scheme
Π ′ = (K, E ′,D′) = S2B[Π,G, q, ℓ] that is q-bounded KDM secure, as shown in Fig. 18. The message space
of Π ′ is also {0, 1}s.

Theorem 15. Let G = (Gb,En,De,Ev, ev) be a projective garbling scheme that is prv.ind secure relative
to Φsize. Fix ℓ and q. If Π is a simple-KDM secure symmetric encryption scheme then scheme Π ′ =
S2B[Π,G, q, ℓ] is q-bounded KDM secure.

15 In BHHO’s scheme, the public key is a list of group elements (g1, . . . , gr) and the private key is (gs11 , . . . , gsrr ), with
s1, . . . , sr � {0, 1}. However, if we view s = s1 · · · sr as the private key then BHHO’s scheme is projection-KDM secure.
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proc KDM(j, f) Games G0

(F, e, d)�Gb(1k, ID), X ← En
(
e, C(K)

)
return (F, d, EKj (X))

proc KDM(j, f) Games G1

(F, e, d)�Gb(1k, C), X ← En(e,K)
return (F, d, EKj (X))

proc KDM(j, f) Games G2

(F, e, d)�Gb(1k, C), X ← En
(
e, 0n

)
return

(
F, d, EKj

(
0|X|))

proc KDM(j, f) Games G3

(F, e, d)�Gb(1k, ID), X ← En(e, C(0n))
return

(
F, d, EKj

(
0|X|))

Fig. 19. Code for proof of Theorem 15.

Proof. Let A be an adversary attacking Π ′. To simplify the exposition, we first consider the case A makes
only a single query. Then we will sketch how extend it to the general case.

Single query case. Suppose that A makes a single query (j, f). Let n = max{p · ℓ, s} and let K =
K1 ∥ · · · ∥ Kℓ ∥ 0n−p·ℓ, where p is the length of each key K1, . . . ,Kℓ. Let C be a circuit of n input wires,
n output wires, and q + n gates, such that C(x) = ev(f, x[1 : p · ℓ]) ∥ 0n−s. Note that

C(K) = ev(f,K1 ∥ · · · ∥ Kℓ) ∥ 0n−s .

We construct an adversary B attacking Π and an adversary B′ attacking G such that Advkdm
Π′ (A, k) ≤

Advkdm
Π (B, k) + 2Advprv, Φsize

G (B′, k). Each adversary’s running time is about that of A, and B makes n
queries.

The adversary B runsA and creates (F, e, d)�Gb(1k, C). Let h be a string such that ev(h, ·) = En(e, ·).
Since G is projective, function ev(h, ·) is a projection. Adversary B queries (j, h) to its oracle to receive
an answer Y , and then returns (F, d, Y ) to A. It then outputs A’s output bit. Then

Advkdm
Π (B, k) = Pr[GA

1 (k)⇒ 1]− Pr[GA
2 (k)⇒ 1]

where games G0 − G3 are described in Fig. 19. (In game G2, we make use of the fact that the length
of the garbled input X ← En(e, x) is independent of x. So instead of writing X ← En(e,K), we let
X ← En(e, 0n). )

Next, we construct B′. The adversary B′(1k) first samples K1,K2, . . . ,Kℓ�K(1k). It chooses a bit
c� {0, 1} and runs A(1k) as a black box. If c = 0 it queries

(
C, ID,K, C(K)

)
. Otherwise, it queries

(ID, C, C(0n), 0n). On receiving (F,X, d), it returns (F, d, EKj (U)) to A, where U = X if c = 0, and

U = 0|X| otherwise. It then outputs A’s output bit. If c = 0, which occurs with probability 1/2, then

Advprv, Φsize
G (B′, k) = Pr[GA

0 (k)⇒ 1]− Pr[GA
1 (k)⇒ 1]

Otherwise, if c = 1 then

Advprv, Φsize
G (B′, k) = Pr[GA

2 (k)⇒ 1]− Pr[GA
3 (k)⇒ 1]

Summing up, we have

Advkdm
Π (B, k) + 2Advprv, Φsize

G (B′, k) = Pr[GA
0 (k)⇒ 1]− Pr[GA

3 (k)⇒ 1] = Advkdm
Π′ (A, k) .

