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For the past half century, linguistic semantics was dominated by issues of composi-
tionality to such an extent that the meaning of the atomic units (which were generally
assumed to be words or their stems) received scant attention. Here we will put word
meaning front and center, and base the entire plan of the book on beginning with the
lowest meaningful units, morphemes, and building upward. In 1.1 we set the stage by
considering the three major approaches to semantics that can be distinguished by their
formal apparatus: formulaic, geometric, and algebraic. In 1.2 we summarize some of
the lexicographic principles that we will apply throughout: universality, reductivity, and
keeping the lexicon free of encyclopedic knowledge. In 1.3 we describe the formulaic
theory of lexical meaning. This is linked to the geometric theory in 1.4, and to the al-
gebraic theory in 1.5. The links between the algebraic and the geometric theory are
discussed in 1.6, where we investigate the possibility of a meta-formalism that could
link all three approaches together.

1.1 Background

The formulaic (logic-based) theory of semantics (S19:3.7), Montague Grammar (MG)
and its lineal descendants such as Discourse Representation Theory and Dynamic Se-
mantics reigned supreme in linguistic semantics until the 21st century in spite of its well
known failings because it was, and in some respects still is, the only game in town: the
alternative ‘cognitive’ theory went largely unformalized, and was deemed ‘markerese’
(Lewis, 1970) by the logic-based school. Here we will attempt to formalize many, though
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2 1 Foundations of non-compositionality

by no means all, insights of the cognitive theory, an undertaking made all the more nec-
essary by the fact that MG has little to offer on the nature of atomic units (Zimmermann,
1999).

Starting perhaps with (Schütze, 1993; Schütze, 1998) and propelled to universal suc-
cess by (Collobert and Weston, 2008; Collobert et al., 2011) an entirely new, geomet-
ric theory, mapping meanings to vectors in low-dimensional Euclidean space, became
standard in computational linguistics (S19:2.7 Example 2.3 et seqq). Subjects central to
semantics such as compositionality, or the relation of syntactic to semantic representa-
tions, hitherto discussed entirely in a logic-based framework, became the focus of atten-
tion (Allauzen et al., 2013) for the geometric theory, but there is still no widely accepted
solution to these problems. One unforeseen development of the geometric theory was
that morphology, syntax, and semantics are to some extent located in different layers of
the multilayer models that take word vectors as input (Belinkov et al., 2017b; Belinkov
et al., 2017a) but ‘probing’ the models is still an art, see (Karpathy, Johnson, and Fei-Fei,
2015; Greff et al., 2015) for some of the early work in this direction, and (Clark et al.,
2019; Hewitt and Manning, 2019) for more recent work on contextual embeddings.

At the same time, the algebraic theory of semantics (S19:Def 4.5 et seqq) explored
in Artificial Intelligence since the 1960s (Quillian, 1969; Minsky, 1975; Sondheimer,
Weischedel, and Bobrow, 1984), which used (hyper)graphs for representing the meaning
of sentences and larger units, was given new impetus by Google’s efforts to build a
large repository of real-world knowledge by finding named entities in text and anchoring
these to a large external knowledge base, the KnowledgeGraph, which currently has over
500m entities linked by 170b relations or ‘facts’ (Pereira, 2012). More linguistically
motivated algebraic theories (Kornai, 2010a; Abend and Rappoport, 2013; Banarescu
et al., 2013), coupled with a renewed interest in dependency parsing (Nivre et al., 2016),
are contributing to a larger reappraisal of the role of background knowledge and the use
of hypergraphs in semantics (Koller and Kuhlmann, 2011).

Through this book, we will try to link these three approaches, giving mathematical
form to the belief that they are just the trunk, leg, and tail of the same elephant. This
is not to say that these are ‘notational variants’ (Johnson, 2015), to the contrary, each
of them make predictions that the others lack. A better analogy would be the algebraic
(matrix) and the geometrical (transformation) view of linear algebra: both are equally
valid, but they are not equally useful in every situation.

One word of caution is in order: the formulas we will study in 1.3 are not the for-
mulas of higher order intensional logic familiar to students of MG, but rather the basic
building blocks of a much simpler proto-logic, well below first order language in com-
plexity. The graphs that we will start studying in 1.5 are hypergraphs, very similar to
the notational devices of cognitive linguistics, DG, LFG, HPSG and those of AI, but not
letter-identical to any of the broad variety of earlier proposals. Only the geometry is the
same n-dimensional Euclidean geometry that everyone else is using, but even here there
will be some twists, see 1.4.
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1.2 Lexicographic principles

Universality 4lang is a concept dictionary, intended to be universal in a sense made
more precise below. To take the first tentative steps towards language-independence, the
system was set up with bindings in four languages, representative samples of the ma-
jor language families spoken in Europe: Germanic (English), Slavic (Polish), Romance
(Latin), and Finno-Ugric (Hungarian). In Version 1, automatically created bindings ex-
ist in over 40 languages (Ács, Pajkossy, and Kornai, 2013), but the user should keep in
mind that these bindings provide only rough semantic correspondence to the intended
concept. In the current Version 2 (see 9.5) two Oriental languages, Japanese and Chi-
nese, were added manually by László Cseresnyési and Huba Bartos respectively, and
further automatic binding were created (Hamerlik, 2022).

The experience of parallel development of 4lang in four languages reinforces a
simple point that lexicographers have always considered self-evident: words or word
senses don’t match up across languages, not even in the case of these four languages
that share a common European cultural/civilizational background. It’s not just that some
concepts are simply missing in some languages (a frequent cause of borrowing), but the
whole conceptual space (see 1.4) can be partitioned differently.

For example, English tends to make no distinction between verbs that describe ac-
tions that affect their subjects and their objects the same way: compare John turns, John
bends to John turns the lever, John bends the pipe. In Polish, we need a reflexive ob-
ject pronoun siȩ ‘self’ to express the fact that it is John who is turning/bending in the
first case. The semantics is identical, yet in English ??John turns/bends himself would
sound strange. In Hungarian, we must use different verbs derived from the same root:
‘turn self’ is ford-ul whereas ‘turn something’ is ford-ít, and similarly for haj-ol ‘bend
self’ and hajl-ít ‘bend something’, akin to Latin versor/verso, flector/flecto, but Latin
also offers the option of using a pronoun me flecto/verso.

Where does this leave us in regards to the lofty goal of universality? At one extreme,
we find the strong Sapir-Whorf hypothesis that language determines thought. This would
mean that a speaker of English cannot share the concept of bending with a speaker
of Hungarian, being restricted to one word for two different kinds of situations that
Hungarian has two different words for. At the other extreme, we find the methodology
followed here: we resort to highly abstract units (core lexemes) which we assume to be
shared across languages, but permit larger units to be built from these in ways that differ
from language to language. Here the key notions we must countenance include self, self
which is defined as =pat[=agt], =agt[=pat] (see also 3.3), and bend, which we
take to be basic in the intransitive form, see 2.4. We turn to the issue of how in general
transitives can be defined by their objectless counterparts in 3.1.

How formulas such as these are to be created, manipulated, and understood will be
discussed in 1.3, here we begin with high-level formatting. The main 4lang file is
divided into 11 tab-separated fields, of which the last is reserved for comments (these
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begin with a percent sign). A typical entry, written as one line in the file but here in the
text generally broken up in two for legibility, would be
water víz aqua woda mizu水 shui3水 2622 u N

liquid, lack colour, lack taste, lack smell, life need

As can be seen, the first four columns are the 4 original language bindings given in EN HU

LA PL order. In Version 1, all extended Latin characters were replaced by their base plus
a number, e.g. o3 for ő, o2 for ö, and o1 for ó. This was to keep the behavior of standard
unix utilities like grep constant across platforms (scripts for conversion to/from utf8
were available). In Version 2, two new columns are added after the fourth for JA ZH (see
9.5), and utf8-encoded accented characters are used throughout. The seventh column (in
V1, the fifth) is a unique number per concept, most important when the English bindings
coincide:
cook főz coquo gotować 825 V

=agt make <food>, ins_ heat
cook szakács coquus kucharz 2152 N

person, <profession>, make food

The eighth (in V1, sixth) column is an estimate of reducibility status and can take only
four values: p means primitive, an entry that seems impossible to reduce to other entries.
An example would be the question morpheme wh, here given as wh ki/mi/hogywh
quo kto/co/jak 3636 p G wh. Note that the definiendum (column 1) appears
in the definiens (column 10), making the irreducibility of this entry evident. At the
other end we find entries marked by e, which means eliminable. An example would be
three three három tres trzy 2970 e A number, follow two. In be-three
tween we find entries marked by c, which are candidates for core vocabulary: and exam-
ple would be see see lát video widzieć 1476 c V perceive, ins_see
eye; and u, unknown reducibility status.

The ninth (in V1, seventh) column is a rough lexical category symbol, see 2.1 for fur-
ther discussion. Our main subject here is the 10th (in V1, eighth) column, which gives
the 4lang definition. We defer the formal syntax of definitions to 1.3, after we dis-
cussed some further lexicographic principles, and use the opportunity to introduce some
of the notation informally first. Many technical devices such as =agt, =pat, wh,
gen, . . . make their first appearance here, but will be fully explained only in subsequent
chapters. Very often, we will have reason to present lexical entries in an abbreviated
form, showing only the headword and the definition (with the index, reducibility, and
lexical category shown or suppressed as needed):

bend 975 e V has form[change], after(lack straight/563)

Where such abbreviated entries appear in running text, as drunk here, drunk ittasdrunk
potus pijany 1165 c A quality, person has quality, alcohol
cause_, lack control the headword is highlighted on the margin. For human
readability, the concept number is omitted whenever the English binding is unique, so we
have person in the above definition rather than person/2185, but we would spell
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out man/659 ‘homo’ to disambiguate from man férfi vir męźczyzna 744 man
e N person, male. In running text we generally omit the Japanese and Chinese
equivalents for ease of typesetting.

Generally, we take examples from V2/700.tsv, but on occasion we find it necessary
to go outside the 700.tsv set to illustrate a point, and (very rarely) even outside the
V1 file.

Reductivity In many ways, 4lang is a logical outgrowth of modern, computation-
ally oriented lexicographic work beginning with Collins-COBUILD (Sinclair, 1987),
the Longman Dictionary of Contemporary English (LDOCE) (Boguraev and Briscoe,
1989), WordNet (Miller, 1995), FrameNet (Fillmore and Atkins, 1998), and VerbNet
(Kipper, Dang, and Palmer, 2000). The main motivation for systematic reductivity was
spelled out in (Kornai, 2010a) as follows:

“In creating a formal model of the lexicon the key difficulty is the circularity of
traditional dictionary definitions – the first English dictionary, Cawdrey, 1604 already
defines heathen as gentile and gentile as heathen. The problem has already been
noted by Leibniz (quoted in Wierzbicka, 1985):

Suppose I make you a gift of a large sum of money saying you can collect it from
Titius; Titius sends you to Caius; and Caius, to Maevius; if you continue to be
sent like this from one person to another you will never receive anything.

One way out of this problem is to come up with a small list of primitives, and define
everything else in terms of these.”

The key step in minimizing circularity was taken in LDOCE, where a small (about
2,200 words) defining vocabulary called LDV, Longman Defining Vocabulary was cre-
ated, and strictly adhered to in the definitions with one trivial exception: words that often
appear in definitions (e.g. the word planet is common to the definition of Mercury, Mars,
Venus, . . . ) can be used as long as their definition is strictly in terms of the LDV. Since
planet is defined ‘a large body in space that moves around a star’ and Jupiter is defined
as ‘the largest planet of the Sun’ it is easy to substitute one definition in the other to
obtain for Jupiter the definition ‘the largest body in space that moves around the Sun’.

