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FOREWORD

To say that Foundations of Soft Case-Based Reasoning (FSCBR for short) is a work

of great importance is an understatement. Authored by prominent information

scientists, Professors S. K. Pal and S. Shiu, it breaks new ground in case-based

reasoning and is likely to be viewed in retrospect as a milestone in its field.

Case-based reasoning (CBR) is a body of concepts and techniques that touch

upon some of the most basic issues relating to knowledge representation, reasoning,

and learning from experience. The brainchild of Janet Kolodner and others, it was

born in the early 1980s. I witnessed its birth and followed with great interest its

evolution and coming of age. But when I tried to develop a better understanding of

CBR, I encountered a problem. The core methods of CBR were not powerful

enough to address the complex concepts and issues that had to be dealt with. A case

in point is the concept of similarity, a concept that plays a pivotal role in CBR. The

late Amos Tversky—a brilliant cognitive scientist—had defined the degree of

similarity of objects A and B as a ratio whose numerator is the number of features

that A and B have in common, and whose denominator is the total number of

features. The problem with this definition is that it presupposes (1) that features are

bivalent, whereas in most realistic settings at least some of the features are

multivalent; and (2) that features are of equal importance, which in most instances

is not the case.

It is beyond question that impressive progress has been made since the early

days of CBR in our understanding of concepts such as similarity, relevance, and

materiality. But a basic question that motivated the work of Professors Pal and Shiu

is: Is it possible to achieve a quantum jump in capabilities of CBR systems through

the use of traditional methods of computing and reasoning? In effect, FSCBR may

be viewed as a negative answer to this question. But more important, FSCBR is a
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constructive answer because the authors demonstrate that a quantum jump is

achievable through the development of what they refer to as soft case-based

reasoning (SCBR).

SCBR is based on soft computing, a computing methodology that is a coalition

of methodologies which collectively provide a foundation for the conception,

design, and utilization of intelligent systems. The principal members of the

coalition are fuzzy logic, neurocomputing, evolutionary computing, probabilistic

computing, chaotic computing, rough set theory, self-organizing maps, and machine

learning. An essential tenet of soft computing is that, in general, superior results can

be achieved by employing the constituent methodologies of soft computing in

combination rather than in a stand-alone mode. A combination that has achieved

high visibility is known as neuro-fuzzy. Another combination is neuro-fuzzy-

genetic.

To see SCBR in a proper perspective, a bit of history is in order. In science, as in

most other realms of human activity; there is a tendency to be nationalistic—to

commit oneself to a particular methodology, M, and march under its banner, in the

belief that it is M and only M that matters. The well-known Hammer Principle:

When the only tool you have is a hammer, everything looks like a nail; and my

Vodka Principle: No matter what your problem is, vodka will solve it, are succinct

expressions of the one-size-fits-all mentality that underlies nationalism in science.

Although it is obvious that a one-size-fits-all mentality in science is counter-

productive, the question is: What can be done to counter it?

A step in this direction was taken at UC Berkeley in 1991, with the launching of

what was called the Berkeley Initiative in Soft Computing (BISC). The principal

tenet of BISC is that to come up with effective tools for dealing with the complex

problems that arise in the conception, design, and utilization of intelligent systems,

it is imperative to marshal all the resources at our disposal by forming a coalition

of relevant methodologies and developing synergistic links between them. An

important concomitant of the concept of soft computing is that students should be

trained to feel at home with all or most of the constituent methodologies of soft

computing and to be able to use them both singly and in combination, depending on

the nature of the problem at hand.

This is the spirit that underlies the work of Professors Pal and Shiu. They start

with an exposition of traditional methods but then cross into new territory and

proceed to develop soft case-based reasoning as a unified theory that exploits the

wide diversity of concepts and techniques drawn from constituent methodologies of

soft computing. To make their work self-contained, the authors include in FSCBR

succinct and insightful expositions of the basics of fuzzy logic, neurocomputing,

genetic algorithms, rough set theory, and self-organizing maps.

What Professors Pal and Shiu have done is a truly remarkable accomplishment.

The authors had to master a wide spectrum of concepts and techniques within soft

computing and apply their expertise to the development of a comprehensive theory

of soft case-based reasoning, a theory that is certain to have a wide-ranging impact

in fields extending from diagnostics and data mining to law, medicine, and decision

analysis.
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FSCBR is ideally suited both as a reference and as a text for a graduate course on

case-based reasoning. Beyond CBR, FSCBR is must reading for anyone who is

interested in the conception, design, and utilization of intelligent systems. The

authors, Professors Pal and Shiu, and the publisher, John Wiley, deserve loud

applause for producing a book that is a major contribution not only to case-based

reasoning but, more generally, to the conception, design, and utilization of

intelligent systems.

LOTFI ZADEH

Berkely, CA

September 22, 2003
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PREFACE

There has been a spurt of activity during the last decade to integrate various

computing paradigms, such as fuzzy set theory, neural networks, genetic algo-

rithms, and rough set theory, for generating more efficient hybrid systems that can

be classified as soft computing methodologies. Here the individual tool acts

synergistically, not competitively, in enhancing the application domain of the other.

The purpose is to develop flexible information-processing systems that can

exploit the tolerance for imprecision, uncertainty, approximate reasoning, and

partial truth in order to achieve tractability, robustness, low solution cost, and close

resemblance to human decision making. The soft computing paradigm provides

a foundation for the conception and design of high-MIQ (machine IQ) systems

and forms a basis for future-generation computing technology. The computa-

tional theory of perceptions (CTP) described by Zadeh, with perceptions being

characterized by fuzzy granularity, plays a key role in performing tasks in a soft

computing framework. Tremendous efforts are being made along this line to

develop theories and algorithms on the one hand, and to demonstrate various

applications on the other, considering its constituting tools both individually and in

different combinations.

Case-based reasoning (CBR) is one such application area where soft computing

methodologies have had a significant impact during the past decade. CBR may be

defined as a model of reasoning that incorporates problem solving, understanding,

and learning, and integrates all of them with memory processes. These tasks are

performed using typical situations, called cases, already experienced by a system. A

case may be defined as a contextualized piece of knowledge representing an

experience that teaches a lesson fundamental to achieving the goals of the system.

The system learns as a by-product of its reasoning activity. It becomes more
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efficient and more competent as a result of storing the past experience of the system

and referring to earlier cases in later reasoning. Unlike a traditional knowledge-

based system, a case-based system operates through a process of remembering one

or a small set of concrete instances or cases and basing decisions on comparisons

between the new and old situations. Systems based on this principle are finding

widespread applications in such problems as medical diagnosis and legal inter-

pretation where the knowledge available is incomplete and/or evidence is sparse.

Four prime components of a CBR system are retrieve, reuse, revise, and retain.

These involve such basic tasks as clustering and classification of cases, case

selection and generation, case indexing and learning, measuring case similarity,

case retrieval and inference, reasoning, and rule adaptation and mining. The use of

soft computing tools in general, and fuzzy logic and artificial neural networks in

performing these tasks in particular, has been well established for more than a

decade. The primary roles of these tools are in handling ambiguous, vague, or ill-

defined information or concepts, learning and adaptation of intractable cases or

classes, searching for optimal parameters, and computing with granules (clumps of

similar objects or cases) for speedy computation. CBR systems that integrate these

characteristics in various combinations for developing efficient methodologies,

algorithms, and knowledge-based networks for various real-life decision-making

applications have also been developed.

This book provides a treatise in a unified framework describing how soft

computing techniques can be used in building and maintaining case-based systems.

The book is structured according to the four major phases of the problem-solving

life cycle of a CBR system—representation and indexing of cases, case selection

and retrieval, case adaptation, and case-base maintenance—and provides a solid

foundation with a balanced mixture of theory, algorithm, and application. Examples

are provided wherever necessary to make the concepts more clear. Various real-life

applications are presented in a comprehensive manner for the benefit of

practitioners.

For the convenience of readers, the basic theories, principles, and definitions of

fuzzy sets, artificial neural networks, genetic algorithms, and rough sets are

provided in the appendixes. A comprehensive bibliography is provided for each

chapter. A sizable portion of the text has been unified from previously published

work of the authors.

The book, which is unique in character, will be useful to graduate students and

researchers in computer science, electrical engineering, system science, and

information technology as both a textbook and a reference book for some parts

of the curriculum. Researchers and practitioners in industry and R&D laboratories

working in such fields as system design, control, pattern recognition, data mining,

vision, and machine intelligence will also be benefited.

The text is organized in six chapters. In Chapter 1 we provide an introduction to

CBR system together with its various components and characteristic features and an

example of building a CBR system. This is followed by a brief description of the

soft computing paradigm, an introduction to soft case-based reasoning, and a list of

typical CBR tasks for soft computing applications.
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Chapter 2 highlights problems of case representation and indexing. Here we

describe, first, traditional methods of case representation: relational, object-

oriented, and predicate representation. This is followed by a method of case

knowledge representation using fuzzy sets, examples of determining reducts from

a decision table using rough sets, and a methodology of prototypical case

generation in a rough-fuzzy framework. The significance of granular computing

is demonstrated. Some experimental results on case generation are also provided for

large data sets. Finally, some case indexing methods using a traditional approach, a

Bayesian model, and neural networks are described.

Chapter 3 deals with the tasks of case selection and retrieval. We begin with

problems in constructing similarity measures by defining a few well-known

similarity measures in terms of distance, followed by the relevance of the concept

of fuzzy similarity between cases and some methods of computation. Methods of

computing feature weights using classical, neural, and genetic algorithm–based

approaches are then discussed. Finally, various methodologies of case selection and

retrieval in neural, neuro-fuzzy, and rough-neural frameworks are described. Here

both layered network and self-organizing maps are considered for learning in

supervised and unsupervised modes, and experimental results demonstrating the

features are given.

Issues of case adaptation are handled in Chapter 4. After explaining some

conventional strategies—reinstantiation, substitution and transformation—and a

few methods based on them, various ways of using fuzzy decision trees, multilayer

perceptrons, Bayesian models, and support vector machines for case adaptation are

presented. We explain how discrepancy vectors can be used as training examples

for determining the amount of adjustment needed to modify a solution. The use of

genetic algorithms in this regard is also discussed.

Chapter 5 is concerned with problems of case-base maintenance. We first explain

different characteristic properties that need to be assured through qualitative and

quantitative maintenance. Then two methods of case-base maintenance using

fuzzy-rough and fuzzy integral approaches are described. Tasks such as mining

adaptation rules, adjustment through reasoning, selecting cases and updating the

case base; and such concepts as case coverage and reachability, fuzzy integrals, and

case-base competence are explained in detail through example computations. Some

experimental results are also provided, as in earlier chapters.

Finally, some real-life applications of soft case-based reasoning systems are

presented in a comprehensive manner in Chapter 6, together with their significance

and merits. These include Web access path prediction, oceanographic forecasting,

medical diagnosis, legal inference, property valuation, bond rating, color matching,

and fashion shoe design.

We take this opportunity to thank John Wiley & Sons for its initiative and

encouragement. We owe a vote of thanks to Ms. Yan Li and Mr. Ben Niu of the

Department of Computing, Hong Kong Polytechnic University, for their tireless

endeavors in providing remarkable assistance while preparing the manuscript, as

well as to colleagues at the Machine Intelligence Unit, Indian Statistical Institute,

Calcutta, and Professor Tharam S. Dillon, La Trobe University, Melbourne, for
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their cooperation at various stages. Financial support from Hong Kong Polytechnic

University, grants HZJ90, GT377, and APD55, and RGC grant BQ496, is also

gratefully acknowledged. The project was initiated when Professor Pal was a

Visiting Professor at the Hong Kong Polytechnic University, Hong Kong, during

2000–2001. The names of the authors are arranged alphabetically, signifying their

equal contribution.

SANKAR K. PAL

SIMON C. K. SHIU

June 29, 2003
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The field of case-based reasoning (CBR), which has a relatively young history,

arose out of the research in cognitive science. The earliest contributions in this

area were from Roger Schank and his colleagues at Yale University [1,2]. During

the period 1977–1993, CBR research was highly regarded as a plausible high-level

model for cognitive processing. It was focused on problems such as how people

learn a new skill and how humans generate hypotheses about new situations based

on their past experiences. The objectives of these cognitive-based researches were

to construct decision support systems to help people learn. Many prototype CBR

systems were built during this period: for example, Cyrus [3,4], Mediator [5],

Persuader [6], Chef [7], Julia [8], Casey, and Protos [9]. Three CBR workshops

were organized in 1988, 1989, and 1991 by the U.S. Defense Advanced Research

Projects Agency (DARPA). These formally marked the birth of the discipline of

case-based reasoning. In 1993, the first European workshop on case-based reasoning

(EWCBR-93) was held in Kaiserslautern, Germany. It was a great success, and it

attracted more than 120 delegates and over 80 papers. Since then, many interna-

tional workshops and conferences on CBR have been held in different parts of

the world, such as the following:

� Second European Workshop on CBR (EWCBR-94), Chantilly, France

� First International Conference on CBR (ICCBR-95), Sesimbra, Portugal
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� Third European Workshop on CBR (EWCBR-96), Lausanne, Switzerland

� Second International Conference on CBR (ICCBR-97), Providence, Rhode

Island

� Fourth European Workshop on CBR (EWCBR-98), Dublin, Ireland

� Third International Conference on CBR (ICCBR-99), Seeon Monastery,

Munich, Germany

� Fifth European Workshop on CBR (EWCBR-00), Trento, Italy

� Fourth International Conference on CBR (ICCBR-01), Vancouver, Canada

� Sixth European Conference on CBR (ECCBR-02), Aberdeen, Scotland

� Fifth International Conference on CBR (ICCBR-03), Trondheim, Norway

� Seventh European Conference on CBR (ECCBR-04), Madrid, Spain

Other major artificial intelligence conferences, such as ECAI (European Confer-

ence on Artificial Intelligence), IJCAI (International Joint Conference on Artificial

Intelligence), and one organized by the AAAI (American Association for Artificial

Intelligence), have also had CBR workshops as part of their regular programs.

Recently, CBR has drawn the attention of researchers from Asia, such as the

authors of this book, from countries such as Hong Kong and India.

The rest of this chapter is organized as follows. In Section 1.2 we describe the

various components and features of CBR. The guidelines and advantages of using

CBR are explained in Sections 1.3 and 1.4, respectively. In Section 1.5 we address

the tasks of case representation and indexing, and in Section 1.6 we provide basic

concepts in case retrieval. The need and process of case adaptation are explained

briefly in Section 1.7. The issues of case learning and case-base maintenance are

discussed in Section 1.8. In Section 1.9 an example is provided to demonstrate

how a CBR system can be built. The question of whether CBR is a methodology

or a technology is discussed in Section 1.10. Finally, in Section 1.11 the relevance

to CBR of soft computing tools is explained.

1.2 COMPONENTS AND FEATURES OF

CASE-BASED REASONING

Let us consider a medical diagnosis system as a typical example of using case-

based reasoning in which the diagnosis of new patients is based on physicians’

past experience. In this situation, a case could represent a person’s symptoms

together with the associated treatments. When faced with a new patient, the doctor

compares the person’s current symptoms with those of earlier patients who had

similar symptoms. Treatment of those patients is then used and modified, if neces-

sary, to suit the new patient (i.e., some adaptation of previous treatment may be

needed). In real life there are many similar situations that employ the CBR para-

digm to build reasoning systems, such as retrieving preceding law cases for legal

arguments, determining house prices based on similar information from other real
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estate, forecasting weather conditions based on previous weather records, and

synthesizing a material production schedule from previous plans.

From the examples above we see that a case-based reasoner solves new problems

by adapting solutions to older problems. Therefore, CBR involves reasoning from

prior examples: retaining a memory of previous problems and their solutions and

solving new problems by reference to that knowledge. Generally, a case-based rea-

soner will be presented with a problem, either by a user or by a program or system.

The case-based reasoner then searches its memory of past cases (called the case

base) and attempts to find a case that has the same problem specification as the

case under analysis. If the reasoner cannot find an identical case in its case base,

it will attempt to find a case or multiple cases that most closely match the current

case.

In situations where a previous identical case is retrieved, assuming that its solu-

tion was successful, it can be offered as a solution to the current problem. In the

more likely situation that the case retrieved is not identical to the current case,

an adaptation phase occurs. During adaptation, differences between the current

and retrieved cases are first identified and then the solution associated with the

case retrieved is modified, taking these differences into account. The solution

returned in response to the current problem specification may then be tried in the

appropriate domain setting.

The structure of a case-based reasoning system is usually devised in a manner

that reflects separate stages: for example, for retrieval and adaptation, as described

above. However, at the highest level of abstraction, a case-based reasoning system

can be viewed as a black box (see Fig. 1.1) that incorporates the reasoning mechan-

ism and the following external facets:

� The input specification or problem case

� The output that defines a suggested solution to the problem

� The memory of past cases, the case base, that are referenced by the reasoning

mechanism

Case base

Derived
solution

Problem
case

Case-based reasoning

mechanism

Figure 1.1 CBR system.
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In most CBR systems, the case-based reasoning mechanism, alternatively

referred to as the problem solver or reasoner, has an internal structure divided

into two major parts: the case retriever and the case reasoner (see Fig. 1.2). The

case retriever’s task is to find the appropriate cases in the case base, while the

case reasoner uses the cases retrieved to find a solution to the problem description

given. This reasoning process generally involves both determining the differences

between the cases retrieved and the current case, and modifying the solution to

reflect these differences appropriately. The reasoning process may or may not

involve retrieving additional cases or portions of cases from the case base.

1.2.1 CBR System versus Rule-Based System

The approach of case-based reasoning can be contrasted with that used in other

knowledge-based systems, such as rule-based or combined frame-rule-based sys-

tems. In rule-based systems, one has a rule base consisting of a set of production

rules of the form: IF A, THEN B, where A is a condition and B is an action. If the

condition A holds true, the action B is carried out. Condition A can be a composite

condition consisting of, say, a conjunction of premises A1;A2; . . . ;An. In addition, a

rule-based system has an inference engine that compares the data it holds in work-

ing memory with the condition parts of rules to determine which rules to fire.

Combined frame-rule-based systems also utilize frames, in addition to rules, to

capture stereotypical knowledge. Frames consist of slots that can have default

values, actual values, or attached daemons. Frames use a procedure or a rule set

to determine the values required when they are triggered. Rule-based and combined

frame-rule-based systems require one to acquire the symbolic knowledge that is

represented in these rules or frames using manual knowledge engineering or auto-

mated knowledge acquisition tools. Sometimes, one utilizes a model of the problem

Normal interactions

Possible interactions

Case base

Derived

solution

Problem

case

Case

retriever

Case

reasoner

Figure 1.2 Two major components of a CBR system.
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as a basis for reasoning about a situation, where the model can be qualitative or

quantitative. These systems are referred to as model-based systems.

Case-based reasoning systems are an alternative, in many situations, to rule-

based systems. In many domains and processes, referring to cases as a means of

reasoning can be an advantage due to the nature of this type of problem solving.

One of the most time-consuming aspects when developing a rule-based system is

the knowledge acquisition task. Acquiring domain-specific information and con-

verting it into some formal representation can be a huge task and in some situations,

especially those with less well understood domains, formalization of the knowledge

cannot be done at all. Case-based systems usually require significantly less knowl-

edge acquisition, since it involves collecting a set of past experiences without the

added necessity of extracting a formal domain model from these cases. In many

domains there are insufficient cases to extract a domain model, and this is another

benefit of CBR: A system can be created with a small or limited amount of experi-

ence and then developed incrementally, adding more cases to the case base as they

become available.

1.2.2 CBR versus Human Reasoning

The processes that make up case-based reasoning can be seen as a reflection of a

particular type of human reasoning. In many situations, the problems that human

beings encounter are solved with a human equivalent of CBR. When a person

encounters a new situation or problem, he or she will often refer to a past experi-

ence of a similar problem. This previous experience may be one that they have had

or one that another person has experienced. If the experience originates from

another person, the case will have been added to the (human) reasoner’s memory

through either an oral or a written account of that experience.

In general, we have referred to case-based reasoning as being applied to problem

solving. Case-based reasoning can also be used in other ways, most notably that of

arguing a point of view. For example, many students will come to their teacher with

various requests. A request might be for an extension to a deadline or for additional

materials. It is a common experience of a teacher, after refusing one of these

requests, to have a student argue the point. One of the common techniques that a

student will use is to present evidence that in another course, or with another lec-

turer or teacher, their request has been granted in a similar situation, with similar

underlying rules.

This sort of reasoning, very common in law domains, illustrates another way in

which case-based reasoning systems can be implemented. Just as an attorney argues

a point in court by references to previous cases and the precedents they set, CBR

systems can refer to a case base containing court cases and find cases that have

characteristics similar to those of the current one. The similarities may cover the

entire case or only certain points that led to a portion of the ruling. Cases can there-

fore be discovered that may support some portions of the current case while oppos-

ing other parts. Case-based systems that perform this sort of argument are generally

referred to as interpretive reasoners.
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The idea of CBR is intuitively appealing because it is similar to human problem-

solving behavior. People draw on past experience while solving new problems, and

this approach is both convenient and effective, and it often relieves the burden of in-

depth analysis of the problem domain. This leads to the advantage that CBR can be

based on shallow knowledge and does not require significant effort in knowledge

engineering when compared with other approaches (e.g., rule-based).

1.2.3 CBR Life Cycle

The problem-solving life cycle in a CBR system consists essentially of the follow-

ing four parts (see Fig. 1.3):

R
E

U
S

E

R
E

T
A

IN

REVISE

RETRIEVE

Problem

Solved
case

Tested
repaired

case

New
case

Learned
case

Confirmed
solution

Suggested
solution

General/
domain

knowledge

Previous
cases

New
case

Retrieved
case

Figure 1.3 CBR cycle. (From [10].)
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1. Retrieving similar previously experienced cases (e.g., problem–solution–

outcome triples) whose problem is judged to be similar

2. Reusing the cases by copying or integrating the solutions from the cases retrieved

3. Revising or adapting the solution(s) retrieved in an attempt to solve the new

problem

4. Retaining the new solution once it has been confirmed or validated

In many practical applications, the reuse and revise stages are sometimes diffi-

cult to distinguish, and several researchers use a single adaptation stage that

replaces and combines them. However, adaptation in CBR systems is still an

open question because it is a complicated process that tries to manipulate case

solutions. Usually, this requires the development of a causal model between the

problem space (i.e., the problem specification) and the solution space (i.e., the solu-

tion features) of the related cases.

In Figure 1.3, the cases stored in the case library (i.e., previous cases) were sup-

plemented by general knowledge, which is usually domain dependent. This support

may range from very weak to very strong, depending on the type of CBR method.

For example, in using previous patient records for medical diagnosis, a causal model

of pathology and anatomy may constitute the general knowledge used by a CBR

system. This knowledge may be in the form of a set of IF–THEN rules or some

preconditions in using the cases. Therefore, each stage in the CBR life cycle is asso-

ciated with some tasks (see Fig. 1.4).

The process-oriented view of the CBR life cycle provides a global and external

view of what is happening, while a task-oriented view is good for describing the

actual mechanisms. Tasks are set up depending on the goals of the system, and a

particular task is performed by applying one or more methods. In Figure 1.4, tasks

are shown by node names, and the possible constituting methods appear in italic

type. The links between task nodes (solid lines) represent various task decomposi-

tions. For example, the retrieval task is decomposed into the following tasks:

identifying relevant descriptors, searching a set of past cases, matching the relevant

descriptors to past cases, and selecting the most similar case(s). The methods under

each task (dashed lines) indicate possible ways of completing the task. A method

specifies an algorithm that identifies and controls execution of the particular sub-

task. The list of methods corresponding to a task shown in Figure 1.4, is not exhaus-

tive. Selection of a suitable method depends on the problem at hand and requires

knowledge of the application domain. In situations where information is incomplete

or missing—and we want to exploit the tolerance for imprecision, uncertainty,

approximate reasoning, and partial truth—soft computing techniques could provide

solutions with tractability, robustness, and low cost.

Before we describe these issues and some of the operations (methods) under

such major tasks as case representation and indexing, case retrieval, case adapta-

tion, and case learning and case-base maintenance, in the following two sections

we provide guidelines and advantages in the use of case-based reasoning.

COMPONENTS AND FEATURES OF CASE-BASED REASONING 7
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1.3 GUIDELINES FOR THE USE OF CASE-BASED REASONING

Although case-based reasoning is useful for various types of problems and domains,

there are times when it is not the most appropriate methodology to employ. There

are a number of characteristics of candidate problems and their domains, as

mentioned below, that can be used to determine whether case-based reasoning is

applicable [11–13]:

1. Does the domain have an underlying model? If the domain is impossible to

understand completely or if the factors leading to the success or failure of a solution

cannot be modeled explicitly (e.g., medical diagnosis or economic forecast), CBR

allows us to work on past experience without a complete understanding of the

underlying mechanism.

2. Are there exceptions and novel cases? Domains without novel or

exceptional cases may be modeled better with rules, which could be determined

inductively from past data. However, in a situation a where new experiences and

exceptions are encountered frequently, it would be difficult to maintain consistency

among the rules in the system. In that case the incremental case learning

characteristics of CBR systems makes it a possible alternative to rule-based

systems.

3. Do cases recur? If the experience of a case is not likely to be used for a new

problem, because of a lack of similarity, there is little value in storing the case. In

other words, when experiences are not similar enough to be compared and adapted

successfully (i.e., cases do not recur), it might be better to build a model of the

domain to derive the solution.

4. Is there significant benefit in adapting past solutions? One should consider

whether there is a significant benefit, in terms of resources (e.g., system

development time, processing effort), to creating a solution through modifying a

similar solution rather than creating a solution to a problem from scratch.

5. Are relevant previous cases obtainable? Is it possible to obtain data that

record the necessary characteristics of past cases? Do the recorded cases contain

the relevant features of the problem and its context that influenced the outcome

of the solution? Is the solution recorded in sufficient detail to allow it to be adapted

in the future? These questions allow one to go for the CBR framework.

