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ABSTRACT OF THE DISSERTATION

Foundations of Information Integration

by

Alan Nash

Doctor of Philosophy in Mathematics and Computer Science

University of California San Diego, 2006

Professor Jeff Remmel, Chair

Professor Russell Impagliazzo, Co-Chair

Professor Victor Vianu, Co-Chair

We study three fundamental problems in information integration:

1. the data integration query problem,

2. the data exchange core computation problem, and

3. the schema mapping composition problem.

The first problem consists of computing the certain answers to a query over a

target schema for a source instance under constraints which relate the source and target

schemas. We show how to compute certain answers for a larger family of constraints and

queries than those previously addressed. One of the main tools is the chase, which we

study and extend significantly.

The second problem deals with inserting data from one database into another

database having a different schema. Fagin, Kolaitis, and Popa have shown that among

the universal solutions of a solvable data exchange problem, there exists – up to iso-

morphism – a most compact one, “the core”, and have convincingly argued that this

core should be the database to be materialized. We show how to compute the core

in the general setting where the mapping between the source and target schemas is

given by source-to-target constraints which are arbitrary tuple generating dependencies

(TGDs) and target constraints consisting of equality generating dependencies (EGDs)

and weakly-acyclic TGDs.

The third problem, composition of mappings between schemas, is essential to

support schema evolution, data exchange, data integration, and other data management

xi



tasks. We study the issues involved in composing schema mappings given by embedded

dependencies that need not be source-to-target and we concentrate on obtaining (first-

order) embedded dependencies. We provide a composition algorithm and several negative

results. In particular, we show that even full dependencies that are not limited to be

source-to-target are not closed under composition and that determining whether the

composition can be given by these kinds of dependencies is undecidable. These negative

results carry over to mappings given by embedded dependencies.
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1

Introduction

1.1 Introduction

Information integration is concerned with putting together information from

different data sources for various purposes. Problems in information integration have

existed for a long time, most likely predating computers and certainly since soon after

their introduction. There are many different parts to this endeavor including, for ex-

ample, extracting structured data from sources which do not have much structure to

begin with, such as HTML pages. We concentrate on the case where the data sources

are relational databases and do not address such issues as “structure extraction” or the

related problem of “data cleaning.”

Relational databases consist of relations, which are sets of tuples of elements of

some domain D. A relation has arity r if it is a subset of Dr. The data in a relational

database is organized according to a schema, which is a list of relation names and their

arities.

Integration can be achieved in many different ways, but many of these ways

can be subsumed under variations of the following scenario, which is the main one we

consider. Suppose there are several relational databases to be integrated. We can first

pretend that these source schemas are disjoint, and then further pretend that there is a

single source schema consisting of the union of the “real” source schemas and a single

database obtained by simply putting together the “real” source databases.

Integration can be achieved by creating a public or target schema and allowing

users (both human and systems) to interact with this target schema as if there was a

database over that target schema. In some cases this target database may actually be

constructed (materialized). The connection between the source schema and the target

1
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schema is specified by a schema mapping, which is one of the fundamental objects of our

study. The name “schema mapping” is misleading, but unfortunately well established.

Schema mappings do not actually map schemas to schemas, but rather databases over

the source schema to databases over the target schema. Secondly, schema mappings are

often not functions; that is, to each source there may correspond several (even infinitely

many) databases over the target schema that conform to the schema mapping. Formally,

a schema mapping is a binary relation on databases, over the source schema for the

domain and over the target schema for the range. When a schema mappings happens to

be a function, we say that it is functional.

To simplify our considerations, we will pretend that the source schema σ and the

target schema τ are disjoint. The schema mappings we consider are given by finite sets

of sentences (constraints) in some logic over σ ∪ τ . A mapping m is given by constraints

Σ when

(S, T ) ∈ m iff (S, T ) |= Σ

where S is a database over σ, T is a database over τ , (S, T ) is the database over σ ∪ τ

obtained by putting together the relations in S and T , and (S, T ) |= Σ means that (S, T )

satisfies the constraints Σ. We will consider several different families of constraints, but

the ones of most immediate interest to us are those constraints ξ of the form

φ(ū)→ ∃v̄ ψ(ū, v̄)

where φ and ψ are conjunctions of atoms and may include equalities. We adopt the

standard convention that all variables which are not otherwise quantified are universally

quantified and we require that all variables ū appear in φ. Such constraints are known as

embedded (implicational) dependencies [15]. We call φ the premise and ψ the conclusion.

If v̄ is empty, then ξ is a full dependency. If ψ consists only of equalities, then ξ is an

equality-generating dependency (EGD). If ψ consists only of relational atoms, then ξ is

a tuple-generating dependency (TGD). Source-to-target constraints are those where φ is

over σ and ψ is over τ . Similarly, target-to-target or simply target constraints are those

over τ . In parts of these thesis we will also consider constraints where φ and ψ are

allowed to include negation over relational atoms, inequality, and disjunction.

Tasks in information integration include the design of suitable target schemas

and the specification of suitable schema mappings. We do not address these tasks, but

rather concentrate on the case where the target schemas and the schema mappings are
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given to us.

We are interested in investigating basic operations on and properties of schema

mappings. It is our hope that in time, a general toolkit consisting of algorithms to

perform such basic operations and to check such properties is developed. Of course, for

such development it is also important to develop appropriate lower bounds and other

limitative results which help to outline what is possible and what is not. Such study must

necessarily be parametrized by the logical complexity of the constraints used to define

schema mappings and should also help in the selection of an appropriate logic for such

constraints that strikes a reasonable balance between expressive power and efficiency of

the corresponding algorithms.

In this thesis, we concentrate on three basic problems (all three are operations

that involve schema mappings and possibly an additional source and query):

• The data integration query problem: given a source S over σ, a schema mapping

m between σ and τ given by constraints Σ, and a query Q over the target schema

τ , answer Q.

• The data exchange problem: given a source S over σ, and a schema mapping

m between σ and τ given by constraints Σ, create a database T over τ such that

(S, T ) ∈ m; that is, such that (S, T ) |= Σ. A database T satisfying these conditions

is called a solution for S under m (or Σ). In particular, we concentrate on the core

computation problem: compute a minimal solution which is also universal (see the

preliminaries below).

• The composition problem: given mappingsm12 between σ1 and σ2 andm23 between

σ2 and σ3 given by constraints Σ12 and Σ23, find a set of constraints Σ13 defining

the mapping m13 obtained from composing m12 and m23; that is, such that

(R, T ) |= Σ13 iff ∃S (R,S) |= Σ12 and (S, T ) |= Σ23.

In the course of our study of these three fundamental problems, we develop

results and techniques which apply to other areas of database research, including query

containment under constraints, testing implication of constraints, and query minimiza-

tion. In particular, in Chapter 3 we investigate and extend the chase, introduce the

closely-related notion of template, and we show that the chase produces templates. The

chase has been used in databases for over 25 years to check query containment under

constraints and implication of constraints.
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Many kinds of schema mappings are used in information integration. For ex-

ample, there are very complex mappings given by Pearl scripts. Such mappings are very

hard to analyze, and we do not consider them here. Among those mappings which are

more amenable to theoretical analysis, there has been a progression towards more and

more expressive mappings, which can be roughly summarized as follows:

• global-as-view (GAV) mappings and local-as-view (LAV) mappings,

• global-local-as-view (GLAV) mappings, and

• global-local-as-view (GLAV) mappings + target constraints.

GAV mappings [ACPS96,GPQ+97] are those where the target instance is given

by a set of queries V over the source schema. Such queries are known as views. The target

schema is sometimes known as the global schema, which explains the name “global-as-

view.” GAV mappings are functional. All three problems given above are easy for GAV

mappings. Problem 1 reduces to evaluating the query Q on the result of computing views

V over the source S, which is straightforward. Problem 2 is trivial, since minimization

is only hard when databases have variables (or labelled nulls) in them and the unique

solution T := V(S) has no variables. Problem 3 is also easy, since composition of GAV

mappings reduces to composition of the queries defining the views, which is usually

straightforward.

LAV mappings [LRO96,FW97,DGL99] are not a generalization of GAV map-

pings, but simply a different kind of mapping. They are given by inclusion of the source

relations in views over the target schemas. When the views are given by conjunctive

queries with equalities. they are those given by source-to-target embedded dependencies

where φ contains a single relational atom. They are generally non-functional.

GLAV mappings [FLM99] are a generalization of both GAV and LAV mappings.

In the general case they are given by inclusions of queries over the source schema in

queries over the target schema. When these queries are given by conjunctive queries

with equalities. GLAV mappings correspond to mappings given by source-to-target

embedded dependencies. A further generalization is GLAV mappings with additional

target constraints, usually given by embedded dependencies. In this case, it is often

necessary to have a condition on the target constraints to guarantee termination of the

chase and the condition usually considered is weak acyclicity (see the preliminaries).

In some parts of this thesis we go beyond GLAV mappings given by conjunctive

queries with equality and also consider

• general mappings given by embedded dependencies and
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• general mappings given by universal-existential (Π2) constraints.

The latter are those given by constraints that are similar to embedded dependencies,

except that we also allow negation over relational atoms, inequality, and disjunction in

φ and ψ.

The Data Integration Query Problem

In data integration, the target schema is the schema of a mediator, against

which client applications can pose their query Q. The target instance is virtual, i.e.

not materialized, and the task of the mediator is to compute the answer to Q using the

source instance S. The answer to Q is defined as the intersection of the results of Q on

all solutions:
⋂

solution T
Q(T ). This intersection is called the certain answers to Q.

[11] reveals a beautiful connection between the data exchange and the data

integration query problems: if the client query Q is a union of conjunctive queries and

the constraints in Σ are source-to-target and target-to-target embedded dependencies,

then any universal solution U of the data exchange problem provides a solution to the

data integration query problem: the certain answers to Q are the tuples in Q(U) over

the active domain of the source. Moreover, [11] shows that a universal solution can

be computed using the chase procedure. The importance of these results is that they

eliminate the challenge posed by the non-algorithmic definition of certain answers, which

is based on infinitely many possible solutions. All one needs to do to find the certain

answers is to compute a universal solution using the chase, and run the client query over

it.

Unfortunately, the connection between the two problems breaks down as soon

as more expressive queries or constraints are considered. As already observed in [11], if Q

contains even one inequality, then its result on a universal solution may strictly contain

the certain answers. Furthermore, it is shown in [16] that, when the constraints in Σ

are not source-to-target, there simply may not be any universal solution, yet the set of

certain answers may be non-empty. Looking at constraints beyond the source-to-target

class is motivated in [16, 22] in the setting of peer data management. This case is also

relevant to incorporating materialized warehouses and cached queries into the mediator

for data integration [8].

As we will explain in the contributions section, we restore and strengthen the

connection between data exchange and data integration by introducing the notion of a

universal set solution and by considering alternative notions of universality.
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The Data Exchange Core Computation Problem

While data integration usually deals with query translation and with query pro-

cessing among multiple databases, data exchange aims at materializing a target database

stemming from some source databases. Clearly, once transferred to the target database,

the data can be queried according to the target schema. While data exchange has been

recognized as an important problem for several decades, systematic research on founda-

tional and algorithmic issues of this problem has started only a few years ago with the

fundamental work of Fagin, Kolaitis, Miller, and Popa [11].

There can be several universal solutions to a data exchange problem and these

solutions can noticeably differ in size. However, as observed in [12], there is – up to

isomorphism – one particular universal solution, called the core (of any universal solu-

tion), which is the most compact one. More specifically, the core of a universal solution

U is (up to isomorphism) the smallest subset V of U such that V is homomorphically

equivalent to U . Fagin, Kolaitis, and Popa [12] argue that the core of a data exchange

problem should be the solution of choice.

Computing the core of an arbitrary instance is known to be NP-complete. How-

ever, when the instance is a universal solution, we may use the constraints to guide the

minimization problem in order to make it more efficient. The problem we tackle here is

how to compute the core of a universal solution in polynomial time, for mappings given

by source-to-target TGDs and target weakly-acyclic TGDs.

The Schema Mapping Composition Problem

Mapping composition refers to combining two mappings into a single one. If

m12 is a mapping between schemas σ1 and σ2 and m23 is a mapping between schemas

σ2 and σ3, then the composition m12 ◦m23 of m12 and m23 is a mapping that captures

the same relationship between σ1 and σ3 as the two mappings m12 and m23.

Composition of mappings generalizes composition of queries, which is imple-

mented in most commercial database systems. It is known that composition of two first-

order queries (a.k.a. view unfolding) is a first-order query, that is, first-order queries

are closed under composition. The same holds for conjunctive queries and unions of

conjunctive queries.

Query composition corresponds to composition of functional mappings. In a

more general setting, the mappings to be composed may be non-functional and this

makes the problem of composing them harder. For example, answering queries using
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views involves the composition of the query and the inverse of the view. But inverting a

functional mapping often yields a non-functional mapping.

1.2 Organization

Chapter 2 introduces the notation used throughout this thesis. Then we cover

three basic problems in information integration:

• The data integration query problem (Chapter 3).

• The data exchange core computation problem (Chapter 4).

• The schema mapping composition problem (Chapter 5).

Chapter 3 is organized as follows. In Section 3.1 we show how to compute

certain answers using universal set solutions. Universal set solutions are special kinds of

templates; we introduce the latter in Section 3.2. In Section 3.3 we show how to compute

templates using the chase. In Section 3.5 we extend our results to constraints beyond

embedded dependencies and in Section 3.6 to mappings other than homomorphisms

and queries beyond UCQ. In Section 3.7 we show how templates apply to checking

containment under constraints and implication. Then in Section 3.8 we show how to

compute certain answers to queries with k-variables, even when universal set solutions

do not exist.

Chapter 4 is organized as follows. Section 4.1 summarizes the relevant previous

work and introduced the main ideas used in our solution on an informal level. The

detailed proof of our main result is carried out in Sections 4.2-4.4. In particular, in

section 4.2 we deal with cores and retractions (i.e., idempotent endomorphisms), in

Section 4.3 we prove that cores of data exchange problems can be computed in polynomial

time in case the set Σt of target dependencies consists is a weakly acyclic set of TGDs.

This tractability results gives rise to the new FindCore algorithm. In Section 4.4 we

extend the tractability of core finding to sets of target constraints that may contain,

in addition, EGDs and arrive thus at the solution of the main open problem posed

in [12]. In Section 4.5, we explain how the tractability result can be extended to a yet

larger classes of target constraints Σt provided they satisfy a certain property, called the

bounded ancestor property.

Chapter 5 is organized as follows. In Section 5.1 we present the deductive

system which we use to as the basis of our composition algorithm. In Sections 5.2,

5.3, and 5.4 we study the composition of mappings given by, respectively, full, second-
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order, and embedded dependencies. In Section 5.5 we introduce a tool for proving lower

bounds on the number of embedded dependencies needed to axiomatize some classes

of structures, which we use to prove one of our negative results. In Section 5.6 we

examine the semantics of Skolemized constraints and study unrestricted composition.

In Section 5.7 we briefly consider how some other basic operators on mappings such as

domain and range relate to composition.

Chapter 6 is the conclusion.

1.3 Contributions and Related Work

Data Integration Query Problem: Chapter 3

This chapter makes the following contributions.

1. Universal set solutions. We restore and strengthen the connection

between data exchange and data integration by introducing the notion of a universal set

solution. This is a finite set U of solutions, sufficient to compute the certain answers to

a query Q of arity r for a source S as follows:

certain answers of Q = dom(S)r ∩
⋂

T∈U

Q(T ).

2. Wider classes of queries and constraints. We show that such connec-

tion between data exchange and data integration holds for wider classes of queries than

unions of conjunctive queries and for wider classes of constraints than source-to-target

and target-to-target embedded dependencies. In particular, we show how to compute

certain answers for

• arbitrary monotonic queries,

• unions of conjunctive queries with inequality and negation (UCQ¬,6=or ∃-queries),

and

• embedded dependencies extended with disjunction, inequality, and negation (∀∃-

constraints), arbitrarily expressed over the combined schemas σ and τ (i.e. not

restricted to be source-to-target and target-to-target) which satisfy the terminating

conditions in item 8 below.

3. Data exchange. Our work provides solutions to the data exchange

problem beyond the setting of source-to-target embedded dependencies studied in the

literature [11, 16] and in Chapter 4. In our more general setting, the single universal
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solution may not exist, or may not be useful for correctly computing certain answers to

queries beyond conjunctive queries. Previous research does not provide any guidelines on

what solution to materialize in that case. A natural choice is to materialize one solution

from the universal set solution, if it exists. We show how to compute such solutions

using the chase.

4. Relaxing universality. We address the case when there is no universal

set solution, showing that certain answers can sometimes be computed for unions of

conjunctive queries with at most k variables by finding a “not quite universal” set solution

which we call k-universal. We introduce an interesting variant of the chase to compute

k-universal set solutions.

5. Query containment, etc. Our results, concepts, and techniques are

widely applicable beyond the data exchange and integration settings. In particular, they

provide a unified solution for deciding query containment under constraints for expres-

sive classes of queries and constraints which allow disjunction, inequalities and negated

literals.

The machinery we develop to carry out the research program detailed above

involves the following technical contributions.

6. Templates. We introduce the concept of a template of a class of instances,

which generalizes the notion of a universal set solution and is relevant to the data ex-

change, data integration and containment problems. Given constraints Σ, we distinguish

between a template for the set of all finite models of Σ which we call weak templates and

a template for all (both finite and infinite) models of Σ which we call a strong template.

We show that some embedded dependencies Σ have a weak template, but no strong

template. It turns out that a universal set solution for S under Σ is precisely a weak

template for constraints ΣS satisfying T |= ΣS iff (S, T ) |= Σ.

7. New chase. We show that strong templates are precisely what any

“chase-like” procedure computes if it terminates. We start by formalizing the well-

known ordered chase procedure to provide a unifying treatment of all chase extensions

from recent prior work to cover arbitrary ∀∃ constraints. We show that this ordered

chase is incomplete, that is, it may fail to find a strong template even when one exists.

We then introduce a novel chase procedure, which we call the unordered mini-

mizing chase, that is order-independent. We show that the unordered minimizing chase

is complete for finding strong templates; that is, the unordered minimizing chase termi-
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nates if and only if there is a strong template. From the point of view of completeness,

this is the best any chase-like procedure can achieve. In particular, the unordered mini-

mizing chase terminates whenever any chase-like procedure terminates and if there is a

universal set solution that any chase-like procedure can find, the unordered minimizing

chase will.

8. New termination conditions. We provide a widely-applicable, sufficient

condition for termination of the ordered chase, which can be checked effectively on the

constraints Σ. If this condition holds, we say that Σ is stratified. This new stratification

condition is strictly more general than the best previously known such condition: weak

acyclicity [11, 9].

Related Work. We have already discussed above the pioneering work in [11]. The

chase was introduced in [28] where its connection to logical implication was established

(an early ancestor was introduced in [2]). Related formulations of the chase for various

kinds of dependencies were introduced in [27, 38]. The chase was extended to embedded

dependencies in [3], to include disjunction and inequality in [9], and to arbitrary ∀∃-

sentences in [7].

Data Exchange Core Computation: Chapter 4

Since the core is in many contexts apparently the most satisfactory solution to a

data exchange problem, it makes sense to study computational issues and the complexity

of “getting to the core.” This is a topic of [12] and the main topic of the Chapter 4.

Computing the core of an arbitrary relational instance with variables (which is

not necessarily a universal solution of a data exchange problem) is NP-complete, as this

is easily seen to be equivalent to a number of well-known NP-complete problems such

as computing the core of a graph [23, 12], computing the smallest equivalent subquery

contained in a conjunctive query [6], or computing the condensation of a clause [20].

Therefore, Fagin et al. [12] wondered whether the core of a universal solution of a data

exchange problem whose target TGDs are weakly acyclic can be efficiently computed.

Fagin et. al formulated the following problem:

Problem [12]: Given a data exchange problem whose source-to-target con-
straints are TGDs and whose target constraints consist of weakly-acyclic
TGDs and arbitrary EGDs, can the core of a universal solution be computed
in polynomial time?

This is precisely the problem we tackle in this chapter. While there has been

some progress and partial answers, the problem remained open for about three years. It
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was also mentioned as an important open Problem in Kolaitis’ invited PODS’05 talk and

paper Schema Mappings, Data Exchange, and Metadata Management [25]. The main

result of the present chapter is the following positive answer to this question.

Theorem 4.9. The core of a universal solution of a data exchange problem
whose source-to-target constraints are TGDs and whose target constraints
consist of weakly-acyclic TGDs and arbitrary EGDs can be computed in
polynomial time.

The related work for this chapter is discussed in Section 4.1 since it is also used

to introduce the main ideas used in our solution.

Composition of Schema Mappings: Chapter 5

Composition was recently studied by Madhavan and Halevy [26] and by Fagin,

Kolaitis, Popa, and Tan [13] (see “Related Work” below). We address a similar set of

questions as Fagin et al, but for different mapping languages. To be precise, they focus

on mappings given by second-order constraints that are restricted to be source-to-target,

while we we study constraints that are first-order and need not be source-to-target. (All

of these terms will be defined shortly.) We have several motivations for pursuing this

direction, including the following:

• Allow schema constraints. If they are present, composition yields mappings that

may include functional dependencies or inclusion dependencies that are not source-

to-target.

• Support mappings that express equality of views and, more generally, symmetric

data exchange and peer-to-peer systems.

• Obtain closure under most basic mapping operators; in particular, composition

and inverse.

• Ensure that checking whether a pair of instances is in a mapping has low complex-

ity.

• Be able to deploy composition mappings in existing database system products.

In this new context, we extend the results of [13] in several directions. We

study the composition of three related kinds of mappings:

(1) FuD-mappings (given by full dependencies)
(2) ED-mappings (given by embedded dependencies)
(3) SkED-mappings (given by second-order constraints)
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and the corresponding mappings without equality. ED-mappings subsume st-tgds, func-

tional dependencies and inclusion dependencies, and can express view definitions. SkED

constraints subsume the SO tgds of [13], which in our terminology are source-to-target

SkTGD constraints.

The case of most interest to us is that of ED-mappings. We show that one way

to compose them is to:

1. Skolemize the ED-mappings to get SkED-mappings,

2. find a finite SkED axiomatization of all SkED constraints that hold for the com-

position, and

3. de-Skolemize the finite SkED axiomatization to get a ED-mapping.

The first step is easy; the difficulties arise in Steps 2 and 3. In the work [13], the

source-to-target restriction simplifies Step 2. In Step 3, our goal is to obtain embed-

ded dependencies, which requires eliminating second-order quantifiers. By contrast, the

composition considered by Fagin et al. is given by second-order constraints, so in their

case Step 3 does not apply.

In the case of SkTGD we consider both restricted composition, in which we are

not allowed to introduce new function symbols, and unrestricted composition, in which

we are free to introduce new function symbols. Since no function symbols appear in the

other kinds of constraints we consider, restricted and unrestricted composition coincides

for them.

Observe that our mapping languages are capable of expressing within-schema

constraints, such as inclusion and functional dependencies. In this chapter, we assume

that schema constraints are part of each mapping that mentions the schema. So we do

not need to refer to them explicitly.

To list our contributions, we need to refer to many classes of mappings. To

simplify the presentation, we use the following convention. Whenever we refer to a

class of constraints without equality (for example, TGD), we imply that the result also

holds for the corresponding class of constraints with equality (for example, ED), unless

otherwise stated. In contrast, whenever we refer to a class of constraints with equality, we

do not imply the result holds for the corresponding class of constraints without equality.

Furthermore our negative results do not require the use of constants and our positive

results allow constants. Our contributions include the following.
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Negative results:

1. We show that FTGD-mappings are not closed under composition and that SkTGD-

mappings are not closed under restricted composition (Theorem 5.3).

2. We show that the problem of determining whether the composition of two FTGD-

mappings is a FTGD-mapping is undecidable (Theorem 5.4). This result carries

over to TGD-mappings and to restricted composition of SkTGD-mappings.

3. Expressing the composition of two FTGD-mappings may require FTGD constraints

that are exponentially larger in size than the input mappings, even over fixed

schemas (Example 5.5). This result carries over to TGD-mappings and SkTGD-

mappings. We show that there are TGD-mappings that require exponentially

larger expressions in TGD than in SkTGD (Theorem 5.15); that is, an exponential

increase in size may occur independently at each of the Steps 2 and 3 of the

procedure outlined above. We develop a novel inexpressibility mechanism that

allows us to show this result (Section 5.5).

Positive results:

4. We present necessary and sufficient (but uncomputable) conditions for composi-

tion of FTGD and restricted composition SkTGD-mappings (Theorem 5.5 and

Theorem 5.11).

5. We present algorithms that compute the composition of FTGD and restricted

composition SkTGD-mappings whenever they terminate (Corollary 5.8). These

algorithms are very similar to each other and can be seen as an extension of the

algorithm in [13] to handle mappings that are not restricted to being source-to-

target.

6. We introduce exponential-time sufficient conditions for the algorithms above to

terminate (Theorem 5.9).

7. We present an algorithm to compute the composition of TGD-mappings, which

consists of three steps as outlined above: (1) Skolemize, (2) invoke the restricted

composition algorithm for SkTGD-mappings, and (3) de-Skolemize.

8. The de-Skolemization step may fail. (After all, SkTGD has more expressive power

than TGD since, as shown in [13], it can encode NP-complete problems.) We show

how to check in polynomial time whether it will succeed and whether its output

will be exponentially larger than its input (Proposition 5.14).

9. We identify exponential-time recognizable subsets of FTGD and SkTGD that are

closed under composition (restricted for the latter) and inverse and that include
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source-to-target constraints and constraints that express view definitions (Theo-

rem 5.10). We do not provide such a subset of TGD since the conditions on it

would be very restrictive (to ensure that de-Skolemization succeeds).

Additional (minor) results for second-order constraints:

10. We identify two different kinds of composition of SkTGD-mappings: restricted and

unrestricted.

11. We introduce another fragment of second-order logic, ∃SOED. We show that

every finite set of source-to-target constraints SkED is equivalent, under the special

semantics, to a finite set of source-to-target ∃SOED constraints under the usual

semantics for ∃SO (Theorem 5.27).

Composition is only one of many useful operations on mappings. Bernstein et

al. [4, 5] introduced a general framework, called model management, in which operators

on schemas and mappings are used to simplify the development of metadata-intensive

applications. The basic operators include domain, range, composition, and inverse. Fur-

ther operators are discussed in [30, 29].

12. We show that domain, range, and composition are closely related and can be

reduced to each other (Proposition 5.29).

This is one reason why, in this context, composition and inverse are fundamental. The

latter is easy if we use symmetric restrictions on the languages that define our mappings.

Thus, FuD,ED, and SkED mappings have trivial inverse mappings. On the other hand,

composition turns out to be very hard and is the primary subject of this chapter.

Related Work. A first semantics for composition of mappings was proposed in the

pioneering work [26] by Madhavan and Halevy. Under their definition, m13 is a compo-

sition of m12 and m23 if the certain answers obtained by way of m13 for any query in a

class of queries L against schema σ3 are precisely those that can be obtained by using

m23 and m12 in sequence. Notice that in their definition, composition depends on the

query class L. They focused on the relational case and considered mappings given by a

certain class of tgds, which they call GLAV formulas.

Madhavan and Halevy showed that the result of composition may be an infinite

set of formulas when the query language L is that of conjunctive queries, and proposed

algorithms for the cases when composition can be done. Their definition has some

disadvantages. In particular, the result of composition varies depending on the choice of
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the query language L. Also, the definition is asymmetric; that is, it is based on queries

over σ3 and does not consider queries over σ1.

An alternative, language-invariant semantics for mapping composition was pro-

posed independently by [13] and [31, Chapter 4]. Those papers considered mappings as

binary relations on instances of schemas and defined mapping composition as a set-

theoretic composition of such binary relations. This semantics makes the result of map-

ping composition unique and does not depend on a specific logical formalism chosen for

representing mappings and queries.

Fagin, Kolaitis, Popa, and Tan [13] were the first to embark on a systematic

investigation of mapping composition under these natural semantics. They presented

many fundamental results; we survey only some of them here. First, they showed that

full st-tgds are closed under composition, but that embedded st-tgds are not. To obtain

closure in a more general setting, they introduced SO tgds, a second-order extension

of st-tgds. These arise from Skolemizing embedded st-tgds. They showed that SO

tgds are strictly more expressive than st-tgds and are closed under composition. This

makes them a suitable mapping language for data exchange and query-rewriting scenarios

[11, 39]. Further results in [13] are that composition of mappings given by st-tgds

may give mappings undefinable in Lω
∞ω and that composition of FO-mappings may give

uncomputable mappings.

We extend the seminal work of [13] in two principal directions: (1) we study

constraints that need not be source-to-target and (2) we concentrate on obtaining em-

bedded dependencies (which are first-order).

Very roughly speaking, the main two challenges that we face involve recursion

and de-Skolemization.
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Preliminaries

2.1 Basics

A schema or signature σ is a finite list of relation symbols and their arities. An

instance A over σ has one relation for every relation symbol in σ, of the same arity. We

write arity(R) for the arity of a relation R. We define the domain dom(A) of an instance

A as the set of values which appear in A. Unless otherwise specified, we consider finite

instances with two types of values: constants and variables. The latter are also known

as labeled nulls. An instance without variables is ground. If X is a set of values, we write

R|X for the relation R restricted to those tuples which have values in X and we A|X

for the subinstance of A obtained by restricting the relations in A to only those tuples

which have values in X. For an instance A, we write dom(A) for the domain of A, |A|

for the size of dom(A), and RA for the value of the relation R in A. If A,B are both

over σ, we write A ⊆ B if for every relation symbol R ∈ σ, RA ⊆ RB and A v B if for

every relation symbol R ∈ σ, RA = RB |dom(A).

We write ā for a tuple (a1, . . . , ar) where the arity r is usually clear from the

context. We write a ∈ ā whenever a = ai for some i satisfying 1 ≤ i ≤ r. In some

cases, we overload the notation ā to denote just a list of variables a1, . . . , ar; which use is

intended should be clear from context. In particular, sometimes we write ā ∈ X to denote

a1, . . . , ar ∈ X which is equivalent to (a1, . . . , ar) ∈ X
r. This is a useful convention since

it is cumbersome to write instead ā ∈ X r when the arity r of ā has not been explicitly

introduced. Similarly, we write ā 6∈ X to denote a1, . . . , ar 6∈ X, which is different from

(a1, . . . , ar) 6∈ X
r.

The Gaifman graph G(T ) of instance T is the undirected graphG with vertex set

V G := dom(T ) where there is an edge between x, y ∈ dom(T ) iff x and y appear together

17
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in some tuple of some relation of T . The Gaifman graph of variables GV (T ) of instance T

is G(T ) restricted to the variables in T . A block of T is a connected component of GV (T ).

We write blocks(T ) for the set of all blocks of T . If v ∈ var(T ), then block(v, T ) denotes

the block of T containing v. If V ⊆ var(T ), then blocks(V, T ) =
⋃

v∈V {block(v, T )}, i.e.,

blocks(V, T ) is the set of all blocks of T that contain at least one variable from V . The

block size of an instance T , denoted by blocksize(T ) is the maximum number of variables

appearing in a block of T . We say that a set of instances K has bounded block size if

there is a bound b such that the block size of every T ∈ K is ≤ b.

We adopt the RAM model for our complexity bounds.

2.2 Homomorphisms, Retractions, and Cores

Given two instances A and B, a function h : dom(A) → dom(B) is a homo-

morphism if whenever R(ā) holds in A, R(h(ā)) holds in B and if h(c) = c for every

constant in A. We write A→ B in case there is a homomorphism between A and B. If

A → B and B → A, we say that A and B are homomorphically equivalent, which we

write A↔ B. We extend → to sets of structures K,L as follows:

K → L iff (∀B ∈ L)(∃A ∈ K)(A→ B).

It is easy to verify that this extension of → is reflexive and transitive. Notice that

K ⊆ L implies L → K. We say that a structure or set of structures T is universal for

K if T → K.

A homomorphism h : A→ A is an endomorphism of A. Since we only consider

finite instances, notice that an endomorphism is surjective iff it is injective. An endo-

morphism r on A is a retraction if r is the identity on its range; that is, if r is idempotent

(r ◦ r = r). If also r(A) = B ⊆ A, we say that B is a retract of A and we write A ↪→ B.

If A ↪→ B, then A ↔ B; that is, A and B are homomorphically equivalent since r is

a homomorphism A → B and the identity is a homomorphism B → A. A retraction

is proper if it is not surjective (which in the case of finite instances is the same as not

injective). An instance is a core if it has no proper retractions. A core C of an instance

A is a retract of A which is a core; that is, C is a minimal retract of A.

An isomorphism is an injective homomorphism whose inverse is also a homo-

morphism. We write A ∼= B if there is an isomorphism from A to B. Cores of an instance

A are unique up to isomorphism and therefore we can talk about the core of A, which we



19

denote core(A). It follows that A and B are homomorphically equivalent iff their cores

are isomorphic. In symbols: A↔ B iff core(A) ∼= core(B).

2.3 Queries

A query of arity r is a function Q from instances over a schema to relations

of arity r which furthermore has the following property, known as genericity : if i is an

isomorphism A→ B, then i(Q(A)) = Q(i(A)). We consider the class CQ of conjunctive

queries (consisting only of existential quantification and conjunction) and the class UCQ

of unions of conjunctive queries (consisting also of disjunction) and their extensions

to include inequality (CQ 6=,UCQ 6=), negation (CQ¬,UCQ¬), or both (CQ¬,6=,UCQ¬,6=).

