## Foundations of Geomagnetism

## GEORGE BACKUS

University of California, San Diego

ROBERT PARKER University of California, San Diego

## CATHERINE CONSTABLE University of California, San Diego



## CONTENTS

.

| P | Preface page xi     |                                                                                             |                              |
|---|---------------------|---------------------------------------------------------------------------------------------|------------------------------|
| 1 | $1.1 \\ 1.2 \\ 1.3$ | e <b>Main Field</b><br>A Whirlwind Tour<br>History<br>Spatial Variations<br>Time Variations | <b>1</b><br>1<br>2<br>5<br>8 |
| 2 | Cla                 | assical Electrodynamics                                                                     | 15                           |
|   |                     | Helmholtz's Theorem and Maxwell's Equations                                                 | 15                           |
|   |                     | A Simple Solution: The Static Case                                                          | 17                           |
|   | 2.3                 | Maxwell's Equations in a Polarized Medium                                                   | 23                           |
|   | 2.4                 | On Judicious Neglect of Terms in Equations                                                  | 29                           |
|   | 2.5                 | Internal and External Fields                                                                | 35                           |
|   | 2.6                 | Solving Maxwell's Equations as an Initial Value Problem                                     | 37                           |
| 3 | $\mathbf{Sp}$       | herical Harmonics                                                                           | 41                           |
|   | 3.1                 | Completeness on $S(1)$                                                                      | 42                           |
|   |                     | 3.1.1 Homogeneous and Harmonic Polynomials                                                  | 42                           |
|   |                     | 3.1.2 The Laplacian of a Certain Homogeneous                                                |                              |
|   |                     | Polynomial                                                                                  | 44                           |
|   |                     | 3.1.3 An Expansion in Harmonic Polynomials                                                  | 46                           |
|   | 3.2                 | Orthogonality in $\mathcal{P}_{\ell}$                                                       | 48                           |
|   | 3.3                 | The Self-Reproducing Kernel on $\mathcal{H}_{\ell}$                                         | 54                           |
|   |                     | 3.3.1 Inner Product Spaces                                                                  | 54                           |
|   |                     | 3.3.2 Inner Products and Linear Functionals                                                 | 56                           |
|   |                     | 3.3.3 A Special Linear Functional on $\mathcal{H}_{\ell}$                                   | 57                           |
|   |                     | 3.3.4 A Rotational Symmetry of $\tilde{q}_{\ell}$                                           | 59                           |
|   |                     | 3.3.5 Properties of $Q_{\ell}$                                                              | 61                           |
|   | 3.4                 | An Orthonormal Basis for $\mathcal{H}_{\ell}$                                               | 64                           |
|   |                     | 3.4.1 Application of the Surface Curl, $\Lambda$                                            | 65                           |