General case. Suppose that A makes Q queries. We construct an adversary B attacking Π and an
adversary B′ attacking G such that Advkdm

Π′ (A, k) ≤ Advkdm
Π (B, k) + 2QAdvprv, Φsize

G (B′, k). The proof is
similar to the single-query case, but there is a technical problem: adversary B′ has only a single oracle
query, but it receives Q queries from A. The idea is to let B′ choose r� {0, 1, . . . , Q − 1}. For each
of A’s first r queries, instead of querying (f0, f1, x0, x1) to its oracle to get (F,X, d), adversary B′ creates
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Scheme # of AES calls # of bits encrypted by BHHO Ciphertext size

BHHI [9] O((r + ℓN) log(r + ℓN)) k ·max{p · ℓ, s} O(k(r + ℓN) log(r + ℓN))

Applebaum [2] O(r log r) O(kr log r) O(kr log r)

Our scheme O(r log r) k ·max{p · ℓ, s} O(kr log r)

Fig. 20. Comparison among schemes. We base the three schemes on BHHO’s scheme. Each scheme has message space

{0, 1}s and key space {0, 1}p. Here N is the size of a circuit implementing the decryption of BHHO, r = q+max{p·ℓ, s}, and ℓ

is the number of keys. We assume that the garbling scheme is implemented by Garble1 and Valiant’s universal circuits [59].

The second column shows the number of AES calls to build the garbled function, the third columns the length of the message

encrypted by BHHO’s scheme, and the last column the ciphertext size.

(F, e, d)�Gb(1k, f0) and lets X = En(e, x0). For the next query, it queries the oracle. Finally, for each
of the subsequent queries, instead of querying (f0, f1, x0, x1) to its oracle to get (F,X, d), it creates
(F, e, d)�Gb(1k, f1) and lets X = En(e, x1). Its running time is about that of A plus the time to garble
the circuits in A’s queries. Adversary B, on the other hand, makes nQ queries to its oracle, and its running
time is about that of A. ⊓⊔

Comparison with BHHI. The scheme of BHHI and its proof are complex; see the discussion in
Applebaum [2, Section 1.3.2] for criticism of BHHI’s scheme. They rely on a targeted encryption, a
public-key primitive that can be viewed as oblivious transfers with an additional KDM security property.
BHHI instantiate targeted encryptions from either the scheme of BHHO [15] or the LWE-based scheme
of ACPS [3]. From now on, assume that both targeted encryption and projection-KDM secure encryption
are instantiated from BHHO’s scheme for easy comparison. At the first glance, our scheme and BHHI’s are
almost the same. However, a closer look at BHHI’s security proof [9, Theorem 5.2] reveals that it garbles
a circuit of size q + max{q · ℓ, s} + ℓN , where N is the size of a circuit that implements the decryption
of BHHO’s scheme. The number N is huge, making BHHI’s scheme extremely inefficient. (Recall that
BHHO’s decryption scheme makes O(log2 |G|) modular exponentiations, where G is the multiplicative
group used in BHHO’s scheme. )

The complexity and the inefficiency of BHHI’s scheme are in part due to their security definition of
garbling schemes. This notion is similar to our prv.ind relative to Φsize, but the adversary must specify
(f0, x) and (f1, x), that is, the two functions must have the same input. The slight change, however, leads
to a tremendous difference, because if one instantiates out scheme from a garbling that satisfies BHHI’s
definition, then the proof no longer works. This might be the reason why BHHI did not propose our
scheme, although it is a close and more natural variant of theirs.

Comparison with Applebaum. Applebaum’s scheme is based on a simulation-based privacy notion.
In his scheme, one runs Sim on x, where Sim is a simulator for the garbling scheme and x is the message.
Both the (simulated) garbled function and the garbled input are encrypted, whereas our scheme encrypts
only the latter. This makes Applebaum’s scheme extremely inefficient because the size of the garbled
function is large and all known encryptions that are projection-KDM secure in the standard model are
slow. The inefficiency of Applebaum’s scheme is due to his security definition of garbling schemes: the
garbled function is lumped with the garbled input. This ignores the fact that the garbled function and
garbled input have different roles and very different size. One can instead use our prv.sim notion for
Applebaum’s scheme and encrypt only the garbled input; this scheme is also secure. Still, its concrete
performance is tied to the running time of Sim, which might be inefficient. In addition, this approach is
less intuitive than ours, as the simulated garbled function, which might depend on the keys, is sent in
the clear.
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L. Goldberg, M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS,
pages 486–498. Springer, July 2008.