Notice that UCQ¬,6= is the same as the class of existential queries ∃Q. We write CQ0

for the set of queries with conjunction but no existential quantifiers1 and CQ=
0 for the

corresponding query class with equality. A query Q is monotonic if A ⊆ B implies

Q(A) ⊆ Q(B). We write MonQ for the class of monotonic queries.

2.4 Constraints

We denote sets of constraints with capital Greek letters and individual con-

straints with lowercase Greek letters. In this paper, we only consider constraints ξ of

the form

φ(ū)→ ∃v̄ ψ(ū, v̄)

where φ and ψ are conjunctions of atoms, which may include equalities. We adopt the

standard convention that all variables which are not otherwise quantified are universally

quantified and we require that all variables ū appear in φ. Such constraints are known as

embedded (implicational) dependencies [15]. We call φ the premise and ψ the conclusion.

If v̄ is empty, then ξ is a full dependency. If ψ consists only of equalities, then ξ is an

equality-generating dependency (EGD). If ψ consists only of relational atoms, then ξ is a

tuple-generating dependency (TGD). Every set Σ of embedded dependencies is equivalent

to a set of TGDs and EGDs. We write A |= Σ and we say that A is a model of Σ if the

instance A satisfies all the constraints in Σ We consider more expressive constraints in

Section 3.5. Unless otherwise specified, we only consider finite sets of constraints and to

simplify the presentation we do not say this explicitly in the statement of every result.

1We are not aware of any standard notation for this class.
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We define the width of ξ to be the arity of ū and the height of ξ to be the arity

of v̄. For a set Σ of constraints, the width of Σ is the maximum width of a constraint in

Σ and the height of a Σ is the maximum height of a constraint in Σ.

In Chapter 5, we will need to refer to the following kinds of constraints:

Name Abbreviation Form

Full tuple-generating dependency FTGD ∀x̄(φ(x̄)→ ψ(x̄))
Tuple-generating dependencies TGD ∀x̄(φ(x̄)→ ∃ȳ ξ(x̄, ȳ))
Skolemized TGD SkTGD ∃f̄∀x̄(φ(x̄), χ(x̄)→ ψ(x̄))
Existential second-order TGD ∃SOTGD ∃R̄∀x̄(φ(x̄)→ ∃ȳ ξ(x̄, ȳ))

where φ(x̄) is a conjunction of relational atoms with variables in x̄, χ(x̄) is a set of

equalities between variables or between a variable and a term, ψ(x̄) is a conjunction of

relational atoms with variables in x̄, ξ(x̄, ȳ) is a conjunction of relational atoms with

variables in x̄ and ȳ, f̄ is a sequence of function symbols, and R̄ is a sequence of relation

symbols.

Terms are built from variables and functions in f̄ . We further require that

every variable in x̄ be safe. A variable is safe if it appears in a relational atom in φ(x̄)

or alone on one side of an equation in χ where the other side is a term constructed from

safe variables.

We define full dependency (FuD), embedded dependency (ED), Skolemized em-

bedded dependency (SkED), and existential second-order embedded dependency (∃SOED)

like, respectively, FTGD, TGD, SkTGD, and ∃SOTGD, except we also allow equalities

on the right hand side of →.

The Skolemization of a universal-existential formula is the result of applying

the following replacement: for every occurrence of a first-order existential quantifier

v, remove ∃v and replace the quantified variable wherever it appears in the scope of

the quantifier with a new term of the form f(x̄) where f is a new function symbol

and x̄ are the universally-quantified variables. In addition, introduce a second-order

existential quantifier f just outside the scope of x̄. For example, the Skolemization

of ∀xy(R(x, y) → ∃z S(y, z)) is ∃f∀xy(R(x, y) → S(y, f(x, y)). The classes of con-

straints in SkTGD we define here are in unnested form, so we would rewrite this as

∃f∀xyz(R(x, y), z = f(x, y) → S(y, z)). Skolemizing TGD constraints gives SkTGD

constraints (but not all SkTGD constraints correspond to Skolemized TGD constraints).

∃SOTGD constraints are obtained by adding existential second-order quantification over

relations to TGD.

The existential second-order quantification in SkTGD and ∃SOTGD apply to a

finite set of constraints, not necessarily just one (this is not easy to illustrate in the table



21

above). Formally, we achieve this through a single sentence, which is the conjunction of

the constraints in this finite set.

Given a source signature σS and a target signature σT disjoint from σS, a

constraint is source-to-target (ST) if all the relational atoms in φ are over σS or R̄ and

all relational atoms in ψ or ξ are over σR or R̄.

A signature is a function from a set of relation symbols to positive integers which

give their arities. In this paper, we use the terms signature and schema synonymously.

Given a set of constraints Σ over the signature σ1 ∪ σ2, Σ|σ1
is the set of constraints in

Σ which contain only relation symbols in σ1.

2.5 Mappings

A schema mapping is a binary relation on instances of database schemas. Given

a class of constraints L, we associate to every expression of the form (σ1, σ2,Σ12) the

mapping

{〈A,B〉 : (A,B) |= Σ12}.

Here Σ12 is a finite subset of L over the signature σ1 ∪ σ2, σ1 is the input (or source)

signature, σ2 is the output (or target) signature, A is a database with signature σ1, and

B is a database with signature σ2. To simplify the presentation, we require that σ1 and

σ2 be disjoint (otherwise, we do some renaming). (A,B) is the database with signature

σ1 ∪ σ2 obtained from taking all the relations in A and B together. Its domain is the

union of the domains of A and B.

We say that m is given by expression E if the mapping that corresponds to

E is m. Furthermore, we say that m is an L-mapping if m is given by an expression

(σ1, σ2,Σ12) where Σ12 is a finite subset of L.

2.6 Chase

In this section we introduce some basic concepts related to the chase. The chase

is studied in more detail in Chapter 3.

Basics. The chase is a well-known algorithm which proceeds to build a sequence AΣ
0 ,

AΣ
1 , AΣ

2 , . . . step by step as follows. Assume Σ is a set of TGDs and EGDs. We set

AΣ
0 = A. To obtain AΣ

s+1 from AΣ
s we proceed as follows. If there is some constraint

ξ ∈ Σ of the form

φ(ū)→ ∃v̄ ψ(ū, v̄)
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such that AΣ
s 6|= ξ, we say that ξ applies to AΣ

s . In this case, there must be some ā such

that AΣ
s |= φ(ā), but no b̄ such that AΣ

s |= ψ(ā, b̄). For every such ā, we say that ξ applies

to AΣ on ā. There may be several constraints in Σ that apply to AΣ
s and for each of

them, several tuples they apply on. Of these, a constraint ξ and a tuple ā are chosen by

some total order on the pairs (ξ, ā). Then AΣ
s+1 is obtained from AΣ

s as follows. If ξ is a

TGD, then we add to dom(AΣ
s ) new variables b̄ and to the relations in AΣ

s the tuples that

make up the conclusion ψ(ā, b̄) to get AΣ
s+1 |= ψ(ā, b̄). If ξ is an EGDs, we may assume

that ψ consists of a single equality ui = uj. If ai and aj are two distinct constants, the

chase fails. Otherwise, AΣ
s+1 := h(AΣ

s ) where h satisfies h(ai) = h(aj) = ai and is the

identity on all other values. Either way, AΣ
s+1 |= ξ(ā) and AΣ

s → AΣ
s+1.

Parents, ancestors and siblings. Assume, the variables b̄ are new variables introduced

in a chase step that corresponds to a firing of a rule whose precondition is φ(ā) and which

makes ψ(ā, b̄) true, as above. If b ∈ b̄, we call every value in ā a parent of b and any

other variable in b̄ a sibling of b (see Example 4.2 below). If Σ has width w and height e,

then every x ∈ dom(AΣ) has at most e− 1 siblings and at most w parents. We take the

ancestor relation to be the transitive closure of the parent relation. We define the depth

depth(x) of a value x to be one more than the depth of its deepest parent and the depth

of the values in dom(A) to be zero. Notice that constants have no ancestors, no siblings,

and depth zero. Also notice that a variable may have few ancestors yet may not be

introduced by any short chase sequence, for example, because it may not be introduced

until many full TGDs fire.

Order, termination, and universality. If for some AΣ
s no constraint applies, we say

that the chase terminates and we set AΣ := AΣ
s . If there is no such step, AΣ is undefined.

AΣ is also undefined when the chase fails. In general, AΣ depends on the order of the

chase, but to keep the notation simple we will not explicitly indicate this order. If AΣ

is defined, then AΣ |= Σ, A → AΣ, and AΣ is universal for {B : A → B,B |= Σ}

[28, 2, 15, 3, 1]. We write AΣ,Σ′

for (AΣ)Σ
′

.

Since the chase does not always terminate, it is natural to ask for sufficient

conditions for its termination. The following wide, sufficient condition on Σ for the

termination of the chase on any instance, weak acyclicity was introduced in [9] and [11].

Definition 2.1. [11, 9] A position is a pair (R, i)

(which we write Ri) where R is a relation symbol of arity r and i satisfies 1 ≤ i ≤ r.

We say that x occurs in Ri in φ if there is an atom of the form R(. . . , x, . . .) in φ where

x appears in the ith position. The dependency graph of a set Σ of TGDs is a directed
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graph where the vertices are the positions of the relation symbols in Σ and, for every

TGD ξ of the form

φ(ū)→ ∃v̄ ψ(ū, v̄),

there is

1. an edge between Ri and Sj whenever some u ∈ ū occurs in Ri in φ and in Sj in ψ

and

2. an edge between Ri and Sj whenever some u ∈ ū appears in Ri in φ and some

v ∈ v̄ occurs in Sj in ψ. Furthermore, these latter edges are labeled with ∃ and we

call them existential edges.

Σ is weakly acyclic if its dependency graph has no cycles with an existential edge. We

say that a set Σ of TGDs and EGDs is weakly acyclic if the set of TGDs in Σ is weakly

acyclic.

Definition 2.2. If Σ is a weakly-acyclic set of TGDs, then the depth depth(Ri) of a

position Ri of a relation symbol R in Σ is the maximal number of existential edges in

a path in the dependency graph for Σ ending at that position. The depth of Σ is the

maximal depth of a position of a relation symbol in Σ. Notice that chasing a ground

instance A with weakly-acyclic TGDs Σ of depth d, results in an instance AΣ where the

depth of every value is at most d.

Theorem 2.1 ([11, 9]). For every weakly-acyclic set Σ of TGDs and EGDs, there are

b and c such that, for any A, regardless of the order of the chase and except for the case

where the chase fails due to EGDs,

1. AΣ is defined, and

2. AΣ can be computed in O(|A|b) steps and in time O(|A|c).

2.7 Data Integration and Data Exchange

We consider the setting where we have two schemas σ and τ which do not share

any relation symbols. Given an instance S over σ and instance T over τ , the instance

(S, T ) over σ∪τ is the instance which has all the relations in S and all those in T . Given

a set of constraints Σ over σ∪ τ , we say that T is a solution for S under Σ if (S, T ) |= Σ.

When Σ is clear from context, we simply say that T is a solution for S. We say that U

is a universal solution for S if it is a solution for S and if it is universal for the set of all
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solutions for S. As in [11], we assume that source instances of a data exchange problem

are ground.

A constraint ξ over (σ, τ) is source-to-target if the premise of ξ is over σ and

the conclusion of ξ is over τ . Notice that any set of source-to-target TGDs is weakly

acyclic. We will consider the special case of settings where Σ = Σst ∪ Σt with Σst a

set of source-to-target TGDs and Σt a set of TGDs and EGDs. With these restrictions,

(σ, τ,Σst,Σt) is known in the literature [11] as a data exchange setting.

Theorem 2.2 ([11]). If Σ := Σst ∪Σt where

• Σst is a set of source-to-target embedded dependencies and

• Σt is a weakly-acyclic set of TGDs,

and (S, ∅)Σ is defined and is equal to (S,U) for some U , then U is a universal solution

for S under Σ.

Given source instance S, we are also interested in finding the certain answers

to Q for S under Σ, denoted certΣ
Q(S) and defined as

certΣQ(S) =
⋂

(S,T )|=Σ

Q(T ).
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The Data Integration Query

Problem

In this chapter, we study the problem of computing certain answers to a query

over a target schema for a source instance under constraints which relate the source and

target schemas. Prior work has shown that, for restricted constraints (source-to-target

and target-to-target embedded dependencies) and unions of conjunctive queries, there

is a special instance, known as a universal solution, such that running the query on it

essentially yields the certain answers. Such a universal solution does not always exist for

even slight extensions of these classes of constraints and queries.

We show that there may be a finite set of instances, which we call a universal

set solution, which suffices to compute the certain answers. We also introduce the notion

of a k-universal set solution, which is sufficient to compute the certain answers to queries

with at most k variables, even when no universal set solution exists. We show how to

compute such universal and k-universal set solutions for universal-existential constraints

and existential queries.

The main algorithm for computing the universal set solution is an extended

chase. We provide a completeness result for this chase and sufficient conditions for

termination, which strictly extend the best previously known conditions (such as weak

acyclicity). We also introduce a new kind of chase to compute k-universal set solutions.

3.1 Certain Answers

In this section, we show that, even when a single universal solution does not

exist or when a universal solution exists but is insufficient for computing certain answers,

25
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there may exist an adequate universal set solution which does allows us to compute

certain answers.

Definition 3.1. Given a data exchange setting, we say that U is a universal set solution

for source instance S under constraints Σ iff U is finite, contains only solutions, and is

universal for the set of all solutions: U → {T : (S, T ) |= Σ}.

The following example shows that, if the queries are unions of conjunctive

queries and the constraints are standard embedded dependencies beyond the source-to-

target class, then it can be the case that there is no universal solution, so the certain

answers cannot be computed in this way. However, there may be a universal set solution

U , which suffices to compute certain answers correctly to any union of conjunctive queries

Q, by computing
⋂

T∈U Q(T ).

Example 3.1. Let the source schema and target schema consist of the binary relation

symbol E, respectively the quaternary F , and consider a source instance S:

S = {E(a, b1), E(b1, c), E(a, b2), E(b2, c)}.

The constraint set Σ = {ξst, ξts} connects the two schemas as follows:

ξst : E(x, y), E(y, z) → ∃u∃w F (x, u, z, w)

ξts : F (x, u, z, w) → E(x, u), E(u, z)

Consider the target query Q(x, z) :− F (x, b1, z, w) ∨ F (x, b2, z, w).

It is easy to check that the set of solutions for S contains, among others, T1 = {F (a, b1, c,

w1)}, T2 = {F (a, b2, c, w2)}, where w1, w2 are distinct. Indeed, (S, T1) and (S, T2) satisfy

Σ. Note that there are infinitely many solutions, since wi can take infinitely many values.

However, it can be shown that each solution must include either T1 or T2, for some value

of w1, respectively w2. Therefore, Q has the certain answer (a, c).

Note that there is no single universal solution C yielding the certain answers to

Q. This is because by universality, C would have to map homomorphically into both T1

and T2 and therefore cannot contain the values b1 or b2. The answer to Q on C would

therefore be empty and thus not coincide with the certain answers.

However, the certain answers can be computed from a universal set solution.

It turns out (as will be detailed later) that a universal set solution U in this setting

contains precisely two elements, U = {{F (a, b1, c, w1)}, {F (a, b2, c, w2)}}, where w1, w2
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are variables (labelled nulls) which can in principle take any value. It is easy to check

that the certain answers to Q can be obtained by computing
⋂

T∈U Q(T ). Indeed,

Q({F (a, b1, c, w1)}) ∩Q({F (a, b2, c, w2)}) =

{(a, c)} ∩ {(a, c)} = {(a, c)}.

Example 3.1 is not a fortunate accident: Theorem 3.1 below shows that uni-

versal set solutions always yield the certain answers.

Theorem 3.1. If W is a universal set solution for S under Σ and Q ∈ UCQ has arity

r, then

certΣQ(S) = dom(S)r ∩
⋂

T∈W

Q(T ).

Proof. The inclusion ⊆ is clear, since W consists only of solutions for S under Σ and

since certΣQ(S) ⊆ dom(S)r by genericity of Q. For the opposite inclusion it is enough

to show that for every solution T ′, there is T ∈ W such that Q(T ) ∩ dom(S)r ⊆ Q(T ′).

Accordingly, pick a solution T ′. Then there must be T ∈ W and a homomorphism h

such that h : T → T ′ and h is the identity on dom(S). Since UCQ is closed under

homomorphisms by Theorem 3.17 below, we have ā ∈ Q(T ) implies h(ā) ∈ Q(T ′).

Furthermore, since h is the identity on dom(S), we have ā ∈ dom(S)r implies h(ā) = ā

and therefore

dom(S)r ∩Q(T ) ⊆ dom(S)r ∩Q(T ′) ⊆ Q(T ′)

as desired.

Other kinds of universality. In Definition 3.1, universality of a set solution

is defined with respect to homomorphisms. We mention here that it is very useful to

consider universality with respect to other kinds of mappings, since the resulting universal

set solutions yield the certain answers for more expressive queries. We consider such

mappings in Section 3.6.

Theorem 3.2. If W is a universal set solution for S under Σ for

1. injective homomorphisms and Q ∈ MonQ,

2. full homomorphisms and Q ∈ UCQ¬, or

3. embeddings and Q ∈ UCQ¬,6=,

and Q has arity r, then

certΣQ(S) = dom(S)r ∩
⋂

T∈W

Q(T ).
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Proof. Essentially the same as that of Theorem 3.1, also using Theorem 3.17 below.

The following example (adapted from [11]) pertains to part 1 in Theorem 3.2.

It shows that, even if the constraints are source-to-target embedded dependencies, if the

query contains even one non-equality, the universal solution is insufficient for correctly

computing the certain answers. However, there is a universal set solution U for injective

homomorphisms which, according to Theorem 3.2, suffices for correct computation of

certain answers.

Example 3.2. Let the source schema consist of the binary relation symbol E, and the

target schema contain binary relations F,G. Consider a source instance

S = {E(a1, b1), E(a2, b2)}.

The two schemas are connected by Σ = {ξst}, where

ξst : E(x, z)→ ∃y F (x, y), G(y, z)

Consider the query Q(x, z) :− F (x, y), G(y ′, z), (y 6= y′).

Q has no certain answers, since its result on the solution

T1 = {F (a1, y), G(y, b1), F (a2, y), G(y, b2)}

is already empty. However, a universal solution according to [11] is

T0 = {F (a1, y1), G(y1, b1), F (a2, y2), G(y2, b2)}

and, as observed there, the result of Q on T0 is non-empty: Q(T0) = {(a1, b2), (a2, b1)}. As

shown in Section 3.3, there exists a universal set solution U for injective homomorphisms,

which correctly captures the certain answers to Q. Indeed, U contains two instances,

U = {T0, T1}. Then Q(T0) ∩ Q(T1) correctly yields the empty set of certain answers.

Notice that there is a homomorphism, but no injective homomorphism, from T0 into T1.

Universal set solutions do not always exist:
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Example 3.3. Consider the constraints Σ:

S(x, y) → T (x, y)

T (x, y) → ∃z T (y, z)

T (x, y), T (y, z) → T (x, z)

and a source S containing a single edge. Then any solution, since it must be finite, must

have a cycle. But for any finite set of solutions U , there must be a solution Cn which is

a cycle larger than any cycle in U . Then U 6→ Cn. Therefore, there is no universal set

solution for S under Σ.

3.2 Templates

Universal set solutions depend not only on the constraints Σ, but also on the

source S. In this section, we generalize universal set solutions by introducing the con-

cept of templates. Templates have other applications outside of data exchange and data

integration, including checking query containment under constraints. We will see in

Section 3.3 that the chase is a general algorithm for producing templates, not just uni-

versal set solutions, so the extra generality gives a better understanding of the power

and limitations of the chase.

The connection between templates and universal set solutions is as follows. A

universal set solution is a finite approximation to the set of all solutions. Similarly, a

template is a finite approximation to the set of all models of a set of constraints. Given

a set of constraints Σ and a source instance S, we define a set of constraints ΣS so that

the models of ΣS are precisely the solutions for S under Σ. Then a universal set solution

for S under Σ is precisely a template for ΣS. We will gain some insight on the nature

of the universal set solution for S under Σ by looking at the form of the constraints

ΣS. In particular, it will turn out that for embedded dependencies Σ, ΣS is not always

equivalent to a set of embedded dependencies, but when it is, then there is a universal

solution if and only if there is a universal set solution.

Definition 3.2. We define ΣS so that

T |= ΣS iff (S, T ) |= Σ

by replacing every occurrence in Σ of Rx̄ where R is a relational symbol in σ with
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∨

c̄∈RS x̄ = c̄. This may give constraints which have disjunction in the premise, but we

“normalized away” such disjunctions. On the other hand, when there are any constraints

with relation symbols from σ in the conclusion, we may get disjunction in the conclusion

which can not be normalized away.1

Example 3.4. We revisit Example 3.2, where Σ = {ξst},

ξst : E(x, z)→ ∃y F (x, y), G(y, z)

and the source S is {E(a1, b1), E(a2, b2)}. The set ΣS contains the single constraint

x = a1, z = b1 ∨ x = a2, z = b2 → ∃y F (x, y), G(y, z)

which is equivalent to the set of TGDs

x = a1, z = b1 → ∃y F (x, y), G(y, z)

x = a2, z = b2 → ∃y F (x, y), G(y, z)

It is easy to see that T is a solution for S under Σ iff T |= ΣS.

Definition 3.3. A set of finite structures T is a template for a set of structures K if it

satisfies the following conditions:

1. (universality) T → K,

2. (conformance) T ⊆ K,

3. (finiteness) T is finite, and

4. (minimality) there is no T ′ ⊂ T such that T ′ → T .

These conditions imply that there is no T ′ satisfying 1, 2, and 3 such that |T ′| ≤ |T |.

We write [K] for the template of K, if it exists and we write [Σ] for [mod(Σ)], where

mod(Σ) is the class of all finite models of Σ.

The connection between universal set solutions and templates is as follows: a

template for ΣS is a universal set solution for S under Σ. (We give the precise statement

in Proposition 3.8 below.) Therefore, templates can also be used to compute certain

answers.

1Since here we start chasing with an empty instance, we will need to allow for chase steps (see

Section 3.3) of the form An
ξ,ā
→ An+1 where ā is not necessarily in An for these constraints to fire once

we chase.
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Theorem 3.3. If [ΣS] exists and Q is a conjunctive query of arity r, then

certΣQ(S) = dom(S)r ∩
⋂

T∈[ΣS ]

Q(T )

= {c̄ : ΣS |= Q(c̄)}.

Proof. The proof of the first equation is very similar to that of Theorem 3.1, except

that we use the fact that if T ′ is a solution for S under Σ, then T ′ |= ΣS and therefore

there is T ∈ [ΣS ] such that T → T ′. The second equation follows immediately from the

definition of certain answers and ΣS.

Why standard data exchange admits a universal solution. We have

defined templates for arbitrary constraints, which are not necessarily source-to-target,

and may contain disjunction. This case goes beyond the data exchange setting in the

literature [11]. We now prove from the basic properties of templates the fact that in the

particular case of embedded source-to-target dependencies, the template is a singleton

(or, equivalently, there exists a universal solution).

Proposition 3.4. If Σ is a set of embedded dependencies where all conclusions are over

τ , then ΣS is a set of embedded dependencies. In particular, this holds in the case where

Σ is a set of source-to-target TGDs and target-to-target TGDs and EGDs, as in [11].

Embedded dependencies have some nice closure properties.

Theorem 3.5. If Σ is a set of embedded dependencies, then Σ is closed under retractions

and products. That is:

1. If A |= Σ and A ↪→ B, then B |= Σ.

2. If A,B |= Σ, then A×B |= Σ.

Proof. Assume ξ is an embedded dependency of the form

φ(ū)→ ∃v̄ ψ(ū, v̄)

with v̄ possibly empty.

1. Assume that A |= ξ and h : A ↪→ B. Then if B |= φ(b̄) for b̄ ∈ dom(B), then also

A |= φ(b̄). Therefore, since A |= ξ, there are ā ∈ dom(A) such that A |= ψ(b̄, ā).

This implies B |= ψ(h(b̄), h(ā)) and, since h is a retraction and b̄ ∈ dom(B),

h(b̄) = b̄, so B |= ψ(b̄, c̄) for c̄ = h(ā). That is, B |= ξ.
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2. Assume that A,B |= ξ and set C := A×B. Then if C |= φ(c̄) for c̄ ∈ dom(C), by

definition of C and because φ is a conjunction of relational atoms, we must have

ā, b̄ such that for every i, ci = (ai, bi) and such that A |= φ(ā) and B |= φ(b̄). Since

A,B |= ξ, there must be d̄ and ē such that A |= ψ(ā, d̄) and B |= ψ(b̄, ē). Then f̄

obtained by setting fi = (di, ei) satisfies C |= ψ(c̄, f̄). That is, C |= ξ.

In particular, closure under products is enough to guarantee that universal set

solutions are in fact simply universal solutions.

Proposition 3.6. If [K] exists and K is closed under products, then [K] is a singleton.

Furthermore, in this case core({
∏

A∈K A}) is a template for K.

Corollary 3.7. If there is a universal set solution for S under Σ and Σ is a set of source-

to-target and target-to-target TGDs and EGDs, ΣS is a set of embedded dependencies,

or ΣS is closed under products, then there is a universal solution for S under Σ.

Templates for finite and infinite solutions. We say that T is a strong

template for Σ if T is a template for imod(Σ), the class of all models (finite and infinite)

of Σ. We say that T is a weak template for Σ if T is a template for mod(Σ), the class of

all finite models of Σ.

Proposition 3.8. A weak template for ΣS is precisely a universal set solution for S

under Σ.

Clearly, any strong template is also a weak template. However, the converse is

not true, as shown by the following separation result. We discuss in Section 3.3 how we

compute both template flavors.

Theorem 3.9.

1. There is a set Σ of TGDs which has a weak template, but no strong template.

2. There is a set Σ of TGDs which has no weak template.

Proof. (1) Consider the set of axioms Σ1:

ξ1: ∃x, y E(x, y)
ξ2: E(x, y) → ∃z E(y, z)
ξ3: E(x, y), E(y, z) → E(x, z)



33

Any model of axioms ξ1 and ξ2 must have an infinite walk. Therefore, if the

model is finite, it must have a cycle. If it has a cycle, then by axiom ξ3 it must have a

self-loop. Since the structure with a single self-loop satisfies these axioms, it is a weak

template for Σ1. On the other hand, the transitive closure of an infinite path also satisfies

axioms ξ1, ξ2, and ξ3, but no finite structure with a cycle has a homomorphism into it.

Therefore Σ1 has no strong template.

(2) Now consider Σ := {ξ1, ξ2}. As we have seen above, any finite model of Σ

must have a cycle. But for any finite set U of such models, there is another model Cn,

a cycle larger than any cycle in U and therefore U 6→ Cn.

3.3 Computing Templates

Given a set of constraints Σ, we are interested in computing the template [Σ].

In this section we concentrate on computing templates for embedded dependencies. To

this end, we start from the well-known chase procedure [2, 28, 27, 15, 3, 1], extending it

to a novel procedure called the unordered minimizing chase which turns out to be strictly

better at computing templates than the standard chase. We will show in Section 3.5 how

to extend the chase to compute templates for larger classes of constraints and under more

general universality assumptions, as required by queries which are more expressive than

unions of conjunctive queries.

By Theorem 3.5 and Proposition 3.6, if they exist, templates for embedded

dependencies consist of a single structure. To simplify the presentation we refer to this

single structure also as a template.

Definition 3.4. (Chase Step) If ξ is a TGD or EGDs, we write A
ξ,ā
→ B if

1. A |= ∃Pξ(ā),

2. A 6|= ∃Cξ(ā), and

3. B =







Aā⊕ Cξ if ξ is a TGD

h(A) if ξ is an EGD

where Aā⊕Cξ is the result of attaching to A a copy of Cξ by identifying ā with the free

variables of Cξ and where h(ai) = h(aj) = ai and h is the identity elsewhere in case ∃Pξ

has as free variables ū and Cξ is ui = uj. If 1 and 2 hold, we say that ξ applies to A on

ā. We do not require ā ∈ dom(A), which is important in case the premise has constants.

Definition 3.5. (Chase Sequence) Assume Σ is a set of EGDs and TGDs.
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1. A Σ-chase sequence S (or just chase sequence if Σ is clear from context) is a

sequence of structures A0, A1, . . . such that every structure As+1 in it is obtained

from the previous one As by a chase step. That is, there are ξ ∈ Σ and ā such that

As
ξ,ā
→ As+1. We say that S starts with A if A0 = A.

2. A chase sequence A = A0, . . . , An is terminating if An |= Σ. In this case we say

that AΣ = An is the result of the chase.

3. We say that the chase terminates if there is a terminating chase sequence. AΣ is

defined whenever there is some terminating chase sequence starting with A, but its

value may depend on the chase sequence. We will see later that all chase results

are homomorphically equivalent, so we can often speak about AΣ without referring

to a particular chase sequence.

4. We say that an infinite chase sequence is fair if whenever ξ applies to As on ā there

is some r > s such that Ar |= ∃Cξ(ā).

5. If Σ consists of TGDs only and A = A0, A1, . . . is an infinite chase sequence, we

set AΣ
ω =

⋃

iAi. If no sequence is specified, we take AΣ
ω to be obtained as above

from any fair infinite chase sequence. Then AΣ
ω is only defined up to homomorphic

equivalence as in the case of AΣ.

The following theorem lists some essential properties of the chase, which we

will generalize for the extended chase. These results are considered folklore or appear

implicitly in proofs related to the chase [2, 28, 27, 15, 3, 1].

Theorem 3.10. If Σ is a set of TGDs and EGDs, A = A0, A1, . . . is a finite or infinite

chase sequence, and

K = {B ∈ imod(Σ) : A→ B},

then:

1. A0 → A1 → A2 → . . .

2. A0, A1, A2, . . .→ K

3. If AΣ is defined, then AΣ |= Σ.

4. If Σ consist of TGDs only, then AΣ
ω is universal for K and AΣ

ω |= Σ.

5. If B |= Σ and there is a homomorphism h : An → B, then there is a homomorphism

h′ : An+1 → B extending h (if ξ is a TGD) or identifying some values in the domain

of h (if ξ is an EGD).
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6. If B |= Σ, AΣ is defined, and there is a homomorphism h : A → B, then there is

a homomorphism h′ : AΣ → B.

Proof. 1. Follows from the definition of
ξ,ā
→.

2. Follows from 5 below.

3. Follows immediately from the definition of AΣ.

4. If AΣ
ω 6|= Σ, then for some ā and ξ ∈ Σ, we must have AΣ

ω |= ∃Pξ(ā) and AΣ
ω 6|=

∃Cξ(ā). But then this must also hold for As for some s, the former because the

range of any homomorphism h : ∃Pξ → AΣ
ω ā is finite and the latter by monotonicity

of ∃Cξ. But then, by definition of fairness, there must be Ar for some r > s such

that Ar |= ∃Cξ(ā), contradicting AΣ
ω 6|= ∃Cξ(ā).

5. Assume An
ξ,ā
→ An+1. Then since An |= ∃Pξ(ā), B |= ∃Pξ(h(ā)). Therefore, there

is b̄ (possibly empty) such that B |= Cξ(h(ā), b̄). If ξ is a TGD, then we can map

Cξ to Cξ(h(ā), b̄) to get the desired extension h′. If ξ is an EGD, then h must map

the equated values to the same value in B, so the restriction h|dom(An+1) is also

a homomorphism.

6. Follows from 5 above.

Corollary 3.11.

1. If AΣ is defined, then AΣ is a template for

K = {B ∈ imod(Σ) : A→ B}.

2. If ∅Σ is defined, then ∅Σ is a strong template for Σ.

Proof. Immediate from parts 2 and 3 in Theorem 3.10.

We say that any sequence is chase-like if it satisfies the conditions of Theo-

rem 3.10. We say that an algorithm is chase-like if it produces chase-like sequences. It

would be nice to have an algorithm that satisfied the conditions of Theorem 3.10 only for

finite instances, but it is not clear at all how such algorithm can be obtained. Certainly,

it can not be obtained by simply adding a copy of the conclusion of some constraints to

the next instance in the sequence. Therefore, any chase-like algorithm, if it terminates,

produces a strong template. A natural question, then, is the following:

Is the chase complete for strong templates?
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That is, for any Σ with a strong template, will the chase always find it? More precisely,

will any (long enough) Σ-chase sequence terminate? For the chase outlined above, the

answer is no, as the following example shows.

Example 3.5. Consider the set Σ consisting of following TGDs:

ξ1: ∃u, v E(u, v), E(v, u)
ξ2: E(x, y), E(y, x) → ∃uE(u, u)
ξ3: E(x, y) → ∃uE(x, u), E(u, y)

The singleton template consisting of the self-loop is a template for Σ, yet any Σ-chase

sequence starting with ∅ must be infinite. This is because ξ1 must fire first to give a cycle

of length 2. Assume ξ2 fires next to give a disjoint self-loop. From now on, ignore this

loop. Set A0 := C2, the cycle of length 2. Now it is easy to show that if As
ξ3,a,b
→ As+1

where a 6= b, then two new edges ac and cb are added to As+1 and that

As+1 6|= ∃Cξ3(ac) and As+1 6|= ∃Cξ3(cb).