4lang generalizes this process, starting with a core list of defining elements, defin-
ing a larger set in terms of these, a yet larger set in terms of these, and so on until the
entire vocabulary is in scope. As a practical matter we started from the opposite direction,
with a seed list of approximately 3,500 entries composed of the LDV (2,200 entries), the
most frequent 2,000 words according to the Google unigram count (Brants and Franz,
2006) and the BNC (Burnard and Aston, 1998), as well as the most frequent 2,000 words
from Polish (Halácsy et al., 2008) and Hungarian (Kornai et al., 2006). Since Latin is
one of the four languages supported by 4lang , we added the classic Diederich, 1939
list and Whitney, 1885.

Based on these 3,500 words, we reduced the defining vocabulary by means of a
heuristic graph search algorithm (Ács, Pajkossy, and Kornai, 2013) that eliminated all
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words that were definable in terms of the remaining ones. The end-stage is a vocabulary
with the uroboros property, i.e. one that is minimal wrt this elimination process. This
list (1,200 words, not counting different senses with multiplicity) was published as Ap-
pendix 4.8 of S19 and was used in several subsequent studies including (Nemeskey and
Kornai, 2018). (The last remnant of the fact that we started with over 3k words is that
numbers in the 5th column are still in the 1-3,999 range, as we decided against renum-
bering the set.) This ‘1200’ list is part of Release V1 of 4lang on github, and has
bindings to Release 2.5 of Concepticon (List, Cysouw, and Forkel, 2016).

By now (Release V2), this list has shrunk considerably, because improvements in
the heuristic search algorithm (see Ács, Nemeskey, and Recski (2019) and uroboros.py)
and a systematic tightening of 4lang definitions by means of def_ply_parser.py made
further reductions possible. The name of the ‘700’ list is somewhat aspirational (the Ver-
sion 2 file has 739 words in 776 senses) but we believe the majority of the 359 senses
marked e are indeed eliminable, and the eventual uroboros core (p and c entries) will be
below 200 senses. With every substitution, we decrease the sparseness of the system. In
the limiting case, with a truly uroboros set of maybe 120 elements, we expect the defini-
tions to become much longer and more convoluted. This phenomenon is very observable
in the Natural Semantic Metalanguage (NSM) of (Wierzbicka, 1992; Wierzbicka, 1996;
Goddard, 2002), which in many ways served as an inspiration for 4lang .

The two theories, while clearly motivated by the same goal of searching for a com-
mon universal semantic core, differ in two main respects. First, by using English defini-
tions rather than a formal language, NSM brings many subtle syntactic problems in tow
(see Kornai (2021) for a discussion of some of these). Second, NSM is missing the re-
duction algorithm that 4lang provides. In brief, for any sense of any word we can look
up the definition in a dictionary, convert this definition to a 4lang graph that contains
only words from the LDV, and for any LDV word we can follow its reduction to V1, and
further, to V2 terms. Preliminary work on V3 suggests that it will still have about twice
as many primitives than the 63 primes currently used in NSM.

Indeed, just by looking at an ordinary English word such as random (see S19:Ex.˝

4.21) we are at a complete loss how to define it in terms of the NSM system beyond the
vague sense that the prime MAYBE may be involved. With 4lang , we start with ‘aim-
lessly, without any plan’ (LDOCE). We know (see 6.4) that -ly is semantically empty,
and that -less is to be translated as lack stem_. Further, from 4.5 we know that any is
defined as <one>, =agt is_a, so that any plan is defined as <one> plan. Since
here neither the presence of one not its absence (see Rule 6 of 1.6 that the xy signify
optionality) adds information, we have lack aim, lack plan. At this point, all
defining terms are there in the (V2) core vocabulary, we are done.

Perhaps someone with deeper familiarity with NSM could concoct a definition using
only the primes, though it appears that none of the 63 primes except WANT seem related
to aims, goals, plans, or any notion of purposive action. To the extent that Gewirth, 1978
includes ‘capability for voluntary purposive action’ as part of the definition of what
defines a human as a ‘prospective purposive agent’, this lack of defining NSM terms is

https://github.com/DavidNemeskey/festschrift-uroboros/blob/master/python/scripts/uroboros.py
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https://en.wikipedia.org/wiki/Natural_semantic_metalanguage
https://en.wikipedia.org/wiki/Natural_semantic_metalanguage
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highly problematic, placing the people whose language is describable in purely NSM
terms on the level of infants with clear wants but no agency to plan. But our issue is a
more general one: it is not this particular example that throws down the gauntlet, it is the
lack of a general reduction algorithm.

In contrast, since at any stage the uroboros vocabulary is obtained by systematic re-
duction of a superset of the LDV, it is still guaranteed that every sense of every word
listed in LDOCE (over 82k entries) are definable in terms of these. Since the defining
vocabularies of even larger dictionaries such as Webster’s 3rd (Gove, 1961) are gener-
ally included in LDOCE, we have every reason to believe that the entire vocabulary of
English, indeed the entire vocabulary of any language, is still definable in terms of the
uroboros concepts.

Redefinition generally requires more than string substitution. Take again PLANET, a
word LDOCE uses in the same manner as NSM uses semantic molecules, and defines
as ‘a large body in space that moves around a star’. If we mechaically substitute this in
the definition of Jupiter, ‘the largest __ of the Sun’ we obtain ‘the largest a large body
in space that moves around a star of the Sun’. It takes a great deal of sophistication for
the substitution algorithm to realize that a large is subsumed by the largest or that a star
is instantiated by the Sun. People perform these operations with ease, without conscious
effort, but for now we lack parsers of the requisite syntactic and semantic sophistication
to do this automatically. Part of our goal with the strict definition syntax that replaces
English syntax on the right-hand side (rhs) of definitions is to study the mechanisms
required by an automated parser for doing this, see Chapter 2.

Encyclopedic knowledge In light of the foregoing, the overall principle of keeping lin-
guistic (lexicographic) knowledge separate from real-world (encyclopedic) knowledge
is already well motivated. First, universality demands a common lexical base, whereas it
is evident that real-world knowledge differs from culture to culture, and thus from lan-
guage to language – in the limiting case, it differs within the same culture and the same
language from period to period. Since the completion of the Human Genome Project in
2003, our knowledge of genes and genomes have exploded: at the time of this writing
the Cancer Genome Atlas holds over 2.5 petabytes of data, yet the English language is
pretty much the same as it was 20 years ago. The need to keep two so differently growing
sources of knowledge separate is obvious.

Second, reductivity demands that knowledge be expressed in words. This may have
made sense for biology two hundred years ago (indeed, biological taxa are traditionally
defined by means of the same Aristotelian technology of genus and differentia speci-
fica (S19:2.7) that we rely on), but clearly makes vanishingly little sense in chemistry,
physics, and elsewhere in the sciences where knowledge is often expressed by a com-
pletely different language, that of mathematics. As we shall see in Chapter 8, trivia like
Who won the World Series in 1967? are within scope for the 4lang Knowledge Repre-
sentation (KR) system. But core scientific statements, from the Peano Axioms (see 3.4)
to Gauss’ Law of Magnetism, ∇ ¨B “ 0, are out of scope.

https://intranet.secure.griffith.edu.au/schools-departments/natural-semantic-metalanguage/what-is-nsm/semantic-molecules
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https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
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How are the lines to be drawn between lexical and encyclopedic, verbally express-
ible and mathematics-intense knowledge? This is a much debated isse (see Peeters, 2000
for a broad range of views) and 4lang clearly falls at the Aristotelian end of the dual-
ist/monist spectrum introduced in Cabrera, 2001. We begin our discussion with a simple
item. The first edition of LDOCE (Procter, 1978) defines caramel as ‘burnt sugar used
for giving food a special taste and colour’. In 4lang this could be recast as

caramel sugar[burnt], cause_ {food has {taste[special],
colour[specal], <taste[sweet]>, <colour[brown]>}}

where quite a bit of the syntax is implicit, such as the fact that caramel is the subject of
cause_, see Section 1.3, and we sneaked in some real world knowledge that the special
taste is (in the default case) sweet, and the special color is brown.

As the preceding make clear, we could track further special (defined in 4langspecial
as lack common), or food, or burnt, or any term, but here we will concentrate on
sugar ‘a sweet white or brown substance that is obtained from plants and used to
make food and drinks sweet’. Remarkably, this definition would also cover xylitol
pCH2OHpCHOHq3CH2OHq or stevia pC20H30O3q which are used increasingly as
replacements for common household sugar pC6H12O6q.

This is not to say that the editors should have been aware in 1978 that a few decades
later their definition will no longer be specific enough to distinguish sugar from other
sweeteners. Yet the clause ‘obtained from plants’ is indicative of awareness about sac-
charine pC7H5NO3Sq which is also sweet, but is not obtained from plants.

4lang takes the line that encyclopedic knowledge has no place in the lexicon. In-
stead of worrying about how to write clever definitions that will distinguish sugar not
just from saccharine but also from xylitol, stevia, and whatever new sweeteners the fu-
ture may bring, it embraces simplicity and provides definitions like the following:

rottweiler dog
greyhound dog

This means that we fail to fully characterize the competent adult speaker’s ability to
use the word rottweiler or greyhound, but this does not seem to be a critical point of
language use, especially as many adult speakers seem to get along just fine without a
detailed knowledge of dog breeds. To quote Kornai, 2010a:

So far we discussed the lexicon, the repository of linguistic knowledge about
words. Here we must say a few words about the encyclopedia, the repository of
world knowledge. While our goal is to create a formal theory of lexical defini-
tions, it must be acknowledged that such definitions can often elude the grasp
of the linguist and slide into a description of world knowledge of various sorts.
Lexicographic practice acknowledges this fact by providing, somewhat begrudg-
ingly, little pictures of flora, fauna, or plumbers’ tools. A well-known method of
avoiding the shame of publishing a picture of the yak is to make reference to
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Bos grunniens and thereby point the dictionary user explicitly to some en-
cyclopedia where better information can be found. We will collect such pointers
in a set E

Today, we use Wikipedia for our encyclopedia, and denote pointers to it by a prefixed @
sign, see Section 1.3. Our definitions are
sugar cukor saccharum cukier 440 N

material, sweet, <white>, in food, in drink
sweet e1des dulcis sl1odki 495 A

taste, good, pleasant, sugar has taste, honey has taste

Instead of sophisticated scientific taxonomies, 4lang supports a naive world-view
(Hayes, 1979; Dahlgren, 1988; Gordon and Hobbs, 2017). We learn that sugar is sweet,
and sweet is_a taste – the system actually makes no distinction between predicative (is)
and attributive (is_a) usage. We learn that sugar is to be found in food and drink, but
not where exactly. In general, the lexicon is restricted to the core premisses of the naive
theory. When in doubt about a particular piece of knowledge, the overriding principle
is not whether it is true. In fact the lexicon preserves many factually untrue proposi-
tions, see e.g. the discussion in 3.1 of how the heart is the seat of love. The key issue is
whether a meaning component is learnable by the methods we suggest in 5.3 and, since
these methods rely on embodiment, a good methodological guideline is ‘when in doubt,
assign it to the encyclopedia’.

One place where the naive view is very evident is the treatment of high-level abstrac-
tions. For example, the definition of color has nothing to do with photons, frequency
ranges in the electromagnetic spectrum, or anything of the sort – what we have instead
is sensation, light/739, red is_a, green is_a, blue is_a and colour
when we turn to e.g. red we find colour, warm, fire has colour, blood red
has colour. Another field where we support only a naive theory is grammar, see 2.5.

As with sugar and sweet, we posit something approaching a mutual defining relation
between red and blood, but this is not entirely like Titius and Caius sending you further
on: actually blood gets eliminated early in the uroboros search as we iteratively narrow
the defining set, while red stays on. Eventually, we have to have some primitives, and we
consider red, a Stage II color in the (Berlin and Kay, 1969) hierarchy, a very reasonable
candidate for a cross-linguistic primitive. In fact, uroboros.py is of the same opinion
(in no run does red get eliminated, hence the marking c (core) in column 7).