36. V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure evaluation of private functions.
In G. Tsudik, editor, FC 2008, volume 5143 of LNCS, pages 83–97. Springer, Jan. 2008.

37. B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious adversaries. In Proceedings of the
21th USENIX Security Symposium (USENIX 2012), 2012.

38. L. Kruger, S. Jha, E. Goh, and D. Boneh. Secure function evaluation with ordered binary decision diagrams. In A. Juels,
R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 410–420. ACM Press, Oct. / Nov. 2006.

39. Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party computation. Electronic Colloquium on
Computational Complexity (ECCC), TR04-063, 2004.

40. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adversaries.
In M. Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer, May 2007.

41. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of Cryptology,
22(2):161–188, Apr. 2009.

42. Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In Y. Ishai, editor,
TCC 2011, volume 6597 of LNCS, pages 329–346. Springer, Mar. 2011.

43. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system. In Proceedings of the
13th conference on USENIX Security Symposium-Volume 13, pages 287–302. USENIX Association, 2004.

44. P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation. In M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 458–473. Springer, Apr. 2006.

45. M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. In 33rd ACM STOC, pages
590–599. ACM Press, July 2001.

46. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proceedings of the 1st ACM
conference on Electronic commerce, pages 129–139. ACM, 1999.

47. A. Paus, A. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private functions. In M. Abdalla,
D. Pointcheval, P. Fouque, and D. Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 89–106. Springer, June
2009.

48. K. Pietrzak. A leakage-resilient mode of operation. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 462–482. Springer, Apr. 2009.

49. B. Pinkas. Cryptographic techniques for privacy-preserving data mining. ACM SIGKDD Explorations Newsletter,
4(2):12–19, 2002.

50. B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical. In M. Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Dec. 2009.



Foundations of Garbled Circuits 41

51. P. Rogaway. The round complexity of secure protocols. MIT Ph.D. Thesis, 1991.
52. A. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation of private functions with application

to data classification. In International Conference on Information Security and Cryptology (ICISC’08), volume 5461 of
LNCS, pages 336–353. Springer, 2008.

53. A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with public keys. In E. Al-Shaer, A. Keromytis,
and V. Shmatikov, editors, ACM CCS 10, pages 463–472. ACM Press, Oct. 2010.

54. T. Schneider. Practical secure function evaluation. Master’s thesis, University of Erlangen-Nuremberg, 2008.
55. T. Schneider. Engineering Secure Two-Party Computation Protocols – Advances in Design, Optimization, and Appli-

cations of Efficient Secure Function Evaluation. PhD thesis, Ruhr-University Bochum, Germany, February 9, 2011.
http://thomaschneider.de/papers/S11Thesis.pdf.

56. T. Schneider. Engineering Secure Two-Party Computation Protocols. Springer-Verlag Berlin Heidelberg, 2012.
57. S. Tate and K. Xu. On garbled circuits and constant round secure function evaluation. Technical report, Computer

Privacy and Security Lab, Department of Computer Science, University of North Texas, 2003.
58. J. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error resilient dna searching through oblivious

automata. In P. Ning, S. di Vimercati, and P. Syverson, editors, ACM CCS 07, pages 519–528. ACM Press, Oct. 2007.
59. L. Valiant. Universal circuits (preliminary report). In Proceedings of the eighth annual ACM symposium on Theory of

computing, pages 196–203. ACM, 1976.
60. A. Yao. How to generate and exchange secrets. In Foundations of Computer Science, 1986., 27th Annual Symposium

on, pages 162–167. IEEE, 1986.
61. A. Yao. Protocols for secure computations. In 23rd FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.

A Related Work

We do not attempt a comprehensive review of the literature (easily a monograph-length undertaking),
but elaborate on some selected prior work.