1.4 ADVANTAGES OF USING CASE-BASED REASONING

In this section we summarize some of the advantages of CBR from various points of

view.

1. Reducing the knowledge acquisition task. By eliminating the need to extract

of a model or a set of rules, as is necessary in model/rule-based systems, the
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knowledge acquisition tasks of CBR consist primarily of the collection of relevant

existing experiences/cases and their representation and storage.

2. Avoiding repeating mistakes made in the past. In systems that record failures

as well as successes, and perhaps the reason for those failures, information about

what caused failures in the past can be used to predict potential failures in the future.

3. Providing flexibility in knowledge modeling. Due to their rigidity in problem

formulation and modeling, model-based systems sometimes cannot solve a problem

that is on the boundary of their knowledge or scope or when there is missing or

incomplete data. In contrast, case-based systems use past experience as the domain

knowledge and can often provide a reasonable solution, through appropriate

adaptation, to these types of problems.

4. Reasoning in domains that have not been fully understood, defined, or

modeled. In a situation where insufficient knowledge exists to build a causal model

of a domain or to derive a set of heuristics for it, a case-based reasoner can still be

developed using only a small set of cases from the domain. The underlying theory

of domain knowledge does not have to be quantified or understood entirely for a

case-based reasoner to function.

5. Making predictions of the probable success of a proffered solution. When

information is stored regarding the level of success of past solutions, the case-based

reasoner may be able to predict the success of the solution suggested for a current

problem. This is done by referring to the stored solutions, the level of success of

these solutions, and the differences between the previous and current contexts of

applying these solutions.

6. Learning over time. As CBR systems are used, they encounter more problem

situations and create more solutions. If solution cases are tested subsequently in the

real world and a level of success is determined for those solutions, these cases can

be added to the case base and used to help in solving future problems. As cases are

added, a CBR system should be able to reason in a wider variety of situations and

with a higher degree of refinement and success.

7. Reasoning in a domain with a small body of knowledge. While in a problem

domain for which only a few cases are available, a case-based reasoner can start

with these few known cases and build its knowledge incrementally as cases are

added. The addition of new cases will cause the system to expand in directions that

are determined by the cases encountered in its problem-solving endeavors.

8. Reasoning with incomplete or imprecise data and concepts. As cases are

retrieved, they may not be identical to the current case. Nevertheless, when they are

within some defined measure of similarity to the present case, any incompleteness

and imprecision can be dealt with by a case-based reasoner. Although these factors

may cause a slight degradation in performance, due to the increased disparity

between the current and retrieved cases, reasoning can continue.

9. Avoiding repeating all the steps that need to be taken to arrive at a solution.

In problem domains that require significant processes to create a solution from

scratch, the alternative approach of modifying an earlier solution can reduce this

processing requirement significantly. In addition, reusing a previous solution also
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allows the actual steps taken to reach that solution to be reused for solving other

problems.

10. Providing a means of explanation. Case-based reasoning systems can

supply a previous case and its (successful) solution to help convince a user of, or to

justify, a proposed solution to the current problem. In most domains there will be

occasions when a user wishes to be reassured about the quality of the solution

provided by a system. By explaining how a previous case was successful in a

situation, using the similarities between the cases and the reasoning involved in

adaptation, a CBR system can explain its solution to a user. Even for a hybrid system, one

that may be using multiple methods to find a solution, this proposed explanation

mechanism can augment the causal (or other) explanation given to a user.

11. Extending to many different purposes. The number of ways in which a CBR

system can be implemented is almost unlimited. It can be used for many purposes,

such as creating a plan, making a diagnosis, and arguing a point of view. Therefore,

the data dealt with by a CBR system are able to take many forms, and the retrieval

and adaptation methods will also vary. Whenever stored past cases are being

retrieved and adapted, case-based reasoning is said to be taking place.

12. Extending to a broad range of domains. As discussed in Chapter 6, CBR

can be applied to extremely diverse application domains. This is due to the

seemingly limitless number of ways of representing, indexing, retrieving, and

adapting cases.

13. Reflecting human reasoning. As there are many situations where we, as

humans, use a form of case-based reasoning, it is not difficult to convince

implementers, users, and managers of the validity of the paradigm. Similarly,

humans can understand a CBR system’s reasoning and explanations and are able to

be convinced of the validity of the solutions they receive from a system. If a human

user is wary of the validity of an earlier solution, they are less likely to use this

solution. The more critical the domain, the lower the chance that a past solution will

be used and the greater the required level of a user’s understanding and credulity.

We describe next, in brief, the four major tasks: case representation and index-

ing, case retrieval, case adaptation, and case learning and case-base maintenance.

1.5 CASE REPRESENTATION AND INDEXING

As mentioned earlier, a case can be said to be a record of a previous experience or

problem. The information that is recorded about the experience will, by necessity,

depend on the domain as well as the purpose for which this case will be used. For a

problem-solving CBR system, the details will usually include specification of

the problem and the relevant attributes of the environment that describe the

circumstances of the problem. Another vital part of a case is a description of the

solution that was used on an earlier occasion when a similar situation was encoun-

tered. Depending on how the CBR system reasons with cases, this solution may

include only the facts that define a solution, or it may include information about
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additional steps or processes involved in obtaining a solution. It is also important to

include a measure of success in the case description if the solutions (or cases) in the

case base have achieved different levels of success or failure.

When a comparison is made between the knowledge stored in a model/rule-

based system and that stored in a case base, it is apparent that the latter knowledge

is of a more specific nature. While the knowledge in a model/rule-based system has

been abstracted so that it is applicable in as wide a variety of situations as possible,

the knowledge contained in a case-based system will remain specific to the case in

which it is stored [13]. The specific knowledge of a case-based system means that

related knowledge (i.e., knowledge applicable in a specific circumstance) is stored

in close proximity. Thus, rather than drawing knowledge from a wider net, the

knowledge needed to solve a specific problem can be found grouped together in

a few or even one of the cases.

The case base in the CBR system is the memory of all cases stored previously.

There are three general issues that have to be considered when creating a case base:

� The structure and representation of the cases

� The memory model used for organizing the entire case base

� The selection of indexes used to identify each case

1.5.1 Case Representation

Cases in a case base can represent many different types of knowledge that can

be stored in many different representational formats. The intended purpose of a CBR

system will greatly influence what is stored. For example, a case-based reasoning

system may be aimed at the creation of a new design or plan, or the diagnosis of a

new problem, or arguing a point of view using precedents. Therefore, in each type

of CBR system, a case may represent something different. For example, the cases

could represent people, objects, situations, diagnoses, designs, plans, or rulings,

among many other representations. In many practical CBR applications, cases

are usually represented as two unstructured sets of attribute–value pairs that repre-

sent the problem and solution features [14]. However, a decision as to exactly what

to represent can be one of the most difficult decisions to make.

For example, in medical CBR systems performing patient diagnosis, a case

could represent a person’s entire medical history or be limited to a single visit to

a doctor. In the latter situation, the case may be a set of symptoms together with a

diagnosis. It may also include a prognosis or treatment. If a case represents a per-

son, a more complete model is being used, since this could incorporate changing

symptoms from one patient visit to the next. However, it is more difficult to find

and use cases in the latter format, for example, when searching for a particular

set of symptoms to obtain a diagnosis or treatment. Alternatively, if a case is simply

a single visit to the doctor, involving only the symptoms at the time of that visit and

a diagnosis of those symptoms, then changes in a patient’s symptoms, which might

be a useful key in solving a future problem, may be missed.
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In a situation such as the medical example described above, cases may need to

be decomposed to their subcases. For example, a person’s medical history could

include as subcases all his or her visits to a doctor. In an object-oriented representa-

tion, this can be represented as shown in Figure 1.5.

Regardless of what a case actually represents as a whole, features have to be

represented in some format. One of the advantages of case-based reasoning is

the flexibility that this approach offers regarding representation. Depending on

the types of features that have to be represented, an appropriate implementation

platform can be chosen. This implementation platform ranges from simple Boolean,

numeric, and textual data to binary files, time-dependent data, and relationships

between data; CBR can be made to reason with any of these representation formats.

No matter how it is stored or the data format that is used to represent it, a case

must store information that is both relevant to the purpose of the system and will

also ensure that the most appropriate case is retrieved to solve each new problem

situation. Thus, the cases have to include those features that will ensure that a case

will be retrieved in the most appropriate context.

In many CBR systems, not all of the existing cases need to be stored. In these

types of systems, specific criteria are needed to decide which cases will be stored

and which will be discarded. For example, in a situation where two or more cases

are very similar, only one case may need to be stored. Alternatively, it may be pos-

sible to create an artificial case that is a generalization of two or more cases that

describe actual incidents or problems. By creating generalized cases, the most

important aspects of a case need to be stored only once.

When choosing a representation format for a case, there are many choices and

many factors to consider. Some examples of representation formats that may be

used include database formats, frames, objects, and semantic networks. There are

Patient

age
height
weight

Symptom 1

Symptom 2

Visit 3

Visit 1

Visit 2

Diagnosis
Treatment

Figure 1.5 Patient case record.
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a number of factors that should be considered when choosing a representation

format for a case:

� Segments within the cases (i.e., internal structure) that form natural subcases

or components. The format chosen needs to be able to represent the various

forms taken by this internal structure.

� Types and structures associated with the content or features that describe a

case. These types have to be available, or be capable of being created, in the

case representation.

� The language or shell chosen in which to implement the CBR system. The

choice of a shell may limit the formats that can be used for representation. It

should also be noted that the choice of language or shell is going to be

influenced by a number of factors. The availability of various shells or

languages, and the knowledge of the implementer, are the primary influences.

� The indexing and search mechanism planned. Cases have to be in a format

that the case retrieval mechanism can deal with effectively.

� The form in which cases are available or obtained. For example, if a case base

is to be formed from an existing collection of past experiences, the ease with

which these experiences can be translated into an appropriate form for the

CBR system could be important.

Whatever format is chosen to represent cases, the collection of cases itself also

has to be structured in a way that facilitates retrieval of the appropriate case when

queried. Numerous approaches have been used to index cases for efficient retrieval.

A flat case base is a common structure. In this method indexes are chosen to repre-

sent the important aspects of the case, and retrieval involves comparing the query

case’s features to each case in the case base. Another common case-base structure is

a hierarchical structure, which stores the cases by grouping them into appropriate

categories to reduce the number of cases that have to be searched during a query.

The memory model for a chosen form of case representation will depend on a

number of factors:

� The representation used in the case base.

� The purpose of the CBR system. For example, a hierarchical structure is a

natural choice for a system solving classification problems.

� The number and complexity of the cases being stored. As the number of cases

grows in a case base, a structure that is searched sequentially will consume

more time during retrieval (e.g., a flat case base).

� The number of features that are used for matching cases during a search.

� Whether some cases are similar enough to group together. Where cases fall

into natural groupings, some structuring facility may be useful.

� How much is known about a specific domain. This influences the ability to

determine whether cases are similar. For example, if little domain knowledge

is available, case structuring is apt to be wrong.

14 INTRODUCTION



In conclusion, cases are assumed to have two components: problem specification

and solution. Normally, the problem specification consists of a set of attributes and

values. The attributes of a case should define that case uniquely and should be suf-

ficient to predict a solution for that case. The representation may be a simple flat

data structure or a complex object hierarchy.

1.5.2 Case Indexing

Case indexing refers to assigning indexes to cases for future retrieval and compar-

ison. The choice of indexes is important to enable retrieval of the right case at the

right time. This is because the indexes of a case will determine in which context it

will be retrieved in the future. There are some suggestions for choosing indexes in

[13,15,16]. Indexes must be predictive in a useful manner. This means that indexes

should reflect the important features of a case and the attributes that influence the

outcome of the case, and describe the circumstances in which a case is expected to

be retrieved in the future.

Indexes should be abstract enough to allow retrieval in all the circumstances in

which a case will be useful, but not too abstract. When a case’s indexes are too

abstract, the case may be retrieved in too many situations or too much processing

is required to match cases. Although assigning indexes is still largely a manual pro-

cess and relies on human experts, various attempts at using automated methods

have been proposed in the literature. For example, Bonzano et al. [17] use inductive

techniques for learning local weights of features by comparing similar cases in a

case base. This method can determine the features that are more important in

predicting outcomes and improving retrieval. Bruninghaus and Ashley [18] employ

a factor hierarchically (multilevel hierarchical knowledge that relates factors to nor-

mative concerns) in guiding machine learning programs to classify texts according

to the factors and issues that apply. This method acts as an automatic filter remov-

ing irrelevant information. It structures the indexes into a factor hierarchy, which

represents the kinds of circumstances that are important to users. Other indexing

methods include indexing cases by features and by dimensions that are predictive

across the entire problem domain [19], computing the differences between cases,

adaptation guided indexing and retrieval [20], and explanation-based techniques.

1.6 CASE RETRIEVAL

Case retrieval is the process of finding, within a case base, those cases that are the

closest to the current case. To carry out effective case retrieval, there must be selec-

tion criteria that determine how a case is judged to be appropriate for retrieval and a

mechanism to control how the case base is searched. The selection criteria are

necessary to determine which is the best case to retrieve, by determining how close

the current case is to the cases stored.

The case selection criteria depend partly on what the case retriever is searching

for in the case base. Most often the case retriever is searching for an entire case, the
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features of which are compared to those of the current case. However, there are

times when only a portion of a case is being sought. This situation may

arise because no full case exists and a solution is being synthesized by selecting

portions of a number of cases. A similar situation is when a retrieved case is being

modified by adopting a portion of another case in the case base.

The actual processes involved in retrieving a case from a case base is highly

dependent on the memory model and indexing procedures used. Retrieval methods

employed by researchers and implementers are extremely diverse, ranging from a

simple nearest-neighbor search to the use of intelligent agents. We discuss both the

most commonly used and traditional methods in the following sections.

Retrieval is a major research area in CBR. The most commonly investigated

retrieval techniques, by far, are the k-nearest neighbors (k-NN), decision trees,

and their derivatives. These techniques involve developing a similarity metric

that allows closeness (i.e., similarity) among cases to be measured.

1. Nearest-neighbor retrieval. In nearest-neighbor retrieval, the case retrieved

is chosen when the weighted sum of its features that match the current case is

greater than other cases in the case base. In simple terms with all features weighted

equally, a case that matches the present case on n features will be retrieved rather

than a case that matches on only k features, where k < n. Features that are

considered more important in a problem-solving situation may have their

importance denoted by weighting them more heavily in the case-matching process.

2. Inductive approaches. When inductive approaches are used to determine the

case-base structure, which determines the relative importance of features for

discriminating among similar cases, the resulting hierarchical structure of the case

base provides a reduced search space for the case retriever. This may, in turn,

reduce the query search time.

3. Knowledge-guided approaches. Knowledge-guided approaches to retrieval

use domain knowledge to determine the features of a case that are important for

retrieving that case in the future. In some situations, different features of a case will

have different levels of importance or contribution to the success levels associated

with that case. As with inductive approaches to retrieval, knowledge-guided

indexing may result in a hierarchical structure, which can be more effective for

searching.

4. Validated retrieval. There have been numerous attempts at improving

retrieval. One of these is validated retrieval, proposed by Simoudis [21], which

consists of two phases. Phase 1 involves the retrieval of all cases that appear to be

relevant to a problem, based on the main features of the present case. Phase 2

involves deriving more discriminating features from the initial group of retrieved

cases to determine whether these cases are valid in the current situation. The

advantage of validated retrieval is that inexpensive computational methods can

be used to make the initial retrieval from the case base, while more expensive

computational methods can be used in the second phase, where they are applied to

only a subset of the case base.
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There are a number of factors to consider when determining the method of

retrieval:

� The number of cases to be searched

� The amount of domain knowledge available

� The ease of determining weightings for individual features

� Whether all cases should be indexed by the same features or whether each

case may have features that vary in importance

Once a case has been retrieved, there is usually an analysis to determine whether

that case is close enough to the problem case or whether the search parameters

need to be modified and the search conducted again. If the right choice is made

during this analysis, there can be a significant time saving. For example, the adap-

tation time required for a distant case could be significantly greater than searching

again. When considering an analysis method for this decision, the following points

should be considered:

� The time and resources required for adaptation

� The number of cases in the case base (i.e., how likely it is that there is a closer

case)

� The time and resources required for search

� How much of the case base has already been searched

If we now review the processes involved in CBR that we have presented thus far,

we can represent these succinctly, as shown in Figure 1.6.

Case base

Input specification
of query case 

Refine query and
retrieve again 

Case(s)

Query

Case appropriate
to adapt 

Inappropriate case–
further retrievals

not possible 

FAILURE

Go to
adaptation

Analysis of
retrieval 

Case retrieval 

Figure 1.6 Processes involved in CBR.
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1.7 CASE ADAPTATION

Case adaptation is the process of transforming a solution retrieved into a solution

appropriate for the current problem. It has been argued that adaptation may be the

most important step of CBR since it adds intelligence to what would otherwise be

simple pattern matchers.

A number of approaches can be taken to carry out case adaptation:

� The solution returned (case retrieved) could be used as a solution to the

current problem without modification, or with modifications where the

solution is not entirely appropriate for the current situation.

� The steps or processes that were followed to obtain the earlier solution could

be rerun without modification, or with modifications where the steps taken in

the previous solution are not fully satisfactory in the current situation.

� Where more than one case has been retrieved, a solution could be derived

from multiple cases or, alternatively, several alternative solutions could be

presented.

Adaptation can use various techniques, including rules or further case-based rea-

soning on the finer-grained aspects of the case. When choosing a strategy for case

adaptation, it may be helpful to consider the following:

� On average, how close will the case retrieved be to the present case?

� Generally, how many characteristics will differ between the cases?

� Are there commonsense or otherwise known rules that can be used when

carrying out the adaptation?

Solution addresses

current problem

Case

adaptation
Case base

Internal

assessment of

solution

Retrieved

case

interaction

Possible

Solution doesn’t

address current

problem

FAILURE

Output

solution

Figure 1.7 CBR entry into a learning state.
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After the adaptation has been completed, it is desirable to check that the solution

adapted takes into account the differences between the case retrieved and the

current problem (i.e., whether the adaptation specifically addresses these differ-

ences). At this point, there is also a need to consider what action is to be taken

if this check determines that the solution proposed is unlikely to be successful.

At this stage, the solution developed is ready for testing an use in the applicable

domain. This stage also concludes our description of all the necessary steps for

any CBR system; however, many systems will now enter a learning phase, as shown

in Figure 1.7.

1.8 CASE LEARNING AND CASE-BASE MAINTENANCE

1.8.1 Learning in CBR Systems

Once an appropriate solution has been generated and output, there is some expecta-

tion that the solution will be tested in reality (see Fig. 1.8). To test a solution, we

have to consider both the way it may be tested and how the outcome of the test will

be classified as a success or a failure. In other words, some criteria need to be

defined for the performance rating of the proffered solution. Using this real-world

assessment, a CBR system can be updated to take into account any new information

uncovered in the processing of the new solution. This information can be added to a

system for two purposes: first, the more information that is stored in a case base, the

closer the match found in the case base is likely to be; second, adding information

to the case base generally improves the solution that the system is able to create.

Learning may occur in a number of ways. The addition of a new problem, its

solution, and the outcome to the case base is a common method. The addition of

cases to the case base will increase the range of situations covered by the stored

cases and reduce the average distance between an input vector and the closest

stored vector (see Fig. 1.9).

Output
solution

Real-world
testing

Learning
mechanism

Case base
Case

retriever
Case

reasoner

Figure 1.8 Learning mechanism in CBR.
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A second method of learning in a CBR system is using the solution’s assessment

to modify the indexes of the stored cases or to modify the criteria for case retrieval.

If a case has indexes that are not relevant to the specific contexts in which it should

be retrieved, adjusting the indexes may increase the correlation between the occa-

sions when a case is actually retrieved and the occasions when it ought to have

been retrieved. Similarly, assessment of a solution’s performance may lead to an

improved understanding of the underlying causal model of the domain that can

be used to improve adaptation processing. If better ways can be found to modify

cases with respect to the distance between the current and retrieved cases, the out-

put solution will probably be improved.

When learning involves adding new cases to the case base, there are a number of

considerations:

1. In which situations should a case be added to the case base, and in which

situations should it be discarded? To determine an answer, we have to consider the

level of success of the solution, how similar it is to other cases in the case base, and

whether there are important lessons to be learned from the case.

2. If a case is to be added to the case base, the indexes of the new case must be

determined and how that case is to be added to the case base. If the case base’s

structure and retrieval method are both highly structured (e.g., an inductively

determined hierarchical structure or a set of neural networks), the incorporation of a

new case may require significant planning and restructuring of the case base.

1.8.2 Case-Base Maintenance

When applying CBR systems for problem solving, there is always a trade-off

between the number of cases to be stored in the case library and retrieval efficiency.

The larger the case library, the greater the problem space covered; however, this

would also downgrade system performance if the number of cases were to grow

unacceptably high. Therefore, removing redundant or less useful cases to attain

Sparse case base Denser case base

Query case

Stored case

Distance between cases

Figure 1.9 Distance between cases.
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an acceptable error level is one of the most important tasks in maintaining CBR

systems. Leake and Wilson [22] defined case-base maintenance as the implementa-

tion of policies for revising the organization or contents (representation, domain

content, accounting information, or implementation) of a case base to facilitate

future reasoning for a particular set of performance objectives.

The central idea of CBR maintenance is to develop some measures for case com-

petence, which is the range of problems that a CBR system can solve. Various prop-

erties may be useful, such as the size, distribution, and density of cases in the case

base; the coverage of individual cases; and the similarity and adaptation knowledge

of a given system [23]. Coverage refers to the set of problems that each case could

solve, and reachability refers to the set of cases that could provide solutions to the

current problem [24]. The higher the density of cases, the greater the chances of

having redundant cases. By expressing the density of cases as a function of case

similarity, a suitable case deletion policy could be formulated for removing cases

that are highly reachable from others.

Another reason for CBR maintenance is the possible existence of conflicting

cases in the case library due to changes in domain knowledge or specific environ-

ments for a given task. For example, more powerful cases may exist that can con-

tain inconsistent information, either with other parts of the same case or with

original cases that are more primitive. Furthermore, if two cases are considered

equivalent (with identical feature values), or if one case subsumes another by hav-

ing more feature criteria, a maintenance process may be required to remove the

redundant cases.

1.9 EXAMPLE OF BUILDING A CASE-BASED

REASONING SYSTEM

So far, we have outlined the essential components and processes that make up a

case-based reasoning system. For the convenience of readers, we provide here an

example demonstrating how a CBR system can be built.

With the development of higher living standards and job opportunities in cities,

more and more people move from various parts of a country to cities. When people

reach a new place, they usually have to look for accommodations. In most cases, the

main concern will be the renting of apartments. Some people may search through

the World Wide Web (WWW) to look for rental information. However, case match-

ing on the WWW is usually done in an exact manner. For example, if a person

wants information on the rental of rooms or apartments in Lianhua Road, Pudong

District, Shanghai City, it is very likely that no such information (no records) could

be found, and therefore that search would fail. There are many reasons for such a

failure; it may be because no apartments are available for rent, or the rental

information is not available on the Web, or the search engine could not locate

the information required. In this situation, CBR will be a suitable framework to

provide answers to such queries because it is based on the degree of similarity
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(not exactness) in matching with the capability of adaptation. Here we illustrate

how to build a CBR system to handle this rental information searching problem.

Specifically, we explain how to perform case representation, case indexing, case

similarity assessment, case adaptation, and case-base maintenance using a rental

information searching problem. The example case base was taken from the Web

site http://sh.soufun.com/asp/rnl/leasecenter on August 27, 2002, and consists of

251 cases. We randomly selected 20 cases (see Table 1.1) to constitute our sample.

In the table, information is summarized. For example, ‘‘Mh’’ in the column ‘‘city

district’’ represents Minghang; ‘‘11’’ in the column ‘‘type of apartment’’ represents

one bedroom and one sitting room; and in the column ‘‘source of information,’’

‘‘indi’’ represents information obtained from individual landlords, and those

marked by ‘‘*’’ represent information obtained from real estate agents.

The following steps are carried out using these 20 cases:

� Case representation and indexing. Choose an appropriate representation

format for a case, and build a case index to facilitate the retrieval of similar

cases in the future.

� Case matching and retrieval. Establish an appropriate similarity function, and

retrieve cases that are similar to the present case.

TABLE 1.1 Rental Information

Address Rental Cost of

of Type of Source of Apartment

Case City District Apartment Apartment Information (yuan/month)

1 Mh Lx 11 indi 500

2 Mh Lz 21 indi 2,500

3 Mh Ls1 21 indi 1,500

4 Mh Xz 11 indi 500

5 Mh Hm3 11 indi 880

6 Mh Ls2 31 dn* 1,500

7 Mh Dw 22 dn* 2,500

8 Xh Cd 11 indi 1,200

9 Xh Yd 32 indi 6,800

10 Xh Xm 20 indi 1,600

11 Cn Xh 11 indi 1,100

12 Cn Fy 11 indi 1,100

13 Cn Lj 21 dn* 3,500

14 Pd Wl 21 indi 1,600

15 Pd Wl 21 indi 1,600

16 Pd Yg 10 indi 3,500

17 Pd Ls 11 bc* 1,000

18 Yp Xy 10 indi 750

19 Yp Bx 32 indi 2,000

20 Yp Cy 42 ys* 10,000
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� Case adaptation. Construct a suitable adaptation algorithm to obtain an

appropriate solution for the query case.

� Case-base maintenance. Maintain consistency among cases (i.e., eliminate

redundant cases) in the case base.

1.9.1 Case Representation

Representing cases is a challenging task in CBR. On the one hand, a case represen-

tation must be expressive enough for users to describe a case accurately. On the

other hand, CBR systems must reason with cases in a computationally tractable

fashion. Cases can be represented in a variety of forms, such as prepositional repre-

sentations, frame representations, formlike representations, and combinations of

these three. In this example we could choose a flat feature-value vector for the

representation of cases as shown in Table 1.2.