Therefore, if As+1 6|= ξ3, which results in an infinite chase sequence.

A Complete Chase. We now define a novel chase procedure, the unordered

minimized chase or um-chase, which is order-independent and which, more importantly,

is complete for strong templates, and therefore superior to the chase introduced above

(which we also call the ordered chase) for the task of finding templates, which is what

chase-like algorithms are all about.

Intuitively, the unordered chase step proceeds by first firing all applicable stan-

dard chase steps simultaneously, then minimizing the resulting structure by computing

its core. We formalize the procedure below.

Definition 3.6. (Unordered-chase step)

If Σ is a set of TGDs, we write A
Σ
→ B if

1. A 6|= Σ and

2. B =
⋃

ξ∈Σ,ā∈dom(A),A
ξ,ā
→D

D.

That is, B is the structure obtained from A by simultaneously firing all applying chase

steps. If Σ also contains EGDs, then we also identify all elements which have been

identified by every constraint ξ and any tuple ā such that ξ applies to A on ā.

For the minimization part of the next step, we need to define cores. An instance

is a core if it has no proper retractions. A core C of an instance A is a retract of A
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which is a core. Cores of an instance A are unique up to isomorphism and therefore we

can talk about the core of A. It follows that A and B are homomorphically equivalent

iff their cores are isomorphic.

Definition 3.7. (Unordered-minimizing-chase step)

We write A
Σ↓
→ B if A

Σ
→ B′ and B = core(B ′).

We extend the definition of chase sequence to um-chase sequence in the obvious

way. Notice that um-chase sequences are determined up to isomorphism, since cores are

determined up to isomorphism. We use the notation AΣ to refer also to the result of

a terminating um-chase sequence. Such result is unique up to isomorphism. Similarly,

we use AΣ
ω also for the um-chase. Which chase we have in mind should be clear from

context. Theorem 3.10 also holds for the um-chase.

Theorem 3.12. If Σ is a set of EGDs and TGDs, then

1. The unordered minimizing chase terminates iff there is a strong template for Σ.

2. The result of the unordered minimizing chase is a strong template for Σ.

Proof. Part 2 follows from Theorem 3.10. Therefore, if the unordered minimizing chase

terminates, then there is a strong template for Σ, namely the result of the chase.

For the converse of part 1, assume first that Σ consists only of TGDs and as-

sume there is a strong template {T} for Σ and there is no finite unordered chase with

minimization sequence starting with ∅. Then there must be an infinite unordered chase

sequence starting with ∅: ∅ = A0, A1, A2, . . .. Set AΣ
ω =

⋃

iAi, which is well defined

because for all i, Ai ⊆ Ai+1. Since {T} is a strong template for Σ and AΣ
ω → T by Theo-

rem 3.10, T → AΣ
ω . Since T is finite, T → An for some n and, by Theorem 3.10, An → T .

But then core(T ) and core(An) are isomorphic and therefore both satisfy Σ. Now con-

sider the unordered chase with minimization sequence starting with ∅: A0, A1, . . .. It is

easy to verify by induction that for every s, As = core(As). In particular, AΣ
n = core(An)

and therefore AΣ
n |= Σ and this sequence is finite.

If Σ consists of EGDs and TGDs, we can simulate the EGDs with TGDs to

obtain Σ̄ as explained in [17]. Then also core(T ) and core(An) are isomorphic for some

n as above and the rest of the argument goes through unchanged.

Corollary 3.13. If Σ is a set of embedded dependencies and any chase-like algorithm

terminates on input A under Σ to give U , then the unordered minimizing chase termi-

nates on input A and gives the strong template AΣ which is homomorphically equivalent

to U .
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Proof. If such chase-like algorithm terminates on input A under Σ giving U , then U is

a strong template by Corollary 3.11. Therefore, by Theorem 3.12 part 1, the unorderd

minimizing chase terminates and by part 2 gives a strong template AΣ. Since both U and

AΣ satisfy Σ by Theorem 3.10, we have U → AΣ and AΣ → U by their universality.

3.4 Conditions for Termination

A widely-applicable, sufficient condition on Σ for the termination of the chase,

is weak acyclicity, defined in the preliminaries.

Now consider the following example.

Example 3.6. Consider the set Σ = {ξ} where ξ is the following TGD:

∃y R(x, y), R(y, x)→ ∃u, v R(x, u), R(u, v), R(v, x).

It is easy to check that Σ is not weakly acyclic, yet it is clear that AΣ is defined for the

ordered chase for any chase order since introducing 3-cycles will never create any new

2-cycles.

We introduce a strictly wider, effectively checkable condition which is also suf-

ficient for termination of the chase, which is motivated by the example above.

Definition 3.8. (Stratified) Given EGDs or TGDs α and β we write α ≺ β if there

exists A, B, ā ∈ dom(A), and b̄ ∈ dom(B) such that

1. β does not apply to A on b̄, possibly because {b̄} 6⊆ dom(A),

2. A
α,ā
→ B for some B, and

3. β applies to B on b̄

The chase graph G of a set of TGDs Σ has as vertices the constraints in Σ

and there is an edge between two constraints α, β ∈ Σ if α ≺ β. We say that C is a

cycle-component of G if C is a connected component of the graph G′ consisting only of

those edges which participate in cycles. A set of EGDs and TGDs Σ is stratified if every

cycle component of the chase graph of Σ is weakly-acyclic.

Theorem 3.14. If Σ is a stratified set of EGDs and TGDs, then there exists c such that

for every A, the length of every chase sequence AΣ
0 , A

Σ
1 , . . . is bounded by |A|c.
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Proof. (sketch) Consider the chase graph G of Σ and its associated graph G′ where every

cycle component has been replaced by a single vertex. G′ is acyclic. Each vertex in G′

is a set of weakly-acyclic TGDs or a single TGD. Now chase as follows. Pick a vertex v

of indegree 0 in G′, chase with the associated TGD or weakly-acyclic set of TGDs until

this subchase terminates, remove v from G′ and repeat. Each subchase must terminate

because β fires after α only if α ≺ β and because a subchase with a weakly-acyclic set

of TGDs terminates by Theorem 2.1.

Theorem 3.15. Given TGDs α and β, checking whether α ≺ β holds is decidable.

Proof. Assume α ≺ β. Then, by the definition, there are A,B, ā, b̄ satisfying conditions

1, 2, and 3 of the definition. In particular, there is a homomorphism h : ∃Pβ → Bb̄. Set

B′ to be a minimal instance such that h(B) ⊆ B ′ and such that there is A′ ⊆ B′ satisfying

A′ α,ā
→ B′. Then A′, B′, ā, b̄ also satisfies condition 2 of the definition by construction,

and conditions 1 by monotonicity of Pβ and condition 3 by monotonicity of Cβ together

with h(B) ⊆ B ′. Furthermore, such B ′ must satisfy |B ′| ≤ |Cα| + |Pβ | so we only need

to examine a finite set of candidates A′, B′. In fact, it is enough to consider unions

of homomorphic images of Pβ with Cα as candidates for B and remove from them an

induced substructure isomorphic to Cα to get candidates for A.

Theorem 3.16. Weakly-acyclic sets of EGDs and TGDs are stratified, but not con-

versely.

Proof. If a set of EGDs and TGDs is weakly acyclic, then it is stratified by the definition.

The set Σ = {ξ} from Example 3.6 satisfies ξ 6≺ ξ and therefore is stratified, yet not

acyclic. To see this, notice if A
α,ā
→ B then B has no new 2-cycles or 1-cycles, that is, no

such cycles which are not already in A.

3.5 Beyond Embedded Dependencies

In this section we extend our consideration to constraints of the form

∨

1≤i≤p

φi(ū, w̄)→ ∃v̄
∨

1≤i≤c

ψi(ū, v̄)

where each φi and ψi is a conjunction of relational atoms, negated relational atoms,

equalities, or inequalities. We call such constraints negation disjunctive embedded depen-

dencies or NDEDs to be consistent with the name disjunctive embedded dependencies or
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DEDs for the same class of constraints without negation introduced in [9]. It is easy to

check that every ∀∃ constraint is equivalent to an NDED. We extend the results of the

previous sections to these kinds of constraints. To do this, we first show how to handle

disjunction and then we show how to handle negation.

Adding disjunction. First of all, notice DEDs that are not closed under

products as the following example shows. This is in constrast to embedded dependencies

(cf. Theorem 3.5).

Example 3.7. The following disjunctive TGD ξ

∃u, vEuv,Evu or ∃u, v, wEuv,Evw,Ewu

is not closed under products. We have C2, C3 |= ξ where Ck is the directed cycle of

length k, yet C2 × C3 = C6 and C6 6|= ξ.

As a consequence, a template for a set Σ of such constraints is not necessarily

a singleton set. We now explain an extended chase for DEDs introduced in [9]. The

comments above imply that such chase must have at each step not a single instance, but

instead a set of instances. Therefore, we aim to define K
ξ
→ L where K and L are finite

sets of instances and ξ is an DED to parallel Definition 3.4. Then we extend the results

from Section 3.3 and we show how to extend them to NDEDs.

Definition 3.9. (Extended Chase Step) First assume that ξ is a DED of the form

shown above. Set

ξi :=
∨

1≤i≤p

φi(ū, w̄)→ ∃v̄, ψi(ū, v̄)

so that Pξ = Pξ1 = . . . = Pξp
and Cξ =

∨

1≤i≤cCξi
. We write A

ξ,ā
→ {B1, . . . , Bc} if

1. A |= ∃Pξ(ā),

2. A 6|= ∃Cξ(ā), and

3. for each i, A
ξi,ā
→ Bi.

If 1 and 2 hold, we say that ξ applies to A on ā. Notice that this is consistent since if 2

holds, then also A 6|= ∃Cξi
(ā) for every i. That is, we create one new instance for every

disjunct in the conclusion.

We write K
ξ,ā
→ L where K and L are finite sets of instances if

L = K1 ∪
⋃

A∈K2,A
ξ,ā
→M

M
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where

K1 := {A ∈ K : {ā} 6⊆ A or A 6|= ∃Pξ(ā) or A |= ∃Cξ(ā)}

and K2 := K −K1. That is, K1 is the set of instances in K to which ξ does not apply

on ā and K2 is the set of instances in K to which ξ does apply on ā. The instances in L

are those obtained by a chase step with ξ and ā from an instance in K or those instances

in K to which ξ does not apply on ā.

Given this definition of a chase step, the definitions of chase sequence, chase

result, etc. from Section 3.3 extend naturally to the situation where at each step we

have a finite set of instances instead of a single instance. This extension was made in [9].

We keep the notation of Section 3.3 since this makes the presentation simpler and more

intuitive. Notice that AΣ
ω may now be an infinite set of instances. Then Theorems 3.10

and Theorems 3.12 go through with DEDs instead of EGDs and TGDs. Only minor and

straightforward changes are needed in their proofs.

Adding negation. We now explain a further extension to handle negation,

introduced in [7]. We first extend DEDs with constraints that may have ⊥ as their

conclusion and we extend the definition of a chase step as follows. If ξ has ⊥ as its

conclusion, then

K
ξ,ā
→ L iff L = {A ∈ K,A 6|= ∃Pξ(ā)}.

That is, if ξ applies to A on ā, it “kills” A. We call such constraint DEDFs for DEDs

with falsehood. Implicitly, such constraints are already needed for a much smaller kinds

of constraints in order to handle contradictions which arise, for example, from equating

two constants.

Using DEDFs, we can simulate NDEDs. The details of this simulation are given

in the next section; here we only provide a rough sketch. Given a set Σ of NDEDs over

signature σ, we compute a set Σ̂ of DEDFs over the signature

σ̂ := σ ∪ {R̂ : R ∈ Σ ∪ {N}

where R̂x̄ “stands for” ¬Rx̄ and Nxy “stands for” x 6= y. If the chase terminates, the

result will be a template under embeddings, rather than homomorphisms. From such

result, it is straightforward to extract a template under homomorphisms (cf. Theo-

rem 3.19).
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3.6 Beyond UCQ and Homomorphisms

In order to be able to compute certain answers to queries which are not unions of

conjunctive queries, we need set solutions which are universal not under homomorphisms,

but under other kinds of mappings. Universality under other kinds of mappings is useful

also for other applications, including checking containment under constraints.

We are interested in the following kinds of homomorphisms. We say that a

homomorphism h : A → B is full if A |= R(x̄) iff B |= R(hx̄) for all relations R in

A and B. An embedding is a full injective homomorphism. We write hom for the set

of homomorphisms on finite instances, ihom for injective homomorphisms, fhom for full

homomorphisms, and emb for embeddings.

Theorem 3.17.

1. UCQ is closed under homomorphisms.

2. MonQ is closed under injective homomorphisms.

3. UCQ¬ is closed under full homomorphisms.

4. UCQ¬,6= is closed under embeddings.

That is, for any of these classes of queries and the corresponding class of mappings,

h : A 99K B and ā ∈ Q(A) implies h(ā) ∈ Q(B).

Proof. 1. Assume that h : A → B is a homomorphism, ā ∈ Q(A), Q ∈ UCQ, and

Q :=
∨

1≤i≤k Qi where each Qi ∈ CQ. Then ā ∈ Qi(A) for some i and this happens

iff there is a homomorphism g : Qi → Aā, that is, a homomorphism from Qi to

A which maps the free variables x̄ of Qi to ā. But then h ◦ g : Qi → Bh(ā) and

therefore h(ā) ∈ Q(B).

2. Assume that h : A→ B is an injective homomorphism, ā ∈ Q(A), and Q ∈ MonQ.

Set A′ = h(A); that is, for every relation in A, set RA′

= h(RA). Then A′ ⊆ B

and h is an isomorphism between A and A′. Therefore, by genericity, h(ā) ∈ Q(A′)

and by monotonicity, h(ā) ∈ Q(A).

3. Simlar to part 1. If ā ∈ Qi(A) then there is a homomorphism g : Qi → Aā

which also preserves the absence of some tuples. Composing h with g gives a

homomorphism which preserves the absence of those tuples.

4. Similar to part 3, but with embeddings.
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We fix some family F of mappings on finite instances such as injective homo-

morphisms and we write A 99K B if there is h : A → B in F . We extend 99K to sets of

structures as we did for→. We say that a structure or set of structures T is F -universal

for K if T 99K K.

Definition 3.10. A set of finite structures T is an F -template for a set of structures K

if it satisfies the following conditions:

1. (F -universality) T 99K K,

2. (conformance) T ⊆ K,

3. (finiteness) T is finite, and

4. (minimality) there is no T ′ ⊂ T such that T ′ → T .

Therefore, a plain template is a hom-template.

It turns out that we can compute strong templates under F in case F ∈

{ihom, fhom, emb} by using a reduction to the case of homomorphisms. Other fami-

lies of mappings may be handled by similar reductions.

Theorem 3.18. Given F ∈ {ihom, fhom, emb} and a signature σ, there is a signature

σ̂ ⊃ σ and constraints Λ such that for every A,B over σ, there are unique expansions

Â, B̂ over σ̂ of A,B satisfying Â, B̂ |= Λ. Furthermore,

h : A 99K B iff h : Â→ B̂

Proof. (a) If F consists of injective homomorphisms, set σ̂ := σ∪{N} where N is a new

binary relation symbol and set Λ to contain the constraints

x = y ∨N(x, y) x = y,N(x, y)→ ⊥

where N stands for 6=. Now assume 1, 2, and 3 hold. If h : Â→ B̂ is a homomorphism,

then also h is a homomorphism A → B. Now if x 6= y, we must have A |= Nxy by the

first constraint in Λ and therefore B |= Nh(x)h(y). Then the second constraint in Λ

implies h(x) 6= h(y); that is, h is injective. The converse is obvious.

(b) If F consists of full homomorphisms, set σ̂ := σ ∪ {R̂ : R ∈ σ} where each

relation symbol R̂ is new and of the same arity as R. Set Λ to contain all constraints of

the form

R(x̄) ∨ R̂(x̄) R(x̄), R̂(x̄)→ ⊥
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for every relation symbol R ∈ σ. The rest of the proof is similar to case (a).

(c) Embeddings are precisely full injective homomorphisms, so this case is han-

dled by combining (a) and (b).

The one-to-one correspondence between A and Â |= Λ is clear.

Theorem 3.19. If Σ is a set of NDEDs over signature σ and F ∈ {ihom, fhom, emb},

then there is a signature σ̂ and a set of DEDFs Σ̂ such that the following are equivalent

1. There is a strong template for Σ.

2. There is a strong F -template for Σ.

3. There is a strong template for Σ̂.

4. The unordered chase with minimization terminates for Σ̂, producing a strong tem-

plate for Σ̂.

Furthermore, Σ̂ can be obtained efficiently from Σ and each of these strong templates can

be efficiently obtained from the other.

Proof. Set σ̂ and Λ as in the proof of Theorem 3.18 and set Σ̂ := Σ ∪ Λ.

1 implies 3: Assume there is a strong template T for Σ. Set T̂ to consist of

all expansions of all homomorphic images of instances in T to σ̂ that satisfy Λ. Then

T̂ satisfies all conditions for a template except minimality as follows. Conformance and

finiteness are obvious. If B̂ |= Σ̂, then its reduction B to σ satisfies Σ and therefore

there is A ∈ T and a homomorphism h : A→ B. Then there is A′ = h(A) ∈ T such that

g : A′ → B is injective.

3 implies 2: Assume there is a strong template T̂ for Σ̂. Then the set T

of structures in T̂ reduced to the signature σ all conditions for an F -template except

minimality as follows. Conformance and finitiness are obvious. Universality is satisfied

by Theorem 3.18, since if B |= Σ, there is an expansion B̂ of B such that B̂ |= Σ̂.

Then there is Â ∈ T̂ such that Â→ B̂ and therefore the reduction A of Â to σ satisfies

A 99K B. It is easy to obtain T ′ ⊆ T which satisfies minimality as well.

2 implies 1: Assume there is a strong F -template T for Σ. Since every F -

mapping is a homomorphism, T satisfies all conditions for a template, except for mini-

mality. It is easy to obtain T ′ ⊆ T which satisfies minimality as well.

3 iff 4: This follows from Theorem 3.12.

The proof above shows how to obtain each of the strong templates from the

others.
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Theorem 3.19 allows us to compute templates and universal set solutions for

NDED constraints.

3.7 Containment

Templates are useful for checking containment, containment under constraints,

and implication as we show next.

Definition 3.11. We write P v Q in case P (A) ⊆ Q(A) for all finite structures A. and

P vΣ Q in case P (A) ⊆ Q(A) for all finite structures A |= Σ. The containment problem

consist of, given P and Q, deciding whether P v Q. The containment under constraints

problem consist of, given P,Q, and Σ, deciding whether P vΣ Q.

In order to state general results in a simple manner we consider some fixed

class of mappings F closed under composition, such as hom, fhom, ihom, or emb and

we consider the corresponding F -templates. We write A 99K B if there is a mapping

h : A → B such that h ∈ F . We say that a class of structures K is closed under 99K if

A ∈ K,A 99K B imply B ∈ K. Similarly, we say that Σ is closed under 99K if mod (Σ)

is.

In a sense, an F -template is an incomplete, but finite description of a class K,

unless that class K is closed under F . The importance of the result below, is that reduces

an infinite problem (part 1) to checking finitely many instances for the existences of a

mapping (part 3).

Theorem 3.20 (Containment). If K,L are sets of structures, L is closed under 99K,

and [K] and [L] exists, then the following are equivalent.

1. K ⊆ L.

2. [K] ⊆ L.

3. [L] 99K [K].

Proof. If (1) holds, then [K] ⊆ K ⊆ L so (2) holds. If (2) holds, then [L] 99K L and

therefore [L] 99K [K] so (3) holds. Now assume (3) holds and pick A ∈ K. Since

[K] 99K K, there is B ∈ [K] such that B 99K A. Since [L] 99K [K], there is C ∈ [L]

such that C 99K B 99K A. Since [L] ⊆ L, C ∈ L. Since F is closed under composition,

C 99K A and since L is closed under 99K, A ∈ L. This shows that (1) holds.

We want to be able to speak of a set of instances associated with a query Q.

Therefore, given a query Q, we define a sentence Q̂ obtained from Q by replacing the
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free variables x̄ of Q with new constants c̄. Notice that with this definition, we have by

Theorem 3.17:

1. If Q ∈ UCQ, then Q̂ is closed under homomorphisms.

2. If Q ∈ MonQ, then Q̂ is closed under inj. homomorphisms.

3. If Q ∈ UCQ¬, then Q̂ is closed under full homomorphisms.

4. If Q ∈ UCQ¬,6=, then Q̂ is closed under embeddings.

To simplify the notation, we write [Q] instead of [Q̂]. If Q ∈ CQ, then [Q] is

precisely what is known as the frozen instance of Q. Therefore, for the case of queries,

templates generalize the notion of frozen instances. Furthermore, we have the following

natural generalization of what is known as the homomorphism theorem for conjunctive

queries [1]:

Corollary 3.21 (Query Containment). If P,Q ∈ L and L is closed under the map-

pings F , then

P v Q iff [Q]→ [P ].

The following important result follows from Theorems 3.20 and 3.10.

Theorem 3.22 (Implication). If P,Q ∈ L, L is closed under the mappings F , and Σ

is a set of sentences, then the following are equivalent whenever all templates mentioned

exist:

1. P vΣ Q.

2. Σ |= ∀x̄(P → Q).

3. Σ, P̂ |= Q̂.

4. mod(Σ ∪ {P̂}) ⊆ mod(Q̂).

5. [Q]→ [Σ ∪ {P̂}]

Furthermore, if some Σ-chase terminates on P , then 1-5 are also equivalent to:

6. PΣ v Q

Partial results similar to Theorems 3.20 and 3.22, except for the mention of

templates, are known for several special cases including conjunctive queries and embed-

ded dependencies. Our contribution is identifying the crucial roles of templates in them

and therefore providing a uniform generalization to any kinds of constraints, mappings,

and queries closed under such mappings for which we can find templates.
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Notice also that in some cases, we do not need to chase to obtain a template,

but can simply asserts its existence to obtain the desired result. In particular, we can

then ‘use’ a weak template, which we know can not be found by chasing. An example

of a result of this kind is the following generalization of Theorem 5 in [7]:

Theorem 3.23. For any set Σ of universal-existential constraints, if there is some c

such that for any P,Q ∈ UCQ¬,6=, a weak template T = [Σ ∪ {P̂ }] exists and every

instance A in it satisfies |A| ≤ |P |c, then we can check whether P vΣ Q holds in ΠP

2
.

Proof. Assume the hypotheses. Now for every A satisfying |A| ≤ |P |c, A |= Σ, and

A |= P̂ , check whether A |= Q̂. If this holds, then we must have T ⊆ mod(Q̂), and

therefore P vΣ Q by Theorem 3.22. Otherwise, we have a counterexample.

3.8 Queries with k-Variables

As we have seen in Theorem 3.9, there are sets of TGDs with no templates

and, more specifically, there are data integration settings which have no universal set

solutions as Example 3.3 shows. Can we still compute certain answers in such situations?

We show that in many situations we can, by relaxing the notion of universal set solution

as follows. We write A
k
→ B if

(∀A′ v A)(|A′| ≤ k → A′ → B).

That is, every restriction of A to at most k elements has a homomorphism into B. This

notion can easily be generalized to other kinds of mappings and it also applies to checking

containment.

If A
k
→ B, we say that there is a k-homomorphism from A to B, even though

this fact is not usually witnessed by a single mapping. Nevertheless, the binary relation

given by
k
→ is reflexive and transitive, and therefore

k
→ gives a preordering. It turns

out this is all we need to define templates in the most general way: we simply replace

universality in the definition of template with universality under some preordering. Here

we define k-templates for homomorphisms; a similar definition applies to other mappings.

Definition 3.12. A set of finite structures T is a k-template for a set of structures K if

it satisfies the following conditions:

1. (k-universality) T
k
→ K,

2. (conformance) T ⊆ K,
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3. (finiteness) T is finite, and

4. (minimality) there is no T ′ ⊂ T such that T ′ → T .

We define k-universal solutions similarly, using k-universality instead of plain

universality. It turns out that k-universality is all we need to answer existential queries

with k variables (we assume variables are not reused). More precisely, CQk is the set

of conjunctive queries with at most k variables (the existential quantification has been

pushed out). and UCQk are unions of CQk queries. We define the other families of

existential queries in a similar way.

Theorem 3.24.

1. UCQk is closed under k-homomorphisms.

2. MonQk is closed under injective k-homomorphisms.

3. UCQ¬
k is closed under full k-homomorphisms.

4. UCQ¬,6=
k is closed under k-embeddings.

That is, for any of these classes of queries and the corresponding class of mappings,

h : A
k

99K B and ā ∈ Q(A) implies h(ā) ∈ Q(B).

Proof. (1) Assume that A
k
→ B, ā ∈ Q(A), Q ∈ UCQ, and Q :=

∨

1≤i≤k Qi where each

Qi ∈ CQ. Then ā ∈ Qi(A) for some i and this happens iff there is a homomorphism

g : Qi → Aā, that is a homomorphism from Qi to A which maps the free variables x̄ of

Qi to ā. Since |g(Qi)| ≤ k, we have A′ v A and homomorphism h : A′ → B. But then

h ◦ g : Qi → Bh(ā) and therefore h(ā) ∈ Q(B). The proof of 2, 3, and 4 is similar to the

corresponding parts in Theorem 3.24.

Theorem 3.25. If W is a k-universal set solution for S under Σ for

1. homomorphisms and Q ∈ CQk,

2. injective homomorphisms and Q ∈ MonQk,

3. full homomorphisms and Q ∈ UCQ¬
k , or

4. embeddings and Q ∈ UCQ¬,6=
k ,

and Q has arity r, then

certΣQ(S) = dom(S)r ∩
⋂

T∈W

Q(T ).
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Proof. (sketch) Similar to the proof of Theorems 3.1 and 3.2 using Theorem 3.24 instead

of Theorem 3.17.

Theorem 3.26. For every k, there is a set Σk+1 of TGDs such that Σ has a weak

template and a strong k-template, but no strong (k + 1)-template

Proof. (sketch) Consider the set of axioms Σk+1:

ξ1: ∃x, y E(x, y)
ξ2: E(x, y) → ∃z E(y, z)

ξk+2
3 : E(u0, u1), . . . , E(uk+1, uk+2) → E(u0, uk+2)

{Ck+1} is a weak template for Σk+1 and also a strong k-template. If G |= Σk+1,

then G must contain a cycle of length at most k + 1, so it can not be a strong (k + 1)-

template.

To compute k-templates for Σ when Σ is closed under products, we can use

the following variant of the chase. Compute a chase sequence ∅ = A0, A1, . . . using

some chase-like algorithm, for example the unordered minimizing chase. Simulatenously,

compute a chain of models of Σ: B0 ← B1 ← . . .. Such a chain can be obtained,

for example, by picking some enumeration of the models of Σ and setting Bn to be the

product of the first n+1 models. Alternatively, given Bn, we can set Bn+1 := Mn+1 were

Mn+1 is the (n+1)th model in this enumeration in case Mn+1 → Bn+1 and Bn+1 := Bn

otherwise. If we find some n,m such that Bm
k
→ An we stop. The result is Bm, which

has the desired universality property since Bm
k
→ An → mod(Σ) by Theorem 3.10. This

can be generalized to universal-existential constraints by considering the situation where

each Ai and Bj is a finite set of instances instead of a single instance. We can show the

following.

Theorem 3.27. If there is a strong k-template for Σ, then the procedure above using

the unordered minimizing chase will terminate and find it.

This chapter is based on “Data Exchange, Data Integration, and the Chase”

by Alan Nash, Alin Deutsch, and Jeff Remmel [34]. I was responsible for developing all

the concepts in this paper, except as follows. Jeff Remmel and Alin Deutsch contributed

towards the proof of completeness, towards the overall presentation, introduced the un-

ordered minimizing chase, and participated in many discussions in which the concepts

discussed here were clarified.



4

The Data Exchange Core

Computation Problem

Data exchange deals with inserting data from one database into another database

having a different schema. Fagin, Kolaitis, and Popa have shown that among the uni-

versal solutions of a solvable data exchange problem, there exists – up to isomorphism

– a most compact one, “the core”, and have convincingly argued that this core should

be the database to be materialized. They stated as an important open problem whether

the core can be computed in polynomial time in the general setting where the mapping

between the source and target schemas is given by source-to-target constraints which

are arbitrary tuple generating dependencies (TGDs) and target constraints consisting

of equality generating dependencies (EGDs) and weakly-acyclic TGDs. In this chapter

we solve this problem by developing new methods for efficiently computing the core of

a universal solution. This positive result shows that data exchange based on cores is

feasible and applicable in a very general setting.

4.1 Computing the Core of a Universal Solution: Outline

In this section, we outline the methods for core computation used in previous

work and in the next few sections of this chapter.

Previous Results. Fagin, Kolaitis, and Popa [12] proved that the core of a

universal solution can be computed in polynomial time in two restricted settings:

• When the set Σt of target constraints is empty.

• When the set Σt of target constraints contains EGDs only.

50
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They provided two different methods to obtain these results, of which one is

directly relevant to our present work, namely, the blocks method. This method is based

on the observation that the Gaifman graph of the variables of the result T of applying the

source-to-target TGDs to a ground source instance S consists of connected components

whose size is bounded by a constant b. Such instances T have a nice property: checking

whether there is a homomorphism from any T ∈ K where K is any set of instances

with such bound b into any arbitrary other instance T ′ is feasible in polynomial time.

In fact, this test essentially boils down to check whether each of these blocks has a

homomorphism to T ′. They give the following result in somewhat different form.

Theorem 4.1 ([12]).

1. If Σ is a set of source-to-target constraints of height e, S is ground, and (S, T ) =

(S, ∅)Σ, then blocksize(T ) ≤ e.

2. If blocksize(A) ≤ c, then we can check whether A→ B holds in time O(|B|c).

The core of T can be obtained by checking whether T admits a proper endo-

morphism h and, if so, replacing T by h(T ). This process is repeated until T cannot be

further shrunk via endomorphisms. The result is the core.

Fagin et al. then extended this method to the case where Σt consists of EGDs.

The difficulty here is that EGDs, when applied, can merge blocks by equating variables

from different blocks. Thus, after chasing EGDs over T , the result T Σt has, in general,

lost the bounded block-size property. However Fagin et al., by an insightful Rigidity

Lemma [12] show that after equating a sequence of variables while enforcing EGDs, the

final remaining variable is rigid, i.e., can be mapped only to itself in every endomorphism.

The resulting instance TΣt has thus the bounded block-size property if we treat such

variables as constants.

In [19] Gottlob has shown that computing cores is tractable if the target de-

pendencies Σt consist of full TGDs, i.e., TGDs without existentially quantified variables,

and arbitrary EGDs. Note that a set of full TGDs is weakly acyclic.

For full TGDs the situation is rather complex. While T = SΣst has bounded

block size, TΣt has in general neither bounded block size nor rigid variables. In fact, while

TΣt contains no additional variables, different blocks of T can be merged through the

creation of new atoms. A full TGD of the form r(x, y) ∧ r(z, t)→ r(y, t) may obviously

merge blocks. This situation is depicted in figure 4.1, where the original blocks of T

are depicted as ovals, and where some new atoms created via full TGDs are depicted as
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black boxed. These atoms may connect previously separate blocks and as a result, very

large blocks may arise.

x1 x2

x3 x4

x5 x6

x7 x8

x9 x10

T

TΣt no additional variables

Figure 4.1 Structure of the target instance T Σt in case Σt consists of full TGDs only

Generalizing the results of [12], it was shown in [19] that for checking whether

a universal solution B ⊆ TΣt is not yet the core, it suffices to look for a homomorphism

h : T → B such that h(T ) ⊂ B.1 This is because it was further shown that this

homomorphism h : T −→ B is actually a non-injective endomorphism of T Σt (recall

that T and TΣt have the same domains). Moreover, h can be transformed in polynomial

time into a non-injective retraction r of T Σt satisfying r(TΣt) ⊂ B. This ensures that

B′ = r(TΣt) ⊂ B satisfies Σt. If such a mapping h exists, it can be found in polynomial

time by exploiting the bounded block-size of T .

We needed to consider retractions and not arbitrary endomorphisms, because

for a retraction r it holds that r(T Σt) |= Σt, while this is not always true for endomor-

phisms in general (as will be made clear through Example 4.1 in Section 4.2). Starting

from B = TΣt , by successively replacing B with B ′ as described, we eventually reach

the core.

This tractability result was then extended in [19] to the setting where Σt con-

tains EGDs in addition to full TGDs. This was achieved by a simulation of EGDs through

full TGDs. Note that with full TGDs and EGDs we can express functional, join, and

multivalued dependencies, but not inclusion dependencies or foreign key constraints.

Another relevant class of data exchange problems arises when the set Σt of

target constraints is restricted to contain weakly acyclic simple TGDs and arbitrary

1In [12] similar mappings where called useful.
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EGDs. A simple TGD is one whose left side consists of a single atom with no repeated

variables. In [19] it was shown that for this class of problems, the core can be computed

in polynomial time, too. The proof is based on the observation that chasing with simple

TGDs does not change hypertree width [21]. This class is practically relevant, because

it covers as target constraints the important class of functional dependencies and acyclic

inclusion dependencies, and thus also foreign key constraints (as long as they do not

destroy weak acyclicity). However it does not include multivalued or join dependencies.