Randomized encodings. Loosely related to garbling schemes, randomized encodings (initially random-
ized polynomials) begin with Ishai and Kushilevitz [28] and continue, with many definitional variants, in
work by Applebaum, Ishai, Kushilevitz, and others [2, 4–7, 29, 30, 53]. The authors employ language like
the following [4]: function F (·, ·) is a randomized encoding of f(·) if: (correctness) there’s a PT algorithm
De such that De(F (x, r)) = f(x) for almost all r; and (privacy) there’s a PT algorithm Sim such that
ensembles F (x, ·) and Sim(f(x)) are computationally indistinguishable. To be useful, encodings must
have some extra properties,16 for example, that every bit of F (x, r) depends on at most one bit of x, a
property that has been called decomposability [30]. Proven realizations meeting these requirements [4, 5]
do not closely resemble conventional realizations of garbled circuits [41, 46].

There is a large gap, even syntactically, between the notion just given and a garbling scheme. Above,
no language is provided to speak of the algorithm that transforms f to F ; in contrast, the thing doing
this transformation is at the center of a garbling scheme. Likewise absent from the syntax of randomized
encodings is anything to speak to the representation of functions; for garbling schemes, representations
are explicit and central. Finally, the syntax, unlike that of a garbling scheme, does not separate the
garbling of a function and the creation of a garbled input, and indeed there is nothing corresponding
to the latter, the same input x being fed to f or F . The minimalist syntax of randomized encodings
works well for some theory-centric applications, but does not allow one to speak of obliviousness and
authenticity, to investigate the low-level efficiency of different garbling schemes, and to architect schemes
to useful-in-practice abstraction boundaries.

Given the variety of related definitions, let us sketch another, the decomposable randomized encodings
defined and used by Sahai and Seyalioglu [53]. (Despite identical names, this definition is different from
that above, and different again from the decomposable randomized encodings of [30], say). The object of
interest can be regarded as a pair of PT algorithms (En,De) where En maps the encoding of a boolean
circuit f : {0, 1}n → {0, 1}m to a vector of strings (X0

1 , X
1
1 , . . . , X

0
m, X1

m)← En(1k, f) for which decoding

16 Otherwise, the definition is trivially met by setting F (x, r) = f(x) and De(y) = Sim(y) = y.
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algorithm De(Xx1
1 , . . . , Xxm

m ) returns f(x1 · · ·xn). The authors demand a PPT algorithm Sim for which
the ensemble of (Xx1

1 , . . . , Xxm
m ) tuples induced by En(1k, f) and x is computationally indistinguishable

from Sim(1k, n, |f |, f(x)). Translating to our language, one has effectively assumed a projective scheme, a
boolean circuit as input, and prv.sim security over Φsize. The garbled function itself has been abstracted
out of existence (in a realization, it would be dropped in the Xj

i values). Compared to a garbling scheme,
one might note the lack of representation independence, granularity inadequate to speak of obliviousness,
authenticity, garbled inputs, and low-level efficiency. The syntax can’t handle the dynamic setting, where
the adversary receives the garbled circuit before it specifies the input.

Obliviousness and authenticity. Some prior papers exploit obliviousness and authenticity of gar-
bled circuits to achieve desired applications: private medical diagnostics [10], verifiable computation and
private verifiable computation [20], and correctable verifiable computation [6]. The notions are not seen
as properties of a stand-alone primitive corresponding to a garbling scheme.

In the last of the works mentioned, Applebaum, Ishai, Kushilevitz [6] describe the following generic
transformations from privacy to obliviousness and to authenticity. (1) Obliviousness: instead of garbling
a circuit f , let g be a circuit such that g(x ∥ r) = f(x)⊕ r for every x ∈ {0, 1}n and r ∈ {0, 1}m, where
n = f.n and m = f.m. Then, choose r� {0, 1}m, run (F, e, d) ← Gb(g) and output (F, (e, r), (d, r)).
The garbled input corresponding to x will be X = e(x ∥ r). To decode, output r ⊕ De(d,X). (2) Au-
thenticity: instead of garbling a circuit f , let g be a circuit such that g(x ∥ K) = f(x) ∥ MACK(f(x))
for any x ∈ {0, 1}n and any key K. Then, choose a random key K, run (F, e, d) ← Gb(g), and output
(F, (e,K), (d,K)). The garbled input corresponding to x will be X = e(x ∥ K). To decode, compute
y ∥ t = De(d,X) and output y if t = MACK(y), and output ⊥ otherwise. Applied to Garble1, the
transformations lead to schemes slightly (for (1)) or substantially (for (2)) less efficient that Garble2;
and (2) requires a cryptographic assumption. More fundamentally, Applebaum et al. do not formalize
any definition for the obliviousness or authenticity of a garbling scheme.