1.9.2 Case Indexing

Table 1.2 describes the case representation. Case indexing is the method used to

store these cases in computer memory. In this example we organize the cases hier-

archically so that only a small subset of them needs to be searched during retrieval.

Processes are as follows:

Step 1. Select the most important feature attribute, city district, as an index (in

general, people think that the city district is the most important feature).

Step 2. Classify cases into five classes, C1;C2; . . . ;C5 (Fig. 1.10) according to this

feature.

When a new case ne is added to this index hierarchy, the following indexing pro-

cedure could be used. Classify (ne, CL) (i.e., classify ne as a member of one of the

classes of CL), where CL ¼ fC1;C2; . . . ;C5g. Input a new case described by a set

of features ne ¼ fF1;F2; . . . ;F5g.

TABLE 1.2 Case Representation

Case_id: 1

Problem features

City district Mh

Address of apartment Lx

Type of apartment 11

Source of information indi

Solution

Rental cost of apartment 500
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Step 1. Starting from i ¼ 1, select one case ej randomly from class Ci.

Step 2. Compare the value of the first feature (i.e., city district) of ne and ej.

Step 3. If the two values are identical, ne 2 Ci, else i ¼ iþ 1; go to step 1.

Step 4. Repeat steps 1, 2, and 3, until ne belongs to some class Ci.

1.9.3 Case Retrieval

Case retrieval is the process of finding within the case base the case(s) that are clo-

sest to the current case. For example, for a given case êe ¼ ðMh; Lz; 11; indi; yÞ,
where we want to know the rent information y, case retrieval is the process of find-

ing those cases that are the closest to êe.

The retrieval algorithm is begun by deciding to which class the present case êe

belongs: Classify (êe, CL), where CL ¼ fC1;C2; . . . ;C5g and êe is a query case.

Step 1. Starting from i ¼ 1, select one case ej randomly from class Ci.

Step 2. Compare the feature value ‘‘district’’ of êe and ej.

Step 3. If the two values are identical, êe 2 Ci, else i ¼ iþ 1; go to step 1.

Step 4. Repeat steps 1, 2, and 3 until êe belongs to some class Ci.

Next, search for similar cases.

Step 1. If êe 2 Ci, for each case ei calculate the degree of similarity between êe and ei
as

SMðêe; eiÞ ¼
common

commonþ different

where ‘‘common’’ represents the number of features whose value is the same

between êe and ei, and ‘‘different’’ represents the number of features whose value is

different between êe and ei.

Step 2. Rank the cases by similarity measure computed in step 1.

C1 C2 C5

CB

Figure 1.10 Indexing structure of the case base.
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Step 3. Choose cases such as e1; e2; . . . ; ek from Ci which are most similar to êe; that

is,

SMðêe; eiÞ ¼ maxfSMðêe; ejÞ; ej 2 Cig i ¼ 1; 2; . . . ; k

For the given query case êe ¼ ðMh; Lz; 11; indi; y), after following the algo-

rithm above, four similar cases are retrieved from C1: e1; e2; e4, and e5, where

e1 ¼ ðMh; Lx; 11; indi; 500Þ e2 ¼ ðMh; Lz; 21; indi; 2500Þ

e4 ¼ ðMh; Xz; 11; indi; 500Þ e5 ¼ ðMh; Hm3; 11; indi; 880Þ

and

SMðêe; e1Þ ¼ SMðêe; e2Þ ¼ SMðêe; e4Þ ¼ SMðêe; e5Þ ¼ 0:75

1.9.4 Case Adaptation

After a matching case is retrieved, a CBR system adapts the solution stored in the

retrieved case to fulfill the needs of the current case. The following is an algorithm

used to carry out the task of case adaptation.

Step 1. Group the retrieved cases (which are most similar to the present case êe)

based on their solution value (i.e., rental cost of the apartment) into several

categories, C1;C2 . . . ;Cm, with corresponding values of rental cost of the

apartment, a1; a2; . . . ; am.

Step 2. Count the number of cases retrieved in each category Ciði ¼ 1; 2; . . . ;mÞ,
and record them as n1; n2; . . . ; nm.

Step 3. Choose category Ci for which ni ¼ maxfn1; n2 . . . ; nmg.

Step 4. If there exists only one category Ci such that ni > nj; j 6¼ i, take the

solution (rental cost of the apartment) stored in a case in Ci as the solution to the

present case; else, if there exist several categories, such as Ci1;Ci2; . . . ;Cik

satisfying ni1 ¼ ni2 ¼ � � � ¼ nik ¼ maxfn1; n2; . . . ; nmg, take the average value �bb

defined by

�bb ¼
ai1 þ ai2 þ � � � þ aik

k

as the solution to the present case, where ai1; ai2; . . . ; aik are values of the Rental

cost of the apartment corresponding to Ci1;Ci2; . . . ;Cik.

In Section 1.9.3 we retrieved four cases, e1; e2; e4; e5, which are most similar to

the present case êe, where êe ¼ ðMh; Lz; 11; indi; yÞ. According to the case adapta-

tion algorithm above, we find a suggested (adapted) solution for this case. First, we
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group these four cases into three categories, C1 ¼ fe1; e4g;C2 ¼ fe2g, and

C3 ¼ fe5g, where the corresponding solutions (the rental cost of the apartment

stored in a case) are 500, 2500, and 880. We then count the number of cases in

each category. For example, the number of cases in category C1 is 2, the number

of cases in category C2 is 1, and the number of cases in category C3 is 1. Since the

number of cases in category C1 is the greatest, we choose 500 as the suggested solu-

tion to the present case.

Note that once we have obtained an adapted solution, its validity should be tested

in reality. In the example here, the landlord might be asked if the solution (i.e., the

suggested price) is acceptable. If it is acceptable, the performance of this CBR

system can then be improved by adding this new case record.

1.9.5 Case-Base Maintenance

The maintenance problem is very important, as it safeguards the stability and accu-

racy of CBR systems in real-world applications. However, our example here

focuses only on the problem of case redundancy. From Table 1.1 we see that there

exist some redundant cases, such as cases 14 and 15, that will downgrade system

performance, so we should identify and remove these cases. A way of doing this is

as follows:

Step 1. For each class Ci, as in Section 1.9.1, where we have the case base

classified into five classes, classify all its cases by the address of the apartment and

generate new classes Ci1;Ci2; . . . ;Cin ði ¼ 1; 2; . . . ; 5Þ.

Step 2. Count the number of cases in each class Cij, ði ¼ 1; 2; . . . ; 5; j ¼
1; 2; . . . ; nÞ.

Step 3. If the number of cases in Cij is greater than or equal to 2, compare each

feature value of these cases pairwise.

Step 4. If some cases have identical values for all features, retain one of these cases

and remove the rest.

In this example, since the case library available is small, the principal task is to

remove the redundant cases. However, with each increase in case library size, more

maintenance will be required.

1.10 CASE-BASED REASONING: METHODOLOGY

OR TECHNOLOGY?

Is CBR a technology, such as linear programming, neural networks, genetic algo-

rithms, fuzzy logic, and probabilistic reasoning, or just a methodology for problem

solving similar to structured systems analysis and design methodology? Janet

Kolodner raised this question in 1993 [13]. She proposed the idea that CBR is

both a cognitive model and a method of building intelligent systems. In 1999,

Ian Watson published an article explicitly arguing that CBR is a methodology,
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not a technology [25]. In examining four very different CBR applications he

showed that CBR describes a methodology for problem solving but does not pre-

scribe specific technology. He pointed out that different techniques could be used

and applied in various phases of the CBR problem-solving life cycle. For example,

nearest-neighbor techniques, induction algorithms, fuzzy logic, and database

techniques can all be applied to the retrieval phase of a CBR system (i.e., measuring

similarity among cases). The equation

similarity ðp; qÞ ¼
Xn

j¼1

f ðpi; qiÞ � wi ð1:1Þ

represents a typical nearest-neighbor technique that describes a situation for which

p and q are two cases compared for similarity, n is the number of attributes in each

case, i is an individual attribute from 1 to n, and wi is the feature weight of attribute

i. Generally, the similarity calculation continues until all cases in the case library

have been compared, and ranked according to their similarity to a target problem

case. Similarities are usually normalized to fall within the range 0 to 1, where

1 means a perfect match and 0 indicates a total mismatch. Methods other than

nearest-neighbor techniques have also been used to determine similarity among

cases (e.g., induction techniques such as ID3 and C4.5, fuzzy preference functions,

and database techniques such as structured query language).

Since CBR is a methodology rather than a technology, inductions and many

clustering algorithms, such as c-means clustering [26], Kohonen’s self-organized

network [27], and Fu’s similarity matrix [28], could be used to partition a case

library for similarity assessment. These techniques generally use three indexes as

a measure of the clustering performance: intercluster similarity, intracluster similar-

ity, and the total number of clusters. Many powerful commercial CBR tools have

provided this function (e.g., Kate from AcknoSoft, ReCall from ISoft, CBR-Works

from TecInno, and ReMind from Cognitive Systems) [29].

As suggested by Watson [25], if CBR is considered to be a methodology, this has

a profound implication: CBR has no technology to call its own and therefore must

use other technologies. It is this ‘‘CBR has no technology’’ scenario that creates a

challenge for CBR researchers. Any number of technologies or approaches can be

used and applied to the CBR cycle. Consequently, it is as a methodology that CBR’s

future is assured.

1.11 SOFT CASE-BASED REASONING

According to Lotfi Zadeh, soft computing is ‘‘an emerging approach to computing,

which parallels the remarkable ability of the human mind to reason and learn in an

environment of uncertainty and imprecision.’’ In general, it is a consortium of

computing tools and techniques, shared by closely related disciplines, including

fuzzy logic (FL), neural network theory (NN), evolutionary computing (EC), and

probabilistic reasoning (PR), with the latter discipline subsuming belief networks,

SOFT CASE-BASED REASONING 27



chaos theory, and parts of learning theory. The development of rough set theory by

Zdzislaw Pawlak adds an additional tool for dealing with vagueness and uncer-

tainty. In soft computing, an individual tool may be used independently, depending

on the application domains. Tools can also act synergistically, not competitively, to

enhance an application domain of the other by integrating their individual merits

(e.g., the uncertainty-handling capability of fuzzy sets, learning capability of

artificial neural networks, and robust searching and optimization characteristics

of genetic algorithms). The primary objective is to provide flexible information-

processing systems that can exploit a tolerance for imprecision, uncertainty,

approximate reasoning, and partial truth, in order to achieve tractability, robustness,

low solution cost, and a closer resemblance to human decision making. By

far the most successful hybrid systems are neuro-fuzzy systems [30], and it is

anticipated that other types of hybrid systems, such as neuro-genetic, fuzzy-rough,

neuro-fuzzy-genetic, and rough-neuro [31–36], will have a profound impact on the

ways in which intelligent systems are designed and developed in the future.

The notion of fuzzy sets was introduced by Zadeh in 1965. It provides an approx-

imate but effective and flexible way of representing, manipulating, and utilizing

vaguely defined data and information. It can also describe the behaviors of systems

that are too complex or too ill-defined to allow precise mathematical analysis using

classical methods and tools. Unlike conventional sets, fuzzy sets include all ele-

ments of a universal set but with different membership values in the interval

[0,1]. Similarly, in fuzzy logic, the assumption that a proposition is either true or

false is extended to multiple-value logic, which can be interpreted as a degree of

truth. The primary focus of fuzzy logic is on natural language, where it can provide

a foundation for approximate reasoning using words (i.e., linguistic variables).

Artificial neural network models are attempts to emulate electronically the archi-

tecture and information representation scheme of biological neural networks. The

collective computational abilities of densely interconnected nodes or processors

may provide a natural technique in a manner analogous to human ability.

Neuro-fuzzy computing, capturing the merits of fuzzy set theory and artificial neural

networks, constitutes one of the best-known hybridizations in soft computing. This

hybrid integration promises to provide more intelligent systems (in terms of

parallelism, fault tolerance, adaptivity, and uncertainty management) able to handle

real-life ambiguous recognition or decision-making problems.

Evolutionary computing (EC) involves adaptive techniques that are used to solve

search and optimization problems inspired by the biological principles of natural

selection and genetics. In EC, each individual is represented as a string of binary

values; populations of competing individuals evolve over many generations accord-

ing to some fitness function. A new generation is produced by selecting the best

individuals and mating them to produce a new set of offspring. After many genera-

tions, the offspring contain all the most promising characteristics of a potential

solution to the search problem.

Probabilistic computing has provided many useful techniques for the formaliza-

tion of reasoning under uncertainty, in particular the Bayesian and belief functions

and the Dempster–Shafer theory of evidence. The rough set approach deals mainly
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with the classification of data and synthesizing an approximation of particular

concepts. It is also used to construct models that represent the underlying domain

theory from a set of data. Often, in real-life situations, it is impossible to define a

concept in a crisp manner. For example, given a specific object, it may not be

possible to know to which particular class it belongs; the best knowledge derived

from past experience may only give us enough information to conclude that this

object belongs to a boundary between certain classes. Formulation of lower and

upper set approximations can be generalized to some arbitrary level of precision

which forms the basis for rough concept approximations.

As mentioned before, CBR is being recognized as an effective problem-solving

methodology which constitutes a number of phases: case representation, indexing,

similarity comparison, retrieval, and adaptation. For complicated real-world appli-

cations, some degree of fuzziness and uncertainty is almost always encountered.

Soft computing techniques, such as fuzzy logic, neural networks, and genetic algo-

rithms, will be very useful in areas where uncertainty, learning, or knowledge infer-

ence are part of a system’s requirements. To gain an understanding of these

techniques so as to identify their use in CBR, we summarize them briefly in the

following sections. For the convenience of readers, a more detailed treatment of

fuzzy logic, neural networks, genetic algorithms, and rough set theory are given

in appendixes A to D.

1.11.1 Fuzzy Logic

Fuzzy set theory has been applied successfully to computing with words or the

matching of linguistic terms for reasoning. In the context of CBR, using quantita-

tive features to create indexes involves conversion of numerical features into qua-

litative terms for indexing and retrieval. These qualitative terms are always fuzzy.

Moreover, one of the major issues in fuzzy set theory is measuring similarities in

order to design robust systems. The notion of similarity measurement in CBR is

also inherently fuzzy in nature. For example, Euclidean distances between features

are always used to represent similarities among cases. However, the use of fuzzy set

theory for indexing and retrieval has many advantages [37] over crisp measure-

ments, such as the following:

� Numerical features could be converted to fuzzy terms to simplify comparison.

� Fuzzy sets allow multiple indexing of a case on a single feature with different

degrees of membership.

� Fuzzy sets make it easier to transfer knowledge across domains.

� Fuzzy sets allow term modifiers to be used to increase flexibility in case retrieval.

Another application of fuzzy logic to CBR is the use of fuzzy production rules to

guide case adaptations. For example, fuzzy production rules may be discovered by

examining a case library and associating the similarity between problem and solu-

tion features of cases.
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1.11.2 Neural Networks

Artificial neural networks (ANNs) are commonly used for learning and the general-

ization of knowledge and patterns. They are not appropriate for expert reasoning,

and their abilities for explanation are extremely weak. Therefore, many applications

of ANNs in CBR systems tend to employ a loosely integrated approach where the

separate ANN components have specific objectives such as classification and pat-

tern matching. Neural networks offer benefits when used for retrieving cases

because case retrieval is essentially the matching of patterns: A current input

case or pattern is matched with one or more stored cases or patterns. Neural net-

works are very good at matching patterns. They cope very well with incomplete

data and imprecise inputs, which is of benefit in many domains, as some portion

of the features is sometimes important for a new case, whereas other features are

of little relevance. Domains that use case-based reasoning are usually complex.

This means that the classification of cases at each level is normally nonlinear,

and hence for each classification a single-layered network is not sufficient and a

multilayered network is required.

Hybrid CBR and ANNs are a very common architecture for applications to solve

complicated problems. Knowledge may first be extracted from the ANNs and repre-

sented by symbolic structures for later use by other CBR components. Alterna-

tively, ANNs could be used for retrieval of cases where each output neuron

represents one case.

1.11.3 Genetic Algorithms

Genetic algorithms (GAs) are adaptive techniques used to solve search and optimi-

zation problems, inspired by the biological principles of natural selection and

genetics. In GA, each individual is represented as a string of binary values. Popula-

tions of competing individuals evolve over many generations according to some

fitness function. A new generation is produced by selecting the best individuals

and mating them to produce a new set of offspring. After many generations the off-

spring contain all the most promising characteristics of a potential solution to the

search problem. Learning local and global weights of case features is one of the

most popular applications of GAs to CBR. These weights indicate how important

the features within a case are with respect to the solution features. Information

about these weights can improve the design of retrieval methods and the accuracy

of CBR systems.

1.11.4 Some CBR Tasks for Soft Computing Applications

As a summary, some of the tasks in the four major elements of the CBR cycle that

have relevance as prospective candidates for soft applications are as follows:

� Retrieve: fuzzy indexing, connectionist indexing, fuzzy clustering and classi-

fication of cases, neural fuzzy techniques for similarity assessment, genetic
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algorithms for learning case similarity, probability and/or Bayesian models for

case selection, case-based inference using fuzzy rules, fuzzy retrieval of cases,

fuzzy feature weights learning, rough set–based methods for case retrieval

� Reuse: reusing cases by interactive and conversational fuzzy reasoning,

learning reusable case knowledge, neural fuzzy approaches for case reuse

� Revise: adaptation of cases using neural networks and evolutionary

approaches, mining adaptation rules using rough set theory, obtaining fuzzy

adaptation knowledge from cases

� Retain: redundant case deletion using fuzzy rules, case reachability and

coverage determination using neural networks and rough set theory, determi-

nation of case-base competence using fuzzy integrals

Although in this classification we have mentioned primarily the application of

individual soft computing tools, various combinations can also be used [34].

1.12 SUMMARY

In this chapter we provide a brief explanation of case-based reasoning, its main

components, its advantages, and the situations in which it is most useful. Next

we outline briefly some of the most common soft computing techniques and their

relevance to case-based reasoning. Then a simple example is used to explain the

major ideas on which CBR systems are based. There are many important books

and monographs that interested readers should consult for more information on

these topics. A few suggestions for further reading follow.

� Special issue on soft case-based reasoning, Applied Intelligence, T. S. Dillon,

S. K. Pal, and S. C. K. Shiu (eds.) (still to appear).

� Soft Computing in Case-Based Reasoning, S. K. Pal, T. S. Dillon, and D. S.

Yeung (eds.), Springer-Verlag, London, 2001.

� Applying Case-Based Reasoning: Techniques for Enterprise Systems,

I. Watson, Morgan Kaufmann, San Francisco, 1997.

� Case-Based Reasoning Experiences, Lessons and Future Directions, D. B.

Leake (ed.), AAAI Press/MIT Press, Cambridge, MA, 1996.

� Case-Based Reasoning, J. Kolodner, Morgan Kaufmann, San Francisco, 1993.

In addition, the following Web sites provide much useful information as well as

links to other CBR resources:

� D. Aha at the U.S. Naval Research Laboratory maintains the site http://

www.aic.nrl.navy.mil/�aha/.

� R. Bergmann, I. Vollrath, and S. Schmitt at the University of Kaiserslautern

maintain the site http://www.cbr-web.org.
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� I. Watson at the University of Auckland in New Zealand maintains the site

http://www.ai-cbr.org.
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CHAPTER 2

CASE REPRESENTATION

AND INDEXING

2.1 INTRODUCTION

In general, cases can be considered as contextualized experiences, useful for rea-

soners to achieve their goals. Therefore, case representation can be viewed as the

task of enabling the computer to recognize, store, and process past contextualized

experiences. When considering case representation, we need to look at this problem

from two points of view: first, the conceptual models that are used to design and

represent cases, and second, the means of implementing cases in the computer

(e.g., a relational table in a RDBMS; some data structures, such as B-trees and

R-trees; or an object-oriented hierarchy). Selection of an appropriate scheme for

case representation and indexing is essential because it provides the basic structure

for which other CBR processes can be carried out.

As mentioned in Chapter 1, a case consists primarily of two parts: the problem

part and the solution part. Each part can be further divided into smaller components

that might be useful for later reasoning tasks, depending on the problem at hand.

In this chapter we illustrate, how case representation and indexing can be done

using traditional data modeling techniques, such as the relational database model,

object-oriented model, and predicate logic model. Then the use of soft computing

techniques for representing and indexing cases is described, such as the use of fuzzy

sets, rough sets, and neural networks.

Perhaps the most important and commonly used traditional case representation

technique is the relational database approach. A relation can be defined as a subset

Foundations of Soft Case-Based Reasoning. By Sankar K. Pal and Simon C. K. Shiu
ISBN 0-471-08635-5 Copyright # 2004 John Wiley & Sons, Inc.
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of discrete objects of related domains. The relational database model is simple and

flexible and has been adopted widely in many case-based reasoning applications.

Each object (or case) is represented by a row in a relational table where the

columns are used to define the attributes (or fields) of the objects. Hence, we could

divide a relational table into two parts: a problem description part and a solution

part. If the case has many relationships with other objects, or if the case can be

broken down into subcases, a network of relationships can be developed. This

relational database framework can reduce storage redundancy as well as improve

retrieval efficiency. A simple example of buying a car is used to illustrate this

idea later in the chapter.

Another popular traditional approach to case representation is the object-

oriented approach. The advantage of this approach comes from its compact case

representation ability, and the associated software reusability.

A third approach is the predicate logic–based technique. Mathematically speak-

ing, a predicate denotes a relation among objects. However, in CBR, the term pre-

dicate is often used to represent a relationship between a production rule and some

facts. Therefore, we could interpret that a case is, in fact, a collection of facts and

predicates. The reasoning process in these CBR systems is carried out by firing the

corresponding production rules contained in the case. One of the principal advan-

tages of using predicates is that it allows the CBR system designer to incorporate

many production rules in the system to form a hybrid rule/case-based reasoning

system, which may be very effective in such application domains as fault diagnosis

systems. However, the predicate logic approach has one major drawback: Retriev-

ing data values from predicates for the purpose of comparing similarity among

cases is not always as convenient as other approaches.

Although the traditional data models described above are useful to represent

and to index cases, in many practical situations when specifying a case, it is often

difficult to articulate the feature values precisely. This uncertainty may be caused

by incomplete, missing, unquantifiable information, overlapping of the data

regions, or user ignorance. Therefore, to make cases more expressive in dealing

with such situations, soft computing techniques are introduced. Before we go

into a detailed discussion of traditional and soft case representation and indexing

methodologies, let us review briefly the concepts and ways of organizing cases

in computer memory [1].

1. Flat Memory, Serial Search. Cases are stored sequentially in a simple list,

array, or file. No explicit indexing structure is created, and searching is done

sequentially, case by case, until the entire case library is searched. If the matching

heuristic is effective, the best-matching case will always be retrieved. Adding new

cases to a case library is also simple and straightforward (e.g., the case is added as

the last element of a list).

2. Shared-feature Networks, Breadth-first Graph Search. Cases are organized

hierarchically so that only a small subset of cases needs to be searched during

retrieval. This subset must be likely to contain the best-matching or most useful

cases. Shared-feature networks provide a means of clustering cases so that cases
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with many shared features can be grouped together. Each of the internal nodes of a

shared-feature network contains features shared by the cases below it, whereas the

leaf nodes hold the actual cases. Building such a network is simple, and clustering

algorithms are generally used to partition the cases. Individual features are used

either to cluster or to differentiate the cases from others. Searching is done simply

by matching the problem case against the contents of each node, starting at the

highest level in the hierarchy. The best-matching node is chosen, and the same

process is repeated among its descendant nodes until a case is returned with

the closest match. There are many ways to organize cases into a shared-feature

network, such as putting the most important features at the top of the hierarchy so

that they are considered first. Many of the machine learning algorithms can be used

to partition cases into different clusters. However, there are a number of

disadvantages associated with organizing cases into such a network: for example,

adding new cases will become a nontrivial task; it is difficult to keep the network

optimal as cases are added; extra space is required for organization; to provide

accurate retrieval for several reasoning goals, several shared-feature networks (each

prioritized differently) might be needed; when an input is incomplete, no guidance

is given on how to continue the search; and finally, there is no guarantee that good

cases will not be missed.

3. Discrimination Networks. Each internal node represents a question that sub-

divides the set of cases stored in the hierarchy immediately beneath it. Hence, each

child node represents a different answer to the question posed by its parent, and each

child node organizes the cases that provide its answer. Discrimination networks

make the search more efficient than with an unorganized list. They are also very

efficient because this structure provides a more coherent indexing scheme where

attributes are separated from values. However, when an input is incomplete, neither

shared-feature networks nor discrimination networks give guidance on how

to continue the search for a solution when a question in the network cannot be

answered.

4. Redundant Discrimination Networks. A redundant discrimination network

organizes cases using several different discrimination networks, each containing a

different ordering of questions. These networks are searched in parallel.

5. Flat Library, Parallel Search. Using parallel processing machines to

implement a flat case library may be one alternative for achieving both

effectiveness and efficiency in retrieving and adding new cases to a case library.

However, expensive hardware is needed, and it is difficult to implement complex

matching functions.

6. Hierarchical Memory, Parallel Search. If the objective is to combine the

advantages of a hierarchical memory with parallel retrieval algorithms, the strategy

of hierarchical memory and parallel search is the option to choose. Although a

parallel approach can make the algorithms execute faster, no matter how much

parallelism is available, there will still be a need to partition the case library

intelligently when it is becoming very large.
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The remainder of the chapter is organized as follows. In Section 2.2 we

describe some traditional methods of case representation, including relational

database representation, object-oriented representation, and predicate representa-

tion. In Section 2.3 we provide case representation methodologies using fuzzy

sets, rough sets, and rough-fuzzy hybridization, together with some experimental

results. In Section 2.4 we explain both traditional and soft computing approaches

for case indexing, including use of the Bayesian probability model, prototype-

based incremental neural network, and three-layered back-propagation neural

network.