|   |     | 3.4.2 Lifting and Lowering Operators                             | 70  |
|---|-----|------------------------------------------------------------------|-----|
|   |     | 3.4.3 Explicit Expressions of a Basis                            | 75  |
|   |     | 3.4.4 Normalizing the Natural Basis                              | 78  |
|   | 35  | Axisymmetric Spherical Harmonics                                 | 81  |
|   | 0.0 | 3.5.1 Behavior Near the z Axis                                   | 82  |
|   |     | 3.5.2 Calculating the Kernel Function                            | 83  |
|   |     | 3.5.3 The Generating Function for Legendre Polynomials           | 84  |
|   |     | 3.5.4 Green's Function for $\nabla^2$                            | 87  |
|   | 3.6 | The Character of the Natural Basis                               | 88  |
|   | 0.0 | 3.6.1 Nodal Lines of $Re Y_{\ell}^m(\hat{\mathbf{r}})$ on $S(1)$ | 88  |
|   |     | 3.6.2 General Appearance of $Y_{\ell}^m$ for large $\ell$        | 91  |
|   |     | 3.6.3 Horizontal Wavelength of $Y_{\ell}^m$                      | 101 |
|   | 3.7 | Numerical Calculations and the Like                              | 104 |
|   |     | 3.7.1 Explicit Formulas for $P_{\ell}^m(\mu)$                    | 104 |
|   |     | 3.7.2 Three-Term Recurrence Relationships                        | 106 |
|   |     | 3.7.3 Numerical Calculations                                     | 112 |
| 4 | Ga  | uss' Theory of the Main Field                                    | 119 |
| - |     | Finding All the Harmonics in a Shell                             | 119 |
|   |     | Uniqueness of the Coefficients                                   | 123 |
|   |     | Observing the Sources in Principle                               | 128 |
|   |     | Measuring the Gauss Coefficients                                 | 136 |
|   |     | 4.4.1 Nonuniqueness of Fields Based on                           |     |
|   |     | Total Field Observations                                         | 138 |
|   |     | 4.4.2 The Spectrum                                               | 138 |
|   |     | 4.4.3 Crustal Signals                                            | 150 |
|   |     | 4.4.4 Inferences about the Field on the Core:                    |     |
|   |     | Averaging Kernels                                                | 153 |
| 5 | Th  | e Mie Representation                                             | 161 |
|   |     | The Helmholtz Representation Theorem                             | 161 |
|   |     | 5.1.1 Solving the Surface Form of Poisson's                      |     |
|   |     | Equation                                                         | 161 |
|   |     | 5.1.2 Integral Form of the Solution                              | 163 |
|   |     | 5.1.3 The Helmholtz Representation Theorem on                    |     |
|   |     | $S(r) 	ext{ and } S(a,b)$                                        | 167 |
|   |     | 5.1.4 Divergence and Curl in the Helmholtz                       |     |
|   |     | Representation                                                   | 169 |
|   | 5.2 | The Mie Representation of Vector Fields                          | 173 |
|   |     | 5.2.1 Solenoidal Vector Fields                                   | 173 |
|   |     | 5.2.2 Poloidal and Toroidal Fields                               | 177 |

|   |     | Contents                                            | vii        |
|---|-----|-----------------------------------------------------|------------|
|   |     | 5.2.3 Continuity of the Mie Scalars                 | 179        |
|   |     | 5.2.4 Summary                                       | 181        |
|   | 5.3 | Application to Sources                              | 182        |
|   |     | 5.3.1 Mie Sources of a Magnetic Field               | 183        |
|   |     | 5.3.2 Internal and External Fields: A Complication  | 185        |
|   |     | 5.3.3 Separation of Poloidal Fields                 | 188        |
|   |     | 5.3.4 The Generalization of Gauss' Resolution       | 189        |
|   | 5.4 | Induction in the Mantle and the Core                | 192        |
|   |     | 5.4.1 Equations for the Mie Scalars                 | 192        |
|   |     | 5.4.2 Application of Boundary Conditions:           |            |
|   |     | Toroidal Field                                      | 195        |
|   |     | 5.4.3 Application of Boundary Conditions:           |            |
|   |     | Magnetic Sounding                                   | 196        |
|   |     | 5.4.4 Free Decay of Fields in the Core              | 200        |
|   | 5.5 | Ohmic Heating in the Core                           | 204        |
| 6 | -   | dromagnetics of the Core                            | <b>211</b> |
|   |     | The Bullard Disk Dynamo                             | 213        |
|   | 6.2 | Hydromagnetics in an Ohmic Conductor                | 217        |
|   |     | 6.2.1 Ohm's Law for a Moving Conductor              | 219        |
|   |     | 6.2.2 Equations Governing the Geodynamo             | 224        |
|   |     | 6.2.3 The Kinematic Problem:                        |            |
|   |     | Limiting Case with $\mathbf{u} = 0$                 | 226        |
|   |     | 6.2.4 Eulerian and Lagrangian Descriptions          | 228        |
|   |     | 6.2.5 The Kinematic Problem:                        |            |
|   |     | Limiting Case with $\eta = 0$                       | 231        |
|   |     | 6.2.6 Frozen-Flux Condition                         | 235        |
|   | 6.3 | Some Simple Dynamic Problems                        | 239        |
|   |     | 6.3.1 The Maxwell Stress Tensor                     | 240        |
|   |     | 6.3.2 Sunspots                                      | 243        |
|   |     | 6.3.3 Alfvén Waves                                  | 243        |
|   | 6.4 | Application of Perfect Conductor Theory to the Core | 247        |
|   |     | 6.4.1 The Hypothesis of Roberts and Scott           | 247        |
|   | с F | 6.4.2 Null-Flux Curves                              | 254        |
|   | 6.5 | Kinematic Dynamos                                   | 260        |
|   |     | 6.5.1 Cowling's Theorem                             | 262        |
|   |     | 6.5.2 Elsasser; Blackett and Runcorn;               | 0.05       |
|   |     | Bullard and Gellman                                 | 267        |
|   |     | 6.5.3 Rigorous Dynamos                              | 272        |
|   |     | 6.5.4 Early Numerical Dynamos                       | 276        |
|   |     | 6.5.5 Mean Field Dynamos                            | 276        |