The only work that explicitly defines obliviousness and authenticity in this domain is a recent paper
of Kamara, Mohassel, and Raykova [31]. Still, their syntax is designed specifically for their application;
for example, a circuit’s input is a pair (x1, x2), a garbled circuit’s input is (X1, X2), and the encoding
function takes an input x and an index i ∈ {1, 2} and outputs the corresponding Xi. Their notion of
obliviousness requires hiding only the input, while obv.ind and obv.sim require one to hide both the input
and the function.

Obscuring topology. We are not the first to observe that conventional means to garble a circuit
obscure each gate’s function but not its topology. A 2002 paper of Pinkas [49, Section 2.3] already remarks
that “In this form the representation reveals nothing but the wiring of the circuit”. Later, Paus, Sadeghi,
and Schneider [47] use the phrase “circuit topology” to name that which is revealed by conventional
garbled circuits. Nevertheless, the topology of a circuit is never formalized, and nobody ever proves that
that some particular scheme reveals only the topology. We are also the first to explain the equivalence
between the prv.sim and prv.ind notions relative to Φtopo.

Eclectic representations. Scattered through the literature one finds computational objects other
than boolean circuits that are being garbled; examples include arithmetic circuits [7], branching programs
[10], circuits with lookup tables [45], DFAs [58], and ordered binary decision diagrams [38]. The range
suggests, to us, that general-purpose definitions for garbling schemes ought not be tied to circuits.

Concurrent work. Concurrent work by Kamara and Wei (henceforth KW) investigates the garbling of
structured circuits [32], a computational model they put forward resembling ordinary circuits except that
gates perform operations on an arbitrary data structure. As part of this work, KW define what they too
call a garbling scheme. Their syntax is similar to ours, but without the function ev. Over this syntax KW
define Ind1 and Sim1 security. These notions, unlike ours, ask only for input-hiding, not function hiding.
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They show these definitions are equivalent for sampleable circuits. KW go on to give dynamic versions
of their definitions, Ind2 and Sim2, and an unforgeability notion, Unf2. These definitions resemble the
weaker form of the dynamic-security definitions (prv1, obv1, and aut1) mentioned in our Introduction
and the subject of separate work.

Although KW speak of circuits as finitary objects described by DAGs, they appear to have in mind
families of circuits, indexed by a security parameter (otherwise, we do not know how to make sense of
samplability, or phrases like polynomial size circuits). Unlike our treatment, circuits are not provided by
the adversary; security notions are with respect to a given circuit. A garbling scheme is provided in KW,
but not a “conventional” one: it garbles a structured circuit and is based on a collection of structured
encryption schemes, a notion from Chase and Kamara [17]. For the protocol to make sense with respect
to the definitions given, the latter should be reinterpreted as applying to structured circuits.

B Universal Circuits

An (n, q)-universal circuit is a circuit U having q distinguished gates g1, . . . gq such that:

• It takes two inputs f and x where |x| = n and f is the encoding of a circuit of input length n and
at most q gates.

• For any input (f, x), when we evaluate U on (f, x), the bit obtained at the outgoing wire of gi is
exactly the bit obtained at the outgoing wire of gate i of f when we evaluate f on x.

A universal circuit must have sizeΩ(q log q) because, by a counting argument, there areΩ(q2q) circuits of q
gates. Valiant [59] designs an (n, q)-universal circuit of fanout 4 and size 19(2q+m) lg(2q+m)+9q, which
is asymptotically optimal, where m is the number of outputs of the original circuit. Other constructions
are known [36, 52, 54], but their asymptotic size is larger.