So far, we have discussed the fact that separating the encyclopedia from the lexicon
leaves us with a clear class of lexical entries, exemplified so far by colors and flavors,
where the commonly understood meaning is anchored entirely outside the lexicon. There
are also cases where this anchoring is partial, such as the suffix -shaped. The meaning of
guitar-shaped, C-shaped, U-shaped, . . . is clearly compositional, and relies on cultural
primitives such as guitar, C, U, . . . that will remain at least partially outside the lexicon.
According to Rosch (1975), lexical entries may contain pointers to non-verbal material,
not just primary perceptions like color or taste, but also prototypical images. We can say
that guitar is a stringed musical instrument, or that C and U are letters of the alphabet,
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and this is certainly part of the meaning of these words, but it is precisely for the image
aspect highlighted by -shaped that words fail us. Again anticipating notation that we will
fully define only in 2.2, we can define guitar-shaped as has shape, guitar has
shape and in general

-shaped has shape, stem_ has shape, "_-shaped" mark_ stem_

and leave it to the general unification mechanism we will discuss in 1.5 and 8.3 to guar-
antee that it is the same shape that the stem and the denotation of the compound adjective
will share.

1.3 The syntax of definitions

Here we discuss, somewhat informally, the major steps in the formal analysis of 4lang
definitions. A standard lex-yacc parser, def_ply_parser.py is available on github.
The syntax is geared towards human readability, so that plaintext lexical entries where
the definiens (usually a complex formula) is given after the definiendum (usually an
atomic formula) are reasonably understandable to those working with 4lang. In 1.5 we
will discuss in more detail the omission of overt subjects and objects, an anuvr. tti-like
device, that greatly enhances readability. Here we present a simple example:

April month, follow march/1563, may/1560 follow
bank institution, money in

The intended graph for April will have a 0 link from the definiendum to month, a 1 link to
march/1563 and a 2 link to may/1560. Strictly speaking, anuvr.tti removes redundancies
across stanzas (sūtras) whereas our method operates within the same stanza across the
left- and right-hand sides, but the functional goal of compression is the same.

Often, what is at the other side of the binary is unspecified, in which case we use the
gen symbol “plugged up”. Examples:

vegetable plant, gen eat
sign gen perceive, information, show, has meaning

Thus, vegetable is a plant that someone (not specified who) can eat (it is the object of
eating, subject unspecified), and sign is_a information, is the object of perception, is_a
show (nominal, something that is or can be shown) and has meaning.

Starting with ‘disambiguated language’ (S19:3.7), semanticists generally give them-
selves the freedom to depart from many syntactic details of natural language. For exam-
ple Cresswell, 1976 uses

λ-deep structures that look as though they could become English sentences with
a bit of tinkering. In this particular work I am concerned more with the underly-
ing semantic structure than with the tinkering.

https://github.com/kornai/4lang/tree/master/V2
https://github.com/kornai/4lang/tree/master/V2
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By aiming at a universal semantic representation we are practically forced to follow the
same method, since the details of the ‘tinkering’ change from language to language, but
we try to be very explicit about this, using the mark_ primitive that connects words to mark_
their meanings (see 2.5). One particular piece of tinkering both Cresswell and I are guilty
of is permitting semantics to cross-cut syntax and morphology, such as by reliance on a
comparative morpheme er_ (called er than in Cresswell, 1976) but really, what can we er_
do? The comparative -er is a morpheme used in about 5% of the definitions, and there is
no reason to assume it means different things following different adjectival stems.

Coordination A 4lang definition always contains one or more clauses (hypergraph
nodes, see 1.5) in a comma-separated list. The first of these is distinguished as the head
(related to, but not exactly the same as the root in dependency graphs). In 1.5 the top-
level nodes will be interpreted so as to include graph edges with label 0 running from the
definiendum to the definiens. The simplest definitions are therefore of the form x, where
x is a single atomic clause. Example
aim ce1l finis cel 363 N

purpose

that is, the word aim is defined as purpose. Somewhat more complex definitions are
given by a comma-separated list:
board lap tabula tablica 456 N

artefact, long, flat
boat hajo1 navis l1o1dz1 976 N

ship, small, open/1814

(The number following the ‘/’, if present, serves to disambiguate among various defini-
tions, in this case adjectival open ‘apertus’ from verbal open ‘aperio’. These numbers
are in column 7 of the 4lang file.) In 1.4 we will discuss the appropriate vector space
semantics for coordination of defining properties in more detail, but as a first approxi-
mation it is best to think of these as strictly intersective.

Subordination Deefinitions can have dependent clauses e.g. protect =agt cause_ protect
{=pat[safe]} ‘what X protects Y means is that X causes Y to be safe’. Of particular
interes are relative clauses, which are handled by unification, without an overt that mor-
pheme, e.g. ‘red is the color that blood has’ is expressed by a conjunction red is_a
color, blood has color where the two tokens of color are automatically uni-
fied, see 8.3.

External pointers Sometimes (42 cases in the 1,200 concepts published in S19:4.8) a
concept doesn’t fully belong in the lexicon, but rather in the encyclopedia. In the formal
language defined here, such external pointers are marked by a prefixed @. Examples:

Africa land, @Africa
London city, @London
Muhammad man/744, @Muhammad
U letter/278, @U



12 1 Foundations of non-compositionality

These examples, typically less than 5% of any dictionary, are but a tiny sample from
millions of person names, geographic locations, and various other proper names. We
will discuss such ‘named entities’ in greater detail in Chapter 8.

Subjects and objects In earlier work, staring with Kornai, 2010a, we linked 4lang to
the kind of graphical knowledge representation schemas commonly used in AI. Such
(hyper)graphs have (hyper)edges roughly corresponding to concepts, and links connect-
ing the concepts. 4lang has only three kinds of links marked 0,1, and 2.

0 links cover both predicative is, cf. the definition of sugar as sweet, in food,
in drink above, and subsumptive is_a which obtains both between hyponyms and
hypernyms and between instances and classes. 1 links cover subjects, and 2 links cover
objects. We will discuss hypergraphs further in 1.5 and the link inventory in 2.3.

In addition to 0 links, definitions often explain the definiendum in terms of it being
the subject or object of some binary relation. In some cases, these relations are highly
grammatical, as for_, known as “the dative of purpose”:

handle 834 u N part_of object, for_ hold(object in hand)

while in other cases the relation has a meaning that is sufficiently close to the ordinary
English meaning that we make no distinction. An example of the latter would be for
used to mark the price in an exchange as in He sold the book for $10, or has used
to mark possession as in John has a new dog. When we use a word in the sense of
grammar, we mark this with an underscore, as in for 2824 versus for_ 2782. We
defer discussing the distinction between “ordinary” and “grammatical” terms to 2.5, but
note here that the English syntax of such terms can be very different from their 4lang
syntax. Compare -er 14 which is a suffix attaching to a single argument, the stem
(which makes it a unary relation), to er_ 3272 which has two obligatory arguments
(making it a binary relation).

Direct predication In a formula A[B] means that there is a 0-link from A to B. This is
used only to make the notation more compact. The notation B(A) means the same thing,
it is also just syntactic sugar. Both brackets and parens can contain full subgraphs.

tree plant, has material[wood], has trunk/2759, has crown

That trees also have roots is not part of the definition, not because it is inessential, but
because trees are defined as plants, and plants all have roots, so the property of having
roots will be inherited.

Defaults In principle, all definitional elements are strict (can be defeased only under
exceptional circumstances) but time and again we find it expedient to collapse strongly
related entries by means of defaults that appear in angled brackets.

ride travel, =agt on <horse>, ins_ <horse>

https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy
https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy
https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy
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These days, a more generalized ride is common (riding the bus, catching a ride, . . .
so the definition travel should be sufficient as is. The historically prevalent mode
of traveling, on horseback, is kept as a default. Note that these two entries often get
translated by different words: for example Hungarian distinguishes utazik ‘travel’ and
lovagol ‘rides a horse’, a verb that cannot appear with an object or instrument the same
way as English ride a bike can. Defaults are further discussed in 6.4.

Agents, patients The relationship between horseback riding (which is, as exemplified
above, just a form of traveling) and its defining element, the horse, is indirect. The horse
is neither the subject, not the object of travel. Rather, it is the rider who is the subject
of the definiendum and the definiens alike, corresponding to a graph node that has a 1
arrow leading to it from both. This node is labeled by =agt, so when we wish to express
the semantic fact that Hungarian lovagol means ‘travel on a horse’ we write

lovagol travel, =agt on horse

Note that the horse is not optional for this verb in Hungarian: it is syntactically forbid-
den (lovagol is intransitive) and semantically obligatory. (Morphologically it is already
expressed, as the verb is derived from the stem ló ‘horse’ though this derivation is not by
productive suffixation.) Remarkably, when the object is_a horse (e.g. a colt is a young
horse, or a specific horse like Kincsem) we can still use lovagol as in János a csikót
lovagolta meg or Elijah Madden Kincsemet lovagolta.

For the patient role, consider the word know, defined as ‘has information about’. For
this to work, the expression x know y has to be equivalent to x has information
about y i.e. we need to express the fact that the subject of has is the same as the subject
of know (this is done by the =agt placeholder) and that the object of about is the same
as the object of knowing – this will be done by the =pat placeholder.

As discussed in Kornai, 2012 in greater detail, these two placeholders (or thematic
roles, as they are often called) will be sufficient, but given the extraordinary importance
of these notions in grammatical theory, we will discuss the strongly related notions of
thematic relations, deep cases, and kārakas in 2.4 further.

More complex notation When using [] or (), both can contain not just single nodes but
entire subgraphs. For subgraphs we also use { }, see 1.6.
stock re1szve1ny syngrapha papier_wartos1ciowy 3626 N

document, company has, {person has stock} prove
{person has part_of company}

‘stocks are documents that companies have, if a person has stock it proves that a person
owns a part of the company’.

1.4 The geometry of definitions

Computational linguistics increasingly relies on word embeddings which assign to each
word in the lexicon a vector in n-dimensional Euclidean space Rn, generally with 150 ď

https://en.wikipedia.org/wiki/Thematic_relation
https://en.wikipedia.org/wiki/Case_grammar
https://en.wikipedia.org/wiki/Thematic_relation
https://en.wikipedia.org/wiki/Case_grammar
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n ď 800 (typically, 300). These embeddings come in two main varieties: static, where
the same vector vpwq is used for each occurrence of a string w, and dynamic (also called
context-sensitive) where the output depends on the context x_y in which w appears in
text. On the whole, dynamic embeddings such as BERT (Devlin et al., 2019) work much
better, but here we will concentrate on the static case, with an important caveat: we
permit multi-sense embeddings where a single string such as free may correspond to
multiple vectors such as for ‘gratis’ and ‘liber’. Our working hypothesis is that dynamic
embeddings just select the appropriate sense based on the context.

Embeddings, both static and dynamic, are typically obtained from large text corpora
(billions of words) by various training methods we shall return to in Chapter 8, though
other sources (such as dictionaries or paraphrase databases) have also been used (Wieting
et al., 2015; Ács, Nemeskey, and Recski, 2019). Most of the action in a word embed-
ding takes place on the unit sphere: the length of the vector roughly corresponds to the
log frequency of the word in the data (Arora et al., 2015), and similarity between two
word vectors is measured by cosine distance. Words of a similar nature, e.g. first names
John, Peter,. . . tend to be close to one another. Remarkably, analogies tend to translate to
simple vector addition: v(king) ´v(man) `v(woman) « v(queen) (Mikolov, Yih, and
Zweig, 2013), a matter we shall return to in 2.3.

For cleaner notation, we reverse the multi-sense embeddings and speak of vectors (in
the unit ball) of Rn that can carry labels from a finitely generated set D˚ and consider
the one-to-many mapping l : Rn Ñ D˚. We note that the degree of non-uniqueness (e.g.
a vector getting labeled both faucet and tap) is much lower on the average than in the
other direction, and we feel comfortable treating l, at least as a first approximation, as a
function.

Definition 1. A voronoid V “ xP, P y is a pairwise disjoint set of polytopes P “ tYiu
in Rn together with exactly one point pi in the inside of each Yi.