2.2 TRADITIONAL METHODS OF CASE REPRESENTATION

As mentioned earlier, a case can be regarded as a contextualized piece of knowl-

edge that could be structured in accordance with the real situation in the problem

domain. Usually, in this structure there exists a goal describing the reasoner’s aim

and a set of constraints on this goal. Some information about the situation related to

achieving the reasoner’s goal may also be required. Another important component

in this structure is the description of a solution, which may be some concepts or

methods to achieve the goals. It may include the solution itself, the reasoning steps,

the justification, the alternatives, and expectations regarding the outcome. Some-

times, an additional part called the outcome part can be added to a case, which

includes feedback from the real world and interpretations of the feedback after car-

rying out the solutions. Different problem domains may have different case struc-

turing schemes. For example, a cardiac diagnosing reasoner, Casey [2], does not

have an outcome part. Casey collects information from patients and computes

the similarity of the input data using the problem part, then selects the most closely

matched case, and then adapts to give a diagnosis. The outcome part of cases is not

necessary in Casey because the knowledge of Casey is already well defined and

captured completely. However, in most real-world applications, it is difficult to

obtain complete knowledge and safeguard it accuracy. Therefore, in this situation

it is recommended that the outcome part be added to the case structure. This part

records the status of the real world after the solution is carried out and is very useful

for giving additional feedback to users.

To illustrate methods of representing cases, we use the following example of

buying a car. To sell a car successfully, it is necessary for a salesperson to under-

stand all the relevant car information that might be of interest to users (e.g.,

intended use, color, number of seats, and style). Other information relating to

customers such as budget, preferences, and other special requirements, may also

need to be considered. Figure 2.1 provides such a car-buying example. As stated

earlier, this case consists of customer information, order information, supplier

information, and automobile information. A typical case record is shown in

Figure 2.2. Furthermore, a supplier produces many types of automobiles, which
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may be divided into three categories: private car, bus, and truck. There are two

types of buses: school bus and commercial transit bus. In the following section

we use the relational database model, object-oriented model, and the predicate logic

model to represent this case example.

2.2.1 Relational Representation

Since we have nine objects (or entities) in the car-buying example, we need to create

nine tables in our database, for one each object, to represent our cases. The tables

are linked through the primary and foreign keys. The simplified SQL (structured

query language) statements creating these relation tables is shown in Figure 2.3.

(Attributes in bold type are selected as primary keys.) After creation of the tables,

relation instances (i.e., cases) can be inserted into the table. Cases in the rela-

tional database tables can be retrieved later using SELECT-FROM-WHERE SQL

statements.

An advantage of this relational database model is that it presents a multisided

view of cases by normalizing the case data into third-normal form. However, this

representation model has a drawback: Case-base designers must spend considerable

time and energy to develop a relational database model for presenting a case.

Customer

Order

Supplier Automobile

Private car Bus Lorry

School bus Commercial transit bus

Figure 2.1 Car-buying example.

Figure 2.2 Car-buying case record.
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Figure 2.3 Relational database representation of cases.
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2.2.2 Object-Oriented Representation

The popularity of object-oriented (OO) representation comes from its compact

data-representing ability and associated software reusability. For case-based reason-

ing systems in CAD/CAM, multimedia, and global information systems, the

standard relational database model is not suitable for building a complex case

data structure. In this situation, OO representation works much better. In Figure 2.4

Figure 2.3 (Continued )

Figure 2.4 Object-oriented case representation.
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we use xSQL (extended structured query language)-style statements to represent

the car-buying example. As can be seen, the OO method needs less memory

storage to represent each case. Furthermore, since OO is a natural way of repre-

senting IS-A and HAS-A relationships, case representation is easier for users to

understand.

2.2.3 Predicate Representation

A predicate is a relation among objects, and it consists of a condition part and an

action part, IF (condition) and THEN (action). Predicates that have no conditional

part are facts. Cases can be represented as a collection of predicates. The advantage

of predicate representation is that it uses both rules and facts to represent a case,

and it enables a case-base designer to build hybrid systems that are integrated

rule/case-based. The Prolog clauses shown in Figure 2.5 represent the car-buying

example.

Figure 2.4 (Continued )
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2.2.4 Comparison of Case Representations

A comparison of the three case representation schemes above is shown in Table 2.1.

The OO approach offers the highest compactness in terms of storage space and

supports software reusability. The predicate logic approach is suitable only for a

Figure 2.5 Predicate schema of case representation.
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small-scale case base and would become unmanageable if the number of cases grew

too large. Furthermore, retrieving feature values for computation is difficult using

the predicate logic approach. However, it does offer the opportunity to integrate

with rule-based systems. Recently, XML (extensible markup language) has

emerged as the standard for data representation and exchange on the Web. It is plat-

form independent, object oriented, and can be well interfaced to many

programming environments. XML is therefore expected to become a suitable

tool in building open CBR systems on the Web in the near future.

2.3 SOFT COMPUTING TECHNIQUES

FOR CASE REPRESENTATION

In this section we describe how the concept of fuzzy sets can be used to represent

and index cases. This is followed by a method demonstrating an integration of

rough and fuzzy sets for case generation and indexing.

2.3.1 Case Knowledge Representation Based on Fuzzy Sets

A fuzzy set A is a collection of objects drawn from the universal set U, with a con-

tinuum of grades of membership where each object x (x 2U) is assigned a member-

ship value that represents the degree to which x fits the imprecise concept

represented by the set A. Formally, it is written as follows:

A ¼ fmAðxÞ=x; x 2 Ug ð2:1Þ

TABLE 2.1 Comparison of Traditional Case Representations

Relational Object-Oriented Predicate

Approach Approach Logic Approach

Compactness Medium High Low

Application Yes No No

independency

Software No Yes No

reusability

Case-base scale Large Large Small

Retrieving feature Easy Easy Difficult

values for computation

Compatibility with Poor Poor Good and

rule-based system suitable for NLP

Case organization Keys Inheritance/ Data definition

method reference
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where mAðxÞ, the membership function, is defined as

mA:U ! ½0; 1� ð2:2Þ

The basic concepts and definitions of fuzzy set theory are described in

Appendix A.

A linguistic term is a natural language expression or word that quantifies impre-

cisely an attribute such as income, age, height, and safety. Linguistic terms of this

kind can be labels for fuzzy sets. In a typical application, the number of linguistic

terms for each attribute in a case can be assumed to be five, usually referred to as

negative big, negative small, zero, positive small, and positive big, or NB, NS, ZE,

PS, and PB. Their membership functions can be expressed in many forms, such as

in trapezoidal, Gaussian, and generalized bell shapes. So far, the most commonly

used membership functions are triangular in shape, as shown in Figure 2.6. A fuzzy

number, used to handle inexactly specified quantities, is usually formulated by a

linguistic expression reflecting the closeness to a real number, for example,

‘‘around 300’’ or ‘‘more or less 1 million.’’ Fuzzy numbers are fuzzy sets defined

using equations (2.1) and (2.2).

2.3.1.1 Fuzzy Features Refer to the earlier car-buying example. The

case features could be fuzzified into fuzzy linguistic terms and fuzzy numbers.

The attribute that is suitable to be fuzzified is the price of a car. Usually, the

car price fluctuates and varies with different models, colors, and components, so

sometimes it is difficult for the user to specify the exact price of a car. In this

situation, a fuzzy CBR system could accept a query such as ‘‘I am looking for a

comfortable car that is moderately expensive and very durable.’’ The architecture

of the fuzzy CBR system is shown in Figure 2.7. The fuzzifier consists of a set of

fuzzifying (and defuzzifying) algorithms that are used to generate fuzzy inputs

from crisp user inputs. The fuzzy CBR system consists of the fuzzy similarity

function for comparing cases in the case base with the input case. In the sample

car record shown in Figure 2.2, the fuzzy sets of the price attribute can take

the form of bell-shaped functions: very low, low, middle, high, and very high

(see Fig. 2.8).

Negative 0 Positive

NB NS ZE PS PB

Figure 2.6 Fuzzy membership functions.
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The following equation shows the typical bell-shaped membership function of

‘‘very low’’:

mvery lowðxÞ ¼

1 0 � x � 20

1þ
x � 20

8

� �4
" #�1

20 � x � 100

8

>

<

>

:

ð2:3Þ

Therefore, given a price value, we could calculate its membership value to each

fuzzy set. The fuzzy linguistic term with maximum value can then be chosen as

the fuzzy input. For example, the membership value of price $55,000 in each cate-

gory is as follows:

mvery lowð55; 000Þ ¼ 0:0027

mlowð55; 000Þ ¼ 0:025

mmiddleð55; 000Þ ¼ 0:8681

mhighð55; 000Þ ¼ 0:2907

mvery highð55; 000Þ ¼ 0:0104
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Figure 2.8 Bell-shaped fuzzy membership functions of car price.

User interface

Fuzzifier

Fuzzy CBR system

Figure 2.7 Fuzzy CBR for car buying.
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Since the price $55,000 has the highest membership value in the fuzzy set

‘‘middle,’’ we could represent the price of the car as medium. Therefore, alterna-

tively one can represent the attribute ‘‘price of the car’’ as a fuzzy set ‘‘middle’’

with the corresponding membership value.

2.3.1.2 Example The use of fuzzy set theory allows flexible encoding of case

characteristics as real numbers, linguistic terms, fuzzy numbers, and fuzzy complex

objects. These case features can also be organized systematically as fuzzy cate-

gories (i.e., clusters) or fuzzy granules. As we mentioned before, traditional methods

of case knowledge representation are usually rigid. However, in many practical

situations, when specifying a query case, it is often difficult to articulate the feature

values precisely. If the cases can be organized in conceptually overlapping

categories, retrieval could be implemented via a classification and similarity regime

which encodes feature characteristics in a mixed fuzzy and crisp format. Use of the

fuzzy concept significantly improves the flexibility and expressiveness with which

case knowledge can be represented.

In Dubitzky et al. [3], a fuzzy feature representation method is applied to design

a coronary heart disease (CHD) medical system in Northern Ireland in which the

risk type is fuzzified into three categories: CI, CII and CIII. Category CI corresponds

to subjects that have a high CHD risk because of their cholesterol levels, cases CIII

constitute stress-related risk types and cases in category CII incline to risk that is

caused by both factors. A target case e is described by the following combination of

feature instances: e:¼�‘‘almost never,’’ ‘‘occasionally’’>, <8.00, 3.70	; where

the first pair represents the stress ([nervousness, worry]), and the second the cho-

lesterol ([total, LDL]) values. To classify the target case e, its constituent feature

values need to be matched against the fuzzy membership functions ( f-functions)

of the corresponding scales in the three categories (see Fig. 2.9). For example, if

the feature of the target case (total¼ 8.00) yields membership values such as

f1¼ 0.16 (in CI) and f2 and f3¼ 0 (in CII and CIII), it is likely that the target

case is a member of the high-cholesterol, low-stress category CI.

2.3.2 Rough Sets and Determining Reducts

The theory of rough sets provides a new mathematical framework for analysis of

data that are imprecise, vague, and uncertain. The main notion of rough sets is that

if objects are similar or indiscernible in a given information system, the same set of

information can be used to characterize them. Therefore, there may exist some

objects that cannot be classified with certainty as members of the set or of its com-

plement. In a rough set–theoretic approach, each vague concept is characterized by

a pair of precise concepts (called the lower and upper approximations of the vague

concept). Rough set approaches [4–6] deal primarily with the classification of data

and synthesizing approximations of concepts. These approaches are also used to

construct models that represent the underlying domain theory from a set of data.

In CBR system development, it is often necessary to determine some properties
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from the case data to partition the cases into subsets. However, in real-life

situations, it is sometimes impossible to define a classifying concept in a

precise (crisp) manner. For example, given a new case, it may not be possible to

know to which class it belongs. The best knowledge derived from past cases may

only give us enough information to say that this new case belongs to a boundary

between certain cases, which may consist of various possible solutions. The

formulation of these lower- and upper-set approximations can be generalized

to some arbitrary level of precision which forms the basis of rough concept

approximations.

Some basic definitions and examples of rough set theory are described in Appen-

dix D. Let us now look at an example (see Table 2.2) that illustrates the concept of

rough sets. Let us consider a patient information system consisting of six patients,

where each one is described by three health conditions: C1, C2, and C3, and an ill-

ness by y1 or y2. Now the question is how to describe an illness uniquely (i.e., y1 or

y2) in terms of the health conditions. After analyzing the data, it is clear that this

question cannot be answered uniquely. For example, patients 3 and 6 have the same

conditions, but patient 3 suffers from y1, whereas patient 6 suffers from y2. Hence,

it is impossible to give a unique description of illness y1 or y2. The best we could

decide is that patients 1, 2, and 5 surely suffer from illness y1, whereas patients 1, 2,

3, 5, and 6 possibly suffer from illness y1. Similarly, patient 4 surely suffers from

illness y2, whereas patients 3, 4, and 6 possibly suffer from illness y2. Since it is

impossible to give the unique characteristics of y1 or y2, a rough set–based tech-

nique can be used. Two sets corresponding to the concepts of ‘‘surely’’ and

‘‘possibly,’’ the lower and upper approximations for each illness, respectively,

describe the characteristics of y1 and y2.

The formal definition of rough sets given by Pawlak [4] is as follows: Any subset

B of A determines a binary relation IB on U, called an indiscernibility relation, and

defined as x IB y if and only if Attr(x)¼Attr(y) for every Attr 2 B, where Attr(x)

denotes the value of attribute a for element x. IB is obviously an equivalence rela-

tion. The family of all equivalence classes of IB (i.e., the partition determined by B)

will be denoted by U/IB, or simply U/B; an equivalence class of IB (i.e., the block of

the partition U/B) containing x will be denoted by [x]B. If (x,y) belongs to IB, x and y

will be considered as B-indiscernible. Equivalence classes of the relation IB or

TABLE 2.2 Patient Table

Patient Condition C1 Condition C2 Condition C3 Illness

1 High Fair Medium y1

2 Very high Good Medium y1

3 High Good Low y1

4 Medium Fair Medium y2

5 Very high Fair Low y1

6 High Good Low y2
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blocks of the partition U/B are referred to as B-elementary concepts of B-granules.

The two operations defined on set X will be called the B-lower and the B-upper

approximation of X (see Appendix D):

BX ¼ fx 2 U : ½x�B 
 Xg ð2:4Þ

BX ¼ fx 2 U : ½x�B \ X 6¼ ;g ð2:5Þ

The following set will be referred to as the B-boundary region of X:

BNBX ¼ BX � BX ð2:6Þ

If the boundary region of X is not the empty set (i.e., BNBX 6¼ ;), the set X is

referred to as rough (inexact) with respect to B. Rough sets can be defined using

a rough membership function:

m
B
XðxÞ ¼

jX \ ½x�Bj

j½x�Bj
and m

B
XðxÞ 2 ½0;1� ð2:7Þ

The value of the membership function mX(x) represents a kind of conditional

probability, and it can be interpreted as a degree of certainty to which x belongs

to X [or 1� mX(x) as a degree of uncertainty].

Rough set theory can be applied to determine reducts on the decision table. The

reduction process is performed on the positive region of the data set that is identi-

fied with two equivalence relations: the condition relation and the decision relation.

The output is a simplified table that can work more efficiently than the original one.

The related concepts of the positive region, the D-dispensable and the reduct, are

described below.

� Positive region. Let C and D be two equivalence relations over U. The

C-positive region of D, denoted as POSCðDÞ, is defined as

POSCðDÞ ¼
[

X2U=D

CX ð2:8Þ

� D-dispensable. c 2 C is D-dispensable in C if

POSCðDÞ ¼ POSC�fcgðDÞ ð2:9Þ

Otherwise, c is D-indispensable in C.

� D-reduct. If every c 2 C is D-indispensable, then C is D-independent. The

attributes set R 
 C will be called a D-reduct of C if and only if R is

D-independent and POSRðDÞ ¼ POSCðDÞ.
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To illustrate the reduction process, the car-buying example could be represented

as shown in Table 2.3. In the table the attributes ‘‘price,’’ ‘‘horsepower,’’ and ‘‘user

age’’ comprise the conditional attributes set, denoted C¼ {a, b, c}, and ‘‘recom-

mendation’’ comprises the decision part D¼ {d}.

The steps in determining reducts on the equivalence classes are as follows:

Step 1. Make partitions on U with decision relation D. The recommendation

attribute has three values: car type 1, car type 2, and car type 3. Each value

generates a partition on U. For instance, cases 1, 2, and 6 are of the same car type,

so they belong to the same partition, X1. Similarly, cases 3, 4, 7, and 8 belong to

partition X2, and cases 5, 9, and 10 belong to X3.

X1 ¼ f1,2,6g; X2 ¼ f3,4,7,8g; X3 ¼ f5,9,10g

Step 2. For each partition Xi, identify the C-lower approximation of Xi, i¼ 1, 2, 3.

For example, to identify the C-lower approximation of X1¼ {1,2,6}, the C

equivalence class of each point in X1 is checked:

½1�c ¼ f1,6g � X1; ½2�c ¼ f2,10g 6� X1; ½6�c ¼ f1,6g � X1

Since case 2 does not satisfy the definition of C-lower approximation of X1, it is

removed from CX1; thus, CX1 ¼ f1; 6g. Similarly, CX2 ¼ {3,4,7,8} and CX3 ¼
{5,9}.

Step 3. Build the positive region by combining all the C-lower approximations of

the partitions:

POSCðDÞ ¼ f1,3,4,5,6,7,8,9g

TABLE 2.3 Car-Buying Cases

Price Horsepower User Age Recommendation

Case (a) (b) (c) (d)

1 High Medium Old Car type 1

2 Low Low Young Car type 1

3 High Medium Young Car type 2

4 Medium Medium Old Car type 2

5 Medium High Old Car type 3

6 High Medium Old Car type 1

7 High Medium Young Car type 2

8 Medium Medium Old Car type 2

9 Medium High Old Car type 3

10 Low Low Young Car type 3
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Step 4. In the positive region, merge the cases with equivalent attribute values of

relation C to form the equivalence classes. There are a total of four equivalence

classes in POSCðDÞ:

Equiv_1¼ f1,6g Equiv_2¼ f3,7g Equiv_3¼ f4,8g Equiv_4¼ f5,9g

These equivalence classes are shown in Table 2.4.

Step 5. Build the discerning matrix Discern¼ (disij)4�4 to get the reduct attributes

set, where

disij ¼ frjr 2 C; rðEquiv iÞ 6¼ rðEquiv jÞg ð2:10Þ

and rðEquiv iÞ is the value of attribute r in equivalence class Equiv_i. For example,

in Table 2.4 the entry that can discern Equiv_1 and Equiv_2 is attribute c (i.e., user

age). Using this procedure, we could get all the entries of the discerning matrix (see

Table 2.5).

Reduct_i of an equivalence class Equiv_i should be able to distinguish Equiv_i

from all other equivalence classes. Therefore, Reduct_i should be the joint of the

entries in the ith row of the discerning matrix. So computation of the reduct can be

translated to computation of a Boolean function. For example, Reduct_2 is com-

puted as

Reduct 2 ¼ c ^ ða _ cÞ ^ ða _ b _ cÞ

¼ c ^ ða _ b _ cÞ

¼ c

Similarly, Reduct_1¼ a ^ c, Reduct_3¼ a ^ b, and Reduct_4¼ b.

TABLE 2.5 Discerning Matrix of the Equivalence Classes

Class Equiv_1 Equiv_2 Equiv_3 Equiv_4 Reduct

Equiv_1 Null c a a _ b Reduct_1

Equiv_2 c Null a _ c a _ b _ c Reduct_2

Equiv_3 a a _ c Null b Reduct_3

Equiv_4 a _ b a _ b _ c b Null Reduct_4

TABLE 2.4 C-Equivalence Classes in the Positive Region

Price Horsepower User Age Recommendation Number

Class (a) (b) (c) (d) of Cases

Equiv_1 High Medium Old Car type 1 2

Equiv_2 High Medium Young Car type 2 2

Equiv_3 Medium Medium Old Car type 2 2

Equiv_4 Medium High Old Car type 3 2
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Step 6. Use the reduct to simplify the decision table. Now the reduct attributes set

could be applied to make reductions on the equivalence classes. For example, since

Reduct_1 is a ^ c(or {a,c}), the price and user age are sufficient to differentiate

Equiv_1 from all other classes. Therefore, the horsepower attribute is removed from

the table. The simplified version of the table is shown in Table 2.6. After this table

is obtained, only a subset of the original attributes is needed to differentiate the

types of car. Decision efficiency is thus improved.

2.3.3 Prototypical Case Generation Using Reducts

with Fuzzy Representation

In this section we illustrate how rough set theory and the concept of equivalence

classes (i.e., objects that are indiscernible using the available attributes) can be

applied to select the prototypical cases for building a CBR system. This set of

prototypical cases will be indexed and retrieved at later stages of the CBR reason-

ing tasks.

Salamo and Golobardes [7], Pal and Mitra [8], and Polkowskim et al. [9] have

developed different reduction techniques to identify the prototypical patterns.

Therefore, given a case base, if one can identify that only one element of the

equivalence class is needed to represent the entire class, enormous storage space

will be saved. The other possible criterion to consider for reduction is to keep

only those case features that preserve the indiscernibility relation. Since the attri-

butes rejected are redundant, their removal will not affect the task of case retrieval

based on feature similarities. There are usually several subsets of case features that

can preserve indiscernibility, and the minimal subsets among them are called

reducts. Finding a minimal reduct is a NP-hard problem [10], which means that

finding this is a nontrivial task requiring considerable computation. With this in

mind, let us describe here an approach developed by Pal and Mitra [8,11] for select-

ing prototypical cases based on rough-fuzzy integration.

Selection and generation of cases can be regarded as the two important phases in

building a good case base for a CBR system. Whereas case selection deals with

selecting informative prototypes from the data, case generation concerns the con-

struction of cases that need not necessarily include all the data points given. Rough

TABLE 2.6 Simplified Decision Table

Price Horsepower User Age Recommendation

Class (a) (b) (c) (d)

Equiv_1 High � Old Car type 1

Equiv_2 � � Young Car type 2

Equiv_3 Medium Medium � Car type 2

Equiv_4 � High � Car type 3
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set theory was developed for classificatory analysis of data tables. The main goal of

rough set theoretical analysis is to synthesize an approximation (upper and lower)

of the classifying concepts from the target data. Whereas fuzzy set theory assigns to

each object a grade of belongingness to represent an imprecise set, rough set theory

focuses on the ambiguity caused by limited discernibility of objects within a given

domain. The key concepts here are those of information granule and reducts. An

information granule formalizes the concept of finite-precision representation of

objects in real-life situations, and reducts represent the core of an information sys-

tem (in terms of both objects and features) in a granular universe. It may be noted

that cases also represent the informative and irreducible part of a problem. Hence,

rough set theory is a natural choice for case selection in domains that are data rich,

which contain uncertainties and allow tolerance for imprecision. Additionally,

rough sets have the capability to handle complex objects (e.g., proofs, hierarchies,

frames, rule bases), thereby extending the applicability of rough CBR systems.

Rough mereology, allowing for tolerance relations, has been used to design approxi-

mate CBR systems [9]. Here rough sets assist in fast case retrieval by circumventing

the adaptation step. Recently, rough and fuzzy sets have been integrated within

a soft computing framework, the aim being to develop a (synergistic) model of

uncertainty that is stronger than using either technique alone [12].

In the rough-fuzzy case generation method of Pal and Mitra [8,11], each pattern

(object) is represented by its fuzzy membership with respect to overlapping linguis-

tic property sets: low, medium, and high (i.e., an object originally having n features

is now represented by 3n variables). This type of representation is quite versatile in

representing a wide class of data: for example, linguistic, set form, and numeric

[12,13]. In terms of their attributes, discernibility of the fuzzified objects is then

computed in the form of a discernibility matrix. Using rough set theory, a number

of decision rules are generated from the discernibility matrix. The rules represent

rough clusters of points in the original feature space. The fuzzy membership func-

tions, corresponding to the region modeled by a rule, are then stored as a case. A

strength factor representing the a priori probability (size) of the cluster is associated

with each case. To summarize, each case contains fuzzy linguistic sets (parameters

of the membership functions) corresponding to the attributes appearing in the

reducts, and the strength factor. In the retrieval phase, these fuzzy membership

functions are used to compute the similarity of stored cases with an unknown

pattern.

It may be noted that unlike most case selection schemes, the cases generated by

this algorithm need not include any of the actual objects encountered; rather, they

represent regions that are either in the original feature space or else in a reduced

space. More important, cases are represented by subsets of features (attributes)

that are of different sizes. This type of variable and reduced length representation

of cases will decrease the retrieval time. Furthermore, since this algorithm deals

only with the information granules, not the actual data set, its significance in

data mining applications is evident.

The effectiveness of this methodology is demonstrated on some real-life data

sets, including those that have large dimension and size. Cases are evaluated in
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terms of the classification accuracy obtained using the 1-NN rule. Comparisons are

made with the conventional IB3 algorithm [14] and random case selection method.

This methodology is found to perform better in terms of 1-NN accuracy, as well as

improving case generation time and average case retrieval time.

In the following sections we describe the methodology for fuzzy linguistic repre-

sentation of objects. Then we present the methodology used to obtain dependency

rules and the algorithm for mapping dependency rules to cases. The case retrieval

mechanism is then described. Finally, some experimental results and comparisons

with other approaches are presented.

2.3.3.1 Linguistic (Fuzzy) Representation of Patterns As mentioned

earlier, rough set theory deals with a set of objects in a granular universe. Here

we describe a way of obtaining the granular feature space using fuzzy linguistic

representation of patterns. Only the case of numeric features is mentioned here.

(Features in descriptive and set forms can also be handled in this framework.)

Details of the methodologies involved may be found in [12,13].