Fagin [14] has shown tractability for a slightly larger class by completely different means.

The tractability results of the present chapter subsume those of [19] and are

more general. Therefore we will not further discuss the specific classes of tractable data

exchange problems studied in [19].

Outline of Main New Ideas for Tractability. We outline the main ideas

underlying our solution of the core computation problem for the general case, when the

target constraints Σt may consist of weakly-acyclic TGDs and arbitrary EGDs. Such

constrains encompass all major types of data dependencies. We will first deal with

weakly-acyclic TGDs as target constraints and then show how EGDs can be added.

For weakly-acyclic TGDs the situation is yet more complicated than for full

TGDs. Again, let T denote a target instance obtained by chasing the source instance

S with the source-to-target constraints Σst (for an arbitrary chase order). As before, T

has bounded block-size. However, while in the case of full TGDs, T already contained

all variables of TΣt, now there can be further variables outside T and these variables

can appear in large (unbounded) blocks of T Σt, see Figure 4.2. We cannot proceed,

y1

y2

y3

y4

TΣt

x1 x2

x3 x4

x5 x6

x7 x8

x9 x10

y5 y6

y7

y8

y9

y10 y11

y12 y13

y14

T

Figure 4.2 Structure of the target instance T Σt in case Σt consists of weakly acyclic
TGDs
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as in the case of full TGDs, by trying to find a non-injective homomorphism h from

T to some intermediate instance B ⊂ T Σt and hope that h extends automatically to a

non-injective endomorphism of T Σt → B. In fact, there may not exist any non-injective

homomorphism T → B, while there may well exist a non-injective endomorphism h of

TΣt → B such that h(TΣt) ⊂ B, where h(x) = h(y) for two distinct values x and y that

are not both in T . But variables outside T may appear in large blocks and it is thus not

at all obvious how homomorphisms involving them can be found in polynomial time.

Our solution of this problem is based on the following ideas.

Idea 1. For technical reasons, we compute non-injective retractions T Σt → B rather

than arbitrary (i.e., not necessarily idempotent) non-injective endomorphisms. The rea-

son is that if h is a retraction, then h(T Σt) |= Σt (Theorem 3.5). Note that this is not true

for arbitrary endomorphisms (see Example 4.1). In order to find a non-injective retrac-

tion, we can always find a non-injective endomorphism of T Σt first and then transform

it in polynomial time into a suitable retraction (Theorem 4.2).

Recall that if x is a variable of T Σt that was introduced at some chase step via

an existential TGD ξ from Σt, then the parents of x are all values occurring in the atoms

that made ξ fire and the siblings are all other new variables introduced at the same chase

step. Recall further, that the ancestors of a variable are defined in the usual way by the

transitive closure of the parent relation.

Idea 2. We observe that each variable of T Σ has a bounded set of ancestors and a

bounded set of siblings of ancestors. Our idea is to exploit this fact.

The next idea deals with how to exploit the bounded set of ancestors.

Idea 3. Assume that we have already constructed a retraction h : T Σt → B ⊆ TΣt and

we want to see whether B can be further shrunk. This means that we need to see whether

two distinct values x, y of B can be further “lumped together” by a homomorphism h ′

such that h′(x) = h′(y). To this aim, we define, for all pairs of distinct values x, y of B,

the sub-instance Txy ⊂ TΣt which contains all atoms over the set of values of T , x y,

and their siblings, and all ancestors of x and y and the siblings of these ancestors. Given

that T has bounded block-size and that the number of ancestors and siblings of each

variable is bounded by a constant, these sets Txy all have bounded block-size. We can

then check for each Txy in polynomial time whether there is a homomorphism Txy → B

such that x and y are mapped to the same element z, see Figure 4.3.

If this is possible for some Txy, then this homomorphism h can be extended in
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y

x

h(Txy)

Txy

B

z

TΣt

Figure 4.3 Improvement of a homomorphism

polynomial time to an non-injective endomorphism h : T Σt → B such that h(TΣt) ⊂ B.

Then, as explained before, from such a h we can compute in polynomial time a retraction

h′ of TΣt such that h′(TΣt) ⊂ h(B) ⊂ B and thus B can be replaced by a smaller instance

h(B) which also satisfies Σt. Otherwise B is already the core.

In order to establish that each homomorphism Txy → B ⊆ TΣt mapping x

and y to the same element can be extended in polynomial time to to an endomorphism

TΣt → B such that h(B) ⊂ B, we show a slightly stronger result, described in Idea 4.

Idea 4. We show that whenever a subset A of T Σt contains T and is closed under

ancestors and siblings, and whenever B satisfies Σt, then any homomorphism h : A→ B

can be extended in polynomial time to an homomorphism from T Σt → B. (Theorem 4.5)

These are the four main new ideas we used in order to show that the core can

be computed in polynomial time in case Σt consists of TGDs only. To cover, in addition

EGDs, we need two further ideas

Idea 5. We simulate EGDs by full TGDs by introducing an additional binary relation

E which stands for ‘equal’ and by adding some consistency rules which say that values

which are marked as equal in the E relation are indistinguishable by the other relations

of the target database.

This simulation introduces a big new problem. Adding the new full TGDs may

create new cycles and will in general yield a set of TGDs which is not weakly acyclic.

Therefore, there is a risk that the chase will not terminate. Here comes our final idea

that solves this problem, too.

Idea 6. We observe that for a particular chase order which can be statically deter-

mined, TGDs with existentially quantified variables will never fire on premises contain-
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ing variables whose ancestor-tree exceeds a certain depth. Thus the chase terminates in

polynomial time, and the crucial bounded-ancestors property is still guaranteed.

This concludes the rather superficial presentation of our main ideas. In the rest

of this chapter we will make these ideas more concrete and provide the glue for putting

them together.

4.2 Retractions and Cores

We have seen in Theorem 3.5 that embedded dependencies are closed under

retractions. On the other hand, even full dependencies are not closed under endomor-

phisms, as the following example shows.

Example 4.1. Assume A is an instance with a single binary relation R containing the

tuples {(x, z), (x, a), (z, y), (a, z), (a, a)} where x, y, z are variables and a is a constant, Σ

consists of the single constraint

R(u,w), R(w,w), R(w, v) → R(u, v),

and h(x) = x, h(y) = z, h(z) = a, h(a) = a. Then A |= Σ and h is an endomorphism

of A, but h(A), which consists of R with tuples {(x, a), (a, z), (a, a)} does not satisfy Σ

since R does not contain (x, z).

In general, one can obtain the core of an instance A by successively applying

non-surjective endomorphisms. However, if an instance A satisfies some constraints Σ,

then even though its core C satisfies Σ by Theorem 3.5, the image h(A) of A under

an endomorphism h may not satisfy Σ as Example 4.1 shows. In Theorem 4.7 we will

compute the core of an instance U which satisfies some constraints Σ by computing a

chain U = U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Un, but we will need each Ui to satisfy Σ. Therefore,

we will ensure that for each i, Ui ↪→ Ui+1 and in order to do this, we use the following

result.

Theorem 4.2. Given an endomorphism h : A → A such that h(x) = h(y) for some

x, y ∈ dom(A), there is a proper retraction r on A such that r(x) = r(y). Moreover,

such retraction can be found in time O(|dom(A)|2).

Proof. Assume h is as in the hypothesis. We write hq for the composition of h with itself

q times. Since h is an endomorphism, h(A) ⊆ A. Since also B ⊆ A implies h(B) ⊆ h(A),

it follows that h1(A) ⊇ h2(A) ⊇ h3(A) ⊇ . . . This sequence can not decrease forever,
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so there must be some q ≤ |dom(A)| such that h ◦ hq(A) = hq(A). Set g := hq and

B := g(A). Then h(g(A)) = g(A), and thus g(B) = hq(g(A)) = g(A) = B. That

is, g is an automorphism on B. Denote by G the graph of g on B, i.e., the digraph

whose set of vertices is B and whose set of arcs is {(u, v) : u, v ∈ B ∧ g(u) = v}. Since

g is a permutation, G consists of a collection C1, C2, . . . , Ck of disjoint cycles or loops

Ci of respective lengths c1, . . . , ck. These cycles correspond to the strongly connected

components of G and can thus be identified in linear time. Obviously, we have

Σk
i=1ci = |dom(B)| ≤ |dom(A)|.

Let g0 := g and for 0 ≤ i ≤ k − 1, let gi+1 := gci

i . Set r := gk. We thus have:

r = ((((gc1 )c2)c3) · · ·)ck = gc1·c2···ck .

Note that for 1 ≤ i ≤ k, gi is the identity on the vertices of all cycles C1, . . . , Ci.

Thus r restricted to B is the identity on B. Moreover r(A) = g(A) = B, so r is a

retraction of A. Note that r, arising from compositions of endomorphisms, is itself an

endomorphism. Furthermore, r = (hq)c1·c2···ck and therefore, since h(x) = h(y), it also

holds that r(x) = r(y). Thus r is the desired retraction. Computing r as described

above requires no more than |dom(A)| + Σk
i=1ci ≤ 2|dom(A)| compositions. Each single

composition is feasible in linear time in |dom(A)| and therefore r can be done in time

quadratic in |dom(A)|.

4.3 Weakly-Acyclic TGDs

In this section we prove the following result.

Theorem 4.3. For every Σ := Σst ∪ Σt where

• Σst is a set of source-to-target embedded dependencies and

• Σt is a weakly-acyclic set of TGDs

and every ground instance S, a core of a universal solution U for S under Σ can be

computed in time O(|dom(S)|b) for some b which depends only on Σ.

In order to prove Theorem 4.3, we need several intermediate results. In the

proof we chase (S, ∅) with Σst to obtain (S, T ), then chase T with Σt to obtain U .

Then (idea 1) we compute the core of U by successively applying proper retractions
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(Theorem 4.7) instead of non-surjective endomorphisms. In order to find such proper

retractions efficiently, we (idea 3) identify a set of fragments Txy of U : one such fragment

Txy only slightly larger (idea 2) than T satisfying T ⊆ Txy ⊆ U for every pair of distinct

values x, y ∈ dom(U) (Lemma 4.4). Finding a homomorphism from Txy to any instance

B is easy, since it is easy for T . Furthermore (idea 4), such a homomorphism Txy → B

can be extended to a homomorphism U → B when B |= Σ (Theorem 4.5). This is

enough to show that we can check efficiently whether any U ′ ⊆ U satisfying U ′ |= Σ has

a proper retraction (Theorem 4.6) since U ′ has a proper retraction iff there are distinct

values x, y ∈ dom(U ′) such that there is a homomorphism Txy → U ′. Notice that we need

U ′ |= Σ and therefore we compute the core by successively applying proper retractions

(cf. Theorem 3.5) instead of non-surjective endomorphisms (cf. Example 4.1). At the

end of this section, we present an algorithm that performs all these steps.

The following lemma corresponds to idea 2 in Section 4.1.

Lemma 4.4. For every weakly-acyclic set Σ of TGDs of depth d, width w, and height

e, instance T , and x, y ∈ dom(TΣ), there is Txy satisfying

1. x, y ∈ dom(Txy),

2. |dom(Txy)| ≤ |dom(T )|+ 2edwd,

3. T ⊆ Txy ⊆ T
Σ,

4. dom(Txy) is closed under parents and siblings, and

5. Txy can be computed in time O(|dom(T )|c) for some c which depends only on Σ.

Proof. Assume Σ, x, y, and T satisfy the hypotheses. Then every value in T Σ has depth

at most d. If x has nonzero depth, then it was introduced into relations in T Σ by some

step of the chase, which must have fired on some set of tuples of T Σ.

For any x, set Ax to be x and all its ancestors and Ex to be Ax and all siblings of

elements in Ax. That is, Ex is the smallest set containing x which is closed under parents

and siblings. An easy induction on depth shows that |Ax| ≤ dwd and |Ex| ≤ edwd. We

can compute Ax and Ex in time O(|dom(T )|d) where d depends only on Σ. Similarly,

compute Ay and Ey. Set Txy := T ∪ (TΣ|(Ex ∪ Ey)). Clearly, Txy can be computed in

time O(|dom(T )|c) for some c that depends only on Σ and it satisfies requirements 1

through 4.

Example 4.2. Consider the set Σ consisting of the single constraint

E(x, y), E(y, z) → ∃u, v F (x, u), F (u, v), F (v, z)
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which says that for every path of length 2 in E there is a path of length 3 in F .

Consider the instance T which consists of a path c1, c2, c3, c4, c5, c6 of length 5 in E.

Then TΣ contains, in addition to this path of length 5 in E, two paths of length

6 in F : c1, v1, v2, c3, v3, v4, c5 and c2, v5, v6, c4, v7, v8, c6. Here v1 and v2 are siblings

and c1, c2 and c3 are their parents. Therefore, if x = v1, then Ax = {c1, c2, c3, v1}

and Ex = {c1, c2, c3, v1, v2}. Similarly, if y = v7, then Ay = {c4, c5, c6, v7} and Ey =

{c4, c5, c6, v7, v8}. Therefore, Txy consists of the path of length 5 in E: c1, c2, c3, c4, c5, c6

and two path of length 3 in F : c1, v1, v2, c3 and c4, v7, v8, c6.

Notice that even though, as we discuss in the proof of Lemma 4.4, |Ax| ≤ dwd

(that is, the set of ancestors of x is bounded by dwd), this does not mean that every

tuple b̄ introduced by the chase has a “bounded proof length” in the sense that only a

bounded number of tuples b̄1, . . . , b̄k are needed to force the introduction of b̄. To see

this, consider for example the single constraint

E(x, y), E(y, z) → E(x, z)

which says that E is transitively closed. Since this is a full TGD, no variables are added

during the chase and therefore, Ax = Ex = ∅. However, there are E-paths of arbitrarily

large length which cause the introduction of a pair into E and therefore such pairs have

unbounded proof length.

The following theorem corresponds to idea 4 in Section 4.1.

Theorem 4.5. If Σ is a set of weakly-acyclic TGDs, and B, T , and W are instances

satisfying

1. B |= Σ,

2. T ⊆W ⊆ TΣ, and

3. dom(W ) is closed under ancestors and siblings,

then any homomorphism h : W → B can be extended in time O(|dom(T )|b) to a homo-

morphism h′ : TΣ → B where b depends only on Σ.

Proof. Assume 1, 2, and 3 hold and there is a homomorphism h : W → B. Then h

can be extended to the desired h′ in time O(|dom(T )|b) where b depends only on Σ as

follows. Assume that the chase of T with Σ terminates in t steps; that is, T Σ = TΣ
t .

We will compute a sequence of homomorphisms h0 := h ⊆ h1 ⊆ . . . ⊆ ht such that

hs : Ts → B where Ts := TΣ
s ∪W . Since TΣ

0 = T ⊆ W , the homomorphism h0 = h is
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a homomorphism T0 = W → B. Since W ⊆ TΣ we have TΣ = TΣ
t = Tt and therefore

h′ := ht is the desired extension.

To obtain the homomorphism hs+1 from the homomorphism hs we proceed as

follows. Assume that TΣ
s+1 is obtained from TΣ

s by firing a constraint ξ of the form

φ(ū)→ ∃v̄ ψ(ū, v̄)

on ā ∈ dom(TΣ
s ) where in the case of full TGDs v̄ is empty. That is T Σ

s |= φ(ā)

and TΣ
s+1 |= ψ(ā, b̄) for some b̄ ∈ dom(TΣ

s+1) − dom(TΣ
s ). Since hs is a homomorphism

Ts → B and φ is monotonic, B |= φ(hs(ā)). The only tuples introduced into relations

in TΣ
s+1 are those in ψ(ā, b̄). Therefore it is sufficient to define hs+1 ⊇ hs so that

B |= ψ(hs+1(ā), hs+1(b̄)).

If ξ is a full TGD, we set hs+1 := hs. Since B |= Σ, we have B |= ψ(hs(ā)).

Otherwise, since Ts is closed under siblings, there are only two cases to consider:

1. b̄ ∈ dom(Ts) and

2. b̄ 6∈ dom(Ts).

In case (1) we set hs+1 := hs. Since b̄ ∈ dom(Ts)−dom(TΣ
s ) and Ts = TΣ

s ∪W ,

we must have b̄ ∈ dom(W ). Since W is closed under parents, ā ∈ dom(W ) and therefore

W |= ψ(ā, b̄). Since h0 : T0 = W → B is a homomorphism, B |= ψ(h0(ā), h0(b̄)) and

therefore, since hs+1 ⊇ h0, B |= ψ(hs+1(ā), hs+1(b̄)).

In case (2) we set hs+1(x) := hs(x) for any x ∈ dom(Ts) and hs+1(b̄) := c̄

for some c̄ such that B |= ψ(hs(ā), c̄). Such c̄ exists because B |= Σ. Then B |=

ψ(hs+1(ā), hs+1(b̄)).

Since Σ is weakly-acyclic then, by Theorem 2.1 t is O(|dom(T )|p) for some p

which depends only on Σ and this implies that the extension h′ = ht can be obtained in

time O(|dom(T )|b) where b depends only on Σ.

Theorem 4.6. For any weakly-acyclic set Σ of TGDs and instance T , we can check

whether any retract U ′ of U = TΣ has a proper retraction (i.e., whether U ′ is not a core)

and find it in time O(|dom(TΣ)|b) where b depends only on Σ and blocksize(T ).

Proof. For every x, y ∈ dom(U ′), compute Txy with the properties given in Lemma 4.4

and test whether there is a homomorphism h : Txy → U ′ such that h(x) = h(y). Then

U ′ has a proper retraction iff there are such x, y, h by Claims 1 and 2 below.
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Such Txy exist and can be computed in time O(|dom(T )|c) for some c which

depends only on Σ by Lemma 4.4. Therefore, since there are at most |dom(U ′)|2 pairs

(x, y), the result follows from Claims 3 and 4 below.

Claim 1: r is a proper retraction on U ′ iff there are x, y ∈ dom(U ′) such that

r(x) = r(y). This is obvious.

The following claim corresponds to idea 3.

Claim 2: If x, y ∈ dom(U ′), then there is a homomorphism h : Txy → U ′ such

that h(x) = h(y) iff there is a retraction r on U ′ such that r(x) = r(y).

Proof. Since U ′ is a retract of U and U |= Σ, we have U ′ |= Σ by Theorem 3.5.

Therefore, if there is a homomorphism h : Txy → U ′ such that h(x) = h(y), then h

can be extended to a homomorphism h′ : U → U ′ by Theorem 4.5 (remember we have

U = TΣ and we can set W := Txy and B := U ′ to satisfy the hypotheses of the theorem).

Then h′′ := h′|U ′ is an endomorphism of U ′ with h′′(x) = h′′(y). By Theorem 4.2, there

is a retraction r of U ′ such that r(x) = r(y).

Conversely, if there is a retraction r on U ′ such that r(x) = r(y), then since

U ′ is a retract of U , we know that there is a retraction r ′ : U ↪→ U ′. If there is also

a retraction r on U ′ such that r(x) = r(y), then r′′ = r ◦ r′ satisfies r′′(x) = r′′(y).

Therefore h := r′′|Txy is a homomorphism Txy → U ′ satisfying h(x) = h(y).

Claim 3: Given x, y ∈ dom(U ′) and a homomorphism h : Txy → U ′ such

that h(x) = h(y), a retraction r on U ′ such that r(x) = r(y) can be found in time

O(|dom(U)|c) for some c which depends only on Σ.

Proof. This follows directly from the proof of Claim 2, since Lemma 4.4,

Theorem 4.5, and Theorem 4.2 guarantee that h′, h′′, and r can all be found in time

O(|dom(U)|c
′

) for some c′ which depends only on Σ.

Claim 4: Checking whether, for any x, y ∈ dom(U ′), there is a homomor-

phism h : Txy → U ′ such that h(x) = h(y) (and if so, finding it) can be done in time

O(|dom(U)|c
′′

) for some c′′ which depends only on Σ and blocksize(T ).

Proof. Set s := blocksize(T ). Since |dom(Txy)| ≤ |dom(T )| + 2edwd by

Lemma 4.4, the set

{Txy : x, y ∈ dom(U ′), T ∈ K}

has block size bound s+ 2edwd and therefore Theorem 4.1 implies the claim except for

the additional requirement that h(x) = h(y). Handling this additional requirement is

straightforward.
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Theorem 4.7. For every s and weakly-acyclic set Σ of TGDs, there is b such that for

any T with blocksize(T ) ≤ s, the core of T Σ can be computed in time O(|dom(T )|b).

Proof. Set U := TΣ. By Theorem 2.1, U can be computed in time O(|dom(T )|)d for

some d that depends only on s and Σ. To compute the core C of U efficiently we set

U0 := U and we compute a sequence U0, U1, . . . , Un such that

1. U0 ⊃ U1 ⊃ . . . ⊃ Un,

2. U0 ↪→ U1 ↪→ . . . ↪→ Un,

3. U0, U1, . . . , Un |= Σ, and

4. Un is a core.

Then Un is the core of U . Given Um satisfying 1 and 2 above, we compute Um+1 as

follows. We check whether Um has a proper retraction r and find it. By Theorem 4.6,

this can be done in time O(|dom(U)|c) for some c which depends only on s and Σ. If

so, we set Um+1 := r(Um). Then Um+1 satisfies 1 and 2 above. Since Σ is closed under

retractions by Theorem 3.5, Um+1 also satisfies 3 above. If Um has no proper retraction,

set n := m. By 1, we must have n ≤ |dom(U)| and therefore we can compute Un, the

core of U , in time O(|dom(U)|c+1) from which the result follows.

Proof. (Theorem 4.3) Assume Σ and S satisfy the hypotheses. First compute (S, ∅)Σst ,

which is equal to (S, T ) for some T . Next compute U := T Σt . By Theorem 2.1, (S, ∅)Σst

and TΣt are well defined and can be computed in time O(|dom(S)|c) where c depends

only on Σ. We have

(S, ∅)Σ = (S, ∅)Σst,Σt = (S, T )Σt = (S, TΣt) = (S,U)

and therefore, by Theorem 2.2, U is a universal solution for S under Σ. By Theorem 4.1

for any fixed Σ, the set of all T obtained as above has bounded block size. Therefore, by

Theorem 4.7 there exists b such that for any S the core of U can be computed in time

O(|dom(T )|b). The result follows from Theorem 2.1.

The procedure FindCore computes the core of a universal solution for a ground

instance S under a set Σ as above in time O(|dom(S)|b) for some b which depends only

on Σ. The correctness and efficiency of FindCore follow from Theorem 4.3 above.
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Procedure FindCore

Input: Source ground instance S of a data exchange problem

Output: Core of a universal solution for S

1. Chase (S, ∅) with Σst to obtain (S, T ) = (S, ∅)Σst .

2. Chase T with Σt to obtain U := TΣt.

3. For every x, y where x ∈ var(U), y ∈ dom(U), and x 6= y do

4. Compute Txy as in Lemma 4.4.

5. Look for a homomorphism h : Txy → U such that h(x) = h(y).

6. If there is such h, then

7. Extend h to an endomorphism h′ on U . (Theorem 4.5)

8. From h′, compute a proper retraction r on U . (Theorem 4.2)

9. Set U := r(U).

10. Repeat from step 3.

11. Return U .

The following theorem states a concrete upper bound for the runtime of the

FindCore algorithm. We believe that there is room for improvements regarding both

the algorithm itself and its analysis. In particular, the algorithm can be improved by a

factor of |dom(TΣt)| because for every pair x, y ∈ dom(T Σt) we need to check only once

whether there is a homomorphism h : Txy → U such that h(x) = h(y), instead of once

for every iteration starting at step 3. This is because if there is no such homomorphism

h : Txy → U , then there can not be such homomorphism h : Txy → U ′ for any U ′ ⊆ U .

To simplify the presentation, we do not incorporate this improvement into FindCore.

Theorem 4.8. For every Σ := Σst ∪ Σt where

• Σst is a set of source-to-target embedded dependencies and

• Σt is a weakly-acyclic set of TGDs of depth d, width w, and height e

every variable-free source instance S and T such that (S, T ) = (S, ∅)Σst a core of the

universal solution U = TΣt for S under Σ can be computed in time

1. O(ts+4) and

2. O(a|τ |2|Σt|p
2r+e+w+3 + ps+4))

where

• p is either |dom(U)| or (f |dom(T )|)wd
(a bound for |dom(U)|),
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• t is the time to compute TΣt,

• |τ | is the number of relation symbols in the target schema,

• |Σt| is the number of constraints in Σt,

• a is the maximal number of atoms in any one constraint in Σ,

• f = (e|Σt|+ 1),

• r is the maximal arity of a relation symbol in τ , and

• s = e+ 2e(d+ 2wd) is a bound on the blocksize of Txy.

Finally, |dom(T )| ≤ |dom(S)|+ p|dom(S)|q where p is the number of existentially quan-

tified variables in the conclusions of Σst and q is the width of Σst. This gives a bound in

terms of |dom(S)|.

Proof. This was already proved in Theorem 4.3 except for the time bounds 1 and 2 which

we give here. Our analysis follows the algorithm FindCore. We use the improved bound

|dom(Txy)| ≤ 2e(d + 2wd), which is easy to verify.

Assume that |dom(U)| = n and the number of tuples in U is m. Then m is

O(|τ |nr) where r is the maximal arity of a symbol in τ . Notice that each step of the

chase with Σt takes time

O(|Σt|n
wneam)

which is

O(a|τ ||Σt|n
r+e+w)

where a is the maximal number of atoms in a constraint in Σt. This is because for each

step we must check each constraint ξ ∈ Σ and nw possible tuples ā to see whether ξ

applies on ā. Furthermore, we need to check at most ne tuples for the existentially-

quantified variables in the conclusion. This consists of checking whether a atoms are in

U , which has m tuples. Since at least one atom is introduced by each step of the chase

with Σt and there are m tuples in U and m is O(nr), step 2 must execute in time t which

is

O(a|τ |2|Σt|n
2r+e+w)

We disregard step 1 whose time is insignificant compared to the rest of FindCore.

Notice that in order to compute Txy it is enough to keep track of the ancestor

and sibling graphs during steps 1 and 2, then given x and y, compute Txy by following

these graphs. Therefore step 4 takes time O(n2), since it is enough to iterate through

U to find each element in Txy that is not in T and Txy ⊆ U . Notice also that the
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block size of Txy is bounded by the block size of T , which is ≤ e plus the number of

elements added, which is ≤ 2e(d+ 2wd). Therefore, the block size of Txy is bounded by

s := e+ 2e(d+ 2wd). To check for a homomorphism from Txy to U , it is enough to look

at ns possible setting for the variables in Txy and check whether these map correctly

into U . Therefore, the total time for step 5 is |dom(Txy)|n
s ≤ ns+1. Step 7 essentially

amounts to redoing the chase with Σt and therefore takes time O(t). By Theorem 4.2,

step 8 takes time O(n2). In summary,

Step 4 O(n2)
Step 5 O(ns+1)
Step 7 O(t)
Step 8 O(n2)

where t is the time to do the chase T Σt and s is the bound on the block size of Txy.

Therefore one iteration of the inner loop (steps 4 through 9) takes time

O(t+ ns+1).

Since we repeat steps 4 through 9 for all values of x, y in U , we may go through n2

iterations. Since line 10 may be executed at most n times, so we iterate the inner loop

at most n3 times. Lines 3 through 10 dominate the total time and therefore the total

time for FindCore is

O(n3(t+ ns+1)).

Since n is O(t), we can simplify the bound above to O(t3(t + ts+1)) which is O(ts+4)

where t is the time to compute TΣt .

Alternatively we can get a more precise bound by substituting the value com-

puted above for t which gives

O(n3(a|τ |2|Σt|n
2r+e+w + ns+1))

where n = |dom(U)|.

Now we compute a bound for |dom(U)| in terms of |dom(T )|. There are at

most e|Σt| existentially-quantified variables in conclusions of constraints in Σt. If n0 :=

|dom(T )|, then the number ni+1 of values of depth at most i+1 in U is at most ni+e|Σt|n
w
i

since at most one value is introduced for every existentially quantified variable, of which

there are at most e|Σt| and every tuple on which a constraint fires, of which there are

at most nw
i . Therefore, ni+1 ≤ fnw

i which implies that n = nd ≤ fwd
nwd

0 and therefore
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|dom(U)| ≤ (e|Σt|+ 1)wd
|dom(T )|w

d
.

The bound for T in terms of S is computed similarly. Since Σst is source-to-

target, T only has values of depth 0 and 1.

4.4 Adding EGDs

In this section we prove the following result.

Theorem 4.9. For every Σ := Σst ∪ Σt where

• Σst is a set of source-to-target embedded dependencies and

• Σt is a weakly-acyclic set of TGDs and EGDs.

and every ground source instance S, a core of a universal solution U for S under Σ can

be computed in time O(|dom(S)|b) where b depends only on Σ.

In order to prove Theorem 4.9, we introduce a set Σ̄ of TGDs which ‘simulates’

a set Σ of TGDs and EGDs (idea 5), in particular in the sense that the core of a solution

for S under Σ is the same as the core of a solution for S under Σ̄ (Lemma 4.10). If

Σ is a weakly-acyclic set of TGDs and EGDs, Σ̄ is not necessarily weakly-acyclic and

Example 4.4 shows that the chase with Σ̄ does not terminate on all orders. Nevertheless,

we show that, for a certain class of chase orders which we call nice (idea 6), the chase is

guaranteed to terminate whenever Σ is weakly-acyclic (Theorem 4.14). This is enough

to complete the proof of Theorem 4.9.

The procedure to compute the core of a universal solution for S under a set Σ

as in Theorem 4.3 is the same as FindCore (see Section 4.3) except that it includes

an initial step to compute Σ̄. After that, it proceeds with Σ̄ instead of Σ. It appears

towards the end of this section.

Given a set of TGDs and EGDs Σ over some signature τ , we define Σ̄ over the

signature τ ∪{E} where E is a new binary relation symbol by the following replacements

on Σ.

1. Replace all equalities with E-atoms; that is, replace x = y with E(x, y).

2. Add the equality constraints:

(a) E(x, y)→ E(y, x)

(b) E(x, y), E(y, z) → E(x, z)
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(c) R(x1, . . . xk)→ E(xi, xi)

for every R ∈ τ and i ∈ {1, . . . , k} where k is the arity of R

3. Add the consistency constraints

(d) R(x1, . . . xk), E(xi, y)→ R(x1, . . . , y, . . . xk) for every R ∈ τ and i ∈ {1, . . . , k}

where k is the arity of R and where y appears in the same position in R as

xi.

In step 1, EGDs are replaced by full TGDs which simulate them.

Example 4.3. If Σ consists of the following two constraints

D(x) → ∃yF (x, y)

F (x, y), F (x, z) → y = z

then Σ̄ consists of the following constraints

D(x) → ∃yF (x, y) (4.1)

F (x, y), F (x, z) → E(y, z) (4.2)

E(x, y) → E(y, x) (4.3)

E(x, y), E(y, z) → E(x, z) (4.4)

D(x) → E(x, x) (4.5)

F (x, y) → E(x, x) (4.6)

F (x, y) → E(y, y) (4.7)

D(x), E(x, z) → D(z) (4.8)

F (x, y), E(x, z) → F (z, y) (4.9)

F (x, y), E(y, z) → F (x, z) (4.10)

Here, 1 and 2 are obtained from Σ by replacing equalities with E-atoms, 3-7 are equality

constraints, and 8-10 are consistency constraints.

The auxiliary relation E is not essential; Σ̄ can be replaced with the constraints

obtained from Σ̄ by removing the equality constraint (2b) and then using resolution

through E on the remaining constraints. However, the presentation is easier with an

explicit relation E.
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Σ and Σ̄ are over different signatures, but to simplify the presentation we will

pretend that a model A of Σ also contains the relation E given by the identity relation

on its domain. As a result of this convention, A |= Σ implies A |= Σ̄. Conversely, if EA

is the identity on dom(A) and A |= Σ̄, then A |= Σ.

Lemma 4.10. Under the hypotheses of Theorem 4.9, Σ̄ consists only of source-to-target

embedded dependencies and a set (not necessarily weakly-acyclic) of target TGDs such

that C is the core of a universal solution for Σ iff C is the core of a universal solution

for Σ̄.

Proof. If U is a universal solution for S under Σ, then U is also a solution for S under Σ̄.

Furthermore, U is universal for the solutions for S under Σ̄ as follows. Assume that T is

a solution for S under Σ̄. Pick an element x̂ from every equivalence class [x] under E and

define e so that e(y) = x̂ whenever y ∈ [x]. It is easy to check that e is a retraction. Then

T ′ = e(T ) is a solution for S under Σ̄ and ET ′

is the identity on dom(T ′) and therefore

T ′ is also a solution for S under Σ. Therefore, there is a homomorphism h : U → T ′ ⊆ T ,

so h is also a homomorphism U → T . This shows that U is also a universal solution for

S under Σ̄.

Conversely, assume U is a universal solution for S under Σ̄. Define e as above

for U instead of T . Then U ′ = e(U) is a solution for S under Σ. Furthermore, U ′ is

universal for the solutions for S under Σ as follows. Assume that T is a solution for S

under Σ. Then T is also a solution for S under Σ̄ and therefore there is a homomorphism

h : U → T . It follows that h′ := h|U ′ is a homomorphism U ′ → T .

Then if C is the core of U , it must also be the core of U ′ since U ′ is a retract

of U and therefore homomorphically equivalent to U .

If Σ is a weakly-acyclic set of TGDs and EGDs, Σ̄ is not necessarily weakly-

acyclic. It is natural to wonder whether AΣ̄ is defined for any A; that is, whether the

chase with Σ̄ terminates for all orders as it does for Σ (see Theorem 2.1). The following

example shows that this is not so.

Example 4.4. Assume that Σ consists of the constraints:

R(x, y) → ∃z T (x, y, z)
S(x, z) → ∃y T (x, y, z)

T (x, y, z), T (x, u, v) → u = y
T (x, y, z), T (x, u, v) → v = z

Then Σ̄ consists of the constraints:



69

ξ1 R(x, y) → ∃z T (x, y, z)
ξ2 S(x, z) → ∃y T (x, y, z)
ξ3 T (x, y, z), T (x, u, v) → E(u, y)
ξ4 T (x, y, z), T (x, u, v) → E(v, z)
ξ5 E(x, y) → E(y, x)
ξ6 E(x, y), E(y, z) → E(x, z)

together with 7 equality constraints α1, . . . , α7 of the kind (c) and 7 consistency con-

straints β1, . . . , β7 corresponding to positions R1, R2, S1, S2, T 1, T 2, and T 3.

It is easy to verify that Σ is a weakly-acyclic set of TGDs and EGDs. Yet, Σ̄ is

not weakly acyclic. For example, there is a cycle of length 4 through the positions R1,

T 3, and E2 where the edges are given by constraints ξ1, ξ4, and β1 and the first edge is

existential.

If the instance A contains only the tuples R(1, 2) and S(1, 3), then the chase

of A with Σ̄ does not terminate for the chase order that applies ξ1, ξ2, ξ3, ξ4, β2, and

β4 repeatedly in the pattern shown in Figure 4.4. Each line in the table indicates a

constraint that fired on some tuple and the new tuple that was introduced as a result.

We consider variables in alphabetic order. For example the third line below indicates

that ξ3 fired under the assignment (u, v, x, y, z) := (2, a, 1, b, 3) introducing the tuple

(2, b) into the relation E. This chase continues forever.

New tuple constraint fired on

T (1, 2, a) ξ1 (1, 2)
T (1, b, 3) ξ2 (1, 3)
E(2, b) ξ3 (2, a, 1, b, 3)
E(3, a) ξ4 (b, 3, 1, 2, a)
R(1, b) β2 (1, 2, b)
S(1, a) β4 (1, 3, a)
T (1, b, c) ξ1 (1, b)
T (1, d, a) ξ2 (1, a)
E(2, d) ξ3 (2, c, 1, d, 3)
E(3, c) ξ4 (d, 3, 1, 2, c)
R(1, d) β2 (1, 2, d)
S(1, c) β4 (1, 3, c)
. . .

Figure 4.4 Non-terminating chase

Fix some weakly-acyclic set Σ of TGDs and EGDs. Consider the dependency

graph associated with the TGDs in Σ. If R is a relation, we say that a tuple ā is good

for R if the depth of every value in it is smaller than or equal to the depth of the
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corresponding position in R. That is, depth(ai) ≤ depth(Ri). If φ(x̄) is a conjunction of

atoms with variables x̄, we say that a tuple ā of the same arity as x̄ is good for φ if the

depth of every value ai in it is smaller than or equal to the the depth of every position in

φ where xi appears. When R or φ are clear from context, we simply say that ā is good.

When we consider Σ̄, we still use the dependency graph associated with the TGDs in

Σ and ignore the E relation. Notice that if a TGD fires on a tuple that is good for its

premise, then all tuples introduced by its conclusion are good.

Definition 4.1. We say that a chase order is nice if whenever several constraints apply,

a constraint of the kind which appears earliest in the following list is fired:

1. an equality constraint,

2. a consistency constraint,

3. a constraint firing on a tuple which is good for its premise,

4. a constraint firing on a tuple which is bad for its premise.

Example 4.5. If we chase A from Example 4.4 with the constraints Σ from that example

in a nice order, we get the terminating chase shown in Figure 4.5. After the steps shown,

all constraints in Σ̄ are satisfied.

New tuple constraint fired on

E(1, 1) α1 (1, 2)
E(2, 2) α2 (1, 2)
E(3, 3) α4 (1, 3)
T (1, 2, a) ξ1 (1, 2)
E(a, a) α7 (1, 2, a)
T (1, b, 3) ξ2 (1, 3)
E(b, b) α6 (1, b, 3)
E(2, b) ξ3 (2, a, 1, b, 3)
E(b, 2) ξ5 (2, b)
E(3, a) ξ4 (b, 3, 1, 2, a)
E(a, 3) ξ5 (3, a)
R(1, b) β2 (1, 2, b)
S(1, a) β4 (1, 3, a)
T (1, 2, 3) β7 (1, 2, a, 3)
T (1, b, a) β7 (1, b, 3, a)

Figure 4.5 Terminating Chase

It turns out that the only constraints which apply to a bad tuple are consistency

constraints (Lemma 4.12), so we never fire constraints of the kind 4 in the definition of
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nice order. This implies that bad tuples are only introduced by consistency constraints

and Theorem 4.14 below, similar to Theorem 2.1, follows.

If A is a model of Σ̄, we write x ≡ y if E(x, y) holds in A. We extend the

equivalence relation E on elements of the universe to tuples as follows: if ā and b̄ are

two r-tuples, then ā ≡ b̄ iff ai ≡ bi for 1 ≤ i ≤ r.

Lemma 4.11. If φ is a conjunction of relational atoms, A satisfies all equality and

consistency constraints, A |= ā ≡ b̄ and A |= φ(ā), then also A |= φ(b̄).

Proof. Assume the hypotheses and furthermore that the variables (all free) of φ are

x̄. Then for every atom of the form R(xi1 , . . . , xik) in φ, we have A |= R(ai1 , . . . , aik).

To show that A |= φ(b̄), it is enough to show that also A |= R(bi1 , . . . , bik). Since A

satisfies the equality and consistency constraints, ai1 ≡ bi1 , . . . , aik ≡ bik , and A |=

R(ai1 , . . . , aik), we also know that A |= R(bi1 , ai2 , . . . , aik), A |= R(bi1 , bi2 , ai3 , . . . , aik),

... A |= R(bi1 , . . . , bik) by the consistency constraints, as desired.

We write [a] for the equivalence class {b : b ≡ a} of a. We write πiR for the ith

projection {ci : R(c̄)} of relation R.

Lemma 4.12. If Σ is a weakly-acyclic set of TGDs and EGDs, then at every step AΣ̄
s

of the chase of A with Σ̄ using a nice order such that AΣ̄
s satisfies the equality and

consistency constraints, the following holds:

1. For every relation R, if a ∈ πiR, then [a] ⊆ πiR.

2. For every relation R, if a ∈ πiR, then there exists b ≡ a such that depth(b) ≤

depth(Ri).

3. If φ(ā) holds where φ is a conjunction of relational atoms, then φ(b̄) holds for a

tuple b̄ good for φ such that ā ≡ b̄.

4. If ξ fires on ā, then ā is good for the premise of ξ.

Proof. (1) follows directly from the fact that the consistency constraints are satisfied.

We show 2, 3, and 4 by induction on s. Clearly they hold for s = 0 since then

all values are constants and have depth 0. Now assume that 2, 3, and 4 hold for AΣ̄
r for

all r < s.

(2) If all values in AΣ̄
s are constants, then 2 holds trivially. Otherwise there

must be a largest value r < s such that a constraint ξ which is not an equality or

consistency constraint fired in AΣ̄
r . Assume ξ fired on tuple ā. Since 4 holds and AΣ̄

r

satisfies all equality and consistency constraints because the chase order is nice, ā is
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good. Therefore, every new tuple introduced by the conclusion of ξ into a relation R is

good for that relation R. This implies that 2 holds for AΣ̄
r+1 The equality and consistency

constraints which fire after ξ only add values equivalent to those already in R, so 2 also

holds for AΣ̄
t for every every t such that r < t ≤ s.

(3) For every i, pick bi to be a value of minimal depth in [ai]. Since 2 holds,

b̄ is good for φ. Assume the variables (all free) of φ are x̄. Then for every atom of the

form R(xi1 , . . . , xik) in φ we have AΣ̄
s |= R(ai1 , . . . , aik). Since 1 holds, we also have

AΣ̄
s |= R(bi1 , . . . , bik). It follows that AΣ̄

s |= φ(b̄).

(4) Assume ξ is of the form φ(x̄) → ∃ȳψ(x̄, ȳ). We must have AΣ̄
s |= φ(ā). If

ā is not good, we get a contradiction as follows. By 3 we must have AΣ̄
s |= φ(b̄) for a

tuple b̄ good for φ such that ā ≡ b̄. Since we are chasing with a nice order, we must

have AΣ̄
s |= ξ(b̄) and this implies that there must be c̄ such that AΣ̄

s |= ψ(b̄, c̄). By

Lemma 4.11, we have AΣ̄
s |= ψ(ā, c̄). That is, AΣ̄

s |= ξ(ā) so ξ can not fire on ā.

Lemma 4.13. If Σ is a weakly-acyclic set of TGDs and EGDs of depth d, then for any

s all values in AΣ̄
s obtained by using a nice chase order have depth ≤ d.

Proof. This follows from Lemma 4.12 part 4, since constraints which fire on tuples which

are good for their premise introduce tuples which are good for the relations they are

introduced into.

Theorem 4.14. For every weakly-acyclic set Σ of TGDs and EGDs, any instance A,

and any nice chase order,

1. AΣ̄ is defined, and

2. AΣ̄ can be computed in O(|dom(A)|b) steps and in time O(|dom(A)|c) where b and

c depend only on Σ.

Proof. Immediate from Lemma 4.13.

Theorem 4.15. For every weakly-acyclic set Σ of TGDs and EGDs, any instance T ,

and any retract U ′ of U = TΣ, we can check whether U ′ has a proper retraction (i.e.,

whether U ′ is not a core) and find it in time O(|dom(T Σ)|b) where b depends only on Σ

and the block size of T .

Proof. Similar to that of Theorem 4.6, except using Theorem 4.14 instead of Theorem 2.1.
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Theorem 4.16. For every weakly-acyclic set Σ of TGDs and EGDs and any instance

T , the core of TΣ for a nice chase order can be computed in time O(|dom(T )|b) where b

depends only on Σ and the block size of T .

Proof. To compute such a core, we replace Σ with Σ̄ and proceed as in the proof of

Theorem 4.7, except we use Theorem 4.15 instead of Theorem 4.6. By Lemma 4.10, the

core so computed using Σ̄ is the desired core.

Proof. (Theorem 4.9) Similar to that of Theorem 4.3, using Theorem 4.16 instead of

Theorem 4.7.

Procedure FindCore

Input: Source ground instance S of a data exchange problem

Output: Core of a universal solution for S

1. Compute Σ̄t from Σt.

2. Chase (S, ∅) with Σst to obtain (S, T ) = (S, ∅)Σst .

3. Chase T with Σ̄t (using a nice order) to obtain U := T Σ̄t .

4. For every x, y where x ∈ var(U), y ∈ dom(U), and x 6= y do

5. Compute Txy as in Lemma 4.4.

6. Look for a homomorphism h : Txy → U such that h(x) = h(y).

7. If there is such h, then

8. Extend h to an endomorphism h′ on U . (Theorem 4.5)

9. From h′, compute a proper retraction r on U . (Theorem 4.2)

10. Set U := U ′.

11. Repeat from step 4.

12. Return U .

4.5 The Bounded Ancestor Property

The crucial property of weakly-acyclic TGDS which we use in Lemma 4.4 can

be formalized as follows.

Definition 4.2. A set Σ of TGDs and EGDs has the bounded ancestor property for

chase orders O if there exists a such that for

1. any instance T ,

2. any n, and

3. and any value x ∈ dom(TΣ
n ), under a chase order in O
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x has at most a ancestors.

Similarly, Σ has bounded depth for chase orders O if there exists d such that for

1. any instance T ,

2. any n, and

3. and any value x ∈ dom(TΣ
n ), under a chase order in O

x has depth at most d.

Σ has the bounded ancestor property iff it has the bounded depth property

since if there is a global bound a on the number of ancestors for any variables, then

clearly a is also a global bound on the depth of any variables. Conversely, if Σ has width

w and a global bound d on the depth of all variables then dwd is a global bound on the

number of ancestors of any variable.

Theorem 4.17. If Σ is a set of TGDs and EGDs with the bounded ancestor property

(or has bounded depth) for chase orders O, then T Σ is defined for all chase orders in O.

Proof. Assume Σ has width w, height e, and the global bound on depth is d. Assume

also we chase with a chase order in O. There are at most e|Σ| existentially-quantified

variables in conclusions of constraints in Σ. Therefore the number ni+1 of values of depth

at most i+1 in TΣ
s for any s is at most ni +e|Σ|nw

i since at most one value is introduced

for every existentially quantified variable in a constraint in Σ, of which there are at most

e|Σ| and every tuple on which a constraint fires, of which there are at most nw
i . Set

f := (1 + e|Σ|). Then, ni+1 ≤ fn
w
i which implies that |dom(TΣ

s )| = nd ≤ f
wd
nwd

0 where

n0 := |dom(T )|. Since the number of values in T Σ
s is bounded independently of s, the

chase must terminate and therefore T Σ is defined.

Example 4.6. Assume Σ consists of the following constraints

D(x) → ∃yF (x, y) (4.1)

D(x) → ∃zG(x, z) (4.2)

F (x, y), G(x, z) → R(y, z) (4.3)

R(w,w) → ∃vS(w, v) (4.4)

S(w, v) → D(v) (4.5)

It is easy to check that Σ has the bounded ancestor property, but is not weakly acyclic.
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The following is a restatement of results proved earlier in terms of the bounded

ancestor property:

1. If Σ is a weakly-acyclic set of TGDs, then Σ has the bounded ancestor property

for all chase orders (shown in the proof of Theorem 2.1)

2. If Σ is a weakly-acyclic set of TGDs and EGDs, then Σ̄ has the bounded ancestor

property for nice chase orders (Lemma 4.13).

Furthermore, the concept of depth of a position which we use in the section on

TGDs can be replaced with a global bound d on depth whose existence follows from the

bounded ancestor property. It is straightforward to verify that the results of Section 4.3

go through under the assumption that Σ has the bounded ancestor property. In those

cases where we can find some statically-determined chase order so that Σ̄ has the bounded

ancestor property, we can also handle EGDs as in Section 4.4. Therefore, it would be

nice if we could show:

If Σ1 is a set of TGDs with the bounded ancestor property, Σ2 is a set of
EGDs, and Σ = Σ1∪Σ2, then Σ̄ has the bounded ancestor property for some
set of chase orders O.

Unfortunately, this is false as the following example shows.

Example 4.7. Assume Σ consists of the following constraints

D(x) → ∃yF (x, y) (4.1)

D(x) → ∃zG(x, z) (4.2)

F (x, y), G(x, z) → R(y, z) (4.3)

R(w,w) → ∃vS(w, v) (4.4)

S(w, v) → D(v) (4.5)

F (x, y), G(x, z) → y = z (4.6)

where Σ1 consists of constraints 1-5 and Σ2 consists of constraint 6. Σ1, which consists

of the constraints in Example 4.6, has the bounded ancestor property, but is not weakly

acyclic. However, chasing an instance in which D which has a single constant and all

other relations are empty with Σ leads to a non-terminating chase. Therefore, Σ does

not have the bounded ancestor property for any chase order. The same holds for Σ̄.



76

This chapter is based on “Data Exchange: Computing Cores in Polynomial

Time” by Georg Gottlob and Alan Nash [17] (journal version [18]) I was responsible

for developing the techniques to handle equality-generating dependencies and for the

generalization beyond weakly-acyclic dependencies. I also contributed towards the pre-

sentation and the development of some of the minor technical points in the section on

handling tuple-generating dependencies.
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The Schema Mapping

Composition Problem

Composition of mappings between schemas is essential to support schema evo-

lution, data exchange, data integration, and other data management tasks. In many

applications, mappings are given by embedded dependencies. In this chapter, we study

the issues involved in composing such mappings.

Our algorithms and results extend those of [13] who studied composition of

mappings given by several kinds of constraints. In particular, they proved that full

source-to-target tuple-generating dependencies (tgds) are closed under composition, but

embedded source-to-target tgds are not. They introduced a class of second-order con-

straints, SO tgds, that is closed under composition and has desirable properties for data

exchange.

We study constraints that need not be source-to-target and we concentrate on

obtaining (first-order) embedded dependencies. As part of this study, we also consider

full dependencies and second-order constraints that arise from Skolemizing embedded

dependencies. For each of the three classes of mappings that we study, we provide (a)

an algorithm that attempts to compute the composition and (b) sufficient conditions on

the input mappings that guarantee that the algorithm will succeed.

In addition, we give several negative results. In particular, we show that full

dependencies and second-order dependencies that are not limited to be source-to-target

are not closed under composition (for the latter, under the additional restriction that no

new function symbols are introduced). Furthermore, we show that determining whether

the composition can be given by these kinds of dependencies is undecidable.

77
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Composition and Inverse Given two mappings m12 and m23, the composition m12 ◦

m23 is the mapping

{〈A,C〉 : ∃B(〈A,B〉 ∈ m12 ∧ 〈B,C〉 ∈ m23)}.

We are concerned here with the following problem: given two expressions of the form

specified above, find an expression for the composition. That is, we are concerned with

the syntactic counterpart to the semantic operation defined above. We say that two

L-mappings given by the expressions (σ1, σ2,Σ12) and (σ3, σ4,Σ12) are compatible if

σ2 = σ3 and σ1, σ2, σ4 are pairwise disjoint. We only consider composition of compatible

L-mappings and therefore we have only a partial composition operation on expressions.

We say that L is closed under composition if the composition of any two compatible

L-mappings is an L-mapping.

Given a mapping m12 between σ1 and σ2, we define the inverse m−1
12 of m12 to

satisfy

(A,B) ∈ m12 iff (B,A) ∈ m−1
12 .

Closure under inverse is defined similarly to closure under composition.

Notice that under these definitions, it is possible to get a language that is

closed under both inverse and composition by considering the set of SkTGD-mappings

consisting of mappings of the following three kinds: mappings given by the empty set

of constraints (unconstrained mappings), mappings given by a set of source-to-target

constraints (ST mappings), and mappings given by a set of target-to-source constraints

(TS mappings). The inverse of an ST mapping is a TS mapping and conversely. The

inverse of an unconstrained mapping is an unconstrained mapping. Furthermore, the

composition of ST with ST gives ST, of TS with TS gives TS, and that of any other

combination gives an unconstrained mapping. (These facts are not obvious, but follow

from our results in subsequent sections.)

5.1 Deductions

In some of the following results and algorithms, we will need to refer to some

specific deductive system. Here we outline its basics; the details are not essential.

We write FTGD or SkTGD constraints augmented with constants as rules of

the form φ(x̄), χ(x̄) → ψ(x̄) leaving the second-order quantifiers over functions ∃f̄ and

the first-order universal quantifiers ∀x̄ implicit. We call φ(x̄), χ(x̄) the premise and ψ(x̄)
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the conclusion. (Similarly for FuD or SkED constraints.) If the premise is empty, we

write only the conclusion. We call rules of the form ψ(c̄), where c̄ is a tuple of constants,

facts. In most cases we will assume, without loss of generality, that our rules have a

single atom in the conclusion since every rule with k atoms in the conclusion can always

be rewritten as k rules each with a single atom in the conclusion.

Definition 5.1. A deduction from rules Σ is a sequence of rules, each obtained in one

of three ways:

1. by copying a rule from Σ,

2. by applying expand/rename on a rule appearing earlier in the sequence

3. by applying resolution on two rules appearing earlier in the sequence.

We call such rules axiom rules, expand/rename rules, and resolution rules respectively.

We say that a deduction has length n if it consists of n lines.

A rule r obtained by expand/rename from rule r ′ may have additional atoms

in the premise, may have variables replaced (consistently) by arbitrary terms, may have

equalities of the form v = t between a variable v and a term t removed whenever v does

not appear elsewhere in the rule, and may have replacements in the conclusion consistent

with equalities in the premise.

A rule r obtained by resolution of two rules s and t has as premise the atoms in

the premises of s and t, except for those atoms in the conclusion of s and as conclusion

the atoms in the conclusion of t.

A rule ξ is a variant of ξ ′ if ξ can be deduced from ξ ′ without using resolution

and conversely. Since each rule has a single atom in the conclusion, a rule r obtained by

resolution from rules p, q consists of the conclusion of q and the premises in p and q that

do not appear in the conclusion of p.

To illustrate the deductions introduced in Definition 5.1, consider the following

examples: The rule R(x, y), z = f(x, y) → S(x, z) is a valid result of applying ex-

pand/rename to R(u, v)→ S(u, f(u, v)). The rule R(x, y), S(y, z)→ S(x, z) is the result

of applying resolution to rules R(x, y)→ S(x, y) and S(x, y), S(y, z)→ S(x, z).

We call a resolution step a σ2-resolution if it involves the elimination of an atom

with a relation symbol from σ2. In the example above, if σ2 contains S, then we have a

σ2-resolution.

We annotate our deductions by numbering the rules in them in ascending order

and by adding annotations to each line indicating how that line was obtained. It is
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enough to annotate a resolution rule with just two numbers and an expand/rename rule

with a single number and a variable assignment. Axiom rules are indicated through a

lack of any other annotation. A variable assignment is a list of items of the form x := y

where x is a variable and y is a term.

Example 5.1. Given

• ∆ = {R(1, 1)} and

• Σ = {R(x, y)→ S(x, y), S(z, z)→ T (z, z)},

the following is a valid deduction from Σ ∪∆:
1. R(1, 1)
2. R(x, y)→ S(x, y)
3. R(1, 1)→ S(1, 1) [2] x := 1, y := 1
4. S(1, 1) [1,3]
5. S(z, z)→ T (z, z)
6. S(1, 1)→ T (1, 1) [5] z := 1
7. T (1, 1) [4,6]

Here rules 1, 2, and 5 are axioms, 3 and 6 are expand/rename, and 4 and 7 are resolution.

We call a sequence of at most two rename-only steps followed by a resolution

step on the results of these steps a rename-resolution. In the example above, 4 is obtained

by rename-resolution from 1 and 2 and 7 is obtained by rename-resolution from 4 and

5. A σ2-rename-resolution is a rename-resolution where the resolution step is a σ2-

resolution.

If there is a deduction γ from a set of constraints Σ where the last line of γ

contains a constraint ξ, we say that ξ is deduced from Σ, which we write Σ ` ξ, and that

γ witnesses Σ ` ξ. We write Σ ` Σ′ in case Σ ` ξ for every ξ ∈ Σ′. The L-deductive

closure of Σ is

DC(L,Σ) := {ξ ∈ L : Σ ` ξ}.

We write DC(Σ) when L is clear from the context.

We write D |= Σ if all constraints in Σ are true in D. We write Σ |= Σ′ if, for

all instances D, D |= Σ implies D |= Σ′. It is easy to check that if Σ ` Σ′ then also

Σ |= Σ′; i.e., the deductive system is sound.

We will need the following proposition.

Proposition 5.1. If ∆ is a set of facts in L and Σ ∪ {φ} ⊆ L for L ∈ {FuD,SkED},

then the following are equivalent:
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1. Σ ∪∆ ` φ.

2. There is ξ ∈ L such that Σ ` ξ and ∆, ξ ` φ with ξ over the signature of ∆.

Proof. If (2) holds then we have deductions γ ′ and γ′′ witnessing Σ ` ξ and ∆, ξ ` φ.

Then γ obtained by appending γ ′′ to γ′ witnesses Σ ∪∆ ` φ.

Now assume that (1) holds and γ witnesses Σ ∪∆ ` φ. We set γ ′ to γ except

for the following replacements, which we make rule by rule from the first rule in γ to the

last:

1. If rule r is an axiom rule from ∆, remove it.

2. If rule r is an axiom rule not from ∆, keep it as it is.

3. If rule r is obtained by expand/rename from rule i, replace every constant c in r

and in the variable assignment for r with a corresponding variable vc (a different

variable for every constant).

4. If rule r is obtained by resolution from rules i and j and rule i was an axiom rule

from ∆, replace r with a trivial expand/rename from rule j.

5. If rule r is obtained by resolution from rules i and j and rule i was not an axiom

rule from ∆, replace r with the result of applying resolution to the new rules i and

j.

(See example 5.1 below.) Take ξ to be the last rule in γ ′. Steps 4 and 5 ensure that ξ

is over the signature of ∆. Then γ ′ is a valid deduction witnessing Σ ` ξ since axioms

from ∆ are no longer used and since replacements 1 through 5 above ensure that rule

r is correctly deduced from the previously replaced rules. Also ∆, ξ ` R(c̄) is witnessed

by a deduction γ ′′ which consists of the following sequence

• the axioms from ∆ that were removed from γ to obtain γ ′,

• ξ followed by ξ′ obtained from ξ by renaming each variable vc to the corresponding

constant c, and

• a sequence of resolution steps using each axiom from ∆ and starting with ξ ′.

Example 5.2. Given the deduction γ from Example 5.1, γ ′ is:
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1.
2. R(x, y)→ S(x, y)
3. R(v1, v1)→ S(v1, v1) [2] x := v1, y := v1

4. R(v1, v1)→ S(v1, v1) [3]
5. S(z, z)→ T (z, z)
6. S(v1, v1)→ T (v1, v1) [5] z := v1

7. R(v1, v1)→ T (v1, v1) [4,6]

The following replacements have been made for each rule:

1. Axiom from ∆: removed by 1.

2. Axiom from Σ; unchanged by 2.

3. Expand rename: 1 replaced with v1 by 3.

4. Resolution on 1,3: trivial expand/rename by 4.

5. Axiom from Σ; unchanged by 2.

6. Expand rename: 1 replaced with v1 by 3.

7. Resolution on 4,6: resolution by 5.

Chase. Here we define a modified chase procedure which is needed in the proof of several

results below.

Definition 5.2. Given an instanceD, the result of chasing D with constraints Σ ⊆ SkED

and the set of Skolem functions F , which we denote chase(D,Σ, F ), is the database D ′′

obtained from

D′ := {Ri(c̄) : Σ ∪∆ ∪ Φ ` Ri(c̄)}

where

• c̄ is a tuple of constants,

• ∆ is the set of facts given by D:

∆ := {Ri(c̄) : D |= Ri(c̄)}

• and Φ is the set of facts given by F :

Φ := {f(c̄) = a : f ∈ F, f(c̄) = a}

as follows. Define

c0 ≡ c1 iff Σ ∪∆ ∪ Φ ` c0 = c1.

Now to obtain D′′ from D′, pick one constant c0 from every equivalence class and replace

every constant in that equivalence class with c0. That is, D′′ := D′/ ≡. All functions
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in F are required to have the same domain which includes D. If they have finite range,

then chase(D,Σ, F ) is finite.

This definition is a variation on the usual definition, in which the functions

in F are constructed during the chase process. In particular, for any chase sequence

of the regular chase in which new witnesses are introduced, we set the functions in

F accordingly and then, the result of the modified chase defined above is exactly the

same the regular chase. On the other hand, we allow the function in F to “collapse

witnesses” so the universality property of the regular chase does not always hold for the

chase defined here. We use this definition of the chase because (1) we need to chase

with SkED-constraints, for which the functions in F are given and (2) because it will

be convenient to have a definition of the chase that is closely related to the deductive

system we use.

The important property we need of this modified chase is (a similar property

holds for the standard chase):

Proposition 5.2. chase(D,Σ, F ) |= Σ.

Proof. Set D′′ := chase(D,Σ, F ). Let D′,∆, and Φ be as in Definition 5.2. Pick ξ ∈ Σ.

Assume ξ is ∀x̄(φ(x̄), χ(x̄, ȳ) → ψ(x̄, ȳ) where φ, χ, ψ are as in the definition of SkED.

Pick any tuple of constants c̄ and assume that D ′′ |= φ(c̄). Pick the unique tuple of

constants d̄ such that Φ ` χ(c̄, d̄). Then Σ∪∆∪Φ ` φ(c̄), χ(c̄, d̄). Therefore, since ξ ∈ Σ,

we also have Σ ∪ ∆ ∪ Φ ` ψ(c̄, d̄). Without loss of generality assume that ψ(c̄, d̄) is a

single relational atom or an equation. In the former case, this relational atom must be

in D′ and therefore also in D′′. In the latter case, this equation equates two constants

which are equivalent in D′ and therefore equal in D′′. Either way, ξ holds in D′′ for

c̄.

5.2 Full Dependencies

We start by studying composition of FuD-mappings; that is, mappings given by full

dependencies. All results in this section apply to both FuD and FTGD-mappings. We

will see that the techniques introduced to handle these cases can be extended to handle

SkED and ED-mappings. We first show that FTGD is not closed under composition

(Theorem 5.3) and, furthermore, that determining whether the composition of two FuD-

mappings is a FuD-mapping is undecidable (Theorem 5.4). Then we give necessary and

sufficient, non-computable conditions for the composition of two FTGD-mappings to be
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a FTGD-mapping (Theorem 5.5). The following algorithm computes the composition

of two FuD-mappings given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23). The algorithm, when it

terminates, computes the deductive closure of Σ12 ∪ Σ23, then restricts this deductive

closure to those constraints which do not refer to σ2. Theorem 5.5 below shows that the

deductive closure so restricted gives precisely the composition.

Procedure FuDcompose(Σ12,Σ23)

Set Σ := Σ12 ∪ Σ23

Repeat

Set Σ′ := ∅

For every pair φ, ψ ∈ Σ

For every way in which φ, ψ can be σ2-rename-resolved

to yield ξ and if there is no variant of ξ in Σ

set Σ′ := Σ′ ∪ {ξ}

Set Σ := Σ ∪ Σ′

Until Σ′ = ∅

Return Σ13 := Σ|σ13

FuDcompose terminates on FuD-mappings satisfying the conditions of Theorem 5.9,

which can be checked in exponential time (see also Corollary 5.8). The obstacle to

composition is recursion, yet recursion is not always a problem (Example 5.3). We also

define good-FuD, a subset of FuD recognizable in exponential time, which is closed under

composition (Theorem 5.10).

Theorem 5.3. There are FTGD-mappings whose composition is not an FO-mapping.

In particular, FTGD is not closed under composition.

Proof. Consider the FTGD-mappingsm12 andm23 given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23)

where

Σ12 is R(xy) → S(xy)
S(xy), S(yz) → S(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}. Together, these constraints say that

R ⊆ S ⊆ T and that S is transitively closed. The composition m12 ◦m23 is the set of all

pairs (R, T ) such that tc(R) ⊆ T . Intuitively, the FTGD-constraints which express the

composition are constraints of the form

R(x, v1), R(v1, v2), . . . , R(vi−1, vi), R(vi, y)→ T (x, y)
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but no finite set of them expresses tc(R) ⊆ T .

In fact, the composition m12 ◦ m23 is not even expressible in first-order logic

(FO), since if we had an FO sentence φ such that

〈R, T 〉 ∈ m12 ◦m23 iff (R, T ) |= φ

we could create an FO formula ψ(x, y) obtained by replacing every occurrence of T (u, v)

in φ with x 6= u∨y 6= v. Then given a domain D with R ⊆ D2 we would have R |= ψ[a, b]

iff (R,D2 − 〈a, b〉) |= φ iff tc(R) ⊆ D2 − 〈a, b〉 iff 〈a, b〉 6∈ tc(R). Therefore ∀x∀y¬ψ(x, y)

would say that R is a connected graph, contradicting the fact that this can not be

expressed in FO (see, e.g., Example 2.3.8 in [10]).

Theorem 5.4. Checking whether the composition of two FTGD-mappings is a FTGD-

mapping is undecidable (in fact, coRE-hard). Furthermore, the problem is undecidable

even when the second mapping is a single fixed source-to-target TGD.

Proof. We reduce Post’s correspondence problem (PCP)—known to be undecidable (see,

e.g., [37])—to the problem of deciding whether m12◦m23 is a FTGD-mapping where m12

and m23 are FTGD mappings. A PCP problem consists of a finite number of tiles, each

with two strings of 0s and 1s: a top string and a bottom string. The decision problem is

to determine whether a PCP problem has a solution. A solution is a string S of 0s and

1s such that there is a sequence of tiles for which the concatenation of the top strings

and bottom strings of the tiles are both equal to S. For example, the PCP problem

with the two tiles 00/001 and 11/1 (the string before the slash is the top string and the

string after the slash is the bottom string) has a solution: 0011 obtained by the sequence

consisting of the first tile followed by the second tile.

The reduction is partially inspired by an undecidability proof by Christoph

Koch (Theorem 3.1 in [24]). Given a PCP problem, we define m23 so that there is a

solution to the PCP problem iffm12◦m23 is not a FTGD-mapping. The FTGD-mappings

m12,m23 are given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23) where

• σ1 = {A,B,O, I, E},

• σ2 = {C,D,Q, J},

• σ3 = {T}

with C quaternary, all other relations binary, and with Σ12 and Σ23 as described below.

We will use A to mark the beginning and end of a path made of O and I edges, which
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will correspond to strings of 0s and 1s. We will use B similarly and we will use E as an

undirected graph to detect cycles, which will correspond to reused variables.

Similarly, we will use C (which is quaternary) to mark the beginning and end

of two path, each made of Q and J edges, which will correspond to strings of 0s and 1s

(we use Q and J because they resemble O and I). We write

x0011y for A(xy), O(xu), O(uv), I(vw), I(wy),

x′0011y′ for B(x′y′), O(x′u′), O(u′v′), I(v′w′), I(w′y′), and

x
x′0011

y
y′ for C(xx′yy′), Q(xu), Q(uv), J(vw), J(wy), Q(x′u′), Q(u′v′), J(v′w′), J(w′y′).

(the intermediate variables are not specified in this notation). We will also use D as an

auxiliary marker and T as our “target.”

We will define constraints Σ12 and Σ23, the former independent of the PCP

instance and the latter encoding the tiles of a PCP instance such that the composition

of m12 and m23 is given by the following set of full TGDs Σ13:

A(xx), B(x′x′) → T (xx′) (5.1)

A(xy), B(x′y′), E(zz′) → T (xx′) (5.2)

xSy, xSy → T (xx′) (5.3)

for every S which is a solution to the PCP problem, together with constraints 4 to

8 below. Any PCP problem with a solution has an infinite number of solutions (the

concatenation of a finite number of solutions is a solution) so σ13 contains 7 constrains

for a PCP problem with no solution and infinitely many constraints for a PCP problem

with a solution. It is clear that the set containing constraints 1, 2, and all constraints of

the form

xSy, x′Sy′ → T (xx′)

for all solutions S except for a solution Ŝ does not imply

xŜy, x′Ŝy′ → T (xx′)

Therefore, the composition of the mappings m12 and m23 is given by a finite set of full

TGDs iff the PCP problem has no solution, as desired.
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Σ12 contains the following full TGDs:

A(xy), B(x′y′) → E(xx′) (5.4)

O(xy) → E(xy) (5.5)

I(xy) → E(xy) (5.6)

E(yx) → E(xy) (5.7)

E(xy), E(yz) → E(xz) (5.8)

A(xy), B(x′y′), E(zz′) → C(xx′xx′) (5.9)

A(xy), B(x′y′) → D(xx′) (5.10)

D(xx′), O(xy), O(x′y′) → Q(xy), Q(x′y′), D(yy′) (5.11)

D(xx′), I(xy), I(x′y′) → J(xy), J(x′y′), D(yy′) (5.12)

A(xy), B(x′y′), D(yy′) → C(xx′yy′) (5.13)

The first six constraints will be used to detect repeated variables. The last four con-

straints are sufficient to deduce

xSy, x′Sy′ → x
x′S

y
y′

for an arbitrary string S, applying 10 once, 11 once for every 0 in S, 12 once for every

1 in S, and then 13 once. Intuitively, we copy one 0 or one 1 from the top and bottom

strings at a time from σ1 to σ2 and move the D-marker correspondingly also one step at

a time.

Σ23 depends on the PCP instance. Given the tiles 00/001 and 11/1, it contains

the following full TGDs:

C(xx′xx′) → T (xx′) (5.14)

C(xx′zz′), Q(yu), Q(uz), Q(y′u′), Q(u′v′), J(v′z′) → C(xx′yy′) (5.15)

C(xx′zz′), J(yz), J(y′u′), J(u′z′) → C(xx′yy′) (5.16)

More generally, each of the constraints except for the first one encodes one tile, with

the top string encoded as a path through Q and J edges going from y to z and the

bottom string encoded as a path through Q and J edges going from y ′ to z′. Using these
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constraints repeatedly corresponding to the tiles that make up a solution S, we obtain

xSy, x′Sy′ → C(xx′xx′).

Intuitively, applying these constraints corresponds to removing one tile at a time from

the top and bottom strings and moving the end points in the C-marker until we obtain

C(xx′xx′). Finaly we apply constraint 14 to obtain

xSy, x′Sy′ → T (xx′).

This shows that we can deduce the constraints 3 introduced above.

We can deduce constraint 1 using constraints 10, 13, and 14 and we can deduce

constraint 2 using constraints 9 and 14.

To complete the proof we must show that all other full TGDs over σ1 ∪ σ3

that can be deduced from Σ12 ∪ Σ23 are implied by the constraints in Σ13. Clearly, any

such constraint must have an atom of the form T (xx′) as its conclusion and therefore

must be obtained using constraint 14 from a constraint with conclusion C(xx ′xx′). Such

a conclusion can only be obtained using constraints 9, 13, or the constraints in Σ23

encoding tiles. If obtained through constraint 9, then since A,B, and E are over σ1,

such a constraint must be implied by constraint 2. If obtained through constraint 13,

then we must have y = x and y′ = x′ and we must obtain D(xx′) which can only

be obtained through constraint 10. Any constraint so obtained must be implied by

constraint 1. We are left with only the possibility of a deduction using the constraints

that correspond to tiles. It is tedious, but straightforward to verify that this leads to

constraints which are implied by a constraint of the form

xSy, x′Sy′ → T (xx′)

where S is a solution to the PCP problem or to some constraint that has a premise of

the form

xS′y, x′S′′
y′ → T (xx′)

where S′ and S′′ are not necessarily equal and neither is necessarily a solution, but where

at least some variable is shared among them. (To verify this, we essentially reverse the

process obtained to deduce constraints of the form 3 above.) In the latter case, however,

there must be a cycle in E and therefore, by constraint 8 (transitive closure) a 1-loop in



89

E. Therefore, any such constraint must be implied by constraint 2.

Finally notice that we can move the constraints encoding tiles (which are over

σ2) to Σ12, in which case Σ23 contains a single fixed source-to-target constraint.

Theorem 5.5. If the FuD-mappings m12,m23 are given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23)

with Σ123 := Σ12 ∪ Σ23 and σ13 = σ1 ∪ σ3, then the following are equivalent

1. There is a finite set of constraints Σ13 ⊆ FuD over the signature σ13 such that

m := m12 ◦m23 is given by (σ1, σ3,Σ13).

2. There is a finite set of constraints Σ13 ⊆ FuD over the signature σ13 such that

DC(FuD,Σ123)|σ13
= DC(FuD,Σ13).

3. There is k such that for every ξ over σ13 satisfying Σ123 ` ξ there is a deduction

of ξ from Σ123 using at most k σ2-resolutions.

Proof. The proof uses Lemmas 5.6 and 5.7 below. First we show the equivalence of (1)

and (2) then we show the equivalence of (2) and (3).

Assume (2) holds. Then 〈A,C〉 ∈ m12 ·m23

iff ∃B (A,B,C) |= Σ123 (by definition of ·)
iff (A,C) |= DC(FuD,Σ123)|σ13

(by Lemma 5.6)
iff (A,C) |= DC(FuD,Σ13) (since (2) holds)
iff (A,C) |= Σ13. (since DC is sound)

This shows that (1) holds.

Conversely, assume (1) holds. Then

(A,C) |= DC(FuD,Σ123)|σ13

iff ∃B (A,B,C) |= Σ123 (by Lemma 5.6)
iff 〈A,C〉 ∈ m12 ·m23 (by definition of ·)
iff (A,C) |= Σ13 (since (1) holds)
iff (A,C) |= DC(FuD,Σ13). (since DC is sound)

This shows that (2) holds.

Now assume (3) holds. Set Σ to the set of all constraints in DC(FuD,Σ123)|σ13

that can be deduced using at most k σ2-resolutions and no other resolutions. Clearly,

every constraint in Σ can be obtained by expand/rename from a finite subset Σ13 ⊆ Σ.

We show that (2) holds.

Assume that there is a deduction γ witnessing Σ123 ` ξ. Since (3) holds, we

can assume that γ has m′ ≤ m σ2-resolutions. By Lemma 5.7 there is a deduction γ ′

witnessing Σ123 ` ξ also with m′ σ2-resolutions and with all of them occurring before

any other resolutions.
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Since the last line of γ ′ does not contain any symbols from σ2 we can assume

that γ′ does not contain any lines containing symbols from σ2 after the last σ2-resolution.

Break γ′ into two parts: γ ′1 the initial segment of γ up to and including the

last σ2-resolution and γ ′2 the remainder of γ ′. Every constraint ψ in γ ′1 must be in Σ,

by definition of Σ and therefore we must have Σ13 ` ψ. Since every constraint ψ in γ ′2

does not contain any symbols from σ2 and since Σ123|σ13
⊆ Σ13, we also have Σ13 ` ψ.

Therefore, Σ13 ` ξ as desired.

Conversely, assume (2) holds. Take k to be the total number of σ2-resolutions

needed to deduce every ψ ∈ Σ13 from Σ123. Assume Σ123 ` ξ. Then there is a deduction

γ witnessing Σ13 ` ξ. Clearly, γ has no σ2-resolutions. From γ, we obtain γ ′ witnessing

Σ123 ` ξ by appending to γ a deduction of every constraint in Σ13 and by replacing every

line where an axiom from Σ13 is used by a vacuous expand/rename of the line where the

deduction of that axiom ends. Clearly, γ ′ has exactly k σ2-resolutions as desired. This

shows that (3) holds.

Lemma 5.6. Under the hypotheses of Theorem 5.5, the following are equivalent:

1. (A,C) |= DC(FuD,Σ123)|σ13
.

2. ∃B (A,B,C) |= Σ123.

Proof. Assume (A,B,C) |= Σ123 for some B. Then (A,B,C) |= DC(FuD,Σ123) (by

soundness) and therefore (A,C) |= DC(FuD,Σ123)|σ13
since B is not mentioned in

DC(FuD,Σ123)|σ13
.

Conversely, assume (A,C) |= DC(FuD,Σ123)|σ13
. We set

(A′, B,C ′) := chase((A, ∅, C),Σ123).

If this chase terminates and A = A′ and C = C ′, then we have (A,B,C) |= Σ123 by

Proposition 5.2 which implies (A,B) |= Σ12 and (B,C) |= Σ23, as desired.

It is clear that the chase terminates since no new constants are introduced.

Now assume, to get a contradiction, that A 6= A′ or C 6= C ′. Set ∆AC to the set of facts

given by A and C. Then we must have

Σ123 ∪∆AC ` R(c̄)

where c̄ is a tuple of constants and R is a relation in A or C not containing c̄ or

Σ123 ∪∆AC ` c0 = c1
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where c0, c1 are distinct constants in A or C.

We consider the former case; the latter is similar. We must have (A,C) 6|= R(c̄).

If Σ123 ∪∆AC ` R(c̄) then by Proposition 5.1 there exists ξ ∈ FuD over σ13 such that

Σ123 ` ξ and ∆AC , ξ ` R(c̄). Since (A,C) |= ∆AC and (A,C) 6|= R(c̄), it follows that

(A,C) 6|= ξ, contradicting (A,C) |= DC(FuD,Σ123)|σ13
.

Lemma 5.7. Under the hypotheses of Theorem 5.5, if there is a deduction γ witnessing

Σ123 ` ξ with at most k σ2-resolutions, then there is γ ′ witnessing Σ123 ` ξ with at

most k σ2-resolutions and where furthermore all σ2-resolutions occur before all other

resolutions.

Proof. The basic idea of the proof is to repeatedly swap the first σ2-resolution which

occurs after a non-σ2-resolution with that resolution until all σ2-resolutions occur first.

Assume we have k < m and a deduction γk,` witnessing Σ123 ` ξ with

1. exactly m σ2-resolutions,

2. where the first k resolutions are σ2-resolutions, and

3. where there are exactly ` non-σ2-resolutions before the k + 1-th σ2-resolution or

the end of the deduction.

We proceed by induction on k and `. Given γk,` with ` > 0 we show how to

obtain the deduction γk,`−1 satisfying 1, 2, and 3. In the case where ` = 0 we simply set

γk+1,`′ := γk,0 picking `′ so that γk+1,`′ satisfies 1, 2, and 3 above. Once we get γm,`′ for

some `′ we set γ′ := γm,`′ and we are done.

Consider the line s containing δ, the (k+1)th σ2-resolution in γk,` of, say, lines

i and j containing, respectively, α and β. Consider also the line r containing λ, the `-th

non-σ2-resolution in γk,` of, say, lines r1 and r2.

Now we have to consider several cases. If i, j < r < s, then we can obtain γk,`−1

by moving line s to just before r. If lines i, j are not derived from line r, then we can

obtain γk,`−1 by first rearranging the deduction γk,` to obtain a deduction γ ′k,` such that

i, j < r < s, then proceeding as above.

Otherwise, either α or β has been obtained through expand/rename from line

r. To simplify the presentation we assume that both have been obtained through a

single expand/rename from line r (the other cases are similar). We have r < i, j < s.

By rearranging γk,` if needed, we can assume i = r + 1, j = r + 2 and s = r + 3. Since

α and β can be obtained from r by expand/rename, α1, α2 and β1, β2 (intuitively, the

“unresolved” parts of λ expand/renamed as α and β) can be obtained, respectively, from
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lines r1, r2 by expand/rename so that α is the resolution of α1, α2 and β is the resolution

of β1, β2. We replace the four contiguous lines r, i, j, s:
r λ [r1, r2]
r + 1 α [r]
r + 2 β [r]
r + 3 δ [r + 1, r + 2]

with the following seven lines:
r α1 [r1]
r + 1 α2 [r2]
r + 2 β1 [r1]
r + 3 β2 [r2]
r + 4 λ1 [r + 1, r + 2]
r + 5 λ2 [r, r + 4]
r + 6 δ [r + 5, r + 3].

The important point is that line r+4 now contains a σ2-resolution since α2 and β1 must

resolve through a relation symbol of σ2, because α and β do. Notice that we have δ on

line r + 6 since the result of resolution on α1, α2, β1 and β2 is the same as the result of

resolution on α and β (this is because resolution is “associative”).

Corollary 5.8. Under the hypotheses of Theorem 5.5, FuDcompose(Σ12,Σ23), when-

ever it terminates, yields Σ13 such that m12 ◦m23 is given by (σ1, σ3,Σ13).

Notice that after the k-th iteration of the main loop, Σ will contain a vari-

ant of every constraint that can be deduced using at most k σ2-resolution steps. The

constraints in the proof of Theorem 5.3 fail to satisfy (3) of Theorem 5.5 and therefore

FuDcompose(Σ12,Σ23) will not terminate when Σ12 and Σ23 are as in the proof of

Theorem 5.3 for input. In contrast, FuDcompose(Σ12,Σ23) will terminate on Σ12,Σ23

from the example below, which does satisfy (3) of Theorem 5.5, so recursion is not always

bad.

Example 5.3. Consider the FTGD-mappings m12 and m23 given by (σ1, σ2,Σ12) and

(σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
S(xy), S(yz) → R(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}. Together, these constraints say that

R ⊆ S ⊆ T , and that R and S are transitively closed (because the constraints

S(xy), S(yz) → S(xz)
R(xy), R(yz) → R(xz)

can be deduced from Σ12). The constraints
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R(xy), R(yz) → R(xz)
R(xy) → T (xy)

express exactly the composition m12 ◦m23, and are exactly those found by

FuDcompose(Σ12,Σ23).

The coRE-hardness from Theorem 5.4 implies that algorithm FuDcompose

may not terminate even when the composition is a FuD-mapping. This happens, for

example, in the following case.

Example 5.4. Consider the FTGD-mappings m12 and m23 given by (σ1, σ2,Σ12) and

(σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
R(xy), R(yz) → R(xz)
S(xy), S(yz) → S(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}.

The constraints

R(xy), R(yz) → R(xz)
R(xy) → T (xy)

express exactly the composition m12 ◦m23, but algorithm FuDcompose will never ter-

minate since it will deduce at least the infinitely many constraints it would deduce in

the proof of Theorem 5.3. This is because Σ12 here includes all the constraints in Σ12

there.

Even if the algorithm terminates, it may produce a result which is exponential

in the size of the input mappings. This is unavoidable, as the following example shows.1

Example 5.5. There is a FTGD-mapping m12 and a sequence of FTGD-mappings mk
23

given by Σ12 and Σk
23 over fixed signatures σ1 = {R}, σ2 = {S}, and σ3 = {T} where R,

S, and T are binary relations such that the composition m12 ◦m
k
23 grows exponentially

in the size of Σk
23.

The mapping m12 is given by:

R(xy), R(yx) → S(xy)
R(xy), R(xx) → S(xy)

and the family of mappings mk
23 is given by Σk

23 which contains the single constraint

1This is essentially a result on query unfolding [36]. Lucian Popa first brought this to our attention
through an example that required a varying schema.
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S(xu1), S(u1u2), ..., S(uk−1y) → T (xy)

saying that if there is a path of length k in S then there is an edge in T . For each

atom S(uv) in the premise of this last constraint, we can substitute either R(uv), R(vu)

or R(uv), R(uu) to obtain a constraint over σ1 ∪ σ3 which gives 2k constraints in the

composition.

The following conditions are sufficient for algorithm FuDcompose to termi-

nate. On the other hand, Example 5.6 below illustrates a case where these conditions

are violated. Intuitively, these conditions say that there is no “non-trivial” recursion on

some atom in σ2. It would be nice to have simpler termination conditions of wide appli-

cability, but we are not aware of any such. Items 3 and 4 guarantee this “non-triviality.”

If either one fails, then the recursion can only proceed for a finite number of steps.

Theorem 5.9. Under the hypotheses of Theorem 5.5, if no constraint of the form

φ(z̄), S(ȳ) → S(x̄) can be deduced from Σ123 using only σ2-rename-resolutions, such

that

1. φ(z̄) is a conjunction of atoms over σ123,

2. there is no atom S(w̄) in φ(z̄) where w̄ contains all the variables in x̄,

3. there is a variable in x̄ which is not in ȳ, and

4. S is a relation symbol in σ2

then FuDcompose(Σ12,Σ23) terminates and therefore m12 ◦ m23 is a FuD-mapping.

Furthermore, these conditions can be verified in exponential time in the size of Σ12∪Σ23.

Proof. The conditions can be checked in exponential time as follows. Run kσ2
− 1 iter-

ations of the main loop of FuDcompose(Σ12,Σ23) where kσ2
is the number of relation

symbols in σ2 and check whether a constraint of the form given below appears in Σ.

For the termination claim, assume the hypotheses hold. Consider any deduction

γ witnessing Σ123 ` ξ which uses only σ2-rename-resolutions where ξ contains a σ2 atom

in the conclusion. We may assume without loss of generality that all rename operations

are performed first, followed by all resolution operations. Assume also that every rule

in γ contains a single atom in its conclusion and that every rule is used in at most one

resolution step.

Such a deduction can be represented as a tree T where every node is one atom.

Every non-leaf node in T is the conclusion of some rule r. The children of r are the

atoms in the premise of rule r. The premise of ξ consists of all the leaves of T and its

conclusion is the root of T .
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It is easy to check that any subtree T ′ of T which contains, for every node, either

all its children in T or none of them, can be converted into a deduction γ ′ witnessing

Σ123 ` ξ
′ where the premise of ξ′ consists of all the leaves of T ′ and its conclusion is the

root of T ′.

Since the hypothesis holds, no such subtree may contain S(x̄) as its root and

S(ȳ) as a leaf where S is a relation symbol in σ2 and x̄ 6⊆ ȳ. Therefore, any path from

the leaves to the root in T containing a node S(ȳ) may only contain at most 2rr! other

nodes with S atoms where r is the arity of S. This means that any such path must have

length bounded by kσ2
2rσ2 rσ2

! where kσ2
is the number of relation symbols in σ2 and

rσ2
is the maximum arity of a relation symbols in σ2. As a result, up to variants there

is only a finite number of conclusions of Σ123 obtainable through σ2-rename-resolutions

and this implies that FuDcompose(Σ12,Σ23) terminates.

Definition 5.3. A FuD-mapping is a good-FuD-mapping if it is given by (σ1, σ2,Σ12)

and no constraint of the form φ(z̄), S(ȳ)→ S ′(x̄) where

1. φ(z̄) is a conjunction of atoms over σ1 ∪ σ2,

2. there is no atom S(w̄) in φ(z̄) where w̄ contains all the variables in x̄,

3. there is a variable in x̄ which is not in ȳ, and

4. S and S′ are both relation symbols in σ1 or both in σ2

can be deduced from Σ12 using only σ1-rename-resolutions or only σ2-rename-resolutions.

We define good-FTGD similarly.

We can check whether an FuD-mapping is a good-FuD-mapping in exponential

time in the size of the constraints as in the proof of Theorem 5.9.

Theorem 5.10. good-FuD and good-FTGD are closed under composition and inverse.

Proof. Assume that two good-FuD-mappings are given by (σ1, σ2,Σ12) and (σ2, σ3,Σ23).

Set Σ123 := Σ12 ∪ Σ23. Assume constraints ξ of the form

φ(z̄), S(ȳ)→ S ′(x̄)

and ξ′ of the form

ψ(v̄), S′(x̄)→ S′′(ū)

each fails at least one of the conditions 2-4 (with the appropriate subsitutions of signa-

tures and sets of constraints for ξ ′) of Definition 5.3 with S ′ in σ2. Then resolution on ξ
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and ξ′ gives ξ′′:

φ(z̄), ψ(v̄), S(ȳ)→ S ′′(ū)

which also fails at least one of the conditions 2-4 as follows. If ξ ′ fails 4, then S ′′ is not

in σ2 and therefore ξ′′ fails 4. If ξ′ fails 2, then ξ′′ fails 2 as well. Therefore, assume ξ ′

fails 3. That is, every variable in ū is in x̄. Therefore if ξ fails 2, then ξ ′′ also fails 2.

Also, if ξ fails 3, then every variable in x̄ is in ȳ so ξ ′′ fails 3. Finally, if ξ fails 4, then S

is not in σ2 so ξ′′ also fails 4.

Then it is easy to verify (by induction on the length of proofs) that no constraint

ξ′′ satisfying conditions 2, 3, and 4 where both S and S ′ are in σ2 of Definition 5.3 can

be deduced using only σ2-rename-resolutions from the constraints specifying the two

mappings. Therefore, the hypotheses of Theorem 5.9 hold so the composition exists and

furthermore it satisfies the conditions of an good-FuD-mapping.

A similar proof works for good-FTGD-mappings.

We examined many other subsets of FuD for closure under composition and

inverse, but were unable to find more natural conditions of similarly wide applicability.

Since source-to-target FuD-constraints are total and surjective, it is natural to wonder

whether the set of all total and surjective FuD-mappings is closed under composition.

The following example shows it is not.

Example 5.6. Consider the FTGD-mappings m12 and m23 given by (σ1, σ2,Σ12) and

(σ2, σ3,Σ23) where

Σ12 is R(xy) → S(xy)
R(xy), S(yz) → S(xz)

Σ23 is S(xy) → T (xy)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T}. Here m12 and m23 are total and

surjective and their composition says that tc(R) ⊆ T , which we have seen in the proof

of Theorem 5.3 is not expressible even in FO.

5.3 Second-Order Dependencies

In order to handle existential quantifiers in a ED-mapping, we will first convert the ED

constraints which specify the mapping into SkED constraints (by Skolemizing) and this

will give us SkED-mappings. Therefore, in this section we focus on the composition of

SkED-mappings; in the next section we consider how to convert SkED-mappings back to

ED-mappings. There are two cases of composition to consider. Unrestricted composition,
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in which we are allowed to introduce additional existentially-quantified functions in order

to express the composition and restricted composition in which we are only allowed

to use function symbols from the input mappings. In this section we concentrate on

restricted composition. SkED constraints require special semantics, which we examine

in Section 5.6. All results in this section apply to both SkED and SkTGD-mappings (the

former correspond to SO tgds which are not restricted to being source-to-target).

Theorems 5.3 and 5.4 from the previous section show that SkTGD is not closed

under restricted composition and that determining whether the restricted composition

of two SkTGD-mappings is a SkTGD-mapping is undecidable. This is because in re-

stricted composition we are not allowed to add function symbols, so SkTGD does not

add any power toward the restricted composition of FTGD mappings. As in the case of

FuD-mappings, we give necessary and sufficient, undecidable conditions for two SkED-

mappings to have restricted composition (Theorem 5.11), and we give sufficient condi-

tions for restricted composition that can be checked efficiently.

Theorem 5.11 suggests essentially the same algorithm for composition of SkED-

mappings as FuDcompose; we call it SkEDcompose. The only difference between

them is that SkEDcompose operates on SkED constraints while FuDcompose oper-

ates on FuD constraints. Correctness of SkEDcompose, sufficient conditions for its

termination, and good-SkED-mappings are defined for SkED just like for FuD.

Theorem 5.11. If the SkED-mappings m12,m23 are given by (σ1, σ2,Σ12) and (σ2, σ3,

Σ23) with Σ123 := Σ12 ∪ Σ23 and σ13 = σ1 ∪ σ3, then the following are equivalent

1. There is a finite set of constraints Σ13 ⊆ SkED over the signature σ13 such that

m := m12 ◦ m23 is given by (σ1, σ3,Σ13) where Σ13 has no function symbols or

constants other than those appearing in Σ123.

2. There is a finite set of constraints Σ13 ⊆ SkED over the signature σ13 such that

DC(SkED,Σ123)|σ13
= DC(SkED,Σ13)

where Σ13 has no function symbols or constants other than those appearing in Σ123.

3. There is k such that for every ξ over σ13 satisfying Σ123 ` ξ there is a deduction

of ξ from Σ123 using at most k σ2-resolutions.

Proof. Essentially the same as that of Theorem 5.5, using Lemma 5.12 below instead of

Lemma 5.6.
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Lemma 5.12. Under the hypotheses of Theorem 5.11, the following are equivalent:

1. (A,C) |= DC(SkED,Σ123)|σ13
.

2. ∃B (A,B,C) |= Σ123.

Proof. Assume (A,B,C) |= Σ123 for some B. Then (A,B,C) |= DC(SkED,Σ123) (by

soundness) and therefore (A,C) |= DC(SkED,Σ123)|σ13
since B is not mentioned in

DC(SkED,Σ123)|σ13
.

Conversely, assume (A,C) |= DC(SkED,Σ123)|σ13
. In particular, this implies

the existence of all Skolem functions mentioned in DC(SkED,Σ123)|σ13
. There may be

additional Skolem functions mentioned in Σ123, but not in DC(SkED,Σ123)|σ13
. We

give arbitrary values to these additional Skolem functions. We define F to be the set

containing all these Skolem functions and Φ to the set of all facts in F .

We set (A′, B,C ′) := chase((A, ∅, C),Σ123, F ).

If the chase terminates and A = A′ and B = B′, then we have (A,B,C) |= Σ123

by Proposition 5.2, which implies (A,B) |= Σ12 and (B,C) |= Σ23, as desired.

The chase terminates because of the required safety condition (which is pre-

served by the deduction rules). Therefore, (A′, B,C ′) is well-defined. Now assume, to

get a contradiction, that A 6= A′ or C 6= C ′. Set ∆AC to the set of facts given by A and

C. Then we must have

Σ123 ∪∆AC ∪ Φ ` R(c̄)

where c̄ is a tuple of constants and R is a relation in A or C not containing c̄ or

Σ123 ∪∆AC ∪Φ ` c0 = c1

where c0, c1 are distinct constants in A or C.

We consider the former case; the latter is similar. We must have (A,C) 6|= R(c̄).

If Σ123 ∪∆AC ∪ Φ ` R(c̄) then by Proposition 5.1 there exists ξ ∈ SkED over σ13 such

that Σ123 ` ξ and ∆AC ∪ Φ ∪ {ξ} ` R(c̄). Since (A,C) |= ∆AC and (A,C) 6|= R(c̄), it

follows that (A,C) 6|= ξ, contradicting (A,C) |= DC(SkED,Σ123)|σ13
.

5.4 Embedded Dependencies

Now we consider composition of ED-mappings; that is, mappings given by embedded

dependencies. To compute the composition of two ED-mappings m12,m23 given by

(σ1, σ2,Σ12) and (σ2, σ3,Σ23) we will proceed in three steps, as follows.
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Procedure EDcompose(Σ12,Σ23)

1. Σ′
12 := Skolemize(Σ12)

Σ′
23 := Skolemize(Σ23)

2. Σ′
13 := SkEDcompose(Σ′

12,Σ
′
23)

3. Return DeSkolemize(Σ′
13)

The first step, Skolemize, is straightforward and the second step, SkEDcompose, has

been discussed in the previous section, so here we concentrate on the third step, de-

Skolemization. We provide a sound (but not complete) algorithm for de-Skolemization:

DeSkolemize. Even if the second step succeeds, it may be impossible to find Σ13 ⊆ ED

such that Σ′
13 ≡ Σ13 (Example 5.8) so we identify necessary and sufficient, polynomial-

time checkable conditions for our algorithm to succeed (Proposition 5.14). DeSkolemize

may produce a result of size exponential in the size of its input; we show that in the

general case this is unavoidable (Theorem 5.15), but we also provide polynomial-time

checkable conditions for DeSkolemize to run in polynomial time in the size of its input

(Proposition 5.14). The algorithm consists of 12 steps and is as follows; we provide a

detailed description of each step with examples at the end of this section.

Procedure DeSkolemize(Σ)

1. Unnest

2. Check for cycles

3. Check for repeated function symbols

4. Align variables

5. Eliminate restricting atoms

6. Eliminate restricted constraints

7. Check for remaining restricted constraints

8. Check for dependencies

9. Combine dependencies

10. Remove redundant constraints

11. Replace functions with ∃-variables

12. Eliminate unnecessary ∃-variables

We prove the following correctness and efficiency results for DeSkolemize at

the end of this section.

Theorem 5.13. If DeSkolemize(Σ) succeeds on input Σ ⊆ SkED giving Σ′, then

Σ′ ⊆ ED and Σ′ ≡ Σ.
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Proposition 5.14.

1. DeSkolemize(Σ) succeeds on input Σ ⊆ SkED iff it reaches Step 9, which can be

checked in polynomial time in the size of Σ.

2. Furthermore, for every constant `, DeSkolemize runs in polynomial time on any

set of constraints Σ such that by the end of Step 8 there are no more than ` con-

straints containing any one function symbol f . This can be checked in polynomial

time in the size of Σ.

Intuitively DeSkolemize attempts to put the constraints in its input Σ into

a form where they are the obvious result of Skolemization, then it reverses this Skolem-

ization in the obvious way. Most of the work is done in bringing the constraints to such

a form.

Step 11 is where function symbols are actually replaced by existentially-quantified

variables. For it to work properly, constraints must be combined as is done in Step 9.

These two steps are, in some sense, the main steps in the algorithm. Steps 10 and 12 are

just ‘clean up’ steps. The remaining steps, 1 through 8 ensure that the constraints are

in the proper form for Steps 9 and 11. Procedure DeSkolemize may abort at Step 2,

3, 4, 7, or 8. Except for Step 4, these steps only check that the constraints are in the

desired form and abort if they are not. Before going through the steps of DeSkolemize

in detail, let us look at a simple example to give some intuition for the algorithm.

Example 5.7. Assume that the input to DeSkolemize consists of the single constraint

R(x, y)→ S(x, f(x, y)), S(f(x, y), y)

which is obtained from Skolemizing the TGD-constraint

R(x, y)→ ∃uS(x, u), S(u, y)

which says that for every edge in R there is a path of length 2 in S. Strictly speaking this

is not an SkTGD constraint as defined in the preliminaries (since the function symbol f

appears in the conclusion), but is close enough. Step 1 gives the following set of SkTGD

constraints:

R(x, y), u = f(x, y) → S(x, u)
R(x, y), u = f(x, y) → S(u, y)
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We call x and y base variables and u a term variable. Steps 2 and 3 succeed and, in this

case, Step 4 does nothing. However if the constraints had been

R(x, y), u = f(x, y) → S(x, u)
R(w, z), v = f(w, z) → S(w, z)

then Step 4 would have replaced variables w, z, v with x, y, u in the second constraint.

The goal of this step is to have every equation in which a given Skolem function appears

be identical. In this case, there are no equalities that restrict the values of the Skolem

functions, so Steps 5 and 6 do nothing and Step 7 succeeds. Step 8 checks that every

base variable that appears in a conclusion also appears as an argument to every Skolem

function in the premise (we will discuss the case of nested Skolem functions later). In

this case, both x and y satisfy this condition. If we were to apply Step 11 at this point,

we would obtain the constraints

R(x, y) → ∃uS(x, u)
R(x, y) → ∃uS(u, y)

which say that for every edge in R from x to y there is an outgoing S-edge from x and

an incoming S edge into y. This is not quite the same as saying that there is a path of

length 2 from x to y, because these edges may not meet. That is, we may have values

of u witnessing that the first constraint holds which are different from those values of u

which witness that the second constraint holds. This is why we first apply Step 9 (Step 4

is intended to make Step 9 possible), which gives the following constrains:

R(x, y), u = f(x, y) → S(x, u)
R(x, y), u = f(x, y) → S(u, y)
R(x, y), u = f(x, y) → S(x, u), S(u, y)

Now Step 10 simplifies this to the single constraint:

R(x, y), u = f(x, y) → S(x, u), S(u, y)

since the other two easily follow from it and Step 11 yields

R(x, y) → ∃uS(x, u), S(u, y)

as desired. Notice that at every step we have constrains that are equivalent to those at

the previous step.

Of course, this is a simple example; we will see soon that things can get more

complicated. We abort at some steps of the algorithm if the constraints can not be put

into the desired form for subsequent steps. By doing so, we may fail to de-Skolemize some

constraints which in fact are equivalent to embedded dependencies. However, it seems
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likely that deciding whether some SkED constraints are equivalent to ED constraints is

undecidable, so we do not hope for a complete algorithm. The following example from

[13] shows that de-Skolemization is not always possible.

Example 5.8. Consider the ED-mappings m12 and m23 given by (σ1, σ2,Σ12) and

(σ2, σ3,Σ23) where

Σ12 is E(x, y) → F (x, y)
E(x, y) → ∃uC(x, u)
E(x, y) → ∃v C(y, v)

Σ23 is F (x, y), C(x, u), C(y, v) → D(u, v)

and where σ1 = {E}, σ2 = {F,C}, and σ3 = {D}. Here, Steps 1 and 2 of EDcompose

succeed, but Step 3 fails no matter what algorithm is used for it, since m12 ◦m23 is not

a ED-mapping as shown in [13].

Since DeSkolemize(Σ) may produce a result of size exponential in the size of

Σ due to Step 9, EDcompose(Σ12,Σ23) may produce a result of size exponential in the

size of Σ12 ∪ Σ23 due to de-Skolemization, even when the preceding composition steps

yield a polynomial-size result. The following theorem shows that in the general case this

is unavoidable.

Theorem 5.15. There are two sequences of TGD-mappings mk
12 and mk

23 given by Σk
12

and Σk
23 such that the TGD-composition mk

12 ◦ m
k
23 grows exponentially in the size of

Σk
12 ∪Σk

23, but the SkTGD-composition mk
12 ◦m

k
23 grows linearly in the size of Σk

12 ∪Σk
23.

This algorithm in fact can be applied to any set of SkED-constraints, but since

we are interested in those SkED-constraints obtained from ED-mappings by Skolemize

and SkEDcompose, we add some observations that apply to this special case. In the

special case we are interested in, procedure DeSkolemize may abort only at Step 3, 7,

or 8. In particular, the following result follows from these observations.

Theorem 5.16. EDcompose generalizes view unfolding. That is, if

1. σ2 = {V1, . . . , Vk} and each Vi is a view given by the conjunctive query with equa-

tions ∃ȳiφi(x̄i, ȳi) over σ1 where φi(x̄i, ȳi) is a conjunction of atoms (including

equations) over x̄i, ȳi,

2. σ3 = {W1, . . . ,Wk} and each Wi is a view given by the conjunctive query with

equations ∃v̄iψi(ūi, v̄i) over σ2 where ψi(ūi, v̄i) is a conjunction of atoms (including

equations) over ūi, ȳi,
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3. Σ12 is a functional mapping from σ1 to σ2 given by

(αi) φi(x̄i, ȳi) → Vi(x̄i)

(βi) Vi(x̄i) → ∃ȳiφi(x̄i, ȳi),

and

4. Σ23 is a functional mapping from σ2 to σ3 given by

(γi) ψi(ūi, v̄i) → Wi(ūi)

(δi) Wi(ūi) → ∃v̄iψi(ūi, v̄i),

then EDcompose correctly computes their composition

ψφ̄
i (ūi, v̄i) → Wi(ūi)

Wi(ūi) → ∃v̄iψ
φ̄
i (ūi, v̄i),

where ψφ̄
i denotes the result of substituting in ψi the conjunctions φ1, . . . , φk for the

ocurrences of V1, . . . , Vk.

Proof. (Sketch) Since SkEDcompose does resolution only through σ2, the following

resolution patterns are possible:

1. αi with βi,

2. one or more constraints from {α1, . . . , αk} with γi,

3. δi with βj , and

4. δi with γi.

In particular, SkEDcompose terminates. It is easy (but tedious) to verify that (a) the

constraints obtained by resolution of δi with γi can be deduced from the others and that

(b) the remaining constraints can be deskolemized by DeSkolemize.

The algorithm DeSkolemize, depends on `∗, which is used in Steps 5 and 10.

`∗ is some sound polynomial-time approximation of |=. That is, if Σ `∗ φ, then Σ |= φ.

Of course, the converse may not hold, but we require that if φ ∈ Σ, then Σ `∗ φ. Its

use in Step 10 is non-essential; there we simply take advantage of the fact that `∗ is

available. In Step 5 we do use it essentially; however, even if Σ `∗ φ is only true when

φ ∈ Σ, DeSkolemize will succeed on a large class of inputs.
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There are known cases in which there exists such `∗ which is also complete,

but has complexity NP. For example, when Σ has stratified witnesses (see [9] and [11]),

then `∗ is complete and can be computed in NP, by first ‘chasing’ the premise of φ, then

looking for a homomorphism of the conclusion of φ into the result of this chase. (The

chase needed in this case is a straightforward adaptation to the case where existential

quantification is replaced by Skolem functions; the functions are treated as uninterpreted

symbols.) The fact that Σ has stratified witnesses ensures that the chase terminates and

that the result of chasing φ is polynomial in the size of φ. The NP complexity comes

from looking for a homomorphism. A more detailed discussion for the options in the

implementation of `∗ would take us too far away from our main concerns here. For the

purposes of the algorithm below, `∗ can be treated as a black box. DeSkolemize works

for any `∗ which is sound; the more complete `∗ is, the larger the set of inputs on which

DeSkolemize succeeds.

We proceed to discuss every step in more detail. For each step, we provide a

brief explanation and, where appropriate, an example.

1. Unnest:

The goal of this step is to bring the constraints into a normal form which will make

it easier for subsequent steps to operate on them.

Set Λ1 := {ψ : φ ∈ Σ} where ψ is equivalent to and obtained from φ by “unnest-

ing” terms and eliminating non-variable terms from relational atoms and from the

conclusion so that in ψ:

(a) Function symbols occur only in equalities in the premise.

(b) Every term f(x̄) occurs in only one atom.

(c) Every equation is of the form y = z or of the form u = f(x̄), where u, x̄, y,

and z are variables and f is a function symbol. We call the later a defining

equation for u. Furthermore, u (which we call a term variable for f) does not

appear in any relational atom or on the left-hand side of any other defining

equation. We call variables which are not term variables base variables.

(d) The conclusion contains at most one atom.

2. Check for cycles:

The goal of this step is to abort the computation for constraints which contain cyclic

dependencies among Skolem terms. Such constraints can not be de-Skolemized.
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For every φ ∈ Λ1, construct the graph Gφ where the edges are variables in φ and

where there is an edge (v, u) iff there is an equation of the form v = f(. . . u . . .).

We say that variable v depends on u, if there is a path in Gφ from v to u. If Gφ

has a cycle, abort. Otherwise, set Λ2 := Λ1.

In the general case, a term variable may depend on other term variables or even on

itself. This step is intended to rule out the latter case. For example, this happens

in the following constraint:

R(x, y), u = f(x, v), v = g(y, u)→ S(u, v).

In the special case of constraints arising in EDcompose, Lemma 5.17 below allows

us to assume that term variables depend only on base variables. That is, there are

no equalities of the form v = f(. . . u . . .) where u is a term variable. In particular,

this guarantees that Gφ will have no cycles.

Notice that (5.20) can be obtained by resolution from (5.18) and

φ(jȳ), S(jȳ), v̄ = ḡ(jȳ)→ τ(jȳ, v̄). (5.17)

(5.17) is obtained from (5.19) by the substitution ȳ 7→ jȳ.

3. Check for repeated function symbols:

The goal of this step is to abort the computation if any constraints contain two

atoms with the same function symbol. While in some special cases it is possible

to exploit some symmetries in order to de-Skolemize such constraints, we take

the easy way out and give up. These are not constraints obtained directly from

Skolemizing first order constraints since in such constraints every appearance of a

Skolem function would have exactly the same arguments.

For every φ ∈ Λ2 check that φ does not contain two atoms with the same function

symbol. If it does, abort. Otherwise, set Λ3 := Λ2. This is the step in which

DeSkolemize fails on the mappings in Example 5.8. The Skolemized constraints

from Example 5.8 are:

Σ12 is E(x, y) → F (x, y)
E(x, y), u = f(x, y) → C(x, u)
E(x, y), v = g(x, y) → C(y, v)

Σ23 is F (x, y), C(x, u), C(y, v) → D(u, v)
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SkEDcompose gives the following four constraints:

E(x, y), E(x,w), E(y, z), u = f(x,w), v = f(y, z) → D(u, v)
E(x, y), E(x,w), E(z, y), u = f(x, y), v = g(z, y) → D(u, v)
E(x, y), E(w, x), E(y, z), u = g(w, x), v = f(y, z) → D(u, v)
E(x, y), E(w, x), E(z, y), u = g(w, x), v = g(z, y) → D(u, v)

4. Align variables:

The goal of this step is to get all ocurrences of a Skolem term to be the same.

When we Skolemize constraints, this must be the case.

Rename the variables in Λ3 to obtain Λ4 satisfying:

(a) For every function symbol f and any two equalities of the form u = f(x̄) and

v = f(ȳ) in Λ4, u is the same variable as v and x̄ is the same sequence of

variables as ȳ.

(b) For every two different function symbols f and g and any two equalities of

the form u = f(x̄) and v = g(ȳ) in Λ4, u and v are different variables.

If this is not possible, abort. After this step, there is a unique term variable vf

associated to the function symbol f .

This steps fails, for example, on the following constraints:

R(x, y), u = f(x, y), v = g(x, y) → S(u, v)
R(x, y), u = f(x, y), v = g(y, x) → T (u, v)

In the special case of constraints arising in EDcompose this step will always suc-

ceed. This follows from Lemma 5.17 below and the following considerations. After

the Skolemize steps, every function symbol appears in exactly one constraint if

we allow multiple atoms in the conclusion or, equivalently, in constraints with iden-

tical premises. Clearly, we can always align variables on such constraints. Also,

we can clearly align variables after an expand/rename step, so let us consider a

resolution step. Assume we have a set of constraints Σ in which the variables are

aligned and that to this set Σ we add the constraint

φ(x̄), ψ(z̄)→ ρ(x̄, z̄)

obtained by resolution from φ(x̄) → S(ȳ) and S(ȳ), ψ(z̄) → ρ(ȳ, z̄), both in Σ,

where the variables in ȳ are also in x̄ and where φ(x̄) and ψ(z̄) are conjunctions

of atoms with variables from x̄ and z̄ respectively. We need to consider Skolem
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functions in φ(x̄) and in ψ(z̄). Lemma 5.17 shows that those in ψ(z̄) can be

replaced with new Skolem functions which depend only on the base variables. On

the other hand, those in φ(x̄) have not changed and are already aligned. Therefore,

the variables in Σ′ consisting of Σ and the new constraint are also aligned. Since

variables in the input constraints to SkEDcompose can be aligned (because they

have been obtained by Skolemization), it follows that the variables in the output

constraints of SkEDcompose can also be aligned.

5. Eliminate restricting atoms:

If u is a term variable for f and u appears in any other atom, we call that atom

an f -restriction. If φ has an f -restriction in the premise, we say that f restricts

φ. If φ has an f -restriction in the conclusion, we say that φ restricts f . If there

is any function f which restricts φ, we say that φ is restricted. This step and the

next two deal with restrictions.

Set Λ5 := {φ′ : φ ∈ Λ4} where φ′ is φ with the maximal set of restrictions removed

from the premise which gives Λ4 `
∗ φ′. It is easy to verify that such a maximal set

always exists and is unique.

Consider, for example, the constraints

φ1 R(x) → ∃y S(x, y)
φ2 S(x, y) → U(x, y)
φ3 S(x, x) → T (x)

where σ2 = {S}. Skolemization, basic composition, and the first few steps of

DeSkolemize give the following constraints Λ4:

ψ1 R(x), y = f(x) → U(x, y)
ψ2 R(x), y = f(x), x = y → T (x)

In this case, Λ5 = Λ4. These constraints can be de-Skolemized to yield the following

constraints

ψ′
1 R(x) → ∃y U(x, y)

ψ′
2 ∀y(U(x, y)→ x = y) → (U(x, x)→ T (x))

which, however, are not ED-constraints. On the other hand, if we add the con-

straints

φ4 S(x, y) → T ′(x)
φ5 T ′(x) → T (x)
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then Λ5 is

ψ1 R(x), y = f(x) → U(x, y)
ψ3 R(x), y = f(x) → T (x)
ψ4 R(x), y = f(x) → T ′(x)
ψ5 T ′(x) → T (x)

Notice that the restriction on ψ2 has been eliminated to give ψ3, since ψ4 and ψ5

imply ψ3.

The basic intuition is that we do not know how to de-Skolemize a constraint of the

form

φ(x̄), u = f(x̄), v = g(x̄), u = v → S(ȳ)

because we do not know how to express the restriction u = v on the Skolem

functions once these are replaced by existentially-quantified variables (∃-variables

for short). Part of the problem is that the restriction is in the premise, but after the

replacement, the ∃-variables corresponding to the Skolem functions appear only in

the conclusion. A similar problem occurs with a constraint of the form

φ(x̄), u = f(x̄), v = xi → S(ȳ).

6. Eliminate restricted constraints:

In this step, we eliminate some constraints as follows. We first classify all function

symbols as either free or restricted. Free function symbols will be those for which

we are free to pick any values. We recursively define the restricted function symbols

as follows. f is restricted if there is a constraint φ which restricts f and such that all

functions which restrict φ are restricted. In particular, f is restricted if a constraint

φ restricts f and no function restricts φ. All other functions are free. Now we set

Λ6 to be the set of constraints φ ∈ Λ5 such that no free function restricts φ. The

rationale for this step is that if a free function f restricts φ, then we can choose

the values of f such that a restricting equation for vf in the premise never holds.

For example, in the following constraints

φ1 R(x, y), u = f(x, y), v = g(x, y), u = y → T (x, v)
φ2 R(x, y), u = f(x, y), v = g(x, y), v = y → T (x, u)

f restricts φ1 which restricts g and g restricts φ2 which restricts f . Therefore,

both f and g are free and we can eliminate both constraints. It is clear that this

is sound since we can set f and g such that the range of f and g are disjoint from
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each other and from the values appearing in R and T . Then the premises of φ1

and φ2 will never hold and both constraints will always be satisfied regardless of

the choice of R and T .

7. Check for remaining restricted constraints:

If there are any restricted constraints in Λ6, abort. Otherwise, set Λ7 := Λ6.

8. Check for dependencies:

For every φ ∈ Λ7 and every term variable v in φ, define Dφ,v to be the set of base

variables on which v depends. Set Vφ to the set of base variables which appear in

the conclusion of φ. Now for every term variable v in the conclusion of φ, check

that Vφ ⊆ Dφ,v. If this fails, abort. Otherwise, set Λ8 := Λ7.

In this step and the next one, we make sure that once we replace Skolem functions

with ∃-variables (which will happen in Step 11) we get equivalent constraints.

One direction of this equivalence is straightforward: we can set the ∃-variables to

the values of the corresponding Skolem functions. The difficulty is in the other

direction. We must make sure that given values for the ∃-variables witnessing that

the ED-constraints hold, we can set the Skolem functions to also witness that the

corresponding SkED-constraints hold.

To understand why we must check dependencies, consider the constraints

Σ12 is A(x), y = f(x) → F (x, y)
B(u), v = g(u) → G(u, v)

Σ23 is F (x, y), G(u, v) → T (x, y, u, v)

which when composed yield the single constraint φ:

A(x), B(u), y = f(x), v = g(u)→ T (x, y, u, v).

In this case, Dφ,y := x, Dφ,v := u, Vφ := {x, u} and the check fails. The problem

with the obvious replacement of Skolem functions with ∃-variables is that in φ ′

A(x), B(u)→ ∃y, v T (x, y, u, v)

y depends on both x and u, instead of only on x as desired and v also depends on

both x and u, instead of only on u as desired. In fact φ and φ′ are not equivalent,

as witnessed by the relations A := {1, 2}, B := {3}, and T := {〈1537〉, 〈2538〉}

for which φ′ holds, but not φ. The problem here is that x = 1 forces g(3) := 7,
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yet x = 2 forces g(3) = 8 and these choices are incompatible. Interestingly, the

following set of two first-order sentences Φ is equivalent to φ:

A(x)→ ∃y∀u(B(u)→ T (x, y, u, v))

B(u)→ ∃v∀x(A(x)→ T (x, y, u, v)).

However, these are not ED-constraints, which is what our algorithm tries to pro-

duce.

9. Combine dependencies:

Set Λ9 := {ψΦ : ∅ 6= Φ ⊆ Λ8} where ψΦ is defined as follows. If there is a function

f which appears in every φ ∈ Φ, then the premise of ψΦ consists of the atoms

in all the premises in Φ and the conclusion of ψΦ consists of the atoms in all the

conclusions of Φ (remove duplicate atoms). Otherwise, ψΦ is some constraint in

Φ. Notice that Λ9 ⊇ Λ8 since ψ{φ} = φ.

We have already seen the need for this step in Example 5.7. There Λ8 is

φ1 is R(x, y), u = f(x, y) → S(x, u)
φ2 is R(x, y), u = f(x, y) → S(u, y)

and Λ9 is

ψφ1
R(x, y), u = f(x, y) → S(x, u)

ψφ2
R(x, y), u = f(x, y) → S(u, y)

ψφ1,φ2
R(x, y), u = f(x, y) → S(x, u), S(u, y)

This step is not always as trivial as it looks in Example 5.7. Consider, for example,

the constraints from the proof of Theorem 5.15 below where 1 ≤ i ≤ k:

Σk
12 is R0(x) → ∃y S0(x, y)

Ri(x) → Si(x)
Σk

23 is S0(xy), Si(x) → Ti(y)

In this case Λ8 consists of k constraints of the form

R0(x), y = f(x), Ri(x)→ Ti(y)

and Λ9 consists of 2k − 1 constraints of the form

R0(x), y = f(x), RZ(x)→ TZ(y)
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where Z is a non-empty subset of {1, . . . , k} and where RZ(x) :=
∧

i∈Z Ri(x) and

similarly for TZ .

10. Remove redundant constraints:

Pick some set Λ10 ⊆ Λ9 such that Λ10 `
∗ φ for every φ ∈ Λ9, and such that this

does not hold for any proper subset of Λ10.

We have seen above that in Example 5.7 Λ9 is

ψφ1
R(x, y), u = f(x, y) → S(x, u)

ψφ2
R(x, y), u = f(x, y) → S(u, y)

ψφ1,φ2
R(x, y), u = f(x, y) → S(x, u), S(u, y)

In this case, Λ10 := {ψφ1,φ2
} since both ψφ1

and ψφ2
follow from ψφ1,φ2

. This

happens because the premises of ψφ1
and ψφ2

are the same, but this is not always

the case. In particular, Λ10 = Λ9 in the case of the constraints from the proof of

Theorem 5.15 discussed above.

11. Replace functions with ∃-variables:

Set Λ11 := {φ′ : φ ∈ Λ10} where the premise of φ′ is the premise of φ with all

equalities removed and where the conclusion of φ′ is the conclusion of φ, with all

variables appearing on the left of equalities in φ existentially quantified.

This step is where the elimination of Skolem functions actually takes place, but

since most of the preparatory work has already been done, it is very simple. For

example, it converts

R(x, y), u = f(x, y)→ S(x, u), S(u, y)

to

R(x, y)→ ∃uS(x, u), S(u, y).

12. Eliminate unnecessary ∃-variables:

Set Λ12 := {φ′ : φ ∈ Λ11} and return Λ12 where φ′ is like φ, but where existentially

quantified variables which do not appear in the conclusion atom have been removed

(with their corresponding existential quantifier).

If we apply Step 11 to the following constraint

R(x, y), u = f(x, y), v = g(x, y)→ S(x, u), S(u, y)



112

we would obtain

R(x, y)→ ∃u, v S(x, u), S(u, y).

Clearly v is not needed, so in this Step we replace the constraint above with

R(x, y)→ ∃uS(x, u), S(u, y).

Example 5.9. Consider three runs of the algorithm DeSkolemize(Σi
13), for i ∈ {1, 2, 3}.

Let Σi
13 = {γ1, . . . , γi} be a set of the following (unnested) SkTGD constraints:

γ1 R1(y), R2(x), y = f(x) → T1(x)
γ2 R2(x), y = f(x) → T2(y)
γ3 R2(x), y = f(x) → R1(y)

For completeness, we note that each Σi
13 is obtained by first de-Skolemizing ED-mappings

given by Σi
12 and Σi

23, which are shown below, and then invoking SkEDcompose:

i Σi
12 Σi

23 Σi
13

1. {α1, α2} {β2} {γ1}
2. {α1, α2} {β1, β2} {γ1, γ2}
3. {α1, α2, α3} {β1, β2} {γ1, γ2, γ3}

Dependencies α1, α2, α3, β1, β2 are specified as:

α1 R1(x) → S1(x)
α2 R2(y) → ∃z(S2(zy))
α3 S2(zy) → R1(z)

β1 S2(zy) → T2(z)
β2 S1(x), S2(xy) → T1(y)

In all three runs of DeSkolemize(Σi
13), Steps 2 and 3 pass since each of γ1, γ2,

γ3 is cycle-free and has no multiple atoms with the same function symbol. Step 4 has no

effect, since the variable names of the dependencies are already aligned. The remaining

steps are explained below.

In the run DeSkolemize({γ1}), Step 5 has no effect, because {γ1} is a singleton

set. Its only member γ1 gets eliminated in Step 6, since there are no rules in {γ1} with

f -restricting atoms in conclusions. Intuitively, γ1 is a tautology because we can always

construct f whose range is disjoint with R1. Hence, {γ1} is equivalent to the empty set

of constraints, which is trivially in TGD.

In the run DeSkolemize({γ1, γ2}), γ2 contains an f -restricting atom T2 in its

conclusion. Hence, we cannot eliminate the restricted constraint γ1 in Step 6, and so

de-Skolemization aborts in Step 7.
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In the run DeSkolemize({γ1, γ2, γ3}), we are able to de-Skolemize despite

γ2. In Step 5, ∆0 = {γ1, γ2, γ3}. By considering the only function symbol f , we get

∆1 = {ψ, γ2, γ3} ≡ ∆0 where ψ is obtained by eliminating the restricting atom R1(y)

from the premise of γ1 as

ψ := R2(x), y = f(x)→ T1(x)

Clearly, ∆0 `
∗ ψ, since ∆0 ⊃ {γ1, γ3} `

∗ ψ. ∆1 has no restricting constraints, so Step 6

has no effect and Step 7 passes. Step 8 succeeds with Λ8 = Λ7 = {ψ, γ2, γ3}, since every

dependency in ∆1 has at most one term variable y in its conclusion. Taking γ3 as an

example, we get Vγ3
= {x, y}, Dγ3,x = Dγ3,y =

⋃

u∈Vγ3
Dγ3,u = {x}.

In Step 9, combining the dependencies for Φ = Λ8 yields

γ4 := R1(y), R2(x), y = f(x)→ T1(x), T2(y), R1(y)

(Combinations resulting from proper subsets of Λ8 are not shown for brevity). In Step 10,

we remove the redundant constraints which include ψ, γ2, γ3, because they share the

premise with γ4 and their conclusion is subsumed by that of γ4; we obtain Λ10 = {γ4}.

Finally, replacing function f by an existential variable in γ4 yields

Λ12 = {R2(x)→ ∃y(T1(x) ∧ T2(y) ∧R1(y))}

Thus, DeSkolemize({γ1, γ2, γ3}) ⊆ TGD.

The following technical lemma shows that in the case of constraints that arise

from Skolemizing ED constraints and running SkEDcompose on them, there is no need

to consider nested Skolem functions. The main point is that a constraint of the form 5.20

below can be replaced by a constraint of the form 5.23 below. The technical conditions

below reflect the case that arises from applying a resolution step, which is the only step

in SkEDcompose which may give rise to nested Skolem functions. Constraint 5.20

below is obtained by resolution of constraints 5.18 and 5.19.

Lemma 5.17. If Σ ⊆ SkCQ= consists of the following three constraints:

ψ(x̄), ū = f̄(x̄)→ S(jȳ), ρ(x̄, ū) (5.18)

φ(ȳ), S(ȳ), v̄ = ḡ(ȳ)→ τ(ȳ, v̄) (5.19)
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ψ(x̄), φ(jȳ), ū = f̄(x̄), v̄ = ḡ(jȳ)→ τ(jȳ, v̄) (5.20)

where

• x̄, ȳ, ū, and v̄ are disjoint tuples of variables,

• S is a relational symbol,

• ψ(z̄), φ(z̄), ρ(z̄), and τ(z̄) are conjunctions of atoms with variables from z̄,

• j : ȳ → x̄ū is a function mapping variables to variables (so jȳ is a tuple of variables

from x̄ū, possibly with repetitions)

• f̄ x̄ is a tuple of functions f1, . . . , fk whose arguments are variables from x̄, and

• ḡȳ is a tuple of functions g1, . . . , g` disjoint from f̄ whose arguments are variables

from ȳ.

then Σ is equivalent to Σ′ ⊆ SkCQ= which consists of

ψ(x̄), ū = f̄ ′(x̄)→ S(jȳ), ρ(x̄, ū) (5.21)

φ(ȳ), S(ȳ), v̄ = ḡ′(ȳ)→ τ(ȳ, v̄) (5.22)

ψ(x̄), φ(jȳ), ū = f̄(x̄), v̄ = h̄(x̄)→ τ(jȳ, v̄) (5.23)

where f̄ ′, ḡ′, and h̄ are disjoint tuples of functions which do not appear in Σ.

Moreover, (5.20) is equivalent to (5.23).

Proof. If Σ holds, then we have functions f̄ and ḡ witnessing this. Set f̄ ′ := f̄ , ḡ′ := ḡ

and define functions h̄ by h̄(x̄) := ḡ(jȳ) where ū := f̄(x̄) (so jȳ is uniquely determined

by x̄). Then (5.18’), (5.19’), and (5.23) hold. That is, Σ |= Σ′. A similar argument

shows that (5.20) implies (5.23).

If, on the other hand, Σ holds, then we have functions f̄ ′, ḡ′ witnessing that

(5.18’) and (5.19’) hold. Then f̄ := f̄ ′ and ḡ := ḡ′ witness that (5.18) and (5.19) hold,

and (5.20) follows from these.

Now assume that (5.23) holds. We have f̄ and h̄ witnessing this. We want to

show that (5.20) holds. Define G as follows:

G(ā) := {h̄(x̄) : ψ(x̄), φ(jȳ), ū = f̄(x̄), jȳ = ā}

(remember that jȳ is a tuple of variables in x̄, ū). Set ḡ(ā) := b̄ for some tuple b̄ ∈ G(ā)

(it does not matter which one) if G(ā) 6= ∅. Otherwise, set ḡ(ā) := c̄ for some arbitrary

tuple c̄.
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We must show that f̄ and ḡ as defined witness that (5.19) and (5.20) hold.

Assume the premise of (5.20) holds for some values of x̄. Set ū := f(x̄) and v̄ := ḡ(jȳ).

We need to show that τ(jȳ, v̄) holds.

Since the premise of (5.20) holds, h(x̄) ∈ G(jȳ) and therefore G(jȳ) 6= ∅. This

implies that ḡ(jȳ) ∈ G(jȳ). That is, ḡ(jȳ) = h̄(z̄) for some z̄ such that ψ(z̄), φ(jȳ) and

x̄, f̄(x̄) and z̄, f̄(z̄) coincide on the range of j. Since ḡ(jȳ) = h̄(z̄), the premise of

ψ(z̄), φ(jȳ), v̄ = h̄(z̄)→ τ(jȳ, v̄) (5.24)

holds. (5.24) is obtained from (5.23) by the substitution x̄ 7→ z̄. Since (5.23) holds,

(5.24) holds. Therefore τ(jȳ, v̄) holds as desired.

Proof. (Theorem 5.13) At the beginning and end of every step of the DeSkolemize

we have constraints that are equivalent to each other. This is obvious for some steps

which do nothing other than verify that some condition holds and is easy to verify for

all other steps except the step which replaces functions with ∃-variables. We will call

the constraints with functions just before this step Λ and those with ∃-variables just

after this step Λ′. We need to show that Λ ≡ Λ′. The direction Λ |= Λ′ is easy; all

we need to do is set the ∃-variables to the values given by the corresponding functions.

The direction Λ′ |= Λ is harder. We have done some of the previous steps, in particular

the combining of dependencies, to ensure this holds. So suppose D |= Λ′ and that v is

the ∃-variable that corresponds to the function fv. We set fv(c̄) to a value of v which

witnesses that a constraint ψΦ holds for c̄ where ψΦ is as defined in the step “combine

dependencies” and where the premise of ψΦ holds for c̄, yet the premise of no constraint

ψΦ′ with Φ ⊂ Φ′ holds for c̄. Clearly, there is a unique such set Φ, since if both ψΦ1

and ψΦ2
hold for c̄, then ψΦ1∪Φ2

also holds for c̄. Now assume that the premise of some

constraint φ ∈ Λ in which f appears holds for a tuple c̄. Then we must have φ ∈ Φ and

since ψΦ holds and its premise holds for c̄, its conclusion must also hold for c̄. Since we

have set fv(c̄) to a value that witnesses this, the conclusion of φ must also hold for c̄.

Proof. (Theorem refpr-deskol-termin) Procedure DeSkolemize may only abort at

Step 2, 3, 4, 7, or 8 and it has no loops that may not terminate. Therefore, if Step 9

is reached, DeSkolemize will terminate. Furthermore, all steps can be carried out in

polynomial time, except for Step 9, which may give an exponential increase in the size

of the constraints. However, if the hypothese of part 2 hold, then no such exponential

increase can occur.
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Proof. (Theorem 5.15) Set [k] := {1, . . . , k}. Consider the TGD-mappings mk
12 and

mk
23 given by (σk

1 , σ
k
2 ,Σ

k
12) and (σk

2 , σ
k
3 ,Σ

k
23) where

Σk
12 is R0(x) → ∃y S0(x, y)

Ri(x) → Si(x)
Σk

23 is S0(xy), Si(x) → Ti(y)

for i ∈ [k] and where σk
1 = {Ri : i ∈ {0, . . . , k}}, σk

2 = {Si : i ∈ {0, . . . , k}}, and

σk
3 = {Ti : i ∈ [k]}. The SkTGD-composition mk

13 := mk
12 ◦m

k
13 is given by the set Σk

13

of constraints

R0(x), y = f(x), Ri(x)→ Ti(y)

for i ∈ [k], which grows linearly in the size of Σk
12 ∪ Σk

23.

The TGD-composition mk
13 := mk

12 ◦ m
k
13 can be obtained by de-Skolemizing

Σk
13. It is given by the set Σ′k

13 of 2k − 1 constraints

R0(x), RZ(x)→ ∃y TZ(y)

such that ∅ 6= Z ⊆ [k] where RZ(x) :=
∧

i∈Z Ri(x) and TZ(x) :=
∧

i∈Z Ti(x). On the

other hand, mk
13 cannot be expressed by any (σ1, σ3,Σ), Σ ⊆ TGD) where Σ has fewer

than 2k−1 constraints. This inexpressibility result is given at the end of Section 5.5, in

which we introduce a mechanism that enables us to complete this proof.

5.5 Inexpressibility tool for embedded dependencies

In this section we develop a formal vehicle for proving inexpressibility results

for ED, TGD, FuD, and FTGD mappings. We use it to show the inexpressibility claim of

Theorem 5.15. However, the tools presented in this section may be of independent value

and could be used for obtaining inexpressibility results for other problems in database

theory.

To illustrate the intuition behind this mechanism, consider a set Σ of logical

sentences over σ, and some structure A0 over σ. The truth value of Σ in the structure A0

is A0 |= Σ. Now suppose we add one or more tuples to some relation in A0 and obtain the

structure A1. The truth value of Σ in A1 may remain the same, or may flip from ‘true’

to ‘false’, or from ‘false’ to ‘true’. As we keep adding tuples, we obtain a chain of succes-

sively larger structures A0, . . . , An, . . . with the corresponding truth values of Σ for each

structure in the chain. The truth values of Σ form contiguous segments within which Σ

remains ‘true’ (positive segments) or ‘false’ (negative segments). For example, the truth
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values (‘true’,‘true’,‘false’,‘false’,‘true’) for a chain of structures (A0, A1, A2, A3, A4) par-

tition the chain into three segments: a positive segment (A0, A1) followed by a negative

segment (A2, A3) followed by a positive segment (A4). To characterize Σ, we count the

maximal number n of negative segments for any such chain of structures over Σ. If this

number is finite, we call Σ n-monotonic, and non-monotonic otherwise. To characterize

a class of constraints, we study the monotonicity properties of its constituent sentences.

Next we give formal definitions of chains, segments, and n-monotonic sentences.

Definition 5.4. Let K be a set of structures over σ and Σ be a set of sentences over σ.

Then, for each pair of structures A,B ∈ K

1. A ⊆ B, if for all relation symbols R over σ, RA ⊆ RB

2. A ⊂ B, if A ⊆ B and A 6= B

3. A 'Σ B, if (A |= Σ iff B |= Σ) and ∀C ∈ K(A ⊆ C ⊆ B ∨ B ⊆ C ⊆ A → A |= Σ

iff C |= Σ)

Definition 5.5. A set K of structures over signature σ is a chain if (K,⊂) is a total

order.

Definition 5.6. A segment is an equivalence class of (K,'Σ). Segment S is positive for

Σ if A |= Σ for all A ∈ S, and negative otherwise.

Definition 5.7. Let Σ be a set of sentences.

1. Σ is n-monotonic if every chain for Σ has at most n negative segments.

2. Σ is strictly n-monotonic if Σ is n-monotonic and there exists a chain for Σ with

exactly n negative segments.

3. Σ is monotonic if it is n-monotonic for some n ∈ N.

We proceed to study the monotonicity properties of the mapping languages

that we focus on in this article. First, we illustrate some 0-monotonic, 1-monotonic, and

non-monotonic sentences, to familiarize the reader with the concept.

Example 5.10. Σ = {R(x)→ R(x)} is 0-monotonic. More generally, Σ is 0-monotonic

if and only if Σ is a tautology. In fact, if Σ is a tautology, then A |= Σ for all A over

the signature of Σ, i.e., each chain of structures for Σ contains a single positive segment.

Conversely, if no chain contains a negative segment, so A |= Σ for all A and hence Σ is

a tautology.
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Example 5.11. Σ = {R(x)→ ∃yS(y)} is 1-monotonic. The sentence in Σ is equivalent

to R 6= ∅ → S 6= ∅. Hence, Σ partitions each chain K into at most three segments

containing structures (∅, ∅), (R, ∅), (R′ , S), respectively, for some non-empty R, R′, S,

R ⊆ R′. The structure (R, ∅) belongs to the only negative segment in such a chain.

Example 5.12. Σ = {R(x) → S(x)} is non-monotonic. Let Ak = ({c0, . . . , ck}, {c0,

. . . , ck−1}), Bk = ({c0, . . . , ck}, {c0, . . . , ck}) be structures over σ = {R,S} where all ci

constants are distinct. Clearly, Ak 6|= Σ, Bk |= Σ, Ak ⊂ Bk ⊂ Ak+1. That is, there

exists a chain A0, B0, A1, B1, . . ., Ak, Bk, . . . of singleton segments that witnesses

non-monotonicity of Σ.

We generalize the above examples for several classes of sentences. First, we

consider tuple-generating dependencies that may only contain dependent (see defini-

tion below) existential variables. We show that such sentences are 0-monotonic or non-

monotonic (Lemma 5.18). We will see that this class of sentences, which subsumes full

tuple-generating dependencies, is the only source of non-monotonic dependencies that

make up the constraints in our mapping languages.

Second, we examine tuple-generating dependencies that express inclusions of

boolean conjunctive queries, and prove that these are 1-monotonic (Lemma 5.21). Third,

we prove the same monotonicity property for equality-generating dependencies (Lemma

5.22). After examining the above classes of constraints, we prove Lemma 5.24 that

establishes a monotonicity bound for a set of sentences based on the monotonicity of

its members. These lemmas lead to the main result of this section, which states the

monotonicity properties for the (first-order) mapping languages that we consider.

We call a variable y ∈ {ȳ} dependent in a tgd ϕ = ∀x̄(P (x̄) → ∃ȳQ(x̄, ȳ)) if

there exist variables u1, . . . , un such that ui and ui+1 appear in the same atom of Q,

1 ≤ i < n, and u1 = y, un ∈ {x̄}. Otherwise, y is called independent. We start with

tuple-generating dependencies ϕ that may only contain dependent existential variables.

Lemma 5.18. Let ϕ = ∀x̄(P (x̄) → ∃ȳQ(x̄, ȳ)) be a tuple-generating dependency such

that each y ∈ {ȳ} is dependent. Then, ϕ is 0-monotonic or non-monotonic.

Proof. Assume ϕ is not 0-monotonic, i.e., it is not a tautology. The proof of non-

monotonicity is based on the following two observations:

• If ϕ is false in some structure A, then there exists a larger structure B ⊃ A that

makes ϕ true (Lemma 5.19), and
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• If ϕ is true in some structure B, then there exists a larger structure A ⊃ B that

makes ϕ false (Lemma 5.20).

Together, the above observations assert the existence of an infinite chain of alternating

structures that witness non-monotonicity of ϕ.

We prove the subordinate Lemmas 5.19 and 5.20. Notice that Lemma 5.19

applies to arbitrary tuple-generating dependencies.

Lemma 5.19. If a tuple-generating dependency ϕ is violated in some structure A, then

there exists a larger structure B ⊃ A that satisfies the dependency. That is, ∀A : A 6|=

ϕ→ ∃B(B |= ϕ ∧A ⊂ B).

Proof. Let A be a structure such that A 6|= ϕ. Construct a complete structure B in which

every relation RB is a cross-product over the domain of A. Clearly, B |= ϕ, A ⊆ B.

Since A 6|= ϕ, so A 6= B and we obtain A ⊂ B.

Lemma 5.20. Let ϕ = ∀x̄(P (x̄) → ∃ȳQ(x̄, ȳ)) be a tuple-generating dependency such

that each y ∈ {ȳ} is dependent, and ϕ is not a tautology. Then, if ϕ is true in some

structure B, then there exists a larger structure A ⊃ B that violates the dependency.

That is, ∀B : B |= ϕ→ ∃A(A 6|= ϕ ∧B ⊂ A).

Proof. Let B be a structure such that B |= ϕ. Since ϕ is not a tautology, there exists

a structure F0 such that F0 6|= ϕ. F0 is non-empty (since the empty structure makes ϕ

true). Let F be an isomorphic copy of F0 that does not have any constants in common

with B. Set A := B ∪ F . Clearly, A ⊃ B. We show that A 6|= ϕ.

Since F0 6|= ϕ, so F 6|= ϕ. Let t̄ be a tuple such that F |= P (t̄), F 6|= ∃ȳQ(t̄, ȳ).

Such a tuple exists since F is non-empty. Given that F |= P (t̄), we obtain A = B ∪F |=

P (t̄) because P is a conjunctive query.

There remains to show that A = B∪F 6|= ∃ȳQ(t̄, ȳ). Suppose the contrary, i.e.,

A |= ∃ȳQ(t̄, ȳ). Then, there is an atom R(z̄) in Q where z̄ ⊆ x̄ ∪ ȳ, and a tuple r̄ such

that F 6|= R(r̄) and B ∪ F |= R(r̄). Since B and F do not share constants, R(r̄) must

contain only constants from B. In other words, z̄ ⊆ ȳ, i.e., R contains only ȳ variables,

and z̄ 6= ∅. By the premise of the lemma, each ȳ variable is dependent. That is, there

exists an atom in Q that contains both x̄ and ȳ variables. However, this atom is satisfied

in A only if B ∩ F 6= ∅, a contradiction.

To illustrate Lemma 5.20, consider the dependency ∀xy(R(xy)→ ∃z(R(xz), S(z)).

Since z is connected, the dependency satisfies the premise of the lemma and is non-

monotonic.
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Next we consider sentences ϕ that express inclusions of boolean conjunctive

queries. We show that such sentences are 1-monotonic.

Lemma 5.21. Let ϕ = ∀x̄(P (x̄)→ ∃ȳQ(ȳ)). Then, ϕ is 1-monotonic.

Proof. Observe that ϕ is equivalent to the sentence ψ → θ, where ψ = ∃x̄P (x̄) and

θ = ∃ȳQ(ȳ) are boolean conjunctive queries.

We need to show that each chain for ϕ contains at most one negative segment.

Assume the opposite, i.e., there exists a chain that contains structures A ⊂ B ⊂ C such

that A 6|= ϕ, B |= ϕ, C 6|= ϕ (where A and C belong to two distinct negative segments).

Then, the following formula must be true:

(A |= ψ ∧A 6|= θ) ∧ (B 6|= ψ ∨B |= θ) ∧ (C |= ψ ∧ C 6|= θ)

Since A ⊂ B, so A |= ψ implies B |= ψ. That is, B |= θ must hold to make the

disjunction true. But since B ⊂ C, B |= θ implies C |= θ. This contradicts C 6|= θ.

Hence, our assumption was false, and ϕ is 1-monotonic.

As a last building block, we consider a generalized form of equality-generating

dependencies, where multiple equality atoms may appear in the conclusion, and show

that these are 1-monotonic.

Lemma 5.22. Let ϕ = ∀x̄(P (x̄)→ ψ(x̄)), where P (x̄) is a conjunctive query and ψ(x̄)

is a set of equalities between variables in x̄. Then, ϕ is 1-monotonic.

Proof. We need to show that each chain for ϕ contains at most one negative segment.

Consider a chain for ϕ that contains a structure A such that A 6|= ϕ. Then, there

exists a tuple t that satisfies the premise, A |= P (t), but violates the equality conditions,

A 6|= ψ(t). Once the equality conditions are violated, ψ(t) remains false in every larger

structure. That is, for every structure B ⊃ A, B |= P (t) and B 6|= ψ(t), and hence

B 6|= ϕ. Therefore, each chain over ϕ contains at most one negative segment. Hence, ϕ

is 1-monotonic.

We examined the building blocks of our mapping languages. The following

three lemmas explain how to put these building blocks together.

Lemma 5.23. A set Σ of embedded dependencies is equivalent to a set Σ′ of embedded

dependencies such that each ψ ∈ Σ′ satisfies the premise of one of the Lemmas 5.18,

5.21, or 5.22.
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Proof. Let ϕ ∈ Σ, ϕ = ∀x̄(P (x̄)→ ∃ȳψ(x̄, ȳ)). Construct ϕ1 by eliminating all equality

atoms from ϕ that involve variables from ȳ as follows: if y ∈ ȳ appears in an equality

atom y = z in ψ, replace all occurrences of y in ψ by z and remove y = z. Clearly,

ϕ ≡ ϕ1. If ϕ1 has no equality atoms left, it is a tuple-generating dependency; set

Σϕ = {ϕ1}. Otherwise, since each equality atom in ϕ1 mentions only variables in x̄,

so ϕ1 is equivalent to {ϕ2, ϕ3} where ϕ2 is a tuple-generating dependency and ϕ3 is a

generalized equality-generating dependency satisfying the premise of Lemma 5.22; set

Σϕ = {ϕ2, ϕ3}.

Let ϕ′ = ∀x̄(P (x̄) → ∃ȳQ(x̄, ȳ)) be the tuple-generating dependency in Σϕ. If

each y ∈ {ȳ} is dependent (or ϕ′ is a full tgd), then ϕ′ satisfies the premise of Lemma 5.18.

Otherwise, ϕ′ = ∀x̄(P (x̄)→ ∃ȳ1, ȳ2(Q1(x̄, ȳ1), Q2(ȳ2)) where ȳ1 contains only dependent

variables and ȳ2 contains only independent variables. Consequently, ϕ′ ≡ {ϕa, ϕb} where

ϕa = ∀x̄(P (x̄)→ ∃ȳ1Q1(x̄, ȳ1)) satisfies the premise of Lemma 5.18 and ϕb = ∀x̄(P (x̄)→

∃ȳ2Q2(ȳ2)) satisfies the premise of Lemma 5.21.

Lemma 5.24 establishes an upper bound on the combined monotonicity for a

set of arbitrary monotonic sentences.

Lemma 5.24. If every sentence ϕ ∈ Σ is nϕ-monotonic, then Σ is n-monotonic where

n =
∑

ϕ∈Σ nϕ.

Proof. Let K be a chain for Σ. Σ partitions K into a set of disjoint segments (K,'Σ).

Each sentence ϕi ∈ Σ partitions K into a set of disjoint segments (K,'ϕi
). Let S be

a negative segment of (K,'Σ), and let A ∈ S, A 6|= Σ. Hence, there exists some ϕi

such that A 6|= ϕi. Therefore, S overlaps with some negative segment Si ∈ (K,'ϕi
)

that contains A. Notice that for each B ∈ Si, B 6|= ϕi implies B 6|= Σ. Therefore,

Si ⊆ S. That is, each negative segment of (K,'Σ) fully contains a negative segment of

(K,'ϕ) for some ϕ ∈ Σ. Since all segments of (K,'Σ) are disjoint, there are at most

as many negative segments in (K,'Σ) as the cumulative number n of negative segments

in (K,'ϕ) for all ϕ ∈ Σ. Each ϕ ∈ Σ is nϕ-monotonic, so (K,'ϕ) contains at most nϕ

negative segments. Therefore, n ≤
∑

ϕ∈Σ nϕ.

We would like to make an equally general statement for the case where Σ con-

tains a non-monotonic dependency. However, it seems difficult to do so for an arbitrary

class of dependencies. Although a non-monotonic dependency has chains with an un-

bounded number of negative segments, it is possible that the monotonic sentences in Σ
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‘wipe out’ all but a finite number of negative segments in each such chain. Therefore, in

Lemma 5.25 we focus specifically on embedded dependencies.

Lemma 5.25. Let Σ be a set of embedded dependencies in which each dependency sat-

isfies the premise of one of the Lemmas 5.18, 5.21, or 5.22. Then Σ is non-monotonic

or n-monotonic where n =
∑

nϕ for all monotonic ϕ ∈ Σ.

Proof. If Σ has an implied dependency ϕ, the monotonicity of Σ is identical with that of

Σ− {ϕ}. So, without loss of generality we assume that Σ does not contain any implied

dependencies.

If Σ has monotonic dependencies only, the statement of the lemma follows from

Lemma 5.24. Otherwise, the only source of non-monotonicity are the dependencies ϕ

satisfying the premise of Lemma 5.18. Let ϕ ∈ Σ be such a non-monotonic dependency.

Further, let Σr = Σ− {ϕ}. Since Σ does not contain implied dependencies, so Σr 6|= ϕ.

To show non-monotonicity of Σ, we construct an unbounded chain of structures

similarly to how this is done in Lemma 5.18, but using a modified mechanism that

preserves the truth value of Σr as an invariant in each structure of the chain.

Let A be a structure such that A 6|= ϕ, A |= Σr. We construct a structure B

such that B |= Σ, A ⊂ B by chasing the constraints in Σ, such that the values for

existentially quantified variables are drawn from the existing constants in A. Since A is

finite, the process terminates yielding a finite B |= Σ. The chase adds at least one new

tuple to some relation in B to make ϕ true, hence A ⊂ B.

Now, let B be a structure such that B |= Σ. Since Σr 6|= ϕ, there exists a

structure F0 such that F0 6|= ϕ and F0 |= Σr. We construct A 6|= ϕ as in Lemma 5.20 for

each B using this fixed F0. Since F0 |= Σr, so A |= Σr.

Together, these constructions witness non-monotonicity of Σ.

Now we are ready to state the main result of this section. The case analysis in

the following theorem is based on Lemma 5.23.

Theorem 5.26.

1. Each FTGD dependency is 0-monotonic or non-monotonic.

2. Each FuD dependency is 1-monotonic or non-monotonic.

3. Each TGD dependency is 1-monotonic or non-monotonic.

4. Each ED dependency is 2-monotonic or non-monotonic.
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Proof.

1. Follows immediately from Lemma 5.18.

2. Let ϕ ∈ FuD. Suppose ϕ 6∈ FTGD. Then, ϕ is equivalent to a set Σ = {ψ1, ψ2} of

constraints where ψ1 ∈ FTGD and ψ2 is a generalized equality-generating depen-

dency (possibly with multiple equality atoms in the conclusion). ψ1 is 0-monotonic

or non-monotonic. By Lemma 5.22, ψ2 is 1-monotonic. Hence, by Lemmas 5.24

and 5.25, ϕ is 1-monotonic or non-monotonic.

3. Let ϕ ∈ TGD. Then, three cases are possible: (a) ϕ ∈ FTGD, (b) ϕ is an inclusion

of boolean conjunctive queries, or (c) ϕ is equivalent to {ψ1, ψ2} where ψ1 ∈ FTGD

and ψ2 is an inclusion of boolean conjunctive queries. In case (a), ϕ is 0-monotonic

or non-monotonic. In case (b), ϕ is 1-monotonic by Lemma 5.21. In case (c), ϕ

is 1-monotonic or non-monotonic by Lemmas 5.22, 5.24, and 5.25. Hence, ϕ is

1-monotonic or non-monotonic.

4. Let ϕ ∈ ED. Suppose ϕ 6∈ TGD. Then, ϕ is equivalent to a set Σ = {ψ1, ψ2}

of constraints where ψ1 ∈ TGD and ψ2 is a generalized equality-generating de-

pendency. ψ1 is 1-monotonic or non-monotonic. ψ2 is 1-monotonic. Hence, by

Lemmas 5.24 and 5.25, ϕ is 2-monotonic or non-monotonic.

Example 5.13. To illustrate a 2-monotonic ED-dependency, consider ϕ = ∀x, y(R(x, y)→

∃z(S(z) ∧ x = y)). The chain of structures A0 = ({(a, a)}, ∅), A1 = ({(a, a)}, {b}),

A2 = ({(a, a), (a, b)}, {b}) contains two negative segments.

As an application of the inexpressibility tools presented in this section, we

complete the proof of Theorem 5.15 from Section 5.4.

Proof. (Inexpressibility claim of Theorem 5.15) Let [k] = {1, . . . , k} and let ϕZ be a

constraint of the form

R0(x), RZ(x)→ ∃y TZ(y)

where Z ⊆ [k], RZ(x) :=
∧

i∈Z Ri(x), and TZ(x) :=
∧

i∈Z Ti(x).

Let Σ = {ϕZ : ∅ 6= Z ⊆ [k]}.

Each dependency ϕZ ∈ Σ specifies inclusion of boolean conjunctive queries

and is hence 1-monotonic by Lemma 5.21. Σ contains a total of 2k − 1 dependencies.

Therefore, by Lemma 5.24, Σ is at most (2k − 1)-monotonic.
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We show that Σ is strictly (2k − 1)-monotonic. Let Zc denote the subset of [k]

where index c is the binary encoding of Z, i.e., c =
∑

j∈Z 2j . Then, Z0, . . . , Z2k is an

enumeration of subsets of [k]. The enumeration has the property that Zc2 6⊆ Zc1 for any

c1 < c2. We construct a chain of structures for Σ that contains 2k− 1 negative segments

by induction.

• Let A0 be the empty structure for Σ, A0 |= Σ.

• Let Ac |= Σ be a structure obtained in induction step c. Construct Bc+1 by copying

all relations from Ac and adding the constant c to relation R0 and all relations

Ri such that i ∈ Zc+1. The added constant c violates exactly one dependency

ϕZc+1
∈ Σ. No other dependency gets violated since Zci+1

6⊆ Zj for any j ≤ c. We

have Bc+1 6|= Σ, Bc+1 ⊃ Ac.

• Let Bc 6|= Σ be a structure obtained in induction step c, c ≥ 1. Construct Ac by

copying all relations from Bc and setting Ti := Ri for all i ∈ [k]. This construction

makes all dependencies of Σ satisfied in Ac. Hence, Ac |= Σ, Ac ⊃ Bc.

The constructed chain B1, A1, . . . , A2k−1, B2k witnesses that Σ is strictly (2k −

1)-monotonic. By Theorem 5.26, each TGD-dependency is 2-monotonic or non-monotonic.

Therefore, by Lemmas 5.24 and 5.25, at least d(2k − 1)/2e = 2k−1 embedded dependen-

cies are needed to express Σ. By the same theorem, Σ is not expressible by any set of

full dependencies.

5.6 Semantics of SkED Constraints

In this section we examine the semantics of SkED constraints. The semantics of SkED are

somewhat special, but seem to be needed to obtain domain independence (Example 5.14).

We introduce another fragment of SO, ∃SOED which has the standard second-

order semantics. We show that source-to-target SkED-mappings are also source-to-target

∃SOED-mappings (Theorem 5.27).2 However, this translation may incur and exponential

increase in size.

We first discuss the semantics of SkED constraints. The main question is,

what is the universe from which the functions can take values? That is, what is their

allowed range? Intuitively, the problem is with the universe of the existentially quantified

intermediate database.

2when restricted to structures with at least two elements in the active domain
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Example 5.14. Consider the FTGD-mappings mk
12 and mk

23 given by (σ1, σ
k
2 ,Σ

k
12) and

(σk
2 , σ3,Σ

k
23) where

Σk
12 is R(x) → ∃ySi(y)

Σk
23 is Si(x), Sj(x) → T (x)

for 1 ≤ i, j ≤ k and i 6= j, where σ1 = {R}, σk
2 = {S1, . . . , Sk}, and σ3 = {T}.

Consider the case where R = {1, . . . , k − 1} in A and T is empty in C. Firstly,

notice that (A,C) ∈ mk
12 ◦m

k
23 as witnessed by the database B where Si = {i}.

Skolemizing and composing the constraints above we obtain Σk
13 given by the

set of constraints

{R(x), R(y), fi(x) = z, fj(y) = z → T (z) : 1 ≤ i, j ≤ k, i 6= j}

where fi is the Skolem function corresponding to ∃ySi(y). If we restrict the range of

every fi to fall within the domain of A and C, then one of the constraints above must fail,

as follows. Consider the case where x = 1 and y = 1. Then the set {fi(1) : 1 ≤ i ≤ k}

must be a subset of {1, . . . , k − 1}. By the pigeonhole principle, there must be i and j

such that i 6= j and fi(1) = fj(1). Then the constraint corresponding to such i, j fails

for (A,C), since T is empty in C. Therefore, (A,C) 6|= Σk
13. On the other hand, if we

keep the same relations R and T , but allow the domain to have at least k values, then

we have (A,C) |= Σk
13 witnessed by setting fi(x) = i for all i, x.

This shows that if we restrict the range of the Skolem functions to be domain of

the input structures, then we may have domain-dependent formulas, even though they

satisfy the safety conditions. Certainly, no such domain-dependent formulas can express

the composition, since whether (R, T ) belong to the composition or not does not depend

on their domains.

Therefore we require all databases to be finite (i.e., all relations are finite), but

to have an implicit countably infinite universe. Notice that no finite domain would work

for all constraints since the example above gives a family of sets of constraints for which

the meaning changes depending on whether the domain has size less than k or not. We

allow the functions to take any values from this implicit universe.

Since the semantics of SkED are special, it is natural to ask whether the con-

straints in SkED can be expressed in some fragment of ∃SO under the usual second-order

semantics. We show that this is possible for source-to-target SkED.

Theorem 5.27. Every finite set of source-to-target SkED constraints (under the seman-

tics described above) is equivalent to a finite set of source-to-target ∃SOED constraints
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(under the usual second-order semantics) when restricted to instances with at least two

elements.

Proof. (Outline) In the case of source-to-target constraints, we know that we do not have

“recursive” Skolem terms. That is, there are no Skolem terms of the form f(. . . f . . .)

(directly, or indirectly through equalities). Therefore, there is a finite number of values we

can refer to by building Skolem terms on top of the elements of the domain. Intuitively,

these are all the elements that the intermediate database needs to have and the worst

case is when they are all different. If the domain has n elements and we have p Skolem

functions of arity q, then an easy upper bound on the number of elements we can refer

to is ≤ n(p+q)p
whenever n ≥ 2. (This is shown by induction depth of the Skolem terms;

at each step we go from m ≥ n possible values to

m+ pmq ≤ (p+ 1)mq ≤ 2pmq ≤ npmq ≤ m(p+q)

possible values.) Therefore, we can encode all these values with tuples of arity r =

(p+ q)p. We encode every value c from the original domain as the tuple (c, . . . , c); that

is, c repeated r times.

Given a finite set Σ of source-to-target SkED (which we assume w.l.o.g. to be

in unnested form), we first compute r, then transform each constraint φ ∈ Σ by replacing

every occurrence of an equation of the form f(x̄) = y with F (x̄, ȳ) where ȳ is a tuple

of arity r. We also replace y with ȳ everywhere except in relational atoms. To every

relational atom, we add a set of equalities of the form y = y1, . . . , y = yk which we

abbreviate y = ȳ. Finally, we add constraints of the form

. . .→ ∃ȳF (x̄, ȳ)

F (x̄, ȳ), F (x̄, ȳ′)→ ȳ = ȳ′

where . . . are obtained from any premises which mention f . Notice that we need both

equalities and FO existential quantifiers in the conclusions and that we may incur an

exponential increase in size since we need r to be exponential in p.

Notice that the proof only requires that we do not have “recursive” Skolem

terms. Source-to-target is a strong condition that ensures this, but weaker conditions on

the set of constraints Σ12∪Σ23 suffice. For example, it is enough to require that Σ12∪Σ23

have stratified witnesses (see [9] and [11]). When such conditions hold, we can compose
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∃SOED-mappings using a technique similar to that of the proof of Theorem 5.27. In

this case, we do not Skolemize, but replace every relation S of arity s from σ2 with an

existentially quantified relation R of arity rs (where r is as in the proof of Theorem 5.27).

Then we replace every occurrence of a universally quantified variable v in S with v̄

and add the equation v = v̄ and replace every occurrence of an existentially quantified

variable u with ū. This gives an algorithm for composition of source-to-target ∃SOED-

mappings.

5.7 Other Basic Operators

In addition to composition, we are interested in several other basic operators

including domain, range, intersection, cross-product, and inverse. These operators take

for input mappings and models and give as output mappings or models (a model is a set

of instances). The following table summarizes the definitions of these basic operators:

dom(m) := {A : ∃B 〈A,B〉 ∈ m}.
rng(m) := {B : ∃A 〈A,B〉 ∈ m}.
A∩ B := {A : A ∈ A, A ∈ B}.
id(A) := {〈A,A〉 : A ∈ A}.
A× B := {〈A,B〉 : A ∈ A, B ∈ B}.

m1 ∩m2 := {〈A,B〉 : 〈A,B〉 ∈ m1, 〈A,B〉 ∈ m2}.
m−1 := {〈B,A〉 : 〈A,B〉 ∈ m}.

As in the case of mappings, we say that a model A is given by (σ1,Σ1) if it

consists exactly of those databases over the signature σ1 which satisfy the constraints

Σ1. If, furthermore, Σ1 is finite subset of L we say that A is an L-model. As in the case

of composition, we say that L is closed under one of these operators if it produces an

L-model or L-mapping whenever the inputs are compatible L-models or L-mappings.

Proposition 5.28. Every L ⊇ FTGD is closed under identity, cross product and inter-

section.

Proof. If m12 and m34 are given by (σ1, σ2,Σ12) and (σ3, σ4,Σ34) and A and B are given

by (σ1,Σ1) and (σ2,Σ2), then

• A × B is given by (σ1, σ2,Σ1 ∪ Σ2).

• A ∩ B is given by (σ1,Σ1 ∪ Σ2) (here σ1 = σ2).

• m12 ∩m34 is given by (σ1, σ2,Σ12 ∪ Σ34)

(here σ1 = σ3 and σ2 = σ4).
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To express identity we need to refer to the third auxiliary signature σ ′
2 (which we normally

ignore) which contains, for every relation symbol R in σ2, a relation symbol R′ of the

same arity. In this case, σ1 = σ2 so σ′2 = σ′1.

• id(A) is given by (σ1, σ1, σ
′
1,Σ1∪Σ) where Σ consists of two constraints of the form

∀(x̄)(R(x̄) → R′(x̄))

∀(x̄)(R′(x̄) → R(x̄))

for every R in σ1.

Proposition 5.29. Each one of the operators composition, range, and domain can be

reduced to any one of the others.

Proof. If

• m12 is given by (σ1, σ2,Σ12),

• m23 is given by (σ2, σ3,Σ23),

• m1 is given by (σ1 ∪ σ3, σ2,Σ12 ∪ Σ23),

• m2 is given by (σ2, σ1 ∪ σ3,Σ12 ∪ Σ23),

• dom(m1) is given (σ1 ∪ σ3,Σ1), and

• rng(m2) is given (σ1 ∪ σ3,Σ2),

then m12 ◦m23 is given by (σ1, σ3,Σ1) and (σ1, σ3,Σ2).

Conversely, if

• m12 is given by (σ1, σ2,Σ12),

• m21 is given by (σ2, σ1, ∅),

• m12 ◦m21 is given by (σ1, σ1,Σ1), and

• m21 ◦m12 is given by (σ2, σ2,Σ2),

then dom(m12) and rng(m12) are given respectively by (σ1,Σ1) and (σ2,Σ2).

Proposition 5.29 and Theorem 5.4 give the following.

Corollary 5.30. Checking whether the domain or range of a FTGD-mapping is a

FTGD-model is undecidable.
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All the languages we consider satisfy the premises of Proposition 5.28. There-

fore, Proposition 5.29 indicates that we can concentrate our attention on closure under

composition and inverse. Notice that if an L-mapping m is given by (σ1, σ2,Σ12), then

its inverse is given by (σ2, σ1,Σ12), which is, of course, easy to compute. However, the

restrictions on L may be such that the second expression no longer gives an L-mapping.

For example, this happens with source-to-target constraints. This is why we seek re-

strictions on L which are symmetric with respect to the input and output signatures and

which guarantee closure under composition.

This chapter is based on “Composition of Mappings Given by Embedded De-

pendencies” by Alan Nash and Phil Berstein and Sergey Melnik [32] (journal version

[33]). I was responsible for developing all the concepts in this paper, except as follows.

The section on de-Skolemization is joint work with Sergey Melnik. The main ideas and

the presentation for the section on inexpressibility are by Sergey Melnik. Sergey Melnik

and Phil Bernstein participated in many discussion where the concepts discussed were

clarified.
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Conclusion

In Chapter 3 we have introduced universal set solutions and their more general

counterparts, templates, and we have shown how to use them to compute certain answers.

We have shown that any chase-like algorithm produces strong templates and we have

presented a new chase, the unordered minimizing chase, which will always find a strong

template if there is one. We did not explore the complexity of this new chase. Finding

the core of a general structure is NP-complete. However, we hope that the techniques

for computing cores of chase results in Chapter 4 can be applied to give improvements

in efficiency.

We have also introduced new conditions for chase termination, wider than those

previously known. We have shown how to use templates to check containment and

containment under constraints. Finally, we have shown that we can relax the notions of

universal set solutions and templates to k-universal set solutions and k-templates and

have shown that these more relaxed notions are still sufficient to compute certain answers

to queries with at most k variables and for testing containment of queries with at most

k variables.

We have also shown that the finite and unrestricted versions of templates differ.

We have an interesting situation: since we only care about finite instances, we really

need weak templates, but all chase-like algorithms produce only strong templates. It

is natural to ask whether there are algorithms that can compute weak templates. This

remains a hard open problem, connected with the fundamental differences between finite

model theory and unrestricted model theory. We would like to close with an intriguing

connection.

Given a set of instances K, set K̄ := {B : ∃A ∈ K,A → B}. Whether we

consider only finite instances or unrestricted instances should be clear from context.

130



131

The following result follows from the infinite and finite versions of the “preservation

under homomorphisms” theorems, the latter recently proved by Benjamin Rossman [35].

Theorem 6.1.

1. Σ has a strong template iff K̄ is axiomatizable by a first-order sentence, where K

is the set of unrestricted models of Σ.

2. Σ has a weak template iff K̄ is axiomatizable by a first-order sentence where K is

the set of finite models of Σ.

In Chapter 4 we have solved a central problem of the theory of data exchange

by proving that cores of data exchange problems can be computed in polynomial time

in case the target constraints consist of EGDs and a weakly acyclic set of TGDs. We

developed and combined several new ideas for achieving this tractability result. We

hope that our result will foster the use of cores in data exchange and will find its way to

implementations.

In Chapter 5 we have explored mapping composition. Mapping composition is

one of the key operators that are used for manipulating schemas and mappings between

schemas. We studied composition of mappings given by embedded dependencies, which

are expressive enough for many data management applications. We addressed challenges

that were not considered in prior work, in particular the ones due to recursion and de-

Skolemization.



Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-
dison Wesley, 1995.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases.
ACM Trans. Database Syst., 4(3):297–314, 1979.

[3] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. J.
ACM, 31(4):718–741, 1984.

[4] P. A. Bernstein. Applying Model Management to Classical Meta-Data Problems.
In Conference on Innovative Data Systems Research (CIDR), pages 209–220, 2003.

[5] Philip A. Bernstein, Alon Y. Halevy, and Rachel Pottinger. A Vision of Management
of Complex Models. SIGMOD Record, 29(4):55–63, 2000.

[6] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC ’77: Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 77–90, New York, NY, USA, 1977. ACM
Press.

[7] Alin Deutsch, Bertram Ludaescher, and Alan Nash. Rewriting queries using views
with access patterns under integrity constraints. In ICDT, 2005.

[8] Alin Deutsch and Val Tannen. Mars: A system for publishing xml from mixed and
redundant storage. In VLDB, pages 201–212, 2003.

[9] Alin Deutsch and Val Tannen. Reformulation of XML Queries and Constraints. In
ICDT, 2003.

[10] Heinz-Dieter Ebbinhaus and Jörg Flum. Finite Model Theory. Springer, 2nd edition,
1999.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics
and Query Answering. In ICDT, 2003. full version in: Theor. Comput. Sci. 336(1):
89-124 (2005).

[12] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. In
ACM PODS, pages 90–101, 2003. Full version in ACM TODS, 30(1):147-210(2005).

[13] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing Schema Mappings:
Second-Order Dependencies to the Rescue. In ACM PODS, pages 83–94, 2004.

132



133

[14] Ronald Fagin. Extending the core greedy algorithm to allow target tgds with sin-
gleton left-hand sides. Unpublished Manuscript, 2005.

[15] Ronald Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985,
1982.

[16] Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller, and Wang Chiew Tan. Peer
data exchange. In PODS, 2005.

[17] G. Gottlob and A. Nash. Data Exchange: Computing Cores in Polynomial Time.
In ACM PODS, 2006. To appear.

[18] G. Gottlob and A. Nash. Efficient Core Computation in Data Exchange. Journal
of the ACM, 2006. Submitted.

[19] Georg Gottlob. Computing cores for data exchange: New algoritms and practical
solutions. In PODS, 2005. Extended version of the present paper. Currently available
at: www.dbai.tuwien.ac.at/staff/gottlob/extcore.pdf.

[20] Georg Gottlob and Christian G. Fermüller. Removing redundancy from a clause.
Artif. Intell., 61(2):263–289, 1993.

[21] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions
and tractable queries. JCSS, 64(3):579–627, 2002.

[22] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer
Data Management Systems. ICDE 2003.
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