Foundations of Optimal Control Theory

E. B. Lee L. Markus

Center for Control Sciences Institute of Technology University of Minnesota

Contents

CHAPTER 1.	Methods, Theory, and Practices in Optimal Control Synthesis	1
	1.1. Examples of optimal control problems	1
	1.2. Statement of general optimal control problem	23
	1.3. Results on controllability	31
	1.4. Extremal and maximal properties of optimal controllers and synthesis	36
	1.5. Synthesis of optimal controllers for second	
	order linear processes	40
	Appendix I. Geometric theory of ordinary differential equations	51
	Appendix II. Algebraic theory of linear differential	
	equations	59
CHAPTER 2.	Optimal Control of Linear Systems	67
	2.1. The linear control process	67
	2.2. Controllability: The set of attainability	68
	2.3. Controllability and stability for autonomous	
	systems	80
	2.4. Controllability and observability	104
	2.5. Time optimal control for linear processes	127
	Appendix. Convex sets	155
CHAPTER 3.	Optimal Control for Linear Processes with	
	Integral Convex Cost Criteria	169
	3.1. Significance of integral cost criteria	169
	3.2. Integral quadratic cost criteria	170
	3.3. Illustrative examples and special problems	188
	3.4. Integral convex cost criteria	206
	3.5. Integral convex cost criteria with bounded	
	controllers	231

x Contents

CHAPTER 4.	The Maximal Principle and the Existence of Optimal Controllers for Nonlinear Processes	239
	4.1. Geometry of the set of attainability	239
	4.2. Existence of optimal control with magnitude restraints	259
	4.3. Existence of optimal control without magnitude restraints	286
CHAPTER 5.	Necessary and Sufficient Conditions for Optimal Control	308
	5.1. The maximal principle with necessary transversality conditions	308
	5.2. Sufficiency conditions for an optimal controller	340
CHAPTER 6.	Control System Properties: Controllability, Observability, and Stability	364
	6.1. Controllability and observability of nonlinear processes	364
	6.2. Global stability of nonlinear processes	394
CHAPTER 7.	Synthesis of Optimal Controllers for Some Basic Nonlinear Control Processes	42 3
	7.1. Synthesis of time optimal feedback controllers for second order nonlinear systems with one	
	degree of freedom	425
	7.2. Optimal steering for sounding rockets	456
	7.3. Angular velocity control for rigid body	466
	7.4. Optimal guidance between planetary orbits	473
Appendix A.	Steepest descent and computational techniques	
	for optimal control problems	48 1
Appendix B.	Bibliography on optimal processes governed by ordinary and partial functional-	
	differential systems	52 1
	REFERENCES	533
	BIBLIOGRAPHY	537
	INDEX	569