Let a pattern (object) êe be represented by n numeric features (attributes) (i.e.,

ê¼ [F1, F2, . . ., Fn]). Each feature is described in terms of its fuzzy membership

values, corresponding to three linguistic fuzzy sets: low (L), medium (M), and high

(H). Thus, an n-dimensional pattern vector is represented as a 3n-dimensional vec-

tor [12,13]:

êe¼½mlowðF1ÞðêeÞ; mmediumðF1ÞðêeÞ; mhighðF1ÞðêeÞ; mlowðF2ÞðêeÞ; mmediumðF2ÞðêeÞ; mhighðF2ÞðêeÞ; . . .;

mlowðFnÞðêeÞ;mmediumðFnÞðêeÞ; mhighðFnÞðêeÞ� ð2:11Þ

where mlowðFjÞð�Þ; mmediumðFjÞð�Þ, and mhighðFjÞð�Þ indicate the membership values of

ð �Þ to the fuzzy sets low, medium, and high along feature axis j, mð�Þ 2 ½0,1�.
For each input feature Fj, the fuzzy sets ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ are char-

acterized individually by a p-membership function whose form is [13]

mðFjÞ ¼ pðFj; c;lÞ ¼

2 1�
jjFj � cjj

l

� �

for l
2
� jjFj � cjj � l

1� 2
jjFj � cjj

l

� �2

for 0 � jjFj � cjj � l
2

0 otherwise

8

>

>

>

>

<

>

>

>

>

:

ð2:12Þ

where l ð>0Þ is the radius of the p-function with c as the central point. For each of

the fuzzy sets low, medium, and high, l and c take different values. These values are

chosen so that the membership functions for these three fuzzy sets have overlapping

nature (intersecting at membership value 0.5; see Fig. 2.10).

Let us now explain the procedure for selecting the centers (c) and radii (l) of the

overlapping p-functions. Let mj be the mean of the pattern points along the jth axis.

Then mjl and mjh are defined as the mean (along the jth axis) of the pattern points

having coordinate values in the range (Fj min,mj) and (mj,Fj max), respectively, where
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Fj max and Fj min denote the upper and lower bounds of the dynamic range of feature

Fj. The centers and the radii of the three p-functions are defined as

clowðFjÞ ¼ mjl

cmediumðFjÞ ¼ mj

chighðFjÞ ¼ mjh

llowðFjÞ ¼ cmediumðFjÞ � clowðFjÞ

lhighðFjÞ ¼ chighðFjÞ � cmediumðFjÞ

lmediumðFjÞ ¼ 0:5ðchighðFjÞ � clowðFjÞÞ

ð2:13Þ

Here we take into account the distribution of the pattern points along each feature

axis while choosing the corresponding centers and radius of the linguistic fuzzy

sets.

The aforesaid three overlapping functions along each axis generate the fuzzy

granulated feature space in n dimensions. The granulated space contains 3n granules

with fuzzy boundaries among them. Here the granules (clumps of similar objects or

patterns) are attributed by the three fuzzy linguistic values ‘‘low,’’ ‘‘medium,’’ and

‘‘high.’’ The degree of belongingness of a pattern to a granule (or the degree of

possessing a property low, medium, or high by a pattern) is determined by the cor-

responding membership function.

Furthermore, if one wishes to obtain crisp granules (or crisp subsets), a-cut,

0 < a < 1, of these fuzzy sets may be used. (The a-cut of a fuzzy set is a crisp

set of points for which membership values are greater than or equal to a.)

2.3.3.2 Dependency Rule Generation A principal task in the method of

rule generation is to compute reducts relative to a particular kind of information
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Figure 2.10 Membership functions for linguistic property sets low (L), medium (M), and

high (H) for each feature axis.
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system (the decision system). Relativized versions of these matrices and

functions are the basic tools used in this computation. The d-reducts and d-discern-

ibility matrices are used for this purpose [10]. The methodology is described

below.

Let Ts¼ hU;Ai be a decision table, and let Tc and Td¼ {d�1 ; d
�
2; . . .; d�l } be the

sets of condition and decision attributes, respectively. Divide the decision table

Ts ¼ hU;Ai into l tables Tsi ¼ hUi;Aii; i ¼ 1; 2; . . .; l, corresponding to the l deci-

sion attributes d�1 ; d
�
2; . . .; d�l , where U ¼ Ul [ � � � [ Ul and Ai ¼ Tc [ fTdig.

Let fxi1; xi2; . . .; xipg be the set of those objects of Ui that occur in

Tsi; i ¼ 1; 2; . . .; l. Now for each di-reduct, let B ¼ fb1; b2; . . .; bkg. A discernibility

matrix [denoted Mdi
(B)] from the di-discernibility matrix is defined as

follows:

cij ¼ fAttr 2 B : AttrðxiÞ 6¼ AttrðxjÞg for i; j ¼ 1; 2; . . .; n ð2:14Þ

For each object xj 2 fxi1; xi2; . . . ; xipg, the discernibility function f
xj
d�
i
is defined as

f
xj
d�
i
¼ ^f_ðcijÞ : 1 � i; j � n; j < n; cij 6¼ ;g ð2:15Þ

where _ðcijÞ is the disjunction of all members of cij. Then f
xj
d�
i
is converted to its

conjunctive normal form. Dependency rules ri are obtained [i.e., d�i  gi, where

gi is the disjunctive normal form of f
xj
d�
i
, j 2 fi1; i2; . . .; ipg]. The dependency factor

dfi for ri is given by

dfi ¼
cardðPOSiðd

�
i ÞÞ

cardðUiÞ
ð2:16Þ

where POSiðd
�
i Þ ¼ [X2Id�

i

liðXÞ; liðXÞ is the lower approximation of X with respect to

Id�
i
. For real-life data sets, the decision tables are often inconsistent, and perfect

decision rules may not be obtained. In these situations the degree of precision of

an imperfect rule is quantified by the dependency factor.

2.3.3.3 Case Generation Here we describe a methodology [8,11] for case

generation on the fuzzy granulated space as obtained in previous sections. This

involves two tasks: generation of fuzzy rules using rough set theory, and mapping

the rules to cases. Since rough set theory operates on crisp granules (i.e., subsets of

the universe), we need to convert the fuzzy membership values of the patterns to

binary values or to convert the fuzzy membership functions to binary functions

in order to represent crisp granules (subsets) for application of rough set theory.

This conversion can be done using an a-cut.

The schematic diagram for the generation of cases is shown in Figure 2.11. One

may note that the inputs to the case generation process are fuzzy membership func-

tions, the output cases are also fuzzy membership functions, but the intermediate
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rough set–theoretic processing is performed on binary functions representing crisp

sets (granules). For example, the inputs to block 2 are fuzzy membership functions.

Its outputs are binary membership functions that are used for rough processing in

blocks 3 and 4. Finally, the outputs of block 4, representing cases, are again fuzzy

membership functions. Each task is discussed below.

Consider the 3n fuzzy membership values of an n-dimensional pattern êe. Then

select only those attributes having values greater than or equal to Th (¼ 0.5, say). In

other words, we obtain a 0.5-cut of all the fuzzy sets to obtain binary membership

values corresponding to the sets ‘‘low,’’ ‘‘medium,’’ and ‘‘high.’’ After the binary

membership values are obtained for all the patterns, we constitute a decision table

for rough set rule generation. As the method considers multiple objects in a class,

a separate nk � 3n-dimensional attribute–value decision table is generated for each

class d�
k
(where nk indicates the number of objects in d

�
k
). Let there be m sets O1,

O2, . . . , Om of objects in the table that have identical attribute values, and

card(Oi)¼ nki, i¼ 1, 2, . . ., m, such that nk1 nk2  � � �  nkm andP
m

i¼1 nki ¼ nk. The attribute–value table can now be represented as an m� 3n

array.

d1 ← L1 ∧ M2;...

{mlow, mmedium, d 1; ·};...
21

For each feature Fj of a pattern
Obtain its membership values for low(L),
medium(M), and high(H) fuzzy sets

Threshold using a-cut to obtain binary
membership values 

Obtain fuzzy IF-THEN rules using rough set
theory 

Map conjunctive parts of a rule to different
cases represented by fuzzy membership
functions  {m(·,c,l)}

Case base

mlow(Fj), mmedium(Fj), mhigh(Fj) ∈ [0,1]

mlow(Fj), mmedium(Fj), mhigh(Fj) ∈ {0,1}

Figure 2.11 Schematic of rough-fuzzy case generation and retrieval. (From [11].)
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Let nk10 ; nk20 ; . . .; nkm0 denote the distinct elements among nk1; . . .; nkm such that

nk10 > nk20 > � � � > nkm0 . Let a heuristic frequency threshold function be defined as

[15]

Tr ¼

Pm
i¼1 1=ðnk0i � nk0

iþ1
Þ

Th

& ’

ð2:17Þ

such that all entries that have a frequency of less than Tr are eliminated from the

table, resulting in a reduced attribute–value table. Note that the main motive for

introducing this threshold function lies in reducing the size of the case base.

Attempts can be made to eliminate noisy pattern representatives (having lower

values of nki) from the reduced attribute–value table. Rough dependency rules

are generated from this reduced attribute–value table using the methodology

described in Section 2.3.3.2.

2.3.3.4 Mapping Dependency Rules to Cases We now describe a tech-

nique for mapping rough dependency rules to cases. This algorithm is based on

the observation that each dependency rule (having a frequency above some thresh-

old) represents a cluster in the feature space. It may be noted that only a subset of

features appear in each of the rules, which indicates that the entire feature set is not

always necessary to characterize a cluster. A case is constructed from a dependency

rule in the following manner:

1. Consider the antecedent part of the rule: Split it into atomic formulas

containing only a conjunction of literals.

2. For each atomic formula, generate a case that contains the centers and radius

of the fuzzy linguistic variables (low, medium, and high) that are present in

the formula. (Thus, multiple cases may be generated from a rule.)

3. Associate with each case, generated the precedent part of the rule and the case

strength equal to the dependency factor of the rule [equation (2.16)]. The

strength factor reflects the size of the corresponding cluster and the sig-

nificance of the case.

Thus a case has the following structure:

case{

Feature i: fuzzseti: center, radius;

� � � � � �

Class k

Strength

}

where fuzzset denotes the fuzzy linguistic variables ‘‘low,’’ ‘‘medium,’’ and ‘‘high.’’

The method is illustrated below with the help of an example. One may note that

while 0.5-cut is used to convert the 3n fuzzy membership functions of a pattern

to binary functions for rough set rule generation, the original fuzzy functions are
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retained in order to use them to represent the cases generated. These are also illu-

strated in Figure 2.11, where the outputs m1low and m2medium are fuzzy sets.

As an example, consider a data set having two features F1 and F2 and two

classes. Let us assume that the following two dependency rules are obtained

from the reduced attribute table:

class1  L1 ^ H2; df ¼ 0:5;

class2  H1 ^ L2; df ¼ 0:4;

where L1, L2, H1, and H2 mean that F1 is low, F2 is low, F1 is high, and F2 is high,

respectively; and df represents the dependency factor.

Let the parameters of the fuzzy linguistic sets ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ be

as follows:

Feature 1 : cL ¼ 0:1;lL ¼ 0:5; cM ¼ 0:5; lM ¼ 0:7; cH ¼ 0:7; lH ¼ 0:4:

Feature 2 : cL ¼ 0:2;lL ¼ 0:5; cM ¼ 0:4; lM ¼ 0:7; cH ¼ 0:9; lH ¼ 0:5:

This example is illustrated in Figure 2.12. We have the following two cases:

case 1 {

Feature No: 1, fuzzset (L): center¼0.1, radius¼0.5

Feature No: 2, fuzzset (H): center¼0.9, radius¼0.5

Class¼1

Strength¼0.5

}

0.9

0.4

0.2

0.1 0.5 0.7

Case 1

Case 2

C2 H1∧L2

C1

F2

F1

L1∧H2

Figure 2.12 Rough-fuzzy case generation for a two-dimensional data set. (From [11].)
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case 2 {

Feature No: 1, fuzzset (H): center¼0.7, radius¼0.4

Feature No: 2, fuzzset (L): center¼0.2, radius¼0.5

Class¼2

Strength¼0.4

}

2.3.3.5 Case Retrieval Each case obtained in Section 2.3.3.4 is a collection

of fuzzy sets {fuzzsets} described by a set of one-dimensional p-membership func-

tions with different c and l values. To compute the similarity of an unknown pattern

êe (of dimension n) to a case ep (of variable dimension np, np � n), we use

SMðêe; epÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

np

Xnp

j¼1
½mjfuzzsetðFjÞ�

2

s

ð2:18Þ

where m
j
fuzzsetðFjÞ is the degree of belongingness of the jth component of êe to fuzzset

representing the case ep. When mj¼ 1 for all j, SM (êe, ep)¼ 1 (maximum) and when

mj¼ 0 for all j, SM(êe, ep)¼ 0 (minimum). Therefore, equation (2.18) provides a col-

lective measure computed over the degree of similarity of each component of the

unknown pattern with the corresponding one of a stored case. The higher the value

of the similarity, the closer pattern êe is to the case ep. Note that fuzzy membership

functions in equation (2.18) take care of the distribution of points within a granule,

thereby providing a better similarity measure between êe and ep than the conven-

tional Euclidean distance between two points.

For classifying (or to provide a label to) an unknown pattern, the case closest to

the pattern in terms of SM(êe, ep) is retrieved and its class label is assigned to the

pattern. Ties are resolved using the parameter Case Strength.

2.3.3.6 Results and Comparison Experiments were performed [8,11] on

the following three real-life data sets available in the UCI Machine Learning

Archive [16]:

� Forest cover type: contains 10 dimensions, seven classes, and 586,012

samples. It is a geographical information system (GIS) data set that repre-

sents forest cover type (pine, fir, etc.) in the United States. The variables used

are cartographic and remote sensing measurements. The variables are

numeric.

� Multiple features: consists of features of handwritten numerals (0 through 9)

that were extracted from a collection of Dutch utility maps. There are 2000

patterns, 649 features (all numeric), and 10 classes.

� Iris: contains 150 instances, four features, and three classes for iris. The

features are all numeric.
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The cases generated using the rough-fuzzy methodology described in Section

2.3.3.5 were compared with those obtained using the following three case selection

methodologies:

� Instance-based learning algorithm, IB3 [14]

� Instance-based learning algorithm, IB4 [17]. Here the feature weights are

learned using random hill climbing. This method selects a specified number of

features that have high weights

� Random case selection

Figure 2.13 Rough dependency rules for the iris data.

Figure 2.14 Cases generated for the iris data.
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Comparison was performed on the basis of the following quantities:

� 1-NN classification accuracy using the cases where 10% of the entire samples

were used as the training set for case generation, while the remaining 90%

were used as the test set

� Number of cases stored in the case base

� Total CPU time required for case generation

� Average CPU time required to retrieve a case for the patterns in the test set

For illustration, we first present for the iris data, the rough dependency rules, and

the corresponding cases (representing three granular regions) generated from these

rule, as shown in Figures 2.13 and 2.14. Here classes 1, 2, and 3 are Iris setosa, Iris

versicolor, and Iris virginica, respectively. Four features are sepal length (F1), sepal

width (F2), petal length (F3), and petal width (F4). Comparative results for the dif-

ferent case generation methodologies are presented in Tables 2.7, 2.8, and 2.9 for

the iris, forest cover type, and multiple features data sets, respectively. These results

compare the number of cases, the 1-NN classification accuracy, the average number

of features per case (navg) and the case generation (egen) and retrieval (tret) times.

The results in the tables show that the cases obtained using the rough-fuzzy method

[8,11] are much superior to both the random selection method and the IB4 method,

and that these cases are close to IB3 in terms of classification accuracy. It should be

noted that the rough-fuzzy method requires significantly less time for case genera-

tion than do IB3 and IB4. The tables also show that the average number of features

stored per case (navg) using the rough-fuzzy technique is much lower than the

original data dimension (n); as a direct consequence, its average retrieval time is

very low. The IB4 method also stores cases with a reduced number of features

TABLE 2.7 Comparison of Case Selection Algorithms for Iris Data

Number Classification egen tret
Algorithm of Cases navg Accuracy (sec) (sec)

Rough-fuzzy 3 2.67 98.17 0.2 0.005

IB3 3 4 98.00 2.50 0.01

IB4 3 4 90.01 4.01 0.01

Random 3 4 87.19 0.01 0.01

TABLE 2.8 Comparison of Case Selection Algorithms for Forest Data

Classification egen tret
Algorithm Number of Cases navg Accuracy (sec) (sec)

Rough-fuzzy 542 4.10 67.01 244 4.4

IB3 545 10 66.88 4055 52.0

IB4 545 4 50.05 7021 4.5

Random 545 10 41.02 17 52.0
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and has a low retrieval time; however it has lower accuracy than that of the rough-

fuzzy method. Moreover, unlike the rough-fuzzy method, all the stored cases have

an equal number of features.

Since rough set theory is used to obtain cases through crude rules, case genera-

tion time is reduced. Also, since only the informative regions and relevant features

are stored, case retrieval time decreases significantly. The algorithm is suitable for

mining data sets, which are large both in dimension and size, where the requirement

is to find approximate but effective solutions quickly.

Note that there are some algorithms [18] that consider a reduced feature repre-

sentation of the cases but the dimension of the cases is fixed, unlike the rough-fuzzy

method described here, which generates cases with variable dimensions. Although

a particular rough set method is used for the task of providing the dependency

rules [8,11], any other version of rough set methods can be used [19].

2.4 CASE INDEXING

2.4.1 Traditional Indexing Method

In the traditional relational database approach, indexes refer to the primary or sec-

ondary keys of a record. Indexing refers to the task of mapping the record key to the

storage location. It could be done by using direct access methods, such as hashing,

or indexed methods, such as building a Bþ-tree (see Fig. 2.15) or an R-tree (i.e.,

range tree) for organizing the records on hand. Searching and retrieving of records

to determine their locations are done either by mapping them to the index tree or by

using a hashing algorithm. For example, the way of mapping the records to a

Bþ-tree can be explained by referring to Figure 2.15. Here the nodes at the bottom

TABLE 2.9 Comparison of Case Selection Algorithms for Multiple Features Data

Classification egen tret
Algorithm Number of Cases navg Accuracy (sec) (sec)

Rough-fuzzy 50 20.87 77.01 1096 10.05

IB3 52 649 78.99 4112 507

IB4 52 21 41.00 8009 20.02

Random 50 649 50.02 8.01 507

20K   29K 50K

35K

11K   14K   18K 29K  30K 50K  52K 45K20K   21K  

Figure 2.15 Example of Bþ-tree for indexing household incomes.
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layer of the tree are leaf nodes and those in the two layers above are inner nodes.

Inner nodes contain the value or a value interval of the index, and leaf nodes contain

the pointers to the storage locations of cases. An inner node may generate three child

nodes. The upper boundary of the interval in its left child node is smaller than the

lower boundary of its parent, and the lower boundary of the right child is equivalent

or larger than the upper boundary of its parent. The lower boundary of the middle

child is equivalent or larger than that of its parent, and its upper boundary is smaller

than that of its parent. In this case, a feature such as family income is taken as the

index. For example, given a new case with a family income of 11K, we first com-

pare this index value with the value of 35K in the root node of the tree. Since 11K is

smaller than 35K, we go next to the left branch of the root node. This time it is

found that 11K is smaller than the lower boundary of the interval in the node, so

we visit the left branch of this node where the storage location of the given case

could be retrieved. Similarly, if the index value of the given case is 21K, smaller

than 35K and falling into the interval 20K to 29K, the location of the given case

could be found in the middle child node of the node [20K, 29K].

Thus, organizing cases using this Bþ-tree structure requires a precise matching

of the primary key attribute. For example, assume that the searching target has an

index value of 12K; although the record with index 11K is just next to it, it will not be

retrieved. Other improved index structures, such as R-trees, R*-trees, and Rþ-trees,

support range and multidimensional searching of multimedia records; however,

they are still based on the concept of exact matching or crisp boundary. That is,

the objects are either within the range or outside the range; overlapping of concepts

is not allowed. Unlike the traditional way of retrieving records from database,

the retrieval methods incorporated with soft computing techniques follow a method

of similarity-based case retrieval that is content aware. The searching result might

not be the record that is obtained by matching the target exactly, but will be the

one(s) most similar to the target. The definition of the index is also generalized

to a new level. Here the index refers to some general concept or object rather

than a crisp one, so that it can accommodate many records with varying degrees

of possibility as possible solutions. For example, consider a layered neural network

as an index where the mapping of the query case (input) to a group of possible solu-

tions (output) is made based on approximate matching, unlike traditional indexing,

which involves mapping based only on exact matching. Moreover, since the neural

network is using a generalized concept, it needs to be learned through training

before use. Like ANN, a Bayesian model and prototype-based incremental neural

network can be used as an index under a soft computing framework for indexing

different cases. It should be mentioned here that the Bayes model takes care of the

uncertainty arising from the randomness of events and provides decisions with

varying probabilities. These are described below.

2.4.2 Case Indexing Using a Bayesian Model

Suppose that the sample space S has n classes C1, C2, . . ., Cn of events, where

Ci \ Cj ¼ ;; i 6¼ j, i, j¼ 1, 2, . . ., n, and
Pn

i¼1 PðCiÞ ¼ 1, where PðCiÞ is the
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probability of occurrence of Ci. Given an event X defined on S, if the class

conditional probabilities PðXjCiÞ, i¼ 1, 2, . . ., n, are known, then for each Ci,

the a posteriori probability of PðCijXÞ, i¼ 1, 2, . . ., n, is defined by the Bayes

formula as

PðCijXÞ ¼
PðXjCiÞPðCiÞ

PðXÞ
¼

PðXjCiÞPðCiÞPn

i¼1 PðXjCiÞPðCiÞ
ð2:19Þ

Consider our earlier car-buying example consisting of 14 cases, as shown in

Table 2.10. Each case has four features: user age, price, horsepower, and fuel capa-

city, and a class label, car type 1 or car type 2. Given a query case X: user

age¼ ‘‘young,’’ price¼ ‘‘medium,’’ horsepower¼ ‘‘common,’’ fuel capacity¼
‘‘medium,’’ the objective is to identify its class label. The Bayes formula can

thus be used as follows. Let C1 and C2 denote the cases of car type 1 and car

type 2, respectively. C1 \ C2 ¼ ;, C1 [ C2 ¼ S, where S is the sample space (or

case base). Then the solution is X 2 Cj if

PðCjjXÞ ¼ max
i
ðPðCijXÞÞ; i; j ¼ 1; 2 ð2:20Þ

Since the denominator of equation (2.19) is constant, we can write that the solution

is X 2 Cj if

PðXjCjÞPðCjÞ ¼ max
i
ðPðXjCiÞPðCiÞÞ; i ¼ 1; 2 ð2:21Þ

TABLE 2.10 Fourteen Cases of the Car-Buying Example

Case_ID User Age Price Horsepower Fuel Capacity Recommendation

1 Young High Powerful Medium Car type 1

2 Young High Powerful Large Car type 1

3 Old Low Common Large Car type 1

4 Young Medium Common Medium Car type 1

5 Old Medium Powerful Large Car type 1

6 Middle Age High Powerful Medium Car type 2

7 Old Medium Powerful Medium Car type 2

8 Old Low Common Medium Car type 2

9 Middle Age Low Powerful Large Car type 2

10 Young Low Common Medium Car type 2

11 Old Medium Common Medium Car type 2

12 Young Medium Common Large Car type 2

13 Middle Age Medium Powerful Large Car type 2

14 Middle Age High Common Medium Car type 2
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To compute PðXjCiÞ, the attributes are assumed to be conditionally independent.

Therefore,

PðXjCiÞ ¼
Y4

j¼1

PðxjjCiÞ ð2:22Þ

where xj is the jth (j¼ 1, 2, 3, 4) feature of X, and X ¼ {x1, x2, x3, x4}¼ {user age,

price, horsepower, fuel capacity}.

Using the case base in Table 2.10, the class label of X can be identified as a solu-

tion using the following algorithm:

Step 1. Compute PðC1Þ and PðC2Þ.

PðC1Þ ¼ Pðrecommendation ¼ ‘‘car type 1’’Þ ¼
jC1j

Sj j
¼

5

14
¼ 0:36

PðC2Þ ¼ Pðrecommendation ¼ ‘‘car type 2’’Þ ¼
jC2j

jSj
¼

9

14
¼ 0:64

Step 2. Decompose the query case X, and compute PðxijC1Þ and PðxijC2Þ, i¼ 1, 2,

3, 4.

Pðx1jC1Þ¼Pðuser age¼ ‘‘young’’jrecommendation¼ ‘‘car type 1’’Þ¼ 3
5
¼0:6

Pðx2jC1Þ¼Pðprice¼ ‘‘medium’’jrecommendation¼ ‘‘car type 1’’Þ¼ 2
5
¼0:4

Pðx3jC1Þ¼Pðhorsepower¼ ‘‘common’’jrecommendation¼ ‘‘car type 1’’Þ¼ 2
5
¼0:4

Pðx4jC1Þ¼Pðfuel capacity¼ ‘‘medium’’jrecommendation¼ ‘‘car type 1’’Þ¼ 2
5
¼0:4

Pðx1jC2Þ¼Pðuser age¼ ‘‘young’’jrecommendation¼ ‘‘car type 2’’Þ¼ 2
9
¼0:22

Pðx2jC2Þ¼Pðprice¼ ‘‘medium’’jrecommendation¼ ‘‘car type 2’’Þ¼ 4
9
¼0:44

Pðx3jC2Þ¼Pðhorsepower¼ ‘‘common’’jrecommendation¼ ‘‘car type 2’’Þ¼ 5
9
¼0:56

Pðx4jC2Þ¼Pðfuel capacity¼ ‘‘medium’’jrecommendation¼ ‘‘car type 2’’Þ¼ 6
9
¼0:67

Step 3. Compute PðXjCiÞ ¼
Y4

j¼1

PðxjjCiÞ, i¼ 1, 2.

PðXjC1Þ ¼
Y4

j¼1

PðxjjC1Þ ¼ PðXjrecommendation ¼ ‘‘car type 1’’Þ

¼ 0:6� 0:4� 0:4� 0:4 ¼ 0:0384

PðXjC2Þ ¼
Y4

j¼1

PðxjjC2Þ ¼ PðXjrecommendation ¼ ‘‘car type 2’’Þ

¼ 0:22� 0:44� 0:56� 0:67 ¼ 0:036
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Step 4. Compute and choose the largest value of PðXjCiÞPðCiÞ, i¼ 1, 2.