Contents

|   | 6.6 | The Dy | ynamics of Dynamos                               | 285        |
|---|-----|--------|--------------------------------------------------|------------|
|   |     | 6.6.1  | The Taylor Theorem                               | 285        |
|   |     | 6.6.2  | Bullard Dynamo, Poincaré–Bendixson               |            |
|   |     |        | Theorem, and Chaos                               | 286        |
|   |     | 6.6.3  | Data Possibly Relevant to the Dynamics           | 286        |
| 7 |     |        | : Mathematical Background                        | <b>291</b> |
|   | 7.1 | Linear | Algebra                                          | 291        |
|   |     | 7.1.1  | Arrays                                           | 291        |
|   |     | 7.1.2  | Index Conventions                                | 292        |
|   |     | 7.1.3  | Properties of the Kronecker Delta and            |            |
|   |     |        | the Alternator                                   | 293        |
|   |     | 7.1.4  | Applications of Delta and the Alternator         |            |
|   |     |        | to Vector Algebra                                | 296        |
|   | 7.2 |        | Analysis: Differential Calculus                  | 298        |
|   |     | 7.2.1  | Scalar and Vector Fields                         | 298        |
|   |     | 7.2.2  | 1                                                | 299        |
|   |     | 7.2.3  | Sums and Products of Scalar Linear Operators     | 301        |
|   |     | 7.2.4  | Scalar Linear Operators Acting on Vector Fields  | 303        |
|   |     | 7.2.5  | Vector Linear Operators                          | 304        |
|   |     | 7.2.6  | Linear Combinations of Vector Linear Operators   | 306        |
|   |     |        | Products of Vector Linear Operators              | 306        |
|   |     | 7.2.8  | Dot and Cross Products of Vector Linear          |            |
|   |     |        | Operators                                        | 309        |
|   |     | 7.2.9  | FODOs                                            | 312        |
|   |     | 7.2.10 | Arithmetic with FODOs                            | 314        |
|   |     | 7.2.11 | Commutation                                      | 316        |
|   |     | 7.2.12 | An Important FODO and Its Commutation            |            |
|   |     |        | Properties                                       | 317        |
|   |     |        | Curvilinear Coordinates and $\boldsymbol{ abla}$ | 320        |
|   |     | 7.2.14 | Spherical Polar Coordinates                      | 322        |
|   | 7.3 | Vector | Analysis: Integral Calculus                      | 328        |
|   |     | 7.3.1  | The Theorems of Stokes and Gauss                 | 328        |
|   |     | 7.3.2  | Jump Discontinuities                             | 331        |
|   |     | 7.3.3  | Sources of a Vector Field                        | 332        |
|   | 7.4 | Scalar | and Vector Fields on Orientable Surfaces         | 334        |
|   |     | 7.4.1  | Projection of a Vector onto a Plane              | 334        |
|   |     | 7.4.2  | Vector Fields on an Oriented Surface             | 336        |
|   |     | 7.4.3  | Surface Gradient and Normal Derivative           | 336        |
|   |     | 7.4.4  | Surface Curl                                     | 339        |

| Index                                                                           |     |  |
|---------------------------------------------------------------------------------|-----|--|
| References                                                                      |     |  |
| 7.4.7 Representation of Tangent Vector Fields                                   | 346 |  |
| and Stokes                                                                      | 343 |  |
| 7.4.6 Surface Forms of the Theorems of Gauss                                    |     |  |
| Vector Fields on $S$                                                            | 340 |  |
| 7.4.5 Applying the FODOs $\boldsymbol{ abla}_S$ and $\boldsymbol{\Lambda}_S$ to |     |  |
|                                                                                 |     |  |

Contents

 $\mathbf{i}\mathbf{x}$