In contrast to standard Voronoi diagrams, which are already in use psychological classi-
fication (see in particular Gärdenfors, 2000 3.9), here there is no requirement for the pi
to be at the center of the Yi, and we don’t require facets of the polytopes to lie equidistant
from to labeled points. Further, there is no requirement for the union of the Yi to cover
the space almost everywhere, there can be entire regions missing (not containing a dis-
tinguished point as required by the definition). Given a label function l, if pi P Yi carries
the label wi P D˚ we can say that the entire Yi is labeled by wi, written lpYiq “ wi.

Now we turn to learning. As in PAC learning (Valiant, 1984), we assume that each
concept c corresponds to a probability distribution πc over Rn, and we assume that
level sets for increasingly high probabilities bound the prototypical instance increasingly
tightly, as happens with the Gaussians often used to model the πc. An equally valid view
is to consider the polytopes themselves as already defining a probability distribution,
with sharp contours only if the softmax temperature is low.

It is often assumed in cognitive psychology that concepts such as candle are associ-
ated not just to other verbal descriptors (e.g. that it is roughly cylindrical, has a wick at

https://bit.ly/34OcIsP
https://bit.ly/34OcIsP
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
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the axis, is made of wax, is used on festive occasions, etc.) but also to nonverbal ones,
such as a picture of ‘the candle’ or even the characteristic smell of burning candles. In
fact, image labeling algorithms such as YOLO9000 (Redmon et al., 2016) have consid-
erable success in finding things in pictures and naming them, but generating prototypical
images remains a research goal even for human faces, where the state of the art is most
developed.

Definition 2. A linear voronoid is a voronoid defined by hyperplanes hj such that every
facet of every polytope lies in one of these.

By adding a hyperplane for each facet of every polytope, every voronoid can be made
into a linear one, but our interest is with the sparse case, when many facets, not just those
for adjacent polytopes, are on the same hyperplane. Thus we have two objectives: first,
to enclose the bulk of each concept set c in some Yi so that πcpYiq is sufficiently close to
1, and second, to reduce the cardinality of the hyperplane set. Each half-space is defined
by a normal vector f and an offset (called the bias), and we call these features (rather
than half-spaces) in keeping with standard terminology in machine learning.

Definition 3. A vector v satisfies a feature f iff xv, fy ą b

Since our central interest is with just one half-space to the exclusion of the other (see
Chapter 4), we orient the normal vector so that a feature takes positive value in this
affine half-space. Note that a normed vector has n´ 1 free parameters and the bias adds
the nth, so feature vectors are not qualitatively different from word vectors. So that we
don’t have to move to a dual space we will also call the positive half-spaces features, and
denote them by Fj .

Now we can restate our sparsity goal as finding features F1, . . . , Fk so that all poly-
topes can be defined by the intersection of a few of these. We leave open the possibility
k ą n, i.e. that the system of features is overcomplete. As a practical matter, models with
n “ 300 work reasonably well, while we expect k to be in the 500–1200 range. What
we are looking for is a finite system F “ tF1, . . . , Fku such that each of the Yi is ex-
pressible as a sparse vector with nonzero (positive) elements only on a few (in practice,
less than 10) coordinates.

Remarkably, these simple (and in case of Def. 3, completely standard) definitions are
already sufficient for a rudimentary theory of communication. Assume two parties, a
speaker and a hearer. They both have mental spaces, a place where they store not just
words and other linguistic expressions, but also concepts, sensory memories, things that
philosophers of language would generally treat as sortally different. The term is chosen
to express our indebtedness to (Fauconnier, 1985; Talmy, 2000) and the entire loosely
connected school of Cognitive Linguistics, but we don’t use ‘mental space’ in exactly
the same way as Fauconnier, especially as we are modeling it by ordinary n-dimensional
Euclidean space.

Ideally, the speaker and the hearer share the same voronoids, and simple ideas or
sensations can simply be communicated by uttering the label of the polytope where it
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falls: I see a candle, and say candle. This is sufficient for the hearer to know which
polytope was meant, and thereby gain some rough understanding of my mental activity.
In reality, both speakers and hearers are aware that their mental spaces are not identical:
my notion of a candle can differ from yours in ways that may be significant. But day-to-
day communication is seldom hindered by this, by asking for a fork I’m unlikely to be
handed a spoon. This is not because our Yfork polytopes have identical boundaries, but
rather because the boundaries cover so much of the πpforkq probability mass that the
symmetric difference between the polytopes of speaker and hearer is negligible.

The same logic extends to the vexing cases of hyperintensionals (Cresswell, 1975),
phrases that describe contents that are not instantiated at all. I can speak of a pink ele-
phant, and anybody who understands English understands what I mean with the same
degree of (im)precision as they understand ‘pink’ and ‘elephant’. Putting these two poly-
topes together just gives us their intersection, which works quite well even though in the
real world this intersection happens to be empty. Note that the intersection can be empty
even where there is no counterfactuality involved: a former president is by definition not
a president, and at any rate it seems hard to maintain a subset of the space that contains
former things. Since former x means ‘was x, no longer x’ i.e. a change of its x-ness, the
point under discussion is one that has left Yx.

In logical semantics it is a standard assumption that extensions of words, here mod-
eled by polytope volumes, are changing with time. If I decide to paint a formerly black
wall white, the meanings of black and white (standardly modeled by an indexed set of
extensions eλ, with the indexes running over the class of ‘possible worlds’ and called the
intension of a word) remain constant, it is just their extensions that change with λ. We
will assume a discrete time index t and require only three values ‘before’, ‘now’, and
‘after’. We will discuss temporal semantics in greater detain in 3.2 – here we will simply
assume three voronoids Vb, Vn, Va and consider former an operator that effects a change
from the identically labeled polytope, say Y for ‘president’ that somehow moves a point
corresponding to the subject, say Obama, from the interior of Y in Vb to the exterior in
Vn.

We have in both of these models a vector p corresponding to president and a vector
O corresponding to Obama. The key insight is that not only do these vectors remain
static, but the polytope Y that surrounds p also remains unchanged. What changes is
the scalar product: in Vb we had xO,py ą b and in Vn we have xO,py ă b. It is not
that the threshold for presidency b has changed: what changed is the definition of the
scalar product. We will assume the standard basis for Vn, but some B (before) basis in
Vb, some A (after) basis in Va, and use xOB,pBy ą b conjoined with xO,py ă b to
express the meaning of former. We return to scalar products in Chapter 2.3, but note
in advance that we follow the literature in being a bit more loose in terminology than
is common in mathematics: we will use basis also for generating systems that are not
necessarily linearly independent, and scalar product also for bilinear forms that are not
necessarily symmetrical.
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The geometric model offers its own sortal types: vectors, half-spaces, polytopes, ma-
trices, and so on. We will link these up to the lexical categories of 4lang in 2.1, but to
build intuition we list some of the key correspondences here. Proper names are points, a
matter we will discuss in greater detail in Chapter 8. This doesn’t mean that all points p
in concept space receive a label l that is a proper name, but by and large, all things can
be named (have a proper name assigned to them), not just people, pets, or boats. Adjec-
tives are typically half-spaces, with gradient effects modeled by the bias term, whereas
common nouns are often polytopes (finite intersections of half-spaces) or projections
thereof. Verbs, including the copula, carry time information, and their description often
involves not just Vn, but also Va and/or Vb as well.

Fig. 1.1: Dependence of voronoids on metric chosen

Note that any set of vectors defines its own voronoid, but the boundaries of the cells
depend on the metric chosen. This is illustrated in Fig. 1.1, which was generated using
http://yunzhishi.github.io/voronoi.html. Since the probability mass is near the center,
exact placement of the boundaries is of little interest.

We will use voronoids to represent the nominal aspects of conceptual schemas, com-
pact configurations of knowledge pertinent to some domain. With the addition of verbal
information (in particular, timing, see 3.2) these schemas become a linear algebraic ver-
sion of Schankian scripts. As an example, consider the exchange_ schema, roughly
depicted in Fig. 1.2.

buy =agt

¨

sell =agt

¨

goods =pat

¨

value<money>

¨

Fig. 1.2: exchange_

The words used are highly evocative: if we hear sell we automatically typecast the sub-
ject in the seller role, and the object in the ‘goods’ role. If we choose buy, the subject is

http://yunzhishi.github.io/voronoi.html
http://yunzhishi.github.io/voronoi.html
https://en.wikipedia.org/wiki/Script_theory
https://en.wikipedia.org/wiki/Script_theory
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bound to the buyer role, and again the object of buying is treated as the goods. Before
the exchange, the seller has the goods, and the buyer the money, afterwards the buyer
has the object and the seller the money. This analysis (similar to the one proposed in
Hovav and Levin, 2008) is easily implemented as hypergraph unification (see 1.5), and
also in the vector calculus we are using, but we defer the details to 3.2, where we discuss
handling the temporal aspects before and after.

While unification proceeding from the keywords buy or sell proceeds naturally, the
word goods, rarely used outside the context of shipping/insurance contracts, is quite
a bit less evocative in English, and is really used just for want of a better term. The
same can be said for the word money, even though the association is strong, buying is
what money is for, and selling is what earns money. (Also, in the full lexical entries for
buy/sell, money is merely a default: clearly goods can exchanged for services and other
things of value.) Typically, we invoke the schema from the perspective of the controlling
participants, the potential agents, though alternatives like promoting the money to the
agent role, In this village, ten thousand will buy you a beautiful house, are often feasible.

In Fig. 1.3 we depict the two simplest schemas. The left panel shows a voronoid
with a single region labeled, for want of a better name, one. Since this encompasses
everything, we could have called it all or whole just as well. The ambiguity between
one and all, reminiscent of the first basic principle of Plotinus “the One” (or “the Good”),
will not play the same generative role here as with Plotinus, and we will also refrain from
entertaining analogies between the right panel and Gnostic thought.

one
¨

(a) one/all

one
¨

other
¨

(b) other

Fig. 1.3: one and other

The type difference between our first quantifier, gen, defined simply as a vector with
the same value 1{d on each component, and all, is very clear. gen is simply a nominal,
whereas all is a schema that requires implicit or explicit typecasting: as in all books
are for sale, where all is already limited to in this store (Kornai, 2010b).

The same difficulty of naming certain regions of the voronoid, a problem we already
encountered with goods, is manifest on the white side of the right panel of Fig. 1.3.
The blue side directly defines other, but whatever is on the white side is typecast to
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one. (Numerical one is defined in opposition to more, and has little to do with the one
in either part of the figure.) To keep such technical names distinct from the vocabulary,
we will suffix them with _. The names of schemas (voronoids defined by unordered sets
of vectors) will be enclosed in the same curly braces {} as more ad hoc statements like
{person has stock} in 1.3 above. The graph-theoretic view, where schemas are
simply hypernodes, does not do full justice to schemas as information objects – we will
discuss this problem in 1.6.

To summarize the key geometric ideas, most words (proper names in particular, but
also common nouns, adjectives, and verbs) correspond to vectors or polytopes with dis-
tinguished vectors. We can also compute vectors for adpositions and other function
words like be that we will shortly turn to, but we actually consider these to be matri-
ces (relations between vectors). Consider bark. For us, this is a pair of vectors bark1
‘cortex’ and bark2 ‘latrat(us)’ indistinguishable without context, be it morphological
(barked, barking can only refer to dog bark) or larger (birch bark can only refer to tree
bark). When we assign just one vector to this, this is just the log frequency weighted sum
of the two vectors corresponding to the two senses, sitting in polytopes Y1 and Y2 that
are not even adjacent in concept space.

In terms of the distinguished points it is easy to tell them apart: Y2 falls in the sound
subset since bark2 is defined as sound[short, loud], <dog> make, whereas bark/2517
Y1 is not a sound. The separating surface is not unique, bark1 is some kind of covering
that trees have, and as such, it is an object defined by the cluster of properties that object
physical objects have: thing, <has colour>, has shape, has weight,
<has surface>, has position, <lack life>, and clearly dog barks have
none of these, so any of these surfaces can be used to separate the two polytopes.

The one vector for bark that we obtain from running GloVe (Pennington, Socher, and
Manning, 2014), word2vec (Mikolov et al., 2013), or any of the other algorithms must
be related to the bark1 and bark2 vectors by addition, weighted by log frequency (Arora
et al., 2015). How is this differentiated from cases like boat being defined as ship,
small, open? In other words, how do we know that bark contains two vectors corre-
sponding to two distinct senses, while boat contains only one, corresponding to a single
unified sense? The answer is that this fact can’t be read off of the vectors themselves,
but can be read off the polytopes: in the bark case we have two, but in the boat case only
one polytope. This is actually a key distinguisher between the more common variety of
vector semantics that relies on word vectors directly and the variety that is presented
here, since without polytopes the ‘raw’ vectors for homonymous and polysemous cases
are indistinguishable.

A related question is how to distinguish the head from the subordinate elements
in a definition: how would the definition ship, small, open differ from open,
small, ship? Here we could rely on the fact that addition, after softmax, is not as-
sociative: σpa ` σpb ` cqq ‰ σpσpa ` bq ` cq, in fact it is the term added last that
would receive the greatest weight. More important is the observation that in this defini-
tion, open really means it lacks a deck (while an open bottle lacks a cork, and an open
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letter lacks the privacy protection offered by an envelope) so we have ‘open in the way
ships can be open’ so a more pedantic definition would be ‘ship, open as ship’ and of
course ‘small as ship’ for a boat is quite large on a default (human) scale. This gives
ship a weight of 3, open and small a weight of 1 each. After softmax (β “ 1) this
becomes (0.787,0.106,0.106).

In general, we will assume that the head carries larger weight than the modifiers. This
is especially clear in definitions such as London as city, @London. People, not justLondon
readers of the Wikipedia article that @London points to, but all competent speakers
of English, have a wealth of information about London. Much of this information (e.g.
images of Tower Bridge, Beefeaters, Parliament, . . . ) is non-linguistic (not pertinent to
grammar), and the projection on the subspace L is dominated by one component (one-
hot) on city.

The key link type in the algebraic (hypergraph) description we now turn to is the type 0
(is, is_a) link, which simply corresponds to set-theoretic containment: if A, as subset of
Rn is contained in B, we say that

lpAq is_a lpBq (1.1)

In the algebraic representation lexemes, and larger sentence representations, are hy-
pergraphs, hypergraph unification is a well-defined symbol-manipulation operation, and
such symbol manipulation can be performed by neural nets (Smolensky, 1990). In 2.3
we will present a more direct, geometric description in terms of a simple eigenspace
model, keeping in effect only the linear and the quadratic terms from the full generality
of the tensor model. This will answer a whole set of vexing problems, such as defining
the meaning of be, where even the magnificent LDOCE resorts to circularity, offering
the following senses:

1. used with a present participle to form the tenses of verbs
2. used with past participles to form the passive
3. used in sentences about an imagined situation
4. used in sentences to introduce an aim when you are saying what must be done in

order to achieve it
5. used instead of ’have’ to form the tense of some verbs
6. used to say that someone or something is the same as the subject of the sentence
7. used to say where something or someone is
8. used to say when something happens
9. used to describe someone or something, or say what group or type they belong to

10. to behave in a particular way
11. used to say how old someone is
12. used to say who something belongs to
13. used to talk about the price of something
14. to be equal to a particular number or amount
15. to exist
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We emphasize that we are not singling out LDOCE for unfair treatment here. The online
Cambridge Dictionary has a very similar assortment of ‘used to’ definitions:

1. used to say something about a person, thing, or state, to show a permanent or tempo-
rary quality, state, job, etc. He is rich. It’s cold today. I’m Andy. That’s all for now.
What do you want to be (= what job do you want to do) when you grow up? These
books are (= cost) $3 each. Being afraid of the dark, she always slept with the light
on. Never having been sick himself, he wasn’t a sympathetic listener. Be quiet! The
problem is deciding what to do. The hardest part will be to find a replacement. The
general feeling is that she should be asked to leave. It’s not that I don’t like her - it’s
just that we rarely agree on anything!

2. used to show the position of a person or thing in space or time The food was already
on the table. Is anyone there? The meeting is now (= will happen) next Tuesday.
There’s a hair in my soup.

3. used to show what something is made of Is this plate pure gold? Don’t be so cheeky!
Our lawyers have advised that the costs could be enormous. You have to go to college
for a lot of years if you want to be a doctor. Come along - we don’t want to be late!
Oranges, lemons, limes and grapefruit are types of citrus fruit.

4. used to say that someone should or must do something You’re to sit in the corner
and keep quiet. Their mother said they were not to (= not allowed to) play near the
river. There’s no money left - what are we to do?

5. used to show that something will happen in the future We are to (= we are going
to) visit Australia in the spring. She was never to see (= she never saw) her brother
again.

6. used in conditional sentences to say what might happen If I were to refuse they’d be
very annoyed. (formal) Were I to refuse they’d be very annoyed.

7. used to say what can happen The exhibition of modern prints is currently to be seen
at the City Gallery.

8. to exist or live (formal) Such terrible suffering should never be. (old use or literary)
By the time the letter reached them their sister had ceased to be (= had died).

More traditional dictionaries, such as Webster’s New World (Guralnik, 1958), use even
more vague terms in the definition, such as ‘used to express futurity, possibility, obli-
gation, intention, etc’; The Concise Oxford (McIntosh, 1951) has, distributed among
several senses, ‘exist, occur, live, remain, continue, occupy such a position, experience
such a condition, have gone to such a place, busy oneself so, hold such a view, be bound
for such a place, belong under such a description, coincide in identity with, amount to,
cost, signify’. A more unified treatment seems warranted, and will in fact be provided in
2.3.
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1.5 The algebra of definitions

The method of capturing meaning by definitions is at the heart of our undertaking: each
definition (line in the dictionary) corresponds to an equation or inequality in the over-
all system that determines the meaning of each part. Of the three methods discussed
here, compositional semantics has long been dominated by the formulaic approach. This
approach would have to be coupled to a theory of grounding and a theory of meaning
postulates to fulfill its promise (see S19:3.7-8 for details) and we will not spend any time
trying to turn our algebraic formulas into formulas of logic.

The use of (hyper)graphs is an algebraic method on its own, one that can be matched
to the compositional manner in which we build the formulas by means of parallel syn-
chronous rewriting. When it comes to detaching meaning representations from linear
ordering, graphs are particularly useful, but to take full advantage of them we will need
a workable definition of a ‘well-formed hypergraph’. To this end, let us first recapitulate
the syntax of the definitions we surveyed 1.3 in context-free rules.

1. DefinitionÑ Definiendum Definiens (% Comment)
2. DefiniendumÑ Atom
3. DefiniensÑMarkedClause (’,’ MarkedClause)˚

4. CommentÑ (ArbitraryString)
5. MarkedClauseÑDefaultClause|PositionClause|ComplexClause|Clause
6. DefaultClauseÑ’x’Clause’y’|λ
7. PositionClauseÑ PositionMarker mark_ UnaryAtom
8. ComplexClauseÑ tDefiniensu
9. PositionMarkerÑ ’“’SuffixMarker|PrefixMarker|InfixMarker””
10. AtomÑ PlainAtom|NumberedAtom|ExternalAtom|PositionMarker
11. NumberedAtomÑ PlainAtom’/’Number
12. ExternalAtomÑ ’@’WikipediaPointer
13. PlainAtomÑ UnaryAtom|BinaryAtom
14. UnaryAtomÑ Asia|acid|...|yellow|young|=agt|=pat
15. BinaryAtomÑ at|between|cause_|er_|follow|for_|from|has|in|

ins_|is_a|lack|mark_|on|part_of|under
16. ClauseÑ 0Clause|1Clause|2Clause|FullClause
17. 0ClauseÑ Atom’[’Definiens’]’|Atom’(’Definiens’)’|Atom
18. 1ClauseÑ BinaryAtom Clause
19. 2ClauseÑ Clause BinaryAtom
20. FullClauseÑ ComplexClause BinaryAtom ComplexClause

As usual in syntax definitions, | in a rule indicates choice and () indicates optional-
ity. (This is the metalanguage: in the language itself we use angled brackets to denote
optional parts of definitions, see Rule 6.) This way, 1. abbreviates two rules, one con-
taining no comment and the other containing a Comment after the % sign, which can be
expanded to an arbitrary string by Rule 4. Needless to say, comments are irrelevant for
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the emerging representations, and in the system of parallel synchronized rewriting that
we will turn to in 1.6 rules governing the comments will be discarded.

In regards to Rule 2, it should be noted that Atom is intended in the sense of ‘dictio-
nary entry’ and may include expressions such as I beg your pardon which have a unitary
meaning ‘please repeat what you just said’ quite disinct from their compositional sense.
The intuition is the same as with lexemes (cf. S19:3.8,4.5) both in linguistics and lexico-
graphic practice: different senses e.g. for chrome1 ‘hard and shiny metal’ and chrome2
‘eye-catching but ultimately useless ornamentation, especially for cars and software’ of-
ten correspond to different words in another language (and when they systematically fail
to, we begin to suspect that the purported senses are not distinct after all).

The right-hand side of a definition, the Definiens, is given as one or more marked
clauses. The marking can be for defaults, marked by xy, see Rule 6; for position (within
word, or more rarely, among words), marked by doublequoted material, see Rule 7 and
2.2; for complexity, set-theoretical comprehension of several elements, marked by tu; or
it may not be marked for any of these, yielding a clause. (As a practical matter, less than
20% of 4lang defining clauses are marked.)

In a similar manner, we differentiate between ordinary (plain) atoms, and those that
are numbered for disambiguation using Rule 11. NumberedAtoms are there simply to
provide the same kind of sense disambiguation that lexicographers generally do by
subscript numbering, except that we find it expedient to keep the index set 1–3,999
fixed, rather than restarting indexing for each (English) word. For example, we define
set/2746 somewhat similarly to mathematical sets as group, has many(item), set/2746
together, unit, item has common(characteristic) but set/2375 as set/2375
=agt cause_ {=pat at position[<stable>,<pro- per>]}.

In a more hardcore system we could keep only the numbers: the words are there only
to help with human readability. It is a historical accident that English uses the same sylla-
ble for both 2746 and 2375, but from the Hungarian-Latin-Polish bindings it is evident
that kollekcio1 classis kolekcja and tesz pono kl1as1c1 are not the
same thing. (In this particular case this would also follow from their lexical categories,
see 2.1, but these are never used for disambiguation.) Generally we suppress the dis-
ambiguation indexes, but note that the ambiguity of English set cannot be expressed by
making these optional: whenever there is more than one lexical entry with the same En-
glish printname, disambiguation numbers are obligatory (as the true heads of the Num-
beredAtom construction, they are the only obligatory part).

Another kind of specially marked atom is provided in Rule 12 by pointers to the
encyclopedia. These are given in abbreviated style: for example the Asia in @Asia cor-
responds to https://en.wikipedia.org/wiki/Asia. Finally, the use of posi-
tion markers, doublequoted strings with an explicit insertion locus marker __ that shows
whether the definiendum is prefixed, suffixed, or infixed (Rule 9) is no more than a sim-
ple workaround to make sure semantics doesn’t get entangled in all the technical issues
of morphophonology (see 2.2 and 2.5 for further discussion).
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Rule 3 is the one we started out with: a definition is the comma-separated conjunc-
tion of one or more (marked or unmarked) Clauses. Only a quarter of the definitions have
four or more conjunct clauses, and over a quarter have only one, the average number of
clauses is 2.68. To understand the internal structure of a clause, we need to look more
closely at the alternatives in Rule 16. 0Clauses are elementary predicates, and Com-
plexClauses can be pretty much anything a definiens can be. The 1Clause and 2Clause
constructs serve to help make the syntax human-readable, at least for those humans who
are comfortable with SVO word order. Take something like
blood ve1r sanguis krew 2599 N

liquid, in body, red

The first clause simply says that blood is a liquid, and the third one says it is (or is_a,
4lang makes no distinction) red. In the middle we find a 1Clause (subject clause,
Rule 18) that puts blood to the left, and body to the right of a relational predicate in,
guaranteeing that blood in body is part of the definition of blood, without making
it appear in the definiens. 2Clauses (object clauses, Rule 19) behave similarly:
mud sa1r lutum bl1oto 2056 N

substance, wet, earth, soft, sticky, water in

abbreviating water in mud which makes clear that it is mud that contains water,
not the other way around. Relational elements are discussed further in 2.3, but Rule
15 makes clear that they come from a small, closed list containing only 16 elements.
Similarly, unary atoms come from the closed list given in the Appendix, which represents
considerable reduction compared to the list of 1,200 elements in S19:4.8.

The method of having implicit elements in a rule harkens back to the Pān. inian device
of anuvr. tti (see Kornai, 2007 7.3.1 for a brief description, and Joshi and Bhate, 1984
for a full treatment). For Pān. ini the goal of anuvr.tti is to enhance brevity in order to
lessen the effort to memorize (improve human recallability), while here the shortening of
definitions enhances human readability. For simplicity, Release V2 of 4lang provides
both a more machine-readable expanded version, and a more human-readable compacted
one, with software to create each from the other, see 9.5.
Definition 4 An (edge-labeled, finite) hypergraph with an alphabet (label set) Σ, a (fi-
nite) vertex set V , and (finite) hyperedge set E is defined by a mapping att:E Ñ V ˚

that assigns a sequence of pairwise distinct attachment nodes att(e) to each e P E and
a mapping lab:E Ñ Σ that labels each hyperedge. The size of the sequence att(e) is
called the type or arity of the label lab(e). As Eilenberg machines (S19:Def.4.4) come
with input and output mappings, hypergraphs come with a sequence of pairwise distinct
external nodes denoted ‘ext’. This sequence may be empty, a choice that makes the more
standard notion of hypergraphs a special case of our definition.

While the definition of hypergraphs stated above is reasonably standard, and it enables
hooking up our machinery with that of s-graph grammars (Courcelle and Engelfriet,
2012; Koller, 2015) by means of synchronized string and hypergraph rewriting in 1.6,
in 4lang we concentrate on a simpler class of (hyper)graphs we will call hypernode
graphs or RDF graphs or just 4lang graphs.

https://en.wikipedia.org/wiki/Hypergraph
https://en.wikipedia.org/wiki/Hypergraph
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Definition 5 A 4lang graph or hypernode graph contains only ordinary directed edges
(arrows) between a starting and an endpoint, these can be labeled 0,1, or 2, no other edge
labels (colors) are countenanced. The hypernodes are ordered triples (x,y,z) where
x or z may remain empty, As in the Resource Description Framework, members of the
triple are called the ‘subject’, ‘predicate’, and ‘object’ of the triple. Subjects and objects
(but not predicates) can themselves be 4lang graphs.

This definition is again supported by a series of syntactic conventions to support human
readability. Edge type 0 is used both for attribution John is brave and for IS_A indis-
criminately. In larger graphs, we will write dashed arrows,´Ñ instead of 0

Ñ. Edge type
1 has the type number suppressed, we write Ñ rather than 1

Ñ. Finally edge type 2 will
be depicted by a dotted arrow ¨ ¨ ¨ą rather than 2

Ñ.
In triple notation, x Ð y can be written as [x,y,], and y ¨ ¨ ¨ą z can be written

as [,y,z]. A full triple [x,y,z] could be depicted as x Ð y ¨ ¨ ¨ą z. For ease of
presentation, we introduce a special symbol @ (not to be confused with the external
pointer delimiter of Rule 12 above) that will be placed in the middle of edges that should
in their entirety be the terminal point of some other edge. Consider the sentence video
patrem venire traditionally analyzed in Latin grammar with an infinitival object, meaning
that the object of seeing is neither the father, nor his coming, but rather the entire ‘coming
of father’. An English translation could be I see father’s coming or even I see father
coming.

video

��
patrem @ // venire

Fig. 1.4: Video patrem venire

In Chapter 5 this kind of graph structure will be further enriched by mappings from
graph (hyper)nodes and (hyper)edges to small discrete partially or fully ordered sets.

Definition 6 A valuation is a partial mapping from some elements (both nodes and
edges) of a hypergraph to a finite poset.

We will see in Chapter 2 in far greater detail how morphology and syntax are handled
by the same mechanism, and here we omit the details of how syntax and morphological
analysis of Latin sentences ordinarily proceeds hand in hand (S19:5.3).

Semantically, we have two units father, and come, the former being the subject of
the latter. This is expressed in 4lang syntax by father[come] or come(father),
keeping alive both function-argument alternatives explored in early Montague Gram-
mar. Since this entire clause is the object of seeing, the whole sentence can be written

https://bit.ly/3gVpFsD
https://bit.ly/3gVpFsD
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as (1stsg) see father[come]. We parenthesized the 1st singular pronoun, not
overt in the Latin original, but inferable for the conjugated form of the verb, in antic-
ipation of a fuller discussion of pronouns in 3.3. In RDF-style triple notation we have
[I,see,[father,come,]].

In terms of hypergraphs, we can consider father a single (atomic) vertex, but in
light of the 4lang definition
father apa pater ojciec 173 N

parent, male

we are equally free to consider it a small hyperedge containing two vertices parent and
male. We do not fully explore the hypergraph connection here (see S19:4.1, Nemeskey
et al., 2013, Ács and Recski, 2018, and 7.4 for further discussion) but we note that our
concept of “doing grammar by spreading activation” is almost identical to that of Jack-
endoff and Audring, 2020 7.2.3. This is not at all surprising, as they both go back to the
same ideas (Quillian, 1969; Collins and Loftus, 1975), but it is worth emphasizing that
this view comes hand in hand with obliterating the usual distinction between rules and
representations. In effect, all the work is done by the representations and there are only a
few generic rules that apply to all representations, primitive and derived, intermediary or
final, the same way. This uniformity, characteristic of early combinatorial system like the
untyped lambda calculus (Church, 1936) and categorial grammar (Ajdukiewicz, 1935)
is maintained in all implementations of 4lang , be they by Eilenberg machines (which
directly formalize spreading activation), by (hyper)graph kernel methods (Ghosh et al.,
2018), or by direct linear algebraic manipulation.

1.6 Parallel description

So far, we have three main approaches to endowing natural language expressions with se-
mantics: the formulaic, the geometric, and the algebraic approaches discussed in 1.3, 1.4,
and 1.5 respectively. All three have a long tradition going back to the 1960s, with many
current variants. No doubt other approaches, such as the (now deprecated) automata-
theoretic work, are feasible. The view we take here is that all these approaches are alge-
bras of their own, and as such they can be connected by a parallel hyperedge rewriting
system with as many branches as there are contenders for the notion ‘semantic repre-
sentation’. For example, the Abstract Meaning Representation (AMR) theory Banarescu
et al. (2013) could be added as another branch, and for those content with the rough se-
mantics encoded in explicit marking of head-dependent relations, Universal Dependen-
cies could be added as yet another branch. In fact, some of the applied work discussed
in 9.1 already transduces UD to 4lang .

The idea of syntax-directed translation, going back to Aho and Ullman, 1971, is stan-
dard both in compiler design and in semantics, where it is considered to implement the
Fregean principle of compositionality (see S19:1.1) by two systems operating in parallel:
a syntax that, proceeding from the bottom (leaf) nodes gradually collects these together,
and a semantics that computes at each step a formula based on the formulas associated

https://universaldependencies.org
https://universaldependencies.org
https://universaldependencies.org
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to the leaves and associates it to the parent node, using only synthesized attributes in the
sense of Knuth, 1968. The basic idea has been fruitfully generalized for more power-
ful rewriting methods (Rambow and Satta, 1994; Shieber, 2004), and here we suggest,
with implementation planned for Release V3, a hyperedge replacement framework (see
Drewes, Kreowski, and Habel (1997) for a detailed overview) for two reasons: first, be-
cause it offers great clarity in regards to separating the metalanguage from the language,
the tools from the objects themselves, and second, because it has an efficient implemen-
tation, the Algebraic Language Toolkit (Alto).

Alto (Gontrum et al., 2017) is an open-source parser which implements a variety
of algebras for use with Interpreted Regular Tree Grammars (Koller and Kuhlmann,
2011; Koller, 2015) to simultaneously encode transformations between strings, trees,
and 4lang graphs. Alto has been used for semantic parsing both in Groschwitz, Koller,
and Teichmann, 2015 and in the applied work we will discuss in Chapter 9, but a full Alto
implementation of 4lang is still in the planning stage. While this is hard to guarantee in
advance, early experience suggests Alto will work well as the computational substratum,
the kind of abstract machine the calculus is implemented on. S19:Def 5.8 used Eilenberg
machines for implementing spreading activation, an approach we still consider viable for
theoretical clarity, but one that has not gained traction beyond a small group of devotees.
As Maler and Pnueli, 1994 already warned

Another sociological problem associated with Eilenberg’s construction is the el-
egant, concise, and motivationless algebraic style in which it is written, which
makes it virtually inaccessible to many contemporary theoretical computer sci-
entists.

This time we go with the flow, and take to heart William Stein’s maxim: Mathematics
is the art of reducing any problem to linear algebra. But much of the linear algebraic
development has to wait until Chapter 6 and beyond, and in the meantime we assume
a different, still algebraic but perhaps better motivated, system built on the hypernode
graphs of Definition 5. To prevent any confusion, we emphasize that the machinery we
propose, hyperedge replacement, uses a metalanguage that relies on a different notion
of hypergraphs (Definition 4) than the object language. That the metalanguage is not the
same as the object language should come as no surprise to students of logic or computer
science: a well known example is regular expressions which describe finite state object
languages but use a context-free metalanguage.

One particular semantic representation that we shall pay attention to is the transla-
tional approach whereby the semantics of one natural language is explicated in terms
of another natural language. For this to work, we need to consider each natural lan-
guage a kind of string algebra, operating on semantic atoms, morphemes. For the sake
of simplicity, we will consider only one string operation, concatenation, even though
more complex nonconcatenative operations are present in many languages. To the extent
syntactic structure explicates semantic relations (e.g. the head-dependent relation that

https://bitbucket.org/tclup/alto
https://bitbucket.org/tclup/alto
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Nonconcatenative_morphology
https://en.wikipedia.org/wiki/Nonconcatenative_morphology
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plays a central role in dependency grammar), we may even decorate the nodes with the
appropriate graph structure links (see Chapter 9).

The atomic components of all algebras are the morphemes and words (including
multi-word expressions that contain orthographic word boundaries (whitespaces). These
are conceptualized as small, and individually rather limited nodes loosely connected by
an is_a network. This network is a DAG but not necessarily a tree: undirected cycles
are common, as in the classic Nixon diamond (Reiter and Criscuolo, 1983). Edges of
this network are labeled 0. There are two other networks, with edges labeled 1 and 2. In
these, no undirected or directed cycles have been found, but confluences (directed edges
originating in different nodes but terminating in the same node) are not rare. Rough
translational equivalents are provided across the 4 languages of 4lang and in principle
pivot-based translation across these using the synchronous rewrite mechanism is possi-
ble.

This is not to say that the elementary components (nodes) are devoid of non-linguistic
content: they may contain pointers pointing to all kinds of encyclopedic (verbal) knowl-
edge as well as non-verbal memory: sounds, images, smell. Further, activation of such
may bring activation of the nodes, so these pointers (associative links) are often bidi-
rectional, or better yet, directionless. The entire set of nodes is viewed as adiabatically
changing: new nodes are added as the individual, whose linguistic capabilities are being
modeled, is acquiring new words/morphemes.

In addition to these static node-like structures, we permit the building of more dy-
namic structures, hypernodes, by a process of grouping. In the simplest case, this is just
coordinating a few elementary nodes: instead of Tom, Dick, and Harry we can refer to
the collective entity they form as the boys. Typically, hypernodes are nonce elements:
boys may very well refer to other groups, say Bill and Dave, depending on context.
Such temporary configurations, best thought of as the meanings of constituents, are de-
noted in the syntax by curly brackets. On rare but important occasions we will also
encounter strongly lexicalized groupings we call schemas. For example, we will distin-
guish place, defined as point, gen at from {place}, a complex schema weplace
will discuss in great detail in 3.1.

One conceptual difficulty we already touched upon in 1.5 is that nodes and hy-
peredges are not that different. In fact, when we define fight as person wantfight
{harm at other(person)}, ins_ weapon this means that we can at any
time replace the node fight by the hypernode {person want {harm at other
(person), ins_ weapon} salva veritate. This kind of substitution plays a major
role in the low-level deduction process that takes place synchronous with text compre-
hension: when we hear John fought the coyote with his bare hands we automatically put
bare hands in the ins_ slot and typecast it as a weapon.

Complex deduction like this will have to be built from more elementary operations.
The nodes (in what follows, we well refer to hypernodes also as nodes, unless there
is a specific reason to distinguish the two) are capable of (i) activating themselves and
adjacent edges to various degrees; (ii) copying themselves (triggered by the keyword

https://en.wikipedia.org/wiki/Multiword_expression
https://en.wikipedia.org/wiki/Multiword_expression
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other); (iii) unifying subnodes. This unification, which is automatic for nodes named
identically (or for the element gen, which is capable of unification with anything), is
not to be confused with coercion (see 3.3), though the effects are somewhat similar.

1. DefinitionÑ Definiendum Definiens (% Comment)

Unlike in generative theories of the lexicon (Pustejovsky, 1995), where the process of
enumerating senses is assumed to start from some start symbol S, we see our system
of definitions as a network (hypergraph). This is a large structure with tens, if not hun-
dreds of thousands of hypernodes characterizing the lexical component of adult linguistic
competence, and there is no starting point as such. Even developmentally, the first words
learned will often correspond to rather complex sensory units (mama is a great deal more
complex than light) as long as they are motivationally salient. As diary studies of early
vocabularies clearly demonstrate, new words are often completely unattached to the ex-
isting inventory: before a child learns peepee or doodoo (apparently equally applicable
for toilets, people on the toilet, or hearing the toilet flush) there is not one word related
to excretion that could be used to describe the meaning (Rescorla, 1980).

For us, this rule plays a key role in expansion, the operation whereby we substitute the
definiendum by the definiens. We emphasize that this is not a generative operation, but a
deductive one that replaces one hypergraph, in which the definiendum appears as a node,
by another one, where this node is replaced by the entire definiens, typically resulting
in a more complex hypergraph. For example, in John appears drunk we may replace
appear by its definition gen think {=agt is_a =pat} to obtain gen think appear
John is_a drunk. As we shall see in Chapter 9, expansion, now implemented using
the GraphMatcher class of the NetworkX library, plays a key role in analyzing lexical
entailment (Kovács et al., 2022a). We return to this operation, our model of spreading
activation, in 7.4.

In terms of vector representations, substitution doesn’t change the actual system of
vector space objects described, but may bring to light a view of these objects from an-
other basis. Consider for example crime, defined as action, illegal and trace crime
illegal through the system by expanding it as bad for_ law to obtain action, illegal
bad for_ law. By tracing further bad as cause_ hurt we end up with an even bad
more compact definition of crime: action, hurt law – this has the advantage
that we don’t have to get sidetracked with the issues of experiencer subjects (see 2.4)
that the use of for_ would bring in tow. At the same time, by highlighting the fact
that crimes are actions, this definition makes evident that crime has a temporal di-
mension (and an agent, given that action is defined as person do). A noun like action
tree which is defined by plant, has material[wood], has trunk/2759, tree
has many(branch) will have neither of these implications.

2. DefiniendumÑ Atom

Definienda are always numbered atoms. (The numbering is generally omitted for ease
of presentation.) Semicompositional definienda, where a great deal (but not all) of the

https://bit.ly/3Bjjkz1
https://bit.ly/3Bjjkz1
https://networkx.org/documentation/stable/index.html
https://networkx.org/documentation/stable/index.html
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meaning can be inferred from the parts will have to be adjoined as atoms. We discuss
the key technique, subdirect decomposition, in 2.2, but offer a simple, and from the
lexicographic standpoint easy to defend, example here.

Consider preferred stock ‘stock that entitles the holder to a fixed dividend, whose pay-
ment takes priority over that of ordinary share dividends’ (Oxford) ‘has a higher claim
on assets and earnings than common stock has’ (Investopedia). The defintion stock,
preferred captures most of the meaning, both that preferred stock is a kind of stock,
and that it is in some sense preferred, a notion defined in 4lang as {gen like/3382preferred
=pat} er_ {gen like/3382 other}, =agt choose =pat. However, this
does not say under what circumstances will this preference be manifest. Clearly it not
the preference of the buyer that is relevant here, for if it were, nobody would ever buy
common stock. The technical definition makes clear that it is for dividends, and in case
of the division of assets, that preferred stock has an advantage, and this fact is external
to (cannot be inferred from) the meaning of prefer, preferred, or preference.

Semicompositional expressions are spread over a continuum with fully composi-
tional expressions at one end, and entirely non-compositional ones at the other. For a
multi-word example consider go Dutch ‘split the bill after a meal’ and for a single word
consider went which will mean, under any analysis, the past thense of go, *go-ed. If
we assign meaning representation f to expression F and g to G, no case where the
meaning of FG involves some extra element h beyond f and g can be considered fully
compositional. A great deal depends on the lexicographic purpose: the same FG will
be considered compositional if for some reason we consider the h element negligible,
and non-compositional if we must make substantive use of it. For example the difference
between hold and give is generally quite clear, yet in the expressions hold/give a lecture
they are fully interchangeable, acting as light verbs (Jespersen, 1965) that contribute lit-
tle beyond adding a verbal aspect to lecture which, in isolation, is ambiguous between
noun and verb.

3. DefiniensÑMarkedClause (’,’ MarkedClause)˚

In terms of graphs, each of the defining clauses are linked to the definiendum by type 0
links. In terms of the vectorial representation, the polytopes corresponding to the clauses
are intersected. Noncompositionality arises precisely in those cases where the intersec-
tion of the clause polytopes is a superset of the definiendum polytope.

4. CommentÑ (ArbitraryString)

Comments are restricted to a separate column of the file. Since the comments themselves
only benefit the human reader of the file, the rule is a no-op as far as its effect on meaning
is concerned. Most of the comments list potentially interesting cross-linguistic tidbits,
e.g. that the hand of an English person has four fingers and a thumb, while the hand of a
Hungarian has five fingers, as the thumb is called nagyujj ‘big finger’. Phenomena such
as this are common (indeed, typical) and they served as motivating examples for taking
the abstract, algebraic view.
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5. MarkedClauseÑDefaultClause|PositionClause|ComplexClause|Clause

Unless overriden, default clauses are carried (credulous inference). This hides a great
deal of complexity, both in terms of the deontical status of default existents (see 6.2) and
the default logic overall (see 6.4). When the default fails, we use rewrite rule 6.

Position clauses, just as mark_, are language-specific. They are used in a rudimen-
tary fashion throughout the book, mostly to indicate whether a form is free-standing or
affixal, and if an affix, is it a prefix or a suffix, and sometimes to describe slightly more
complex situations (infixes, circonfixes, tripartite constructions like er_). Of necessity,
we abstract away from a great deal of micro-syntax, since most of the ‘tinkering’ is both
highly syntactic and highly language-specific, while our focus is with the semantic and
the universal.

Complex clauses are typically used in subordinate position. As an example, take at-
tract =agt cause_ {=pat want {=pat near =agt}}. What is being caused attract
is itself a complex state of affairs, the patient wanting something, and that something
again is a complex state, the patient being near the agent.

Rule 5 groups all these together with simple clauses, but this is only for the conve-
nience of the formula parser. There are no deep similarities between default clauses and
complex clauses, but one is surrounded by xy and the other by tu so the notation brings
them close.

6. DefaultClauseÑ’x’Clause’y’|λ

In expansion, the second alternative means we do override i.e. we omit the default
for some reason. Consider sugar defined as material, sweet, <white>, in sugar
food, in drink. We still have to deal with brown sugar and not get entangled in
some sophistry about how brown is really a kind of white, or how brown sugar is both
brown and white, etc., see 6.4.

7. PositionClauseÑ PositionMarker mark_ UnaryAtom

mark_, as opposed to the non-technical mark sign, visible, is a semi-technical mark
term, the closest we will get to the Sausserean sign: its agent is a sign, its patient is a
meaning, and it itself means ‘represent’: mark_ =agt[sign], =pat[meaning], mark_
represent. A typical example would be in the last clause defining the English word
buy we discussed in 1.4: =agt receive =pat, =agt pay seller, "from buy
_" mark_ seller. Whatever follows the string “from” is the seller in English – in
Hungarian it would be whatever precedes the ablative case marker.

8. ComplexClauseÑ tDefiniensu

The key distinction between simplex and complex clauses is that the former appear in
intersective situations, while the latter are unions, both in graphs and in vectors. Consider
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defend =agt cause_ {=pat[safe]}. The agent doesn’t cause the patient, or the defend
safety, what the agent causes is the safety of the patient, a complex situation with two
components. In our example of attract above, what the agent causes is also a complex
situation, one that has another complex situation as one of its components.

Here it is perhaps worth emphasizing that there cannot be two agents, or two patients,
or indeed, two of anything, unless this is signalled by the other keyword. Unification
is an automatic low-level process that we have not incorporated in these rewrite rules in
order to keep them simple, but are used in the IRTG/Alto system under development.

9. PositionMarkerÑ ’“’SuffixMarker|PrefixMarker|InfixMarker””

Position clauses are language-dependent, and 4lang only gives them for English. They
are primarily used in morphology, where the underscore _ is written together with the
stem, and in the rare cases where English uses positional marking (e.g. subjects in prever-
bal, objects in postverbal position) they are separated by whitespace. The reader should
not take this simple notation as some profound statement about proto-syntax – position
markers appear in less than 5% of the dictionary, and English syntax offers many con-
structions that are inconvenient to describe by this mechanism (see 2.1 on the autonomy
of syntax).

The system gives a good indication of what is what, e.g. that in buy "from _"
mark_ seller, but without more developed morphophonological machinery this is
generally insufficient to drive a parser. This is because the quoted strings rarely stay
invariant: there can be all kinds of changes both to the stem and to the affix (e.g. in
the Hungarian ablative, -tOl the choice of realizing O as ó or ő depends on the vowel
harmonic properties of the stem), linking vowels or consonants may appear, material
may get truncated, there are suppletive forms, etc etc.

10. AtomÑ PlainAtom|NumberedAtom|ExternalAtom|PositionMarker

Atoms, just as clauses, are grouped here together for ease of parsing. Loosely speaking,
an Atom is a minimal entry in 4lang – a PlainAtom is just a word or morpheme,
signifying a unique concept. Non- and semi-compositional entries get their own atoms
(see discussion of Rule 2 above). We emphasize that the presence of compositionally
non-derivabable meaning is insufficient for us to declare the entry non-compositional,
for example, the Battle of Jena is just that, a battle that took place at Jena. We may
very well be aware that Clausewitz was captured by the French in this battle, but such
knowledge belongs in the encyclopedia, not the lexicon. Such knowledge is inessential
for understanding what this battle was, even a graduate student of history can get an A
on an exam or paper that doesn’t mention this fact. This is in sharp contrast to the case
of preferred stock: not knowing how it is preferred amounts to not understanding the
MWE.
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11. NumberedAtomÑ PlainAtom’/’Number

The numbering of the Atoms, effected by a slash followed by a serial number below
4,000, is just the standard disambiguation device to get around homonymy. A more
human-friendly dictionary would use subscripts for different word senses. At the core
level we are most interested in (Kornai, 2021) the numbering carries very little load:
over 95% of the English headwords has only one sense in 4lang . An interesting coun-
terexample would be place/1026 ‘locus’ versus place/2326 ‘spatium’, see 3.1 for
discussion.

12. ExternalAtomÑ ’@’WikipediaPointer

ExternalAtoms are pointers to Wikipedia. They refer to concepts about which a great
deal is known, such as the Battle of Jena, where this knowledge is properly considered a
part of history, or Tulip, where the knowledge is really part of biology. As we discussed
in 1.2, linguistic semantics is a weak theory that cannot serve as the foundation for all
this kind of knowledge amassed by the sciences over the centuries.

13. PlainAtomÑ UnaryAtom|BinaryAtom

Almost all our atoms are unary. Binary atoms are a small, closed subset (see Rules 14-
15), and we do not permit atoms of higher arity (Kornai, 2012).

14. UnaryAtomÑ Asia|acid|...|yellow|young|=agt|=pat

There can be millions of unary atoms such as pointers to the encyclopedia (see Chap-
ter 8). 4lang concentrates on the defining set, where we already know that less than
a thousand items are sufficient. However, these are not defined uniquely. In linear al-
gebraic terms, it is just the dimension of the basis that is given, the basis vectors can
be chosen in many ways. A handful of elements like =agt, =pat, wh, ... are
reasonable candidates from a universal standpoint, but many others, including natural
kinds, are not. In (Kornai, 2010a) we wrote

The biggest reason for the inclusion of natural kinds in the LDV is not conceptual
structure but rather the eurocentric viewpoint of LDOCE: for the English speaker
it is reasonable to define the yak as ox-like, but for a Tibetan defining the ox as
yak-like would make more sense. There is nothing wrong with being eurocentric
in a dictionary of an Indoeuropean language, but for our purposes neither of these
terms can be truly treated as primitive.

More important than the actual selection of defining words is the method we employ
in proving that the set so selected is actually capable of defining everything else. Once
this is demonstrated, the issue of which elements are chosen is seen to be equivalent to
deciding which equations to simplify by substituting the definiens for the definiendum.

https://bit.ly/3E1B0A9
https://bit.ly/3E1B0A9
https://en.wikipedia.org/wiki/Tulip
https://en.wikipedia.org/wiki/Tulip
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How do we define words in general? Our method is akin to the use of multi-stage
rockets in lifting a payload. In Stage 1, we simply look up the word in the dictionary, typ-
ically LDOCE. For example, at intrude we find ‘interrupt someone or become involved
in their private affairs in an annoying and unwanted way’. In Stage 2, those familiar with
the system will translate this to =agt cause_[pause in =pat], after(=agt
part_of =pat), =agt cause_ [=pat[angry]] manually. In the implemen-
tation we use the Stanza NLP package1 to create a UD parse of the definition, and the
dict_to_4lang system (Recski, 2018) to transform this to 4lang syntax.

One can be far more faithful to the original definition than we were here: clearly an-
noying/unwanted is not exactly the same as make angry. If this is significant for some
purpose, we may trace the LDOCE definition of annoy ‘make someone feel slightly an-
gry and unhappy’; that of slightly to ‘a little’; and adjust the last clause of the above defi-
nition to =agt cause_[=pat[angry[little]]]. The claim here is that there is
no shade of meaning that is inexpressible by these methods, not that the automatic sys-
tem can already create perfectly faithful definitions for each and every word in each and
every context for each and every langauge. As is typical in NLP, the automated systems
are somewhat inferior to the best human-achievable performance. We return to the matter
of contextual disambiguation, whether to choose fall/2694 ‘cado’ or fall/1883
‘autumnus’ in 6.4.

For other languages, we need to begin (Stage 0) with a bilingual dictionary trans-
lating the word into English, and proceed from there. Let us consider a word that is
often claimed to have no English equaivalent, schadenfreude ‘pleasure derived by some-
one from another person’s misfortune’ (Oxford). In Stage 1, we consult LDOCE to find
that pleasure can be replaced by joy. This is not to say that these two words are per-
fect synonyms, but whatever shades of meaning distinguish the two appear irrelevant in
the definition of schadenfreude. In Stage 2, we can go even further, and replace joy by
its 4lang definition sensation, good to obtain ‘good sensation caused by otherjoy
person’s harm’ which becomes in the formal language of definitions sensation,
good, {other(person) has harm} cause_. In this step we switched from
misfortune to harm manually, because the former specifically implies bad luck (and
thereby absolves the experiencer of responsibility) while the latter stands neutral on
whether the person is the cause of their own bad situation or not. Since schadenfreude is
appropriate for both cases, we need to revise the Oxford definition a bit.

This last step of emending a definition may look at first blush as something beyond
the powers of any automated dictionary builder algorithm. But keep in mind that we
already have several systems that assign vectors to words purely on the basis of corpora,
and we may resort to these in refining any definition. Even more important, the addition
of a new definition will bring in one more unknown, the definiendum, and one more
equation, the definition itself. Therefore, if the original system was solvable, the new
one will also be solvable.
1 https://stanfordnlp.github.io/stanza
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15. BinaryAtomÑ at|between|cause_|er_|follow|for_|from|has|in|

ins_|is_a|lack|mark_|on|part_of|under

Unlike unaries, which come from a large open list, binaries are restricted to a small
closed set. We represent unaries by vectors, as standard, or by polytopes surronding
these, a slight extension of the standard. For binaries we use matrices, which are much
more expensive, n2 parameters for n-dimensional vectors. By far the largest group are
spatial (or, in the sense of Anderson (2006), ‘local’) cases and adpositions which we
will discuss in 3.1. These are the prototypical ones, and we will see how temporal, and
even more abstract cases such as the instrumental, can be brought under the same formal
umbrella (see 6.2 for instruments, and 2.4 for causation).

16. ClauseÑ 0Clause|1Clause|2Clause|FullClause

For ease of parsing we group together a variety of Clauses subject to different expansion
in an anuvr.tti-like process, as explained below.

17. 0ClauseÑ Atom’[’Definiens’]’|Atom’(’Definiens’)’|Atom

0Clauses are defining clauses linked to the definiendum by a 0 link. A typical example
would be below defined as under, or fast defined as quick – these are to be under- below

faststood as ‘below is a (kind of) under’ or ‘fast is a (kind of) quick’. When there are several
defining 0Clauses, as is typical, the definiens is in 0 ‘is/is_a’ relation to each of them:
dot mark, small, round means ‘a dot is a mark, a dot is small, a dot is round’. dot
The square brackets are also abbreviating is/is_a in A[B] constructions, as in energy energy
work[physical] which means ‘energy is work (that) is physical’ or, for even better
conformity with English syntax, ‘energy is physical work’. (We exhort the reader not to
get bogged down in high school physics where energy is capacity for work. Our defini-
tions, intended to capture a naive world-view, will rarely stand up to scrutiny from the
contemporary scientific standpoint.)

Constructions involving parentheses, B(A) are strictly equivalent to A[B] and are
used only when this order sounds more natural. Example: powder substance, powder
more(particle). There is nothing in the system of definitions that strictly requires
this: we are catering to English syntax where adjectives are preceeding the noun but can
be reversed as in blue box, the box is blue but numerals and similar quantifiers don’t
really tolerate the same reversal four legs, ??the legs are four.

18. 1ClauseÑ BinaryAtom Clause

1Clauses are used whenever the definiendum should occupy the subject (1) slot in the
definiens. Example: bee insect, has wing, sting, make honey. The im- bee
plicit 0Clause links are bee is_a insect, bee is_a sting (yes, and dog is_a bark, a design
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decision that makes a great deal of sense within the larger system of unaries and binaries
we will discuss in 2.1) but we will not say that a bee is_a ‘has wing’ or a ‘make honey’.
Rather, has is a BinaryAtom, and make is a non-atomic binary (an obligatory transitive
as its definition contains an =agt and a =pat). When a clause begins with a binary, we
automatically put the definiendum in its subject slot ‘bee has wing’, ‘bee make honey’.

19. 2ClauseÑ Clause BinaryAtom

2Clauses are similar to 1Clauses, except the definiendum fills the object slot of the defin-
ing clause. Example: food substance, gen eat ‘food is what people eat’ (see 4.5food
for the treatment of the generic quantifier gen). In parsing, each clause needs to be in-
spected whether it has a binary, and if so, whether the binary has both valences filled
in, as in make =agt cause_ {=pat[exist]}. If the pre-binary position is empty,make
we are dealing with a 1Clause, if the post-binary position is empty, we are dealing with
a 2Clause. When both positions are empty, the definiendum and the definiens rely on the
same agent and patient, as in notice ‘animadverto’ know, see.notice

20. FullClauseÑ ComplexClause BinaryAtom ComplexClause

Finally, FullClauses have both the subject and the object slots filled. Example: polishpolish
=agt cause_ surface[smooth, shine], =pat has surface. ‘agt pol-
ishing pat means that agt is causing the surface of pat to be smooth and to shine’.

Classroom experience shows that the system is learned relatively easily, with students
providing remarkably similar, often identical, definitions after a few weeks. The excep-
tion is students of linguistics and philosophy, who really need to unlearn a lot, as they
are professionally trained to have a fine ear for minute distinctions. The marriage of lex-
icography and encyclopedia-writing is never happy. Consider the definition of potash as
given in Webster’s 3rd:

1a: potassium carbonate, esp. that obtained in colored impure form by leaching
wood ashes, evaporating the lye usu. in an iron pot, and calcinating the residue
– compare pearl ash. b: potassium hydroxide. 2a : potassium oxide K2O in com-
bined form as determined by analysis (as of fertilizers) x soluble„ y b: potassium
– not used systematically x „ salts y x sulfate of „ y 3: any of several potassium
salts (as potassium chloride or potassium sulfate) often occurring naturally and
used esp. in agriculture and industry x „ deposits y x „ fertilizers y

What are we to make of this? The COBUILD project (Moon, 1987) and the resulting
Collins-COBUILD dictionary, attempted to clarify matters by distinguishing three dif-
ferent senses:

1. another name for {potassium carbonate}, esp. the form obtained by leaching wood
ash
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2. another name for {potassium hydroxide}
3. potassium chemically combined in certain compounds

But is it now carbonate or hydroxide? Or, perhaps, both could be subsumed under ‘cer-
tain compounds’? LDOCE (Procter, 1978) avoids chemistry altogether:

any of various salts of potassium, used esp. in farming to feed the soil, and in
making soap, strong glass, and various chemical compounds

In 4lang we can accomodate the chemistry only by explicit reference to the encyclope-
dia potash @potassium_carbonate which resolves to the WP article which in turn
offers a wealth of information on the subject, and similarly for potassium hydroxide.
But what to do with all this artisanal knowledge about industrial processes, that leaching
wood ash produces lye, that caustic soda is used in glassmaking, that farmers feed the
soil with potassium salts, and so on? We use a much simpler style of definition whereby
potash is simply salt, contain potassium and consider the pain of invoking potash
scientific theories in the midst of dictionary building to be self-inflicted.

The key takeaway from this section is that once lexicography is freed of this burden,
it is possible to formalize definitions to such a degree that we can automatically con-
vert them into equations, in this case potash is_a salt and potash contain
potassium. How a symbolic equation A is_a B or A contain B get translated
to more conventional vector equations will be discussed in 2.3. The overall strategy
of converting definitions to equations is made more concrete in a step by step fashion
throughout the book, with a summary provided in 9.5.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial-

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if you 

modified the licensed material. You do not have permission under this license to share adapted material derived 

from this chapter or parts of it. 

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, 

unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative 

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, 

you will need to obtain permission directly from the copyright holder. 

NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 

https://en.wikipedia.org/wiki/Potassium_carbonate
https://en.wikipedia.org/wiki/Potassium_carbonate
https://en.wikipedia.org/wiki/Potassium_hydroxide
https://en.wikipedia.org/wiki/Potassium_hydroxide
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Foundations of non-compositionality
	Background
	Lexicographic principles
	The syntax of definitions
	The geometry of definitions
	The algebra of definitions
	Parallel description




