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FOUNDATIONS OF HANKEL TRANSFORM ALGORITHMS
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Abstract. A brief survey of existing Hankel (Fourier-Bessel) transform algorithms
is presented along with a natural way to classify these algorithms. In several cases
these algorithms were derived originally by methods that were unnecessarily compli-
cated and not sufficiently general. By using operator notation and Radon transform
methods, derivations and generalizations are straightforward. These improvements
and generalizations are given at the appropriate places in the discussion.

1.0. Introduction. Assume that f(r) satisfies the following conditions:
1) f(r) is defined for 0 < r < oo .
2) f(r) and 4^1 are piecewise continuous over any finite interval, except at

isolated points of measure zero.
3) f{r) is absolutely convergent,

rooL\f{r)\dr < oo.

Definition. The «th-order Hankel transform (also called Fourier-Bessel trans-
form) of f(r) satisfying 1), 2), and 3) is defined [7, 40] as

roo

f(u) = 2n rf(r)J(2nru)dr, (1)
Jo

where Jn is a Bessel function of the first kind [45].
The integral transform (1) is expressed in operator notation by

f(u) = Hj(r), (2)
where Hn represents the «th-order Hankel transform.

In a variety of applications which exhibit cylindrical symmetry, the Hankel trans-
form of a function must be computed. These include underwater acoustics [17, 18],
atomic physics [43], goephysical prospecting [13, 20], laser mode analyses [38], image
processing [33], structural dynamics due to earthquakes [28], and speech processing
[21], Thus, the Hankel transform has been applied to problems in diffraction and
wave propagation.

A device that will be repeatedly used throughout the paper is the following: By
imposing radial symmetry on f(x,y), then f(r) can be described as a part of
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separable function f(x,y) = f(r)e\p(in0). Since the Hankel transform of f(r) is
desired, no generality is lost.

2.0. New classification. It is proposed that Hankel transform algorithms be system-
atically organized into three different categories: direct, indirect, and miscellaneous
methods. Direct methods are based on the definition of the Hankel transform, while
indirect methods are based on traversing Radon space while calculating the Han-
kel transform. Miscellaneous methods are methods that appear to have promise,
but require that significant computational problems be solved before they become
practical.

Direct methods, the traditional and more established ones, are a class of Han-
kel transform algorithms directly ascertainable from the definiton of the Hankel
transform. The direct methods may be organized further into four different classes:
quadrature methods, asymptotic algorithms, convolutional algorithms, and simplified
two-dimensional fast Fourier transform algorithms (see Table 1).

Indirect methods refer to a class of Hankel transform algorithms based indirectly
on the definition of the Hankel transform. Although this class is more recent than the
direct method one, several practical algorithms have been developed. The indirect
methods are organized futher into two different classes: projection-slice algorithms
and filtered backprojection algorithms (see Table 1).

All of the classes of Hankel transform algorithms mentioned thus far have been
utilized in at least one engineering or scientific application. Two other methods
are worthy of being mentioned, although they still require more study before their
usefulness can be fully determined. These miscellaneuos methods are hybrid methods
and orthogonal function methods (see Table 1).

Table 1. Hankel transform algorithms.

Category

Direct

Indirect

Miscellaneous

Classes of Algorithms

Quadrature Methods
Asymptotic Algorithms
Convolutional Algorithms
Simplified 2-D FFT
Projection-Slice Theorem
Filtered Backprojection Algorithms
Hybrid Methods
Orthogonal Function Methods

3.0. Direct methods. In the next four subsections we cover the four classes of
direct Hankel transform algorithms listed in the top third of Table 1.

3.1. Quadrature methods. Quadrature methods involve direct numerical integra-
tion [15]. An integral is approximated by a linear combination of integrand values:

rb N
g{x)dxmy2g(xl)a)i, (3)

/J a /=1

where xl , x2, ... , xN are N points, or abscissas, normally chosen in the interval of
integration, and the numbers a>], a>2, • • • » &>N are weights assigned to these points.
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Many times Gaussian integration is utilized to evaluate the summation over i, since
Gaussian formulas are "best" in the sense that they integrate exactly polynomials of
as high degree as possible with a formula of the form of (3).

Longman [30, 31] split the Hankel transform (1) into a sum of integrals of the
form

OO

/(") =£c, (4)
5=0

and

Vs = 2t: f r f{r)Jn(2nru)dr, (5)
JJn,s- 1

where jn 0 = 0 and jn s is the 5th positive zero of the Bessel function Jn{2nru)
[45], An approximation to (5) in a form similar to (3) is given by the summation

Vs = 2nY<hjrjf(rj)Jn(2nrju')>
j= i

where r is the abscissa and hj is the weight. V, the terms in the summation
J J 5

over s in Eq. (4) are often alternating in sign due to the Bessel function's oscil-
latory behavior, and the result may be slowly convergent. Numerous techniques
exist for transforming a slowly convergent series into one more rapidly convergent.
These techniques include Euler transformations, the e-transformation, Aitken's A2
method, and Levin's F-transformation [15], An early review of quadrature methods
was provided by Cornille [14].

More recently, Chave [12] presented an iterative technique that utilized a Pade
convergence acceleration step together with Patterson's [36] methods for the optimal
addition of points to a quadrature formula. Chave's [12] technique permits the
control of local error, defined as the difference between the result of two successive
quadratures, each with a different number of abscissas. In addition, Chave [12]
demonstrated that, through the utilization of the Pade approach, it is possible to
numerically integrate Hankel transforms that are formally divergent. This algorithm
was applied by Chave and Cox [13] to the calculation of the electromagnetic fields
associated with the sea floor.

3.2. Asymptotic algorithms. Utilizing the asymptotic expansion for the Bessel
function of the first kind [5],

Jn{x) « [2/(7rx)]1/2cos[x - (2n + \)n/A], (6)

the Hankel transform (1) becomes
r OO

f(u)tz2n / rf{r)[2/n{2nru)]XlL' cos[(27ztw) - (2n + l)n/4]dr
Jo

or equivalently
n OO

f(u) as (2m ^2) / rl/2f(r) cos[2nru - (2n + l)n/4]dr.
Jo
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Extending this integral over r from -oo to oc and utilizing the fact that cos 9 =
Re[exp(-/0)] yields,

/OO
(kl)1/2/(kl) e\p(-i2nru)dr}. (7)

-OO

Utilizing operator notation Eq. (7) becomes

f(u) « (w~1/2) Re{exp[z(2« + l)7r/4]FI[(|r|)1/V(|r|)]}, (8)

where Fj, the (one-dimensional) Fourier transform in cartesian coordinates, is given
by [7, 40]

/OO
f(x)e\p(-i2nxu)dx. (9)

-OO

DiNapoli and Deavenport [17] utilized Eq. (8) to approximate the «th-order Hankel
transform in terms of a fast Fourier transform.

Caution must be exercised when using asymptotic algorithms, since their results are
only valid for large values of the output argument. When for a given application this
is not a limitation, i.e., only large values of the output argument are desired, then this
algorithm can be successfully applied. DiNapoli and Deavenport [17] applied this
algorithm to the problem of modeling underwater acoustic propagation loss versus
range.

3.3. Convolutional algorithms. Convolutional algorithms have been developed in-
dependently by Ghosh [20], Siegman [39], and Talman [43], Let

H{u) = uf(u),

where f(u) is the equation for the Hankel transform (1),
roc

H(u) = 2n / ruf(r)J (2nru)dr. (10)
JO

Assume that f(r) = 0 for r < 0 and that r and u vary in the following manner,

r - rQexp(-«) and u = u0exp(m). (11)

Substituting Eq. (11) into Eq. (10) yields
f°° 2H(m) = 27r«0 exp(ra) / [r0exp(-«)] /[r0exp(-«)]7fJ[27rr0w0exp(w - n)]dn.

J —OO

Let
F{n) = [r0exp(-n)]/[r0exp(-rt)]

and
G(m - n) = 2nr0u0exp{m - n)Jn[2nrQu0ex.p(m - «)].

Then H(m) becomes

/OO
F(n)G(m - n)dn , (12)

-OO

since f{r) = 0 for r < 0. Therefore,

f(u) = H(m)/u = H(m)/[u0 exp(m)]. (13)
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One approach to the calculation of Eq. (12) is with the Fourier convolution the-
orem, which states that the convolution of two functions corresponds to the product
of their transforms. Hence,

H(m) = Fj"1[F].F(«)F1 (/(«)].

Sheng and Siegman [38] utilized this approach to the problem of modeling high power
lasers.

In geophysics, Hankel transforms frequently occur as a set of transforms whose
integrands are related algebraically (see, for example, Verma [44]). If each of these
Hankel transforms is evaluated using convolutional algorithms, then the resulting set
of evaluations will be termed related convolutions [1]. In additon, after the initial di-
rect convolution, subsequent "lagged" convolutions [2] are performed with previously
computed and saved function values. Anderson [2] showed that by arranging related
and lagged convolutions in a matrix, the number of function calls can be minimized.
The resulting algorithm [3] is extensively utilized by geophysicists [4],

3.4. Simplified two-dimensional fast Fourier transform algorithms. The zero-order
Hankel transform may be defined as the two-dimensional Fourier transform of a
circularly symmetric function, and described by [7]

H0/(r) = F2/(r), (14)

where r = [x2 + y2]x/1 and F2, the two-dimensional Fourier transform in cartesian
coordinates, is given by [7, 40]

/oo roo
/ f(x, y)exp[-i2n(xu + yv)]dxdy. (15)

-oo J —OO

Utilizing Eq. (14), Murphy and Gallagher [33] developed a simplified two-dimen-
sional fast Fourier transform algorithm. They did not formulate the problem in a
general manner, and extensions to higher orders were not apparent. Murphy and
Gallagher [33] utilized this algorithm in image processing applications in which the
output data are required to be in the form of a two-dimensional rectangular array
for subsequent processing.

Utilizing operator notation, the framework for simplified two-dimensional fast
Fourier transform algorithms will be generalized. When f(x, y) = f(r) exp(inO), the
Hankel transform is related to the two-dimensional Fourier transform of
f(r) exp(ind):

¥2f(r)exp(in6) = exp(in<f>)r"Unf{r). (16)
Proof. To see how (16) is obtained it is convenient to express the definition of

the two-dimensional Fourier transform in polar coordinates,
rOO r2n

F2f(r,d)= / / f(r, 8)exp[-i2nrqcos{6 - (j))]rdrd6.
Jo Jo

Let p = 6 - <f>, then
rOO r2n

F2f(r)exp(in8) = exp(in<f>) / drf(r)r exp[i(nP - 2nrq cos P)]dp.
Jo Jo



272 B. W. SUTER

By use of the identity Jm(x) = (im/2n) /027t exp[i(ma - xcosa)]da [45], it follows
that

roc

¥2f(r) exp(inO) = exp(inct>)rn2n / rf(r)J (2nrq)dr.
Jo

This result in operator notation is

F2f(r) exp(ind) = exp(in4>)rnHnf(r).

QED
It is important to realize that if f(r) is real, then Hn/(r) is a real. This suggests

that a form simpler than (16) may exist. Since 0 is a parameter, let 0 equal zero.
When 4> is set to zero, no generality is lost since the functions f(r) have radial
symmetry. Consequently, if the Hankel transform is known for any angle </>, then it
is known for all (f>.

If f(r) is real, then the Hankel transform and the two-dimensional Fourier trans-
form are related by

f in¥-,f(r)cos(nd), if n is even
H„/(r) = [expO'n^H /(r)L n = \ „ (17)nj \> fv v) nJ\ >H=0 \ /"F2/(r) sin(«0), if wis odd.

Proof. Since f(r) is real, then Hnf(r) is real. Therefore, utilizing Eq. (16) with
<f> = 0 yields,

H nf(r) = Re{/"F2/(r) exp(ind)}.
This equation can be rewritten utilizing the definition of i" .

Re{F2/(r) exp (ind)} , if n MOD 4 = 0

H J(') =I';Im{F2/(r)ex-p(ind)} , if«MOD4=l
- Re{F2/(r)exp(ind)}, if«MOD4 = 2
-i Im{F2/(r) exp (ind)}, if n MOD 4 = 3.

The real and imaginary parts of the Fourier transform of f(x, y) are given by

Re{F2/(.x, j,)} = F2[f(x ,y) + f*(x, y)\/2
and

Im{F2/(x, y)} = F2[f(x , y) - f*(x , y)]/2i,
where f*(x, y) is the complex conjugate of f(x, y). Then,

F2/(r) cos(nd), if«MOD4 = 0
i¥2f(r) sin(nd), if«MOD4=l
~F-,f(r)cos(n6), if«MOD4 = 2

-i¥2f(r)sin(nd), if n MOD 4 = 3.

H„/M

Equivalently,

.1
_ f i"F2f(r)cos(nd), if n even

" \ inF2f(r) sin(nd), if n odd.
QED

The simplified two-dimensional fast Fourier transform algorithms are placed in
perspective through the utilization of operator notation.
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4.0. Indirect methods. In the next two subsections we cover the two classes of
indirect Hankel transform algorithms listed in the middle third of Table 1, and
develop extensions and generalizations using Radon transform methods.

4.1. Projection-slice algorithms. Through manipulations of the two-dimensional
Fourier transform, Kausel and Bouchovalas [27] arrived at the following equations:

/OO
cos (n6)g(r)dy (18)

-OO

/OO
f(x) exp(-i2ji£x)dx,

-OO

where 6 = tan~\y/x), r = (x2 + y2)1/2, and G(£) is an approximation to Hng{r).
Since Kausel and Bouchovalas [27] did not formulate the problem in a more gen-

eral manner, the limitations of (18) were not apparent. It will be shown through the
utilization of operator notation that Eq. (18) is only correct for Hankel transforms
of even order. In spite of these errors, Kausel and Roesset [28] were able to utilize
this technique to analyze the dynamics of structures due to earthquakes.

Utilizing operator notation, the framework for projection-slice algorithms will be
specified in terms of the projection-slice theorem [16, 24]:

F2f(x,y) = FlR2f(x,y), (19)

where R2, the two-dimensional Radon transform, is given by [6, 16, 19, 24, 37]

/OO r OO/ f(x, y)S{p - x cos<p - y sir\(f))dxdy, (20)
-oo J — OO

and S is the Dirac delta function [7, 29], Observe that the delta function in the
equation above is one-dimensional and thus the integral over the xy plane reduces
to an integral along the line defined by the equation

p = x cos <j) + y sin <j>.

By substituting Eq. (19) into (17) the connection between the Hankel transform
and the projection-slice theorem becomes apparent.

( /nF,R,/(r) cos(nd), if n is even= i (21)
I i F,R2/(r) sm(n6), if n is odd.

It is important to note that a projection angle 0 of zero degrees is assumed. Through
the utilization of the definitions of the Fourier (15) and Radon (20) transforms,
Eq. (21) becomes

/OO
exp(-i2npu)f{p)dp (22)

-OO

/OO rOC r OO/ f(x,y)S(p-xcos<t>-ysm<t>)dxdy]4i=0= f{p,y)dy (23)
-oo J —oo J — OO

where
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and
f f(r)cos(nd), if n is even

^ ^ I f{f) sin(nff), if n is odd,
r 2 , 2,1/2r = [p +y ] ,

and
6 = tan~\y/p).

Thus, utilizing the insight obtained from using operator notation, we see that Eq.
(18) can be corrected by changing cos(nd) to sin(«0) for Hankel transforms of
odd orders.

By including Tchebycheff transforms, the theoretical framework for projection-
slice algorithms becomes richer. Tchebycheff transforms are related to Radon trans-
forms by the following equation:

R2f(r) exp(ind) = exp(in<t>)Tnf(r), (24)
where Tn, the nth-order Tchebycheff transform, is given by

T„/(r) = 2 r f(r)Tn(p/r)dr/[l-(p/r)2]112, (25)
J\p\

where Tn is a Tchebycheff polynomial, Type I [5].
Proof. To see how (24) is obtained it is convenient to express the definiton of the

Radon transform (20) in polar coordinates,
r OO r2?l

R2/(r) exp(m0) = / / f(r) exp{ind)S[p - r cos(0 - (p)]rdrdd.
Jo Jo

If the change of variable (3 = 9 - (f> is made, then
roo r2n

R2f(r) exp(ind) = exp(incp) drf(r)r exp(infi)S(p - r cosp)dp.
Jo Jo

The integral over /? can be evaluated using the fact that

f a(x)d(h(x))dx = YL^x^lWh/dx\x=xi,
i

where x;'s are zeroes of multiplicity one of h(x) within the limits of integration of
x [26].

The zeroes of the argument of the delta function are

/? = ±cos~'(^/r), r > p.

By using this result the integral over /? yields

fJo

^n -1 2 1/2
exp(in/])d(p - rcosP)dp = 2cos[rccos (p/r)]/(r[l - (p/r) ] ), r>p.

Since the Tchebycheff polynomial is related to the cosine function by Tn(x) =
cos[« cos-1 (x)], then

I exp{inP)S(p - rcosP)dfi = 2Tn{p/r)/(r[l - {p/r)2]1'2), r> p.
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Hence,
r OO

R2f(r) exp(inO) = 2exp{in</>) / f(r)T (p/r)dr/[ 1 - (p/r)2]'/2
•'l/'l

This result in operator notation is

R2/(r) exp(inO) = exp(in<f>)Tnf(r).

QED
Tchebycheff transforms are related to Hankel transforms by the following equation:

H nf(r) = inFJnf(r). (26)
Proof. From (16),

exp(iruj))r"Hnf(r) = F2/(r) exp(/«(9),

and the projection-slice theorem for the two-dimensional Fourier transform (19),

exp (in<j>)rnHnf{r) = F{R2f(r) exp(/«0).

Utilizing the relationship between the Radon transform and the Tchebycheff trans-
form (24) results in the following equation:

exp(in<j>)i~nHnf(r) = exp(m^)F,TB/(r).

Hence, this equation in operator notation is given by

H nf(r) = inFlJnf(r).

QED
The utilization of (26) to develop projection-slice algorithms of Hankel trans-

forms of order n is presented in Suter [41, 42], For zero order, Eq. (26) can be
rewritten as

U0f(r) = in¥iAf(r), (27)
where A, the Abel transform, is given by

fOO

A/(r) = 2 [ f(r)dr/[\ - (p/r)2
J\p I

,2,1/2
J V ~ Kf/'

'\P\

Equation (27) forms the basis for the Hankel transform algorithms of Mook [32]
and Hansen [23].

Substituting the definitions of the Fourier and Techebycheff transforms in Eq.
(26) yields

where
/°°

f{p) exp(-i2npu)dp (28)
-OO

roc

hp) = 2 f(r)Tn(p/r)dr/[\ - (p/r)
Viol'\p\

Assume /(/") = 0 for r > R . Then, Eq. (29) can be rewritten as
rR

2]1/2. (29)

f(p) = 2/ f(r)T (p/r)dr/[l - (p/r)2]1'2. (30)
J\p\
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2 2 2The change of variables z = r - p yields
„2|l/2

f(P) = 2 f R " dzf[(z2 + p2)l/2]Tn[p/(z2 + p2)l/2]. (31)
Jo

Although Oppenheim, Frisk, and Martinez [34, 35] derived Eqs. (28) and (31),
their primary interest appears to be order zero. In a companion paper to Oppenheim,
Frisk, and Martinez [35], Frisk, Oppenheim, and Martinez [18] applied this algorithm
to the problem of modeling ocean acoustic propagation. In support of this algorithm,
Frisk, Oppenheim, and Martinez [18] developed a new measurement technique of
the plane wave reflection coefficient.

4.2. Filtered backprojection algorithms. Through the use of Bessel function iden-
tities, Candel [8, 10] and Gopalan and Chen [22] obtained the following equations:

/OO
exp(i2n£r)f(£)£d£ (32)

-OO

and
F(r)= [ <fr(r sin 6) exp(-ind)dd (33)

Jo
where F(r) is an approximation to H„/(£)•

Candel [8] and Gopalan and Chen [22] were concerned with zero order only, while
Candel [10] was directed towards the «th-order Hankel transform. Since Candel [8,
10] and Gopalan and Chen [22] did not formulate the problem in a more general way,
the limitations of (32) and (33) were not apparent. Moreover, flaws in the deriva-
tion of the equations were compensated in the actual implementation by symmetry
arguments. It will be shown that the factor £ in (32) should be |£|. In addition, a
factor of i~" is missing in (33). In spite of these errors, Gopalan [21] successfully
utilized Eqs. (32) and (33) in the area of speech processing.

The following result is a generalization of the work of Candel [8, 10] and Gopalan
and Chen [22], Utilizing operator notation the framework for the filtered back-
projecton will be specified in terms of the relationship between the Hankel transform
and the two-dimensional Fourier transform.

Fj'/(r, d) = exp(-/«0)/X1/('')> (34)
where

f{r, 6) = f{r)exp{ind). (35)
This equation is obtained by taking the inverse of both sides of the equation pre-
viously given as (16). Since the Hankel transform has a Fourier kernel [40], i.e.,
H„/(r) = H~lf(r), then Eq. (34) becomes

F~'/(r, 6) = exp{-in<p)inHnf{r). (36)

Given a function f(r, 6), then its inverse two-dimensional Fourier transform can be
described in terms of a filtered backprojection (see for example Deans [16]). It is
given by

f(x,y) = F-'/(/•, d) = BF~'[|r|/(r, 6)], (37)
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where B, the backprojection operator, is defined by

B£(xcos6> + ysin6>, Q) = / g(xcosd + y sin 6, 6)dd. (38)
Jo

Let x - k coscfi and y = ksincj). Then Eqs. (37) and (38) become

f(k, 0) = F"7(r, d) = BF7'[|r|/(r, 6)], (39)
where

Bg(/ccos(0 - 6), 6) = [ g(kco$((p - 6), Q)dQ.
Jo (40)

Substituting Eq. (39) into (36) yields

BFj l[\r\f(r, 9)] = exp(-in<j))i"Hnf(r). (41)

Since 0 is a parameter, let <j> equal zero. When <f> is set equal to zero, no generality
is lost since the functions f(r) have radial symmetry. Consequently, if the Hankel
transform is known for any angle </>, then it is known for all 4>. Hence, Eqs. (40)
and (41) become

Hnf(r) = rnBF;l[\r\f(r,e)], (42)
where

Bg(k cos 0, (?) = [ g(k cos 6, 6)d6. (43)
Jo

It is important to realize that the inverse Fourier transform is performed along
the r direction. Recall that f(r, 6) was assumed to have the form /(r, 6) =
f(r) exp(in6). Then utilizing the definition of the inverse Fourier transform together
with Eqs. (42) and (43) yields the following pair of integral equations

H„/(r) = i " [ h(kcosd) e\p(ind)dd, (44)
Jo

/°° \r\f(r)exp(i2nrk)dr. (45)
-OC

Let a = 6 - nil. Since the resulting integrand is an even function, the interval of
integration can be halved. Hence, Eq. (44) becomes

rn/2
H f(r) - 2 / h(k sin a) exp(ina)d a. (46)

Jo
Through the utilization of Bessel function identities, Higgins and Munson [25] de-
rived Eqs. (45) and (46), which define their «th-order Hankel transform algorithm.

5.0. Miscellaneous methods. In the next two subsections we cover the two classes
of miscellaneous Hankel transform algorithms listed in the bottom third of Table 1 .

5.1. Hybrid methods. Hybrid methods refer to a class of Hankel transform algo-
rithms based on the use of a slow, accurate algorithm for small values of the output
variable and the use of a fast, approximate algorithm for large values of the output
variable. Both the slow, accurate algorithm and the fast, approximate algorithm can
be either direct or indirect method.

where
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Candel [9] developed a working algorithm utilizing a combination of backprojec-
tion methods and asymptotic methods together with an ad hoc technique for switch-
ing between the slow and the fast algorithms; however, the accuracy of Candel's
results was data dependent. No practical hybrid method algorithms can be expected
until the switching point between the slow and the fast algorithms can be chosen to
maximize accuracy.

5.2. Orthogonal function methods. Orthogonal function methods refer to a class of
Hankel transform algorithms based on expanding a function in terms of an orthogonal
set of functions whose members have known Hankel transforms. Cavanaugh and
Cook [11] developed a working algorithm using Gaussian-Laguerre polynomials. A
disadvantage is that a large number of terms are required for convergence. These
algorithms could be improved by selecting the orthogonal functions to minimize the
number of terms required for convergence.

Summary. A new classification scheme for Hankel transform algorithms was pre-
sented. This classification is significant because: first, it specifies a way to systemati-
cally characterize Hankel transform algorithms; and, second, it provides a formalism
for extending and generalizing previously stated results. Accordingly, extensions or
generalizations were provided for the simplified 2-D FFT algorithms, the projection-
slice algorithms, and the filtered backprojection algorithms.

References

[ 1 ] W. L. Anderson, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive
digital filtering, Geophysics 44, 1287-1305 (1979)

[2] W. L. Anderson, Fast Hankel transforms using related and lagged convolutions, ACM Trans. Math.
Software 8, 344-368 (1982)

[3] W. L. Anderson, Algorithm 558 : Fast Hanke! transforms using related and lagged convolutions,
ACM Trans. Math. Software 8, 369-370 (1982)

[4] W. L. Anderson, Computation of Green's tensor integral for three-dimensional electromagnetic
problems using fast Hankel transforms, Geophysics 49, 1754-1759 (1984)

[5] G. Arfken, Mathematical Methods for Physicists, Second Edition, Academic Press, New York,
1970

[6] H. H. Barrett, The Radon transform and its applications, E. Wolf (editor), Progress in Optics,
North Holland, Amsterdam, Holland, 21 219-286 (1984)

[7] R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 1978
[8] S. M. Candel, An algorithm for the Fourier-Bessel transform, Comput. Phys. Comm. 23. 343-353

(1981)
[9] S. M. Candel, Dual algorithms for the fast computation of the Fourier-Bessel transform, IEEE

Trans. Acoust. Speech Signal Process. 29, 963-972 (1981)
[10] S. M. Candel, Simultaneous calculation of Fourier-Bessel transforms up to order N , J. Comput.

Phys. 44, 243-261 (1981)
[11] E. Cavanaugh and B. D. Cook, Numerical evaluation of Hankel transforms via Gaussian-Laguerre

polynomial expansions, IEEE Trans. Acoust. Speech Signal Process. 27, 361-366 (1979)
[12] A. D. Chave, Numerical integration of related Hankel transforms by quadrature and continued

fraction expansion, Geophysics 48, 1671-1686 (1983)
[13] A. D. Chave and C. S. Cox, Controlled electromagnetic sources for measuring electrical conductivity

beneath the oceans, 1. Forward problem and model studv, J. Geophysical Research 87, 5327-5338
(1982)

[14] P. Cornille, Computation of Hankel transforms, SIAM Rev. 14, 278-285 (1972)
[15] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second Edition, Academic

Press, New York, 1984



[16
[17

[18

[19

[20

[21

[22

[23

[24
[25

[26
[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39
[40
[41

[42

[43

[44

[45

FOUNDATIONS OF HANKEL TRANSFORM ALGORITHMS 279

S. R. Deans, The Radon Transform and Some of Its Applications, Wiley, New York, 1983
F. R. DiNapoli and R. L. Deavenport, Theoretical and numerical Green's function field solution
in a plane multilayered medium, J. Acoust. Soc. Amer. 67, 92-105 (1980)
G. V. Frisk, A. V. Oppenheim, and D. R. Martinez, A technique for measuring the plane wave
reflection coefficient of the ocean bottom, J. Acoust. Soc. Amer. 68, 602-612 (1980)
I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5, Academic Press,
New York, 1966
D. P. Ghosh, The application of linear filter theory to the direct interpretation of geoelectrical
resistivity sounding measurements, Geophysical Prospecting 19, 192-217 (1971)
K. Gopalan, Fournier-Bessel expansion: Numerical evaluation and application in the representation
and feature extraction of speech signals, Ph. D. Dissertation, University of Akron, Akron, Oh., 1984
K. Gopalan and C. S. Chen, Fast computation of zero order Hankel transform, J. Franklin Inst.
316, 317-326 (1983)
E. W. Hansen, Fast Hankel transform algorithm, IEEE Trans. Acoust. Speech Signal Process. 33,
666-671 (1985), Errata 34, 623-624 (1986)
S. Helgason, The Radon Transform, Birkhauser, Boston, Mass., 1980
W. E. Higgins and D. C. Munson, An algorithm for computing general integer order Hankel trans-
forms, IEEE Trans. Acoust. Speech Signal Process. 35, 86-97 (1987)
J. D. Jackson, Mathematics for Quantum Mechanics, W. A. Benjamin, New York, 1962
E. Kausel and G. Bouchovalas, Computation of Hankel transforms using the fast Fourier transform
algorithm, Massachusetts Institute of Technology, Civil Engineering Department, Research Report
R79-12, 1979
E. Kausel and J. M. Roesset, Stiffness matrices for layered soils, Bull. Seismol. Soc. Amer. 71,
1743-1761 (1981)
M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge University
Press, Cambridge, England, 1962
I. M. Longman, Note on a method for computing infinite integrals of oscillatory functions, Proc.
Cambridge Philos. Soc. 52, 764-768 (1956)
I. M. Longman, Tables for the rapid and accurate numerical evaluation of certain infinite integrals
involving Bessel functions, Mathematical Tables and Other Aides to Computation 11, 166-180
(1957)
D. R. Mook, An algorithm for the numerical evaluation of the Hankel and Abel transforms, IEEE
Trans. Acoust. Speech Signal Process. 31, 979-985 (1983)
P. K. Murphy and N. C. Gallagher, Fast algorithm for the computation of the zero-order Hankel
transform, J. Opt. Soc. Amer. 73, 1130-1137 (1983)
A. V. Oppenheim, G. V. Frisk, and D. R. Martinez, An algorithm for the numerical evaluation of
the Hankel transform, Proc. IEEE 66, 264-265 (1978)
A. V. Oppenheim, G. V. Frisk, and D. R. Martinez, Computation of the Hankel transform using
projections, J. Acoust. Soc. Amer. 68, 523-529 (1980)
T. N. L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22,
847-856 (1968), Errata 23, 892 (1969)
J. Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannig-
faltigkeiten, Brie Sachsische Akademie der Wissenschaften, Leipzig, Math-Phys. K1 69, 262-267
(1917)
S. Sheng and A. E. Siegman, Nonlinear-optical calculations using fast-transform methods: Second
harmonic generation with depletion and diffracton, Phys. Rev. 21, 599-606
A. E. Siegman, Quasi fast Hankel transform, Optics Letters 1, 13-15 (1977)
I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972
B. W. Suter, Some Numerical Applications of the Radon Transform, Ph. D. Dissertation, University
of South Florida, Tampa, Fl., 1988
B. W. Suter, Fast nth-order Hankel transform algorithm, IEEE Trans. Signal Process. 39, 532-536
(1991)
J. D. Talman, Numerical Fourier and Bessel transforms in logarithmic variables, J. Comput. Phys.
29, 35-48 (1978)
R. K. Verma, Detectability by electromagnetic sounding systems, IEEE Trans, on Geoscience Elec-
tronics 15, 232-251 (1977) '
G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University
Press, Cambridge, England, 1966