PðXjC1ÞPðC1Þ ¼ PðXjrecommendation

¼ ‘‘car type 1’’ÞPðrecommendation ¼ ‘‘car type 1’’Þ

¼ 0:0384� 0:36 ¼ 0:014

PðXjC2ÞPðC2Þ ¼ PðXjrecommendation

¼ ‘‘car type 2’’ÞPðrecommendation ¼ ‘‘car type 2’’Þ

¼ 0:036� 0:64 ¼ 0:023

PðXjC2ÞPðC2Þ > PðXjC1ÞPðC1Þ

The maximum value of PðCijXÞ is 0.023 with category C2. So the input case falls

into C2 and hence the solution is: Recommend car type 2.

The Bayes formula has been used for indexing cases by Rodrı́guez et al. [20]

(see Fig. 2.16). The case base is organized into N categories and each category

has several representative cases (i.e., exemplars). Each of these exemplars is

represented by a set of features and depicts a set of ‘‘similar’’ cases. For example,

category C1 contains the cases with feature F1 to feature Fm�1 and an exemplar of

C1 (e.g., e11 is represented with two features, F1 and F2).

Given a new case nc, the first layer of the network is used as a category index to

rank [using equation (2.19)] the location of the probable categories (in descending

order) to which the new case may belong (see Fig. 2.17). The second layer is then

used as an exemplar index to determine from the aforesaid categories in descending

order the location of a group of cases (represented by an exemplar ei) that are most

similar to the new case. To measure such similarity between ei and nc, equation

(2.19) is used and then it is checked if the corresponding P(ei|nc) exceeds a prede-

fined threshold. The algorithm stops as soon as an exemplar satisfying the threshold

is found. The category index thus narrows down the searching space for the exem-

plar index, thereby improving the efficiency of the indexing structure. (Note that it

may sometimes happen that the best-match exemplar is found in a less probable

C1

F1

e11 e21

F2F1 Fi

Fi

Cn

elnep1

Fm–1 Fm

epn

Fm

Category
indexing

Exemplar
indexing

Fm–1F2

Figure 2.16 Two-layered Bayesian network for indexing category and exemplar.
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Figure 2.17 Classification algorithm. (From [20].)

68 CASE REPRESENTATION AND INDEXING



category rather than a higher one, since the threshold criterion is not satisfied for

the latter.)

2.4.3 Case Indexing Using a Prototype-Based Neural Network

There are three principal advantages of using neural networks to index cases: (1) as

neural networks are inherently a parallel architecture, the index developed could be

used to improve the case searching and retrieval efficiency; (2) once a neural net-

work is trained successfully, it is very robust in handling noisy input case data with

incomplete or missing information; and (3) neural networks are particularly suitable

in situations where learning the class labels of cases is performed incrementally by

accumulating data. Some of the basic models of artificial neural networks and char-

acteristic features are described in Appendix B.

Similar to the concept of an exemplar described in the Bayesian network in Sec-

tion 2.4.2, the idea of prototype-based indexing is to construct a set of prototypes

that could be used to index a group of similar cases. The construction of these pro-

totypes can be achieved through learning from the case data using a neural network.

One of these examples is the prototype-based incremental neural network devel-

oped by Malek [21,22] (see Fig. 2.18). The network here has three layers. The input

layer contains one unit for each feature xi, i ¼ 1, 2, . . ., n. The output layer contains

one unit for each class Ci, i¼ 1, 2, . . ., m. Each class contains a group of similar

cases. A unit in the hidden layer is considered as a prototype and is represented by a

vector [e.g., the third prototype is represented as w3 ¼ (w13, w23, . . ., wn3), where

wi3 is the average value of the ith (i¼ 1, 2, . . ., n) component of all the cases that

are represented by this prototype.

During the case retrieval phase, given a new current case, the task of case retrie-

val is performed by finding out which prototype in the hidden layer should be

C1

w13

w23

wn3

x1 x2 xn

C2 Cm

Class units

Prototype units

Reference vector W

Input units

Figure 2.18 General architecture of a prototype-based network. (From [21].)
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activated. For instance, if the first prototype w1 is activated among the group of pro-

totypes, then class C1 to which w1 refers should be located. To determine which

prototype should be activated, a similarity measure SM(X,wi) that is derived

from the Euclidean distance and a user-specified similarity threshold is used. First,

the similarities between the present case and the prototypes are calculated, and then

among the prototypes whose similarity values are above the threshold, the one with

the maximum similarity is activated.

However, the retrieval task mentioned above cannot be performed effectively

without a sufficient number of prototypes in the hidden layer. To build this layer

for indexing cases, an incremental learning algorithm is used. Three types of mod-

ification of the prototype layer are possible:

1. Construction of a new prototype. Two types of situations can lead to the

construction of a new prototype. First, if there is initially no prototype for

comparison in the hidden layer, the training case is then added to this layer as a

prototype. An influence region of this prototype could be defined with a radius that

is initialized to be equal to the user-specified threshold. After the prototype is

created, a new region of memory is allocated and linked to it. Second, if a sufficient

number of cases are found in the atypical memory, [i.e., memory consisting of those

cases that could activate more than one prototype (see Figs. 2.19 and 2.20), or

activate no prototype], they are clustered, and for each cluster a new prototype is

generated.

2. Specialization and expansion of the prototypes. If an input training case is

misclassified by an activated prototype, the influence region of this prototype

should be reduced to exclude the training case from its class. By doing so the

prototype is specialized. Meanwhile, the influence region of another prototype that

should have included the training case will be expanded so that it could be

activated.

2m

P1

P2

W21W11

W12

W22

s1 s2· ·

Figure 2.19 Two prototypes activated by S2. (From [21].)
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3. Tuning of prototypes. If the training case is classified correctly, it is added to

the linked memory of the guiding prototype. By averaging the feature values of all

similar cases in the same group, a new prototype that is more representative is

generated and used to replace the old one.

The process of learning will not stop until the atypical region stabilizes, which

means that any new input training case can activate one and only one prototype in

the hidden layer. P1 and P2 in Figure 2.19 are two prototypes that are associated

with different classes. S2 is a case that falls into an uncertain region and the network

is unable to give a decision because two different prototypes are activated, so this

case is added to the atypical memory.

2.4.4 Case Indexing Using a Three-Layered Back-Propagation

Neural Network

An approach for maintaining feature weights in a dynamic context was developed

by Yang et al. [23] using a layered network. This network can be used as an index to

locate a set of potential solutions that are learned (extracted) from the previous

cases. Given a new case, its suggested solution can be obtained by adapting the

said potential solutions, thus reducing the need to compare all the cases in the

case base. In this model the first layer represents the feature values of the cases,

the second layer represents the problem contexts, and the third layer represents the

solutions that are extracted from the cases. The feature value layer is connected to

the problem layer through a set of weights denoted by V. Similarly, the problem

layer is connected to the solution layer through another set of weights, denoted

by W.

Prototype memory

Case memory

Atypical cases

n

1

2

3

·
·
·

Figure 2.20 Two levels of case indexing structure. (From [21].)
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The weight training algorithm of the three-layered back-propagation neural net-

work model has the following steps. Given the input feature values, a problem score

is computed as

Spj ¼
2

1þ exp½�l
PI

i¼1 ðVjiXiÞ�
� 1 ð2:23Þ

where Spj is the score of the problem Prj and j¼ 1, 2, 3, . . ., J. Vji is a weight

attached to the problem Prj and the feature input FVi. The problem score outputs

are then forwarded to the solution layer as inputs. Computation of the score of a

solution is again similar to computation in the problem layer. After the score of

a solution is computed, it will be shown to the user for his or her judgment. If

the user is not satisfied with the solution score, they can specify the desired score.

This information will be used in the computation of errors for weight learning using

a back-propagation process. The computation of the delta (�) values is first done at

the solution layer to update the weights in that layer. They are computed as

�Sk ¼
1
2
ðDSk � SkÞð1� S2kÞ ð2:24Þ

where �Sk is the learned delta value for solution Sk and DSk is the desired score for

Sk. These learned delta values are then propagated back to the problem layer. The

learned delta value for the problem Prj can be computed as

�Prj ¼
1

2
ð1� Sp2j Þ

XK

k¼1

ð�SkWkjÞ ð2:25Þ

where the weight Wkj is attached to the connection between a solution Sk and a

problem Prj. These weights are modified or adjusted using the delta values [computed

with equation (2.23)] as

Wnew
k; j ¼ Wold

k; j þ Z�SkSpj ð2:26Þ

where Wnew
k;j is the new weight to be computed, Wold

k; j the old weight attached to the

connection between Sk and problem Prj, and Z the learning rate. The weights

attached between the feature value layer and the problem layer is computed in a

similar manner.

2.5 SUMMARY

In this chapter we present both the traditional and soft computing approaches to

case representation and case indexing. For case representation, we first explain

the relational model, the object-oriented model, and the predicate logic model. A
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methodology for generation of prototypical cases from a fuzzy granulated space is

then described for case representation. This uses rough sets in generating rules

through reducts. These prototypical cases can also be used as indexes for

retrieving the relevant cases at later stages of the CBR reasoning tasks. Traditional

indexing models such as Bþ-tree and R-tree can provide an effective way of

indexing cases. We show with examples how a Bayesian probability model can

be used for indexing. Other soft computing methods described include those based

on a prototype-based incremental neural network and a three-layered back-

propagation neural network. It may be mentioned here that fuzzy layered networks

(e.g., in [13]) and knowledge-based networks [24] can be used for efficient index-

ing, particularly when the input is described in terms of imprecise information such

as fuzzy hedges, set values, and missing components. Although the present litera-

ture on using the GA for indexing is scarce, its potential in determining the best

index structure through searching is evident.
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CHAPTER 3

CASE SELECTION

AND RETRIEVAL

3.1 INTRODUCTION

Case selection and retrieval is usually regarded as the most important step within

the case-based reasoning cycle. This problem has been studied in both supervised

and unsupervised frameworks by many researchers and practitioners, and hundreds

of different algorithms and various approaches have been developed to retrieve

similar cases from the case base. In this process the similarity measures adopted

in a CBR system will greatly influence retrieval performance. One of the most

important assumptions in case-based reasoning is that similar experiences can guide

future reasoning, problem solving, and learning. This similarity assumption [1] is

used in problem-solving and reasoning systems when target problems are dealt with

by resorting to a previous situation with common conceptual features. Most of

today’s case matching and retrieval algorithms are based on this assumption, and

this leads to the development of various case clustering and classification tech-

niques. Among these techniques, weighted feature-based similarity is the most com-

mon form of method used in computing relatedness among cases. If there are too

many cases in a case base, a set of representative cases may be selected beforehand

(thereby signifying the importance of case selection), so that the tasks of matching

and retrieval will be managed efficiently. However, there are an increasing number

of arguments about using this simple feature-based similarity as an explanation of

human thinking and categorization [1–5]. This is because similarity cannot be stu-

died in an isolated manner, and there are many possible assumptions and constraints
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that could affect measurements of similarity among cases. For example, similarity

may be interpreted as relatedness among problem features (i.e., the problem space)

or relatedness among solution features (i.e., the solution space). Questioning on the

similarity assumption opens up the possibility of using many other alternatives for

defining similarity, such as adaptation-guided retrieval [1], similarity with confi-

dence level [6], context-guided retrieval [7], and similarity among structured case

representations [8]. In this chapter we deal with techniques based on the similarity

assumption, especially with how soft computing tools can be used to extend

traditional feature-based similarity computation. However, readers should bear in

mind that similarity may mean different things to different people, or different

things to the same person at different times.

The rest of this chapter is organized as follows. In Section 3.2 we review the

concept of similarity measure. The use of fuzzy sets for similarity assessment

and its computation is explained in Section 3.3. Fuzzy classification and clustering

methods for case retrieval are described in Section 3.4. The significance of case

feature weighting (importance) and the determination of weights using derivative-

and GA-based optimization methods are covered in Section 3.5. In Section 3.6 we

address the tasks of case selection and retrieval using neural networks. In

Section 3.7 a supervised neuro-fuzzy method for case selection that is especially

suitable for selecting cases from overlapping regions has been explained along with

experimental results. Finally, in Section 3.8 we describe a method of integrating

rough sets, fuzzy sets, and self-organizing networks for extracting cases in an unsu-

pervised mode of learning for developing a compact case base. Its merits in terms of

learning time, cluster quality, and compact representation of data are demonstrated.

3.2 SIMILARITY CONCEPT

The meaning of similarity always depends on the underlying context of a particular

application, and it does not convey a fixed characteristic that applies to any com-

parative context. In CBR, the computation of similarity becomes a very important

issue in the case retrieval process. The effectiveness of a similarity measurement is

determined by the usefulness of a retrieved case in solving a new problem. There-

fore, establishing an appropriate similarity function is an attempt at handling the

deeper or hidden relationships between the relevant objects associated with the

cases. There are (broadly) two major retrieval approaches [9]. The first is based

on the computation of distance between cases, where the most similar case is deter-

mined by evaluation of a similarity measure (i.e., a metric). The second approach is

related more to the representational/indexing structures of the cases. The indexing

structure can be traversed to search for a similar case. We describe next the basic

concepts and features of some of the distance measures used in this regard.

3.2.1 Weighted Euclidean Distance

The most common type of distance measure is based on the location of objects

in Euclidean space (i.e., an ordered set of real numbers), where the distance is
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calculated as the square root of the sum of the squares of the arithmetical differ-

ences between the corresponding coordinates of two objects. More formally, the

weighted Euclidean distance between cases can be expressed in the following man-

ner. Let CB ¼ fe1; e2; . . . ; eNg denote a case library having N cases. Each case in

this library can be identified by an index of the corresponding features. In addition,

each case has an associated action. More formally, we use a collection of features

fFj ð j ¼ 1; 2; . . . ; nÞg to index the cases and a variable V to denote the action. The

ith case ei in the library can be represented as an (nþ 1)-dimensional vector, that

is, ei ¼ ðxi1; xi2; . . . ; xin; yiÞ, where xij corresponds to the value of feature

Fj ð1 � j � nÞ and yi corresponds to the value of action V ði ¼ 1; 2; . . . ;NÞ.
Suppose that for each feature Fj ð1 � j � nÞ, a weight wj ðwj 2 ½0; 1�Þ has been

assigned to the jth feature to indicate the importance of that feature. Then, for any

pair of cases ep and eq in the library, a weighted distance metric can be defined as

dðwÞpq ¼ dðwÞðep; eqÞ ¼
X

n

j¼1

w2
j ðxpj � xqjÞ

2

" #1=2

¼
X

n

j¼1

w2
j w

2
j

 !1=2

ð3:1Þ

where w2j ¼ ðxpj � xqjÞ
2
. When all the weights are equal to 1, the weighted distance

metric defined above degenerates to the Euclidean measure d
ð1Þ
pq , in short, is denoted

by dpq. Using the weighted distance, a similarity measure between two cases,

SMðwÞ
pq , can be defined as

SMðwÞ
pq ¼

1

1þ ad
ðwÞ
pq

ð3:2Þ

where a is a positive constant. The higher the value of d
ðwÞ
pq , the lower the similarity

between ep and eq. When all of the weights take a value of 1, the similarity measure

is denoted by SMð1Þ
pq , SM

ð1Þ
pq 2 ½0; 1�.

It should be noted that the real-valued features discussed above could be

extended without difficulty to the features that take values in a normed vector space.

For example, assume that for each feature, a distance measure has already been

defined. The distance measure for the jth feature is denoted by rj; that is, rj is a

mapping from Fj � Fj to ½0;1� (where Fj denotes the domain of the jth feature)

with the following properties:

(a) rjða; bÞ ¼ 0 if and only if a ¼ b.

(b) rjða; bÞ ¼ rjðb; aÞ.

(c) rjða; bÞ � rjða; cÞ þ rjðc; bÞ.

For numerical and nonnumerical features, some typical formulas for the distance

measure, such as the following, could be used:

(a) rjða; bÞ ¼ a� bj j if a and b are real numbers.
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(b) rjðA;BÞ ¼ maxa2A;b2B a� bj j if A and B are intervals.

(c) rjða; bÞ ¼
1 if a 6¼ b

0 if a ¼ b

�

if a and b are symbols.

In these circumstances, the distance between two cases ep and eq can be computed

by

dwpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

w2
j r

2
j ðepj ; eqjÞ

v

u

u

t ð3:3Þ

3.2.2 Hamming and Levenshtein Distances

Hamming distance was originally conceived for detection and correction of errors

in digital communication [10]. It is simply defined as the number of bits that are

different between two bit vectors. For example, dð0; 1Þ ¼ 1; dð001; 011Þ ¼ 1;

dð000; 111Þ ¼ 3; dð111; 111Þ ¼ 0. In the field of artificial intelligence, there is

often a need to search through large state spaces. Therefore, a predefined state space

metric would be very useful to guide the search, and this metric is usually referred

to as the Hamming distance. In the context of case-based reasoning, an evaluation

function (or an algorithm) is used to compute the Hamming distance between a

query case and the cases in the case library. The case that has the minimum Ham-

ming distance is selected as the most similar case to the query case. In many appli-

cations, the Hamming distance is represented by a state-space graph, and the

computation of the distance involves algorithms that traverse the arcs and nodes

of this graph.

Levenshtein distance is a measure of the similarity between two strings and is

defined as the number of deletions, insertions, or substitutions required to transform

the source string into the target string. The Levenshtein distance is also called the

edit distance. Each transformation is associated with a cost, and the objective is to

find the cheapest way to transform one string into another. There are many possible

applications of Levenshtein distance, for example, it could be used in measuring

errors in text entry tasks [11] as well as for comparing sequences.

3.2.3 Cosine Coefficient for Text-Based Cases

In many practical applications, comparing text-based cases is necessary. This leads

to a requirement for similarity metrics that can measure the relation among docu-

ments. In the field of information retrieval (IR), cluster analysis has been used to

create groups of documents that have a high degree of association between

members from the same group and a low degree between members from different

groups. To cluster the documents in a data set, a distance measure is used. A variety

of distance and similarity measures in this regard are mentioned [12]. Among
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them, the Dice, Jaccard, and Cosine coefficients have the dual attractions of simpli-

city and normalization.

Let DT ¼ fs1; s2; . . . ; sNg denote an N-tuple of documents si, where si is a mem-

ber of the set DT. Let TT ¼ ft1; t2; . . . ; tMg denote an M-tuple of term types

(i.e., specific words or phrases) tj, where tj is a member of the set TT. The term

frequency, denoted by TFsi;tj is the frequency of occurrence of term tj in document

si. The inverse document frequency, denoted by IDFDT;tj, provides high values

for rare words and low values for common words. It is defined as the logarithm

(to base 2) of the ratio of the number of the documents in set DT to the number

of documents si in set DT that contains at least one occurrence of term tj. Each

term is then assigned a score, called the weight of the term, which is defined as

Wsi;tj ¼ TFsi;tj � IDFDT;tj .

This score has a higher value if a term is both frequent in relevant documents and

infrequent in the document collection as a whole. However, longer documents may

be given a greater weight because of a higher term frequency. Therefore, a process

of normalization is necessary. The normalized weight is defined as

NWsi;tj ¼
Wsi;tj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PM
j¼1 ðTFsi;tjÞ

2ðIDFDT;tjÞ
2

q ð3:4Þ

Finally, the similarity of two documents Si and Sj can be expressed as a cosine rela-

tionship (cosine coefficient):

Cos SMSi;Sj ¼

PM
j¼1 ðWsi;tjWsj;tjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PM
j¼1 ðWsi;tjÞ

2 PM
j¼1 ðWsj;tjÞ

2
q ð3:5Þ

3.2.4 Other Similarity Measures

Here we provide some more useful similarity measures. A survey in this regard is

available in [9]. Let SMpq denote a similarity measure between two cases, a new

query case ep and a stored case eq. A similarity measure that is based on the ratio

model has been proposed by Tversky [13]:

SMpq ¼
aðcommonÞ

aðcommonÞ þ bðdifferentÞ
ð3:6Þ

where ‘‘common’’ and ‘‘different’’ represent the number of attributes that are simi-

lar or dissimilar, respectively, between the new query case ep and the stored case eq.

Usually, this decision involves referring to a threshold value so that features are

classified as similar if their similarity is above that threshold. The value of a and

b are the corresponding weights whose values could be determined by an expert or

by using machine-learning techniques.
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A similarity measure that is based on the number of production rules that are

instantiated has been proposed by Sebay and Schoenauer [14]:

SMpq ¼
X

i

wðriÞ ð3:7Þ

where (ri) represents the rules that are learned from the case base and w is the

weight assigned. A similarity measure based on the contrast model [13] is proposed

by Weber [15]:

SMpq ¼ af ðep \ eqÞ � bf ðep � eqÞ � gf ðeq � epÞ ð3:8Þ

where ep represents a new query case and eq represents a stored case. The intersec-

tion (ep \ eq) describes those attributes that are common to ep and eq, and the com-

plement sets (ep � eq) and (eq � ep) describe those attributes that are observed only

in the query case (not in the stored case) and only in the stored case (not in the

query case), respectively. f denotes some operator or algorithm to compute the

matching score of the related sets. a, b, and g are the corresponding weights.

Several other similarity metrics are also proposed. These take into consideration

different comparative features, such as the number of consecutive matches [16], the

degree of the normalized associations between attributes [17], the ‘‘typicality’’ of

cases [18], the relevance of certain attributes between a new query case and a stored

case [19], the degree of similarity in the relationships between attributes [20], struc-

tural similarities [21], similarity based on object-oriented class hierarchy [22], and

supervised and unsupervised fuzzy similarity measures [23].

3.2.5 k-Nearest Neighbor Principle

The k-nearest neighbor principle involves search for the k nearest cases to the cur-

rent input case using a distance measure [such as Euclidean distance; see equation

(3.1)] and then selecting the class of the majority of these k cases as the retrieval

one. In other words, for classification of the query case, the confidence for each

class is computed as mi/k, where mi is the number of cases among the k nearest

cases that belong to class i. The class with the highest confidence is then assigned

to the query case. Usually, to improve the chances of a correct decision for the pre-

sent cases that are near the boundary between two classes, a threshold b is set so

that at least b among the k nearest neighbors have to agree on the classification.

Although the k-NN algorithm is simple, it does suffer from a major disadvantage:

when the number of feature dimensions and the number of cases in the case base are

large, the computation required for classification is enormous [24,25].

3.3 CONCEPT OF FUZZY SETS IN MEASURING SIMILARITY

Fuzzy set theory was introduced by Lotfi Zadeh [26] in 1965. Since then it has been

an active area of research for many scientists and engineers, and there have been
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tremendous advances and new developments both theoretically and in applications

[27,28]. Basic concepts and definitions of fuzzy set theory are given in Appendix A

for the convenience of readers.

In Section 3.2, the concept and forms of traditional similarity were introduced. It

is easy to discover that traditional similarity, such as weighted Euclidean distance,

can only handle features with real-value and characteristic feature values. However,

in the real situation, case features are often incompletely or uncertainly specified.

For example, one of the features of cases in a CBR system may be described by

such linguistic terms as low, medium, and high. Then for implementing the process

of case matching and retrieval, one needs to define an appropriate metric of simi-

larity. The traditional definition of similarity is obviously not valid and at least not

effective to deal with this difficulty. Here the concept of fuzzy set provides a good

tool to handle the problem in a natural way. In fuzzy set theory, we may consider

the linguistic term as a fuzzy number, which is a type of fuzzy set. Then a member-

ship function is determined with respect to the given linguistic term. When a real

value of the feature of a given problem is input, the corresponding values of mem-

bership to different linguistic terms are obtained through the membership functions.

That is, after approximate matching, the real-valued features are transformed to lin-

guistic features. Then, depending on the problem, to select the best-matching case

or the best set of cases, one needs to define some similarity measures and algo-

rithms for computing fuzzy similarity. Before we define them, we provide a math-

ematical framework that signifies the relevance of fuzzy similarity in case

matching.

3.3.1 Relevance of Fuzzy Similarity in Case Matching

Case-based reasoning is based on the idea that if two problems are similar with

respect to a set of attributes S1 that describe them, they could still be similar

with respect to another set of attributes, S2. Then we can take advantage of past

experience with problems that are similar (with respect to S1) to a current problem

(concerning S2) to infer a plausible value for S2. Davies and Russell [29] used func-

tional dependencies between sets of attributes S1 and S2 to control the inference

process. However, this framework is very restrictive since inference is possible

only when both of the following conditions hold: (1) there is a perfect identity

between the S1 values describing the two problems, and (2) when the S1 values

are equal, the S2 values are also equal (i.e., the functional dependency ‘‘S1 deter-

mines S2’’ holds). Later, Gilboa and Schmeidler [30] advocated a similarity-based

approach where a case is described as a triple (situation, act, result) and a decision

maker’s nonnegative utility function assigns a numerical value y to result Rt. When

faced with a new situation St0, the decision maker is supposed to choose an act Ac

that maximizes the following equation (CU maximization), a counterpart of classi-

cal expected utility theory used in decision making under uncertainty:

CUSt0ðAcÞ ¼
X

ðSt;Ac;RtÞ 2M
SMðSt0; StÞyðRtÞ ð3:9Þ
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where SM is a nonnegative function that estimates the similarity between the situa-

tions. SM denotes the similarity between the current situation, St0, and those

already encountered and stored in the memory M. Moreover, it is assumed that 8
St and 8 Ac, 9 Rt such that ðSt;Ac;RtÞ 2 M, which means that results are uniquely

determined by the act applied in the context of a given problem. It is also assumed

that 8 St, 9 Ac such that (St, Ac, Rt) 2 M and y(Rt) 6¼ 0, which means that only the

best act in the context of s is stored in the memory. Gilboa and Schmeidler also

gave an axiomatic derivation of this CU maximization, within a formal model.

Later, Dubois et al. [31] provided a fuzzy set theoretic approach to case-based

decisions. In this approach, ‘‘strong’’ dependencies express that the value of S1 (fuz-

zily) determines the value of S2, and ‘‘weak’’ dependencies state only that if the S1
values are similar, it is possible that the S2 values are similar. The details of this

approach are as follows. Let M denote a memory of cases encountered which are

represented by pairs (Sti; yi) for i ¼ 1; 2; . . . ; n, where Sti denotes a problem and yi

represents the associated outcome (solution). The current problem will be denoted

by St0 and its intended solution by y0.

A fuzzy functional dependency of the form ‘‘the more similar St1 is to St2, the

more similar y1 is to y2,’’ where (St1,y1) and (St2,y2) are cases inM, can be modeled

by the constraint

ðSt1; y1Þ; ðSt2; y2Þ 2 M; FSðSt1; St2Þ � FTðy1; y2Þ ð3:10Þ

where FS and FT are fuzzy proximity relations. FS and FT are symmetric and

reflexive. In fact, the constraint (3.10) expresses that when St1 and St2 are close,

then y1 and y2 should be at least as close as them. Moreover, if FT is defined

such that FTðy1; y2Þ ¼ 1 , y1 ¼ y2, the classical functional dependency St1 ¼
St2 ) y1 ¼ y2 is a consequence of constraint (3.10) using the reflexivity of FS.

In this case, constraint (3.10) is then clearly stronger than a classical functional

dependency.

Let ðSt; yÞ 2 M, and ðSt0; y0Þ be the current situation; then we have

FSðSt; St0Þ � FTðy; y0Þ

where y0 is unknown. Thus, the constraint defines a set of possible values for y0,

namely, fy0 2 FT j FSðSt; St0Þ � FTðy; y0Þg. Since it applies for any ðSt; yÞ in M,

we obtain the following set B of possible values for y0:

B ¼ \ðSt; yÞ2Mfy
0 2 FT j FSðSt; St0Þ � FTðy; y

0Þg ð3:11Þ

Note that B may be empty if FT is not permissive enough. It can be shown that the

nonemptiness of B can be guaranteed by the coherence in the set of fuzzy gradual

rules so that the more St0 is FS-similar to Sti, the more y0 should be FT-similar to yi
for each case ðSti; yiÞ 2 M.

The requirement that the value of St uniquely determines the value of y, or the

requirement that at least when Sti and Stj are close, yi and yj should also be close,
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may be felt too strong in some practical applications. Memory M may, for instance,

simultaneously include cases such as ðSt; yÞ and ðSt; y0Þ with y different from y
0. In

such a situation, we can use a weaker version of the principle underlying case-based

reasoning and state this as, ‘‘the more similar St1 is to St2, the greater is the possi-

bility that y1 and y2 are similar.’’ The formal expression of this principle requires

clarification of the intended meaning of possibility. Rules of the form ‘‘the more S1
is A, the greater the possibility that S2 is B’’ correspond to a particular kind of fuzzy

rule called possibility rules [31]. They express that ‘‘the more S1 is A, the greater

the possibility that B is a range for S2,’’ which can be understood as ‘‘8 u; if S1 ¼ u,

it is possible at least at the degree A(u) that S2 lies in B.’’ When B is an ordinary

subset, it clearly expresses that (1) if v 2 B, v is possible for S2 at least at the level

A(u) if S1 ¼ u, and (2) if v =2 B, nothing can be said about the minimum possibility

level of the value v for S2. This definition leads to the following constraint on the

conditional possibility distribution PS2jS1 representing the rule

8 u 2 U; 8 v 2 V;minðAðuÞ;BðvÞÞ � PS2jS1ðv; uÞ ð3:12Þ

for a full justification of its semantics when both A and B are fuzzy.

Applying the principle ‘‘the more similar St and St0 are (in the sense of S), the

more possible it is that y and y0 are similar (in the sense of FT),’’ the fuzzy set of

possible values y0 for y0 is given by

Py0
ðy0Þ  minðFSðSt; St0Þ; FTðy; y

0ÞÞ ð3:13Þ

As can be seen, what we obtain is the fuzzy set of values y0 that are FT-similar to y,

‘‘truncated’’ by the global degree FSðSt; St0Þ of the similarity between St and St0.

Since it applies to all pairs ðSt; yÞ 2 M, we obtain the following fuzzy set B of pos-

sible values y0 for y0 ½Bðy
0Þ ¼ Py0

ðy0Þ�:

Bðy0Þ ¼ maxðSt;yÞ2MminðFSðSt; St0Þ; FTðy; y
0ÞÞ ð3:14Þ

Inference based on a fuzzy case rule [29] can be divided into two stages. In the first

stage, an inference is based on how well the facts of a new case correspond to the

elements associated with a (precedent) case rule. This is judged using a criterion

yes or no, which is evaluated according to the degree of fuzzy membership between

the facts and elements. In the second stage, the inference from the precedent case to

the new case is drawn, and this is directed by the similarity between the cases. The

conclusions obtained from both these stages are compared with that of the prece-

dent case. If they are identical with the conclusion of the precedent case, the new

case has the same result as the precedent. If they are not identical with that conclu-

sion, a decision concerning the new case cannot be supported by the precedent.

When we make a judgment on the correspondence between the facts of the new

case and the elements of a (precedent) case rule (that is represented by the fuzzy

membership function), a yes or no judgment is unnecessary for inference by case
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rule. Accordingly, the center of gravity of the fuzzy membership function of these

cases can be defined as

CGðAiÞ ¼

Ð c2
c1
xmAi

ðxÞ dx
Ð c2
c1
mAi

ðxÞ dx
ð3:15Þ

where U ¼ ½c1; c2�;Ai is the fuzzy set that describes the judgment on the correspon-

dence between the elements of a case rule (i) and the facts of a new case. mAi
is the

membership function of Ai. CGðAiÞ lies in ½0; 1�. Considering 0.5 as the threshold, if
the value of the center of gravity is greater (or less) than 0.5, the judgment is yes (or

no).

The distance between two centers of gravity, CGðAÞ � CGðBÞj j, is used to

describe the degree of similarity. To satisfy the conditions of similarity relations,

the degree of similarity SMðA;BÞ is calculated using

SMðA;BÞ ¼ 1� CGðAÞ � CGðBÞj j ð3:16Þ

The conceptual similarity of an elemental item within the cases is assessed as

�SM ¼ e�b�d2 ð3:17Þ

where bðb > 0Þ denotes amendment accuracy, which should be fixed beforehand.

The formulation of the provision acceptance depends on the elemental item that

belongs to this issue j. The value �d is the distance between the relevant items

from the two cases ðep; eqÞ, and it can be computed as

�d ¼ CGðepÞ � CGðeqÞ
�

�

�

� ð3:18Þ

The similarity of the issue j is assessed using the similarity of the associated ele-

mental items as

SMj ¼ minf�SM1;�SM2; . . . ;�SMi; . . . ;�SMng; �SMi 2 ½0; 1�; n 2 N

ð3:19Þ

where n is the number of elemental items that belong to the issue j.

As a general rule, more than one issue can be compared between two cases. The

algorithm applied when there is more than one relevant issue should also be con-

sidered. In this situation, a weight wi is introduced into the case-based retrieval. The

average similarity is then weighted. It is calculated as

SM ¼

P

ðwiSMiÞ
P

wi

ð3:20Þ
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Let each frame of a precedent case and a new case be represented as follows:

Precedent : A ¼ fAig
n

i¼1

New case : B ¼ fBig
n

i¼1

where A is the frame that represents the precedent, B the frame that represents the

new case, Ai the fuzzy set that describes the judgment concerning the elements of

the precedent case rule, and n the quantity of slots in a frame.

The similarity assessment is performed as follows: Let the membership func-

tions of Ai and Bi be mAi
and mBi

, respectively. The center of gravity of Ai and Bi

can be computed using equation (3.15). Let SMðAi;BiÞ be the degree of similarity

between Ai and Bi. Then the degree of similarity between A and B can be obtained

from

SMðA;BÞ ¼ minðSMðA1;B1Þ; . . . ; SMðAn;BnÞÞ ð3:21Þ

If the degree of similarity is greater than the threshold (which was determined in

advance), the conclusion is that frame B is the same as frame A. For example, if

there is a conclusion that ‘‘the proposal is sufficiently definite’’ in a precedent,

the conclusion of new case is also ‘‘the proposal is sufficiently definite.’’ If the

degree of similarity is less than the given threshold, the conclusion is that frame

B cannot arrive at the same conclusion as that of A. This does not necessarily

mean that the new case has an opposite conclusion to the precedent. Perhaps it is

possible to reach the same conclusion using another precedent.

This system has been used for drawing inferences from contract law [32], where

the judgment associated with the elements of the case rule was represented by the

concepts of membership and vagueness in fuzzy theory. The inference based on

the case rule was made by the yes or no judgment and the degree of similarity.

The yes or no judgment was made according to the center of gravity of the member-

ship function. The degree of similarity was calculated using fuzzy matching. It was

on the basis of these requirements that the inference experiment was carried out.

3.3.2 Computing Fuzzy Similarity between Cases

There are several methods [33] for computing the similarity between cases:

� Numeric combination of feature vectors (properties, attributes), representing

the known cases, using different combination rules.

� Similarity of structured representations, in which each case is represented as a

structure, such as a directed graph, and thus the similarity measure takes into

account the structure of the different attributes of the case and not only the

attribute value.

� Goal-driven similarity assessment, in which the attributes of the cases that are

to be compared with those of a new case depend on the goal sought. This

CONCEPT OF FUZZY SETS IN MEASURING SIMILARITY 85



means that some attributes of a case are not important in the light of a certain

goal and thus should not be taken into account in the similarity calculation.

� Rule-based similarity assessment, in which the cases in the case base (CB) are

used to create a set of rules on the feature vector of the cases. This rule set is

then used to compare the cases in the CB and to solve the new case (e.g., if

exactly the same rules fire for exactly the same attributes in both an old case

and a new one, these cases are said to be very similar).

� Aggregation of the foregoing methods according to application-specific

hierarchies.

The detailed steps in constructing the fuzzy case and the similarity computation

can be summarized [34] in the following way:

Step 1: Case representation. In this representation, a vector of triplets is used to

represent a case. The elements of this vector describe the property, its importance

(weight) within this case, and its value. The case e and its elements

tiði ¼ 1; 2; . . . ; kÞ are defined as follows:

e ¼ ft0; t1; . . . ; tkg

ti ¼ ðPi;wi; wiÞ

where Pi is the property name, wi its weight, and wi the value assigned to this prop-

erty. This representation is an augmentation of the representation commonly used,

with the addition of allowing each case to be represented by a distinct set of proper-

ties that are weighted independently. The domain of the property values is left

unspecified. It is sufficient that there exists a similarity operator that will assess

the similarity between two values for the same property.

Step 2: Similarity between fuzzy and nonfuzzy feature values

(a) Similarity measure between two quantities in a specific range. The crisp

similarity measure between two quantities a and b in a specific range may be

defined as

SMða; bÞ ¼ 1�
b� aj j

b� a
; a; b 2 ½a; b� ð3:22Þ

where a and b are the lower and upper bounds of the range, respectively.

Next we describe the concept of similarity between each of the types of

values specified: crisp, range, and fuzzy.

(b) Similarity between a crisp value and a range. The augmentation of any

similarity measure when comparing a crisp value a with a range ½b1; b2� is
defined as

SMða; ½b1; b2�Þ ¼

Ð b2
b1

SMða; xÞ dx

b2 � b1
ð3:23Þ
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(c) Similarity between a crisp value and a fuzzy value. If we represent a fuzzy

value by the membership function mAðxÞ, the similarity measure between a

crisp value and the fuzzy value is defined as

SMða; mAÞ¼

Ð b
a
mAðxÞSMða; xÞ dx
Ð b
a
mAðxÞ dx

maxx2½a;b�fmAðxÞg ð3:24Þ

The last multiplier is meant to compensate in situations where the

membership function is not normalized. If the membership functions for

all the fuzzy variables are normalized, the last multiplier can be omitted.

(d) Similarity between a range and a fuzzy value. The similarity between a

given range ½a1; a2� and a fuzzy value, denoted by the membership function

mAðxÞ, is defined as

SMð½a1; a2�; mAÞ¼

Ð a2
a1

Ð b
a
mAðyÞSMðx; yÞ dy dx

ða2 � a1Þ
Ð b
a
mAðxÞ dx

maxx2½a;b�fmAðxÞg ð3:25Þ

where a1 and a2 are in the range ½a; b�. Again, the final multiplier is used to

compensate for nonnormalized membership functions. We represent a range

as a fuzzy value whose membership function is equal to 1 within the range

and zero outside it.

(e) Similarity between two fuzzy values. The similarity measure between two

fuzzy values, represented by membership functions mAðxÞ and mBðxÞ, is

defined as

SMðmA; mBÞ¼

Ð b
a
mAðxÞmBðyÞSMðx; yÞ dy dx
Ð b
a
mAðxÞ dx

Ð b
a
mBðxÞ dx

maxx2½a;b�fmAðxÞg

�maxx2½a;b�fmBðxÞg ð3:26Þ

where mAðxÞ and mBðxÞ are the membership functions of the fuzzy values

being compared. Note that by viewing ranges as fuzzy values whose

membership grade is one within the range and zero outside it, this equation

defines the similarity between two ranges.

Step 3: General procedure for defining a family of similarity assessments

(a) Create an intermediate case based on the compared cases. Given two

cases—e, described by a set of properties P, and e0, described by a set of

properties P0—we define an intermediate case eq that has the same number

of elements as P [ P0:

eq ¼ ft0; t1; . . . ; tmg

� ¼ P [ P0
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where ti denotes intermediate elements (i.e., each represents a triplet of

property, weight, and value) used during the similarity calculation. The set �

contains the properties describing case eq, and m is the cardinality of �.

(b) Compute the elements (triplets) of the intermediate case. Associate a

property with each element ti in the intermediate case, and calculate the

weight and value for that property using those from the original cases that

have the same property, in the following way:

ti ¼ ð�i;wi;siÞ

�i ¼ Pj ¼ P0
k

wi ¼ weight�combinationðwj;w
0
kÞ

si ¼ similarity�operatorðwj; w
0
kÞ

where �i is one of the properties, wi a combined weighting coefficient, and

si a similarity value (in the range ½0; 1�). The triplet ðPj;wj; wjÞ is an element

of case e that has property Pj ¼ �i. If there is no such element, wi is set to a

weight combination ð0;w0
kÞ and si is set to zero. The same holds true for

triplet ðP0
k;w

0
k; w

0
kÞ from case e0. The similarity operator is used to compute

the similarity between the two original values, and it depends on the method

of representation used for the values.

(c) Compute the outcome similarity measure using the intermediate case. After

calculating each of the elements in the intermediate case, the weights are

normalized (i.e., making their sum equal to 1), as shown below for wi below.

The similarity between the original cases ½SMðe; e0Þ� is computed from the

weighted sum of the discrete similarity values:

wi ¼
wiP
j wj

SMðe; e0Þ ¼
X

i
wisi

The weight combination is critically important to the quality of the similarity

assessment, as is the similarity operator. There are several weight

combination methods. These methods alter the weights of the similarity

values for the various properties of the intermediate cases but not the values

of the intermediate cases or the comparison procedure itself. Some of them

are described here.

(1) Minimum combination. The nonnormalized weighting coefficient is taken

as the minimum of the two weighting coefficients of the cases compared:

wi ¼ minðwj;w
0
kÞ

This weight combination method is optimistic in the sense that properties

appearing in only one of the cases will not affect the similarity measure.
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This method tends to give less importance to properties that strongly

affect only one of the cases. Thus, the similarity measure will be based on

the ‘‘common denominator’’ of the two cases.

(2) Maximum combination. The nonnormalized weighting coefficient is taken

as the maximum of the two weighting coefficients:

wi ¼ maxðwj;w
0
kÞ

This weight combination method stresses the properties that are important

in both cases. To achieve a high degree of similarity, the properties that

are important to each of the cases must hold similar values in both of

them.

(3) Mean combination. The nonnormalized weighting coefficient is taken as

the mean of the two weighting coefficients. Note that since a normal-

ization stage is conducted after this stage, a simple sum of the two

coefficients is sufficient:

wi ¼ wj þ w0
k

This averaging weight combination method lowers the importance of

properties that are important in only one of the compared cases.

(4) Geometric mean combination. The nonnormalized weighting coefficient

is taken as the square root of the product of the two weighting

coefficients:

wi ¼
ffiffiffiffiffiffiffiffiffiffi

wjw
0
k

q

Like the minimum combination, this weight combination method is

optimistic. Singular properties that appear in only one of the cases are not

considered in the similarity calculation. For properties that are

particularly irrelevant in one of the cases, this averaging approach

allocates less importance to them than the ‘‘mean’’ combination.

(5) Perpendicular combination. The nonnormalized weighting coefficient is

taken as the square root of the sum of the squares of the two weighting

coefficients:

wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
j þ w0

k

q

2

This method reinforces properties that have high weight coefficients. It is

a compromise, somewhere between the ‘‘mean’’ and ‘‘maximum’’

combination methods.
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(6) l-Power combination. The nonnormalized weighting coefficient is taken

as the lth root of the sum of the lth power of the two weighting

coefficients:

wi ¼
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wl
j þ w0

k

q

l

This weight combination method is a generalization of the perpendicular

combination method. For values of l greater than 1, this method reinforces

properties that have high weights. The higher the value of l is, the closer

this combination method approaches the ‘‘maximum’’ combination (after

normalization). For values of l smaller than 1, the lower the value of l is,

the closer this method approaches the common denominator, the

‘‘minimum’’ combination (after normalization).

3.4 FUZZY CLASSIFICATION AND CLUSTERING OF CASES

In this section we describe how the similarity measures can be used for case match-

ing and retrieval through classification or clustering of cases under supervised and

unsupervised modes, respectively. In general, in the process of case matching and

retrieval, the searching space is the entire case base, which not only makes the task

costly and inefficient, but also sometimes leads to poor performance. To address

such a problem, many classification and clustering algorithms are applied before

selection of the most similar case or cases. After the cases are partitioned into sev-

eral subclusters, the task of case matching and retrieval then boils down to matching

the new case with one of the several subclusters, and finally, the desired number of

similar cases can be obtained. Thus, various classification/clustering algorithms,

such as fuzzy ID3 and fuzzy c-means, play an important role in this process.

To develop such classification/clustering algorithms, it is important to hypothe-

size that objects can be represented in an n-dimensional space where the axes repre-

sent the variables (features), objects (or entities) become points (vectors) in that

space, and the clusters are compact groups of those points. The challenging part

in this scheme is that the interpoint distances are dependent on the measurement

scales used for the variables and metric chosen. Therefore, the concept of Euclidean

space is important in constructing many similarity metrics.

Furthermore, in real-life problems, the clusters of cases (vectors) are usually

overlapping, that is, their boundaries are fuzzy. The relevance of fuzzy logic in

handling uncertainties arising from such overlapping classes has been addressed

adequately [23,35–40]. As an example, here we describe a fuzzy ID3 algorithm

and fuzzy c-means (FCM) algorithm, which are widely used for classification and

clustering of cases, respectively. Fuzzy ID3 (fuzzy interactive dichotomizer 3) is an

extension of the conventional ID3 algorithm, which is a decision tree based method

using an information-theoretic approach. The main idea is to examine the feature

that provides the greatest gain in information, equivalent, say, to the greatest
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decrease in entropy. Fuzzy ID3 can accept linguistic inputs, and the outputs are

described in membership values, which are more reasonable and flexible in prac-

tice. Here one can receive a confidence factor while reaching a decision and deter-

mining the rule base. The detail procedure of the algorithm is given in Section

3.4.2. Fuzzy c-means algorithm (defined in Section 3.4.3) is a well-known cluster-

ing algorithm; the main idea is to minimize iteratively an appropriately defined

objective function that reflects the proximities of the objects to the cluster centers.

Before we describe them, we define weighted intracluster and intercluster simi-

larity measures, which may be used while partitioning a data set or evaluating the

performance of a clustering/classification algorithm.

3.4.1 Weighted Intracluster and Intercluster Similarity

3.4.1.1 Intracluster Similarity For a given cluster LE, its intracluster

similarity is defined as

SM
ðwÞ
LE ¼

2

rðr � 1Þ

X

ep;eq2LEðp<qÞ

SMðwÞ
pq ð3:27Þ

where r is the number of cases in the cluster LE. For a partition containing m clus-

ters fLE1;LE2; . . . ;LEmg, the intracluster similarity may be defined as the average

of all of its individual intracluster similarities:

SM
ðwÞ
int ra ¼

1

m

Xm

j¼1

SM
ðwÞ
LEj

ð3:28Þ

It is clear that the value of SM
ðwÞ
int ra lies in [0,1]. The higher the value of SM

ðwÞ
int ra, the

greater is the homogeneity of the clusters.

3.4.1.2 Intercluster Similarity For a pair of clusters LE1 and LE2, the inter-

cluster similarity is defined as

SM
ðwÞ
LE1;LE2

¼
1

r1r2

X

ep2LE1;eq2LE2

SMðwÞ
pq ð3:29Þ

where r1 and r2 are the numbers of cases in LE1 and LE2, respectively. For a parti-

tion containing m clusters fLE1;LE2; . . . ;LEmg, the intercluster similarity may be

defined as the average of the intercluster similarities, computed over all pairs of

constituting clusters:

SM
ðwÞ
int er ¼

2

mðm� 1Þ

X

1�i<j�m

SM
ðwÞ
LEi;LEj

ð3:30Þ
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The value of SM
ðwÞ
int er lies in [0,1]. The smaller the value of SM

ðwÞ
int er , the higher the

separability between clusters.

Based on the foregoing measures, the following criterion is defined:

mineq2LEi
SMðwÞ

pq > max1�j�m; j6¼i maxeq2LEj
SMðwÞ

pq

� �

ð3:31Þ

which may need to be satisfied for any ið1 � i � mÞ and any case ep 2 LEi for gen-

erating m clusters. Inequality (3.31) means that the similarity between a case and

the cluster to which it actually belongs is greater than the similarity between that

case and any other cluster.

3.4.2 Fuzzy ID3 Algorithm for Classification

The fuzzy interactive dichotomizer 3 (Fuzzy ID3) algorithm that will be described

here has been developed by Singal et al. [41]. Before we explain the algorithm we

introduce, for the sake of convenience, the classical ID3 algorithm and the rele-

vance of incorporating fuzzy sets into it.

3.4.2.1 Conventional ID3 This is a decision tree–based method that uses an

information-theoretic approach. The procedure used in this technique is that at any

point we examine the feature that provides the greatest gain in information or,

equivalently, the greatest decrease in entropy. Entropy is defined as �p log2 p,

where probability p is determined on the basis of the frequency of occurrence of

that feature. In the general case, N labeled patterns are partitioned into sets of pat-

terns belonging to classes Ci; i ¼ 1; 2; . . . ; l. The population in class Ci is ni. Each

pattern has n features, and each feature has jð 2Þ values. The ID3 prescription for

synthesizing an efficient decision tree can be stated as follows:

Step 1. Calculate the initial value of the entropy:

EntropyðIÞ ¼
X

l

i¼1

�
ni

N
log2

ni

N

¼
X

l

i¼1

�pilog2 pi ð3:32Þ

Step 2. Select the feature that results in the maximum decrease in entropy (i.e., a

gain in information) to serve as the root node of the decision tree.

Step 3. Build the next level of the decision tree by selecting a feature that provides

the next-greatest decrease in entropy.

Step 4. Repeat steps 1 through 3. Continue the procedure until all the

subpopulations are of a single class and the system entropy is zero. At this stage

one obtains a set of leaf nodes (subpopulations) of the decision tree, where the
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patterns are of a single class. Note that there may be some nodes that cannot be

resolved further.

Note that conventional ID3 often fails to give any information when there are

overlapping pattern classes. In this algorithm, we partition the sample space in

the form of a tree by using attribute values only. When two sample points from

two different overlapping classes lie in an intersecting region, the corresponding

features for these samples are the same. This implies that they are associated

with traveling through the same path in the decision tree, and finally, they arrive

at the same node. We cannot split the node further because the gain in entropy

would then be zero (always), which is one of the criteria used to stop building

the tree. Thus, in the overlapped region, that attribute value fails to provide any

decision about the relevant leaf node.

To obtain more information with respect to this problem, one needs to dig further

into the data. Intuition tells us that the pattern points of any particular class must be

clustered around some characteristic prototype or class center. We wish to exploit

the fact that points nearer this center have a higher ‘‘degree of belonging’’ to that

class than do points farther from it. This idea brings in the concept of fuzzy sets,

which allows a pattern to have a finite nonzero membership to more than one class.

Here lies the utility of employing fuzzy sets to model overlapping or ambiguous real-

life pattern classes [23]. Moreover, the conventional ID3 algorithm can handle only

discrete-valued or symbolic attributes. Real-life problems, on the other hand, require

the modeling of continuous attributes. Fuzzy sets can also be useful in this regard.

3.4.2.2 Fuzzy ID3 Fuzzy set–theoretic concepts are introduced at the input,

output, and node levels of the ID3 algorithm [35,42]. Linguistic inputs enable

the handling of continuous attributes at the input. The output is evaluated in terms

of class membership values. A fuzziness measure is computed at the node level to

take care of overlapping classes. This is reducible to the classical entropy, used in

the conventional ID3, in the crisp case. A confidence factor is estimated at the

nodes while reaching a decision and determining the rule base.

Input Representation An input feature value is described, as in Section 2.3.2, in

terms of a combination of overlapping membership values in the linguistic property

sets: low (L), medium (M), and high (H). An n-dimensional pattern, êei ¼
½Fi1;Fi2; . . . ;Fin�, is then represented as a 3n-dimensional vector [17,42]:

êei ¼ ½mlowðFi1ÞðêeiÞ; mmediumðFi1ÞðêeiÞ; mhighðFi1ÞðêeiÞ; . . . ; mhighðFinÞðêeiÞ� ð3:33Þ

where the m values indicate the membership functions of the corresponding linguis-

tic p-sets ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ along each feature axis. Each m value is

then discretized, using a threshold, to enable a convenient mapping in the ID3

framework.
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When the input feature is numerical, the p-fuzzy sets are used whose one-dimen-

sional form with range [0,1] is as follows [equation (2.9)]:

pðFj; c; lÞ ¼

2 1�
k Fj � c k

l

� �2

for l
2
�kFj � ck� l

1� 2
k Fj � c k

l

� �2

for 0 �kFj � ck� l
2

0 otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:34Þ

where lð> 0Þ is the radius of the p-function with c as the central point. Note that

features in linguistic and set forms can also be handled in this framework [42].

OutputRepresentation Consider an l-class problem domain. The membership of

the ith pattern in class k, lying in the range [0,1], is defined as [23]

mikðêeiÞ ¼
1

1þ wik=fdð Þfe
ð3:35Þ

where wik is the weighted distance of the training pattern êei from class Ck, and the

positive constants fd and fe are the denominational and exponential fuzzy generators

controlling the amount of fuzziness in the class membership set.

FuzzinessMeasure Fuzziness is incorporated at the node level by changing the

decision function from classical entropy to a fuzzymeasure, FM. This is defined as [41]

FMðIÞ ¼
X

l

k¼1

1

N

X

N

i¼1

minðmik; 1� mikÞ �
nk

N
log2

nk

N

" #

¼
X

l

k¼1

1

N

X

N

i¼1

minðmik; 1� mikÞ � pk log2 pk

" #

ð3:36Þ

where N is the number of pattern points in the training set, l the number of classes,

ni the population in class Ci, pk the a priori probability of the kth class, and mik the

membership of the ith pattern to the kth class. The expression for FM is defined so

that when the class membership values are zero or 1 (crisp), it represents the clas-

sical entropy. The first term of equation (3.36) ensures that pattern points lying in

overlapping regions are assigned lower weights during construction of the decision

tree, which is an intuitively appealing idea. The reason for this lower weighting is

that such ambiguous patterns (i.e., having m values close to 0.5) lead to an increase

in FM, thereby creating an obstacle to its minimization.

EstimatingConfidenceof theNodes Mandal et al. [43] provided a scheme to cal-

culate the confidence factor (CF) for a rule base to infer how much a point belongs
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to a particular class in terms of multiple choices (e.g., first choice, second choice). It

is defined as

CF ¼
1

2
mþ

1

l� 1

X

l

j¼1

ðm� mjÞ

" #

ð3:37Þ

where mj is the class membership of the jth pattern to class Cj and m is the highest

membership value. The concept of CF deals with the difficulty in assigning a par-

ticular class label, which depends not only on the highest entry m but also on its

differences from the other entries.

Note that when computing CF1 and CF2 (when a second choice is necessary),

leaving out the first choice in equation (3.37) [43], m is set equal to the first and

second highest membership values, respectively. Let CFk denote the CF1 value of

a pattern corresponding to class Ck (i.e., having the highest membership value).

Then the rule base is as follows:

1. If 0:8 � CFk � 1:0, it is very likely to belong to class Ck, and there is no

second choice.

2. If 0:6 � CFk < 0:8, it is likely to belong to class Ck, and there is second

choice.

3. If 0:4 � CFk < 0:6, it is more or less likely to belong to class Ck, and there is

second choice.

4. If 0:1 � CFk < 0:4, it is not unlikely to belong to class Ck, and there is no

second choice.

5. If CFk < 0:1, it is unable to recognize class Ck, and there is no second choice.

In the case of a single choice (when rule 1 fires), we update the confidence factor

to 1, so that CF1 ¼ 1 and CF2 ¼ 0. For other choices (when rules 2 to 4 are in

effect), we additionally compute CF2, corresponding to the class with the second-

highest membership value. Finally, an aggregation is made at the node level. Let us

now describe the algorithm in detail.

Step 1. Calculate an initial value of the fuzzinessmeasure (FM) using equation (3.36).

Step 2. Select a feature to serve as the root node of the decision tree.

(a) For each attribute Attri; i ¼ 1; 2; . . . ; 3n, partition the original population

into two subpartitions according to the values aij (where j ¼ 0 or 1 and

denotes the attribute value 0 or 1) of the attribute Attri. Although there are nij
patterns associated with traveling down branch aij, these patterns need not

necessarily belong to any single class.

(b) Evaluate FM for each branch.

(c) The decrease in FM, as a result of testing attribute Attri, is

�FMðiÞ ¼ FMðiÞ � FMði;AttriÞ.
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(d) Select an attribute Attrk that yields the greatest decrease in FM for which

�FMðkÞ > �FMðiÞ for all i ¼ 1; 2; . . . ; l, and i 6¼ k.

(e) The attribute Attrk is then the root of the decision tree.

Step 3. Build the next level of the decision tree. Select an attribute Attrk0 to serve as

the level 1 node, so that after testing on Attrk0 along all branches, we obtain the

maximum decrease in FM.

Step 4. Repeat steps 3 through 5. Continue the process until all subpopulations

reaching a leaf node contain a single class or the decrease in FM, �FM, is zero.

Mark the terminal nodes that have pattern points belonging to more than one class.

Such nodes are called unresolved nodes.

Step 5. For each unresolved node, do the following.

(a) Calculate the confidence factors CF1 and CF2 as in equation (3.37).

(b) Identify the classes that have at least one CF1 or CF2.

(c) For each pattern point in the node, if CF1  0:8, put CF1 ¼ 1, and CF2 ¼ 0.

(d) Consider the classwise average summation of the CF values.

(e) Mark the classes that get the highest and second-highest CF values. Declare

this node to be the representative of the two relevant classes, with

membership corresponding to the two highest CF values.

3.4.3 Fuzzy c-Means Algorithm for Clustering

Fuzzy c-means algorithm (FCM) was proposed by Dunn [44] and generalized by

Bezdek [45]. In this approach and most of its extensions, the basic idea of determin-

ing the fuzzy clusters is by minimizing an appropriately defined objective function.

The membership functions are based on a distance function, so that degrees of

membership express proximities of data entities to the cluster centers. By choosing

suitable distance functions, different cluster shapes can be identified. The algorithm

is based on iterative minimization of the following objective function [45,46]:

JðU;VÞ ¼
Xc

i¼1

Xn

k¼1

umik xk � vij j2 ð3:38Þ

where x1; x2; . . . ; xn are feature vectors; V ¼ fv1; v2; . . . ; vcg are cluster centers;

m 2 ½1;1� and U ¼ ½uik� is a c� n matrix, where uik is the ith membership value

of the kth input sample xk; and the membership values satisfy the following condi-

tions:

0 � uik � 1; i ¼ 1; 2; . . . ; c; k ¼ 1; 2; . . . ; n ð3:39Þ

Xc

i¼1

uik ¼ 1; k ¼ 1; 2; . . . ; n ð3:40Þ

0 <

Xn

k¼1

uik < n; i ¼ 1; 2; . . . ; c ð3:41Þ
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In the objective function (3.38), Euclidean distances between each input case and

its corresponding cluster center are weighted by the fuzzy membership values. The

algorithm is iterative and uses the following equations:

vi ¼
1

Pn
k¼1 umik

X

n

k¼1

umikxik; i ¼ 1; 2; . . . ; c ð3:42Þ

uik ¼
1= xk � vij j2
h i1=ðm�1Þ

Pc
j¼1 1= xk � vj

�

�

�

�

2
h i1=ðm�1Þ

; i ¼ 1; 2; . . . ; c; k ¼ 1; 2; . . . ; n ð3:43Þ

The fuzzy c-means clustering procedure consists of the following steps [46]:

Step 1. Initialize Uð0Þ randomly, or based on an approximation; initialize Vð0Þ and

calculate Uð0Þ. Set the iteration counter a ¼ 1. Select the number of class centers c,

and choose the exponent weight m.

1.0

1.0

0.0

X1

MFcl 5 (X 1)MFcl 4 (X 1)MFcl 1(X 1)

MFcl 1(X 2)

Cluster 1

Cluster 3

MFcl 3(X 2)

MFcl 5(X 2)

MFcl 2(X 2)

X 2

MFcl 2(X 1) MFcl 3(X 1)

MFcl 4(X 2)

Cluster 4

Cluster 5

Cluster 2

Figure 3.1 Fuzzy c-means clustering.
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Step 2. Compute the cluster centers. Given UðaÞ, calculate VðaÞ according to

equation (3.42).

Step 3. Update the membership values. Given V ðaÞ, calculate UðaÞ according to

equation (3.43).

Step 4. Stop the iteration if

max u
ðaÞ
ik � u

ða�1Þ
ik

�

�

�

�

�

�
� e ð3:44Þ

else let a ¼ aþ 1 and go to step 2, where e is a prespecified small number

representing the smallest acceptable change in U.

Figure 3.1 illustrates the membership functions generated for a problem with

two inputs (X1 and X2) and five clusters (c ¼ 5).

3.5 CASE FEATURE WEIGHTING

In Sections 3.3 and 3.4 we have briefly described some similarity measures and

then introduced the concept of fuzzy similarity, which are closely based on the fea-

ture weights. Essentially, feature weights describe the significance, and hence the

relation, of various features. This means that if a feature is more relevant in terms

of characterizing cases, it should have more weight (importance). Thus, case feature

weighting is crucial in computing similarity, especially weighted distance and

weighted feature similarity, which have been introduced in Section 3.4. The prob-

lem of weighting features (i.e., assigning weights to features) in a soft computing

framework has been investigated by many researchers; see, for example, the recent

unsupervised feature selection [47,48] and feature extraction [49] algorithms using

a neuro-fuzzy approach [23] and a GA-based approach [50]. In this section, some of

them are presented. Let us consider a CBR system where a case is usually repre-

sented by a feature vector with n components. Then the global feature weight refers

to a vector ðw1;w2; . . . ;wnÞ, where each of its components is a real number in [0,1].

It can be interpreted in the way that for the entire case library, different features

have different degrees of importance to the solution. This is different from the con-

cept of a local feature weight. A global feature weight is assigned to each feature of

a case, and the same feature for all the cases has the same global weight. On the

other hand, a local feature weight is assigned to each feature of a specific case, and

a feature may have different local weights for different cases. In this section, a

gradient-based optimization technique and neural networks are used to learn the

global feature weights.

Gradient-based optimization techniques are useful in determining the search

directions based on the derivative information of an objective function. The optimi-

zation is carried out by minimizing a real-valued objective function defined on an

n-dimensional input space. In learning the feature weights, an individual weight
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could be considered as an adjustable parameter of the objective function, which is

usually nonlinear in form. The method of steepest descent, also known as gradient

descent, is one of the earliest methods proposed for minimizing a (given) function

defined on a multidimensional input space. We describe briefly how this method is

being used in learning the global feature weights of a similarity function, such as

equation (3.1).

Using the concept of weighted Euclidean distance, stated in Section 3.1, a fea-

ture evaluation function is defined (in which the feature weights are regarded as the

variables). The smaller the value of the evaluation function, the better the corre-

sponding feature weights are in describing all the cases. Thus, the purpose is to

find weights that permit the evaluation function to attain its minimum. The task

of minimizing the evaluation function with respect to the weights can be performed

using any optimization method, such as a gradient descent technique, neural

approach, and genetic algorithm–based approach.

When we do not have the necessary functional derivative information to search

for a set of suitable weights, we may evaluate only the objective function and deter-

mine the subsequent search direction after each evaluation. The heuristic guidelines

used to determine the search direction are usually based on simple intuitive con-

cepts such as the idea of evolution. The major advantage of this type of derivative-

free optimization technique is that it does not require the objective function to be

differentiable, and the relaxation of this requirement allows us to develop complex

objective functions. However, there is one major drawback to this type of

technique—it cannot be studied analytically because of its random and problem-

specific behaviors. One major representative of these techniques is the genetic

algorithm (GA).

3.5.1 Using the Gradient Descent Technique and Neural Networks

For a given collection of feature weights wj wj 2 ½0; 1�; j ¼ 1; 2; . . . ; n
� 	

, and a pair

of cases ep and eq, equation (3.1) defines a weighted distance measure d
ðwÞ
pq and

equation (3.2) defines a similarity measure SMðwÞ
pq . When all the weights take the

value 1, d
ðwÞ
pq degenerates to the Euclidean distance d

ð1Þ
pq , and SMðwÞ

pq to SMð1Þ
pq .

A feature evaluation index function E corresponding to a set of weights w is

defined as [51]

EðwÞ ¼
X

p

X

qðq 6¼pÞ

SMðwÞ
pq ð1� SMð1Þ

pq Þ þ SMð1Þ
pq ð1� SMðwÞ

pq Þ
h i

ð3:45Þ

It has the following characteristics:

� If SMð1Þ
pq ¼ SMðwÞ

pq ¼ 0 or 1, the contribution of the pair of cases to the

evaluation index EðwÞ is minimum.

� If SMð1Þ
pq ¼ SMðwÞ

pq ¼ 0:5, the contribution of the pair of cases to EðwÞ becomes

maximum.
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� For SMð1Þ
pq < 0:5 as SMðwÞ

pq ! 0;EðwÞ decreases.

� For SMð1Þ
pq > 0:5 as SMðwÞ

pq ! 1;EðwÞ decreases.

Therefore, the feature evaluation index decreases as the similarity between

the pth and qth cases in the transformed (weighted) feature space tends to either

0 (when SMð1Þ
pq < 0:5) or 1 (when SMð1Þ

pq > 0:5). In other words, the feature

evaluation index decreases as the decision on the similarity between a pair of

cases (i.e., whether they lie in the same cluster or not) becomes more and

more crisp. This means that if the intercluster/intracluster distances in the trans-

formed space increase/decrease, the feature evaluation index corresponding to the

set of weights w decreases. Therefore, our objective is to extract those feature

weights for which the evaluation index becomes minimum; thereby optimizing

the decision on the similarity of a pair of patterns with respect to their belonging

to a cluster.

The foregoing characteristics can be verified as follows. From equation (3.45)

we have

qEðwÞ

qSMðwÞ
pq

¼ 1� 2SMð1Þ
pq ð3:46Þ

For SMð1Þ
pq < 0:5; ðqEðwÞ=qSMðwÞ

pq Þ > 0. This signifies that E(w) decreases

(increases) with decrease (increase) in SMðwÞ
pq . For SM

ð1Þ
pq > 0:5; ðqEðwÞ=qSMðwÞ

pq Þ
< 0. This signifies that E(w) decreases (increases) with increase (decrease) in

SMðwÞ
pq . Since SMðwÞ

pq 2 ½0; 1�;EðwÞ decreases (increases) as SMðwÞ
pq ! 0ð1Þ in the

former case and SMðwÞ
pq ! 1ð0Þ in the latter.

Suppose that a gradient descent technique is used for minimizing equation

(3.45). Then the change in wj (denoted by �wj) is computed as

�wj ¼ �l
qE

qwj

ð3:47Þ

for j ¼ 1; 2; . . . ; n, where l is the learning rate.

For the computation of qE=qwj, the following expressions are used:

qEðwÞ

qwj

¼
X

p

X

qðq<pÞ

1� 2 � SMðwÞ
pq

� � qSMðwÞ
pq

qd
ðwÞ
pq

qd
ðwÞ
pq

qwj

ð3:48Þ

qSMðwÞ
pq

qd
ðwÞ
pq

¼
�a

ð1þ ad
ðwÞ
pq Þ2

ð3:49Þ

qd
ðwÞ
pq

qwj

¼
wjw

2
j

Pn
j¼1 w2

j w
2
j

� �1=2
where w2j ¼ ðxpj � xqjÞ

2 ð3:50Þ
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To obtain the optimal global feature weights, we need to minimize E, and the

training algorithm used is described as follows:

Step 1. Select the parameter a and the learning rate l.

Step 2. Initialize wj with random values in [0,1].

Step 3. Compute �wj for each j using equation (3.47).

Step 4. Update wj with wj þ�wj for each j.

Step 5. Repeat steps 3 and 4 until convergence, that is, until the value of E becomes

less than or equal to a given threshold (Th, say), or until the number of iterations

exceeds a certain predefined number.

After training, the function E(w) attains a local minimum. It is expected that on

average, similarity values with trained weights fSMðwÞ
pq , p, q ¼ 1,2, . . . ,N, q < pg,

are closer to 0 or 1 than those without trained weights, such as fSMð1Þ
pq , p, q ¼

1, 2, . . . ,N, q < pg. Note that SMðwÞ
pq [equation (3.2)] does not require the informa-

tion on class label of cases, and therefore the global weight learning method is

unsupervised. Moreover, this unsupervised method performs the task of feature

weighting without clustering the feature space explicitly and does not need to

know the number of clusters present in the feature space.

Recently, Pal et al. [51] have designed a connectionist framework to implement

this learning strategy for determining weights automatically based on the searching

principle of gradient descent technique. Figure 3.2 shows the network model, which

consists of input, hidden, and output layers. The input layer consists of a pair of

nodes corresponding to each feature; there are 2n nodes in the input layer, for

n-dimensional (original) feature space. The hidden layer consists of n nodes, which

+1 +1… +1… +1 –1           –1... –1…

W1

SM SM

Hidden layer

X1 X2 XnXi Xn + 1 Xn + 2 Xn + i X2n...

...

... ... ...

1 nj2

W2 Wj

Wn

pq

(w)

pq

(1)

+1 +1 +1 +1

Figure 3.2 Neural network model for feature weight learning. (From [50].)
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compute part w2i of equation (3.1). The output layer consists of two nodes, one of

which computes SMð1Þ
pq , and the other, SMðwÞ

pq . The index E(w) [equation (3.45)] is

computed from these SMpq values of the network.

Input nodes receive activations corresponding to feature values of each pair of

patterns. A jth hidden node is connected only to an ith and (iþ n)th input nodes via

weights þ1 and �1, respectively, where j,i ¼ 1,2, . . . , n and j ¼ i. The output node

computing SMðwÞ
pq values is connected to a jth hidden node via weight Wjð¼ w2

j Þ,
whereas that computing SMð1Þ

pq values is connected to all the hidden nodes via

weights of þ1 each. During learning, each pair of patterns is presented at the input

layer and the evaluation index is computed. The weights Wj are updated using the

gradient descent technique in order to minimize the index E(w). After minimization,

such as, when E(w) attains a local minimum, the weights Wjð¼ w2
j Þ of the links

connecting hidden nodes and the output node computing SMðwÞ
pq values indicate

the order of importance of the features. Note that this unsupervised method per-

forms the task of feature selection without clustering the feature space explicitly

and does not need to know the number of clusters present in the feature space.

Although we have described the foregoing methodology in unsupervised mode,

a similar learning algorithm in a supervised framework for CBR problems can be

derived based on the feature selection strategy reported [52].

3.5.2 Using Genetic Algorithms

Genetic algorithms [53,54] are derivative-free stochastic optimization methods

based loosely on the concepts of natural selection and evolutionary processes

[55]. (See Appendix C for basic principles and operations of GAs.) Their popularity

can be attributed to their freedom from dependence on functional derivatives and to

their incorporation of the following characteristics:

� GAs are parallel-search procedures that can be implemented on parallel

processing machines for a massive increase in their operational efficiency.

� GAs are applicable to both continuous and discrete (combinatorial) optimiza-

tion problems.

� GAs are stochastic and less likely to get trapped in local minima, which are

inevitably present in any practical optimization application.

� GAs offer flexibility that facilitates both structure and parameter identification

in complex models such as neural networks and fuzzy inference systems.

Dubitzky and Azuaje [50] developed an evolutionary computing approach for

learning of global and local feature weights using the CBR system architecture

depicted in Figure 3.3. The retrieval of cases is based on partitioning the cases

into subsets. The part of the diagram above the dashed line in Figures 3.3a and b

demonstrates how supervised and unsupervised learning interacts with the system

components. Typical supervised learning methods include kd-trees, shared-feature

and discrimination networks, decision trees, and artificial neural networks, and

unsupervised methods include techniques such as automatic cluster detection.
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The knowledge structure [i.e., rðeÞ] that is learned may be in the form of a set of

rules or a decision tree, which effectively selects a class or cluster of cases,

Y 2 P ¼ fC1;C2;C3; . . . ;Cng, where P denotes a partition, from the case library

(CB) based on the query case, e.

Determination of the case feature weights is carried out by an introspective

learning process. Figure 3.4 illustrates the basic structure used in finding the feature

weights. The entire set of available cases is divided randomly into three sets: train-

ing, testing set, and evaluation sets. In each learning cycle, the newly determined

feature weights are used to test the performance of the case base using test cases. If

a satisfactory threshold is reached, the case base is evaluated against a set of testing

cases. Figure 3.4 shows the architecture for learning case feature weights through a

combined introspective and evolutionary learning approach. This framework can be

used to learn both the global and local weights. The use of genetic operators is

shown in the box labeled ‘‘adjust weights.’’ For determination of both global and

local case feature weights, a chromosome was represented by a vector Sr of n

10-digit binary bit strings Srj; j ¼ 1; 2; . . . ; n, [i.e., Sr ¼ ðSr1; Sr2; . . . ; Srn], where

n is the number of features used to describe a case. Each bit string, Srj, represents

the weight wj of a case feature.

One of the notable things in the algorithm is that the mutation operation on the

feature weight vector chromosome Sr was divided into macro- and micromutation

operations. A random selection scheme determines which one needs to be used

when mutation is necessary. Micromutation randomly selects a single macrogene

Srj from Sr and modifies (mutates) it by altering a single bit randomly. On the other

hand, macromutation randomly selects a single macrogene Srj from Sr and replaces

it entirely by a new randomly generated macrogene.

Although the same genetic operations were used to determine both global and

local feature weights, the main differences between the two approaches lie mainly

in the following aspects:

� Added complexity arises in the case of the local weight model, because

for each of the cases in the training set (case base) a population of m

CB
P = {C1, C2, ...}

CB Unsupervised

learning

P = {C1, C2, ...}
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r (x)
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Query case x Y ∈ P Query case x Y ∈ PRetrieve

class
Retrieve

class

process flow of control/data

                CB case base (i.e., cases in case library)

C1, C2, ...       subsets (classes/clusters) of cases in case library, CB

(a) (b)

Figure 3.3 Case retrieval based on partitioning. (From [50].)
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chromosomes (i.e., m weight sets) needs to be established, manipulated, and

evaluated, in contrary to only m global weights in the global weight model.

� For the global weight model, it is straightforward to assign to the training

cases m times the weights corresponding to the chromosomes of each

generation and determine the overall error (or fitness), whereas for the local

weight model it is not so obvious how to measure the fitness.

Dubitzky and Azuaje implemented the aforesaid scheme to predict the change in

coronary heart disease (CHD) risk over a certain period of time. CHD is a degen-

erative disease that is a result of an increase of atheroma (degeneration of artery

walls caused by the formation of fatty plaques or scar tissue) in coronary artery

walls, leading to total or partial occlusion (blockage). The resulting clinical feature

is myocardial infarction (heart attack) and subsequently, death. The case features

flow of control

interaction with knowledge structures

yes

yes

no

no

Eval. cases

Evaluate new model

Halt
learning

Last chromosome
in P(t)? i: = i +1

Fitness
satisfied?

Test cases

Case library

Evaluate fitness

Initial population

Set initial weights

Adjust weights

Reproduction:
mutate, crossover

New population

P(t + 1)

Assign new weights;
chromosome si(t)

Apply case base
to test cases

P(t = 1)

Figure 3.4 Introspective learning of case feature weights. (From [50].)
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considered include age (years), total cholesterol, HDL (high-density lipoprotein

cholesterol), cigarette smoking (years), and SBP (systolic blood pressure). The per-

formance of both learning models, within the context of risk-change prognosis, was

compared with the following three reference models:

� A CBR model with global feature weight settings that were obtained from a

participating domain expert

� A neural network model based on a standard back-propagation approach

� A standard multiple linear regression statistical model

The results indicated that the global weight learning approach is significantly

superior to other models in terms of both prediction accuracy and learning time.

Details of the methodology are available in Dubitzky and Azuaje [50].

3.6 CASE SELECTION AND RETRIEVAL USING

NEURAL NETWORKS

As discussed before, case retrieval essentially means matching of patterns, where a

current input pattern (case) is matched with one or more stored patterns or cases.

Artificial neural networks (ANNs) are very efficient for performing this task, parti-

cularly when the data are incomplete, noisy, or imprecise. For the last few years,

attempts have been made to develop methodologies that integrate case-based rea-

soning and ANNs. The problems associated with this integration include designing

hybrid case-based connectionist systems [56–58], formulating connectionist index-

ing approaches [59,60], retrieval of cases using a neural network [61,62], and learn-

ing of cases in a connectionist framework [63]. Basic ANN models and their

characteristics are described in Appendix B for the convenience of readers.

Using neural networks for case retrieval presents some problems of its own. For

example, it is impractical for a single neural network to be expected to retrieve a

single case from hundreds of possible classes of cases. The size of the network

would then be too big, and consequently, the retrieval process would be too slow.

Therefore, it may be desirable that such a large number of cases be grouped into

similar types: first, grouped at a high level, and then each of those high-level groups

grouped into further and more detailed subgroups. This means that one neural net-

work can be used to classify all the categories of cases into the highest-level classes.

For each of those high-level classes, another network can be used to divide the

cases from that class into its subclasses. This may be repeated for each subclass

until the lowest-level subclasses are reached.

Another way to handle this problem is to use the concept of modularity based on

the principle of ‘‘divide and conquer.’’ Here the main problem is split into simpler

subproblems, each subproblem is then dealt with in a simpler network, and finally,

the subnetworks are concatenated to determine the final network [64,65]. This

approach provides gain in performance and reduction in learning time and network

size. It also helps in preserving the identity of individual classes during training and
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in reducing the catastrophic interference due to the patterns from overlapping

classes.

Again, domains that use case-based reasoning technique are usually complex.

Therefore, a multilayered network is required [66] for handling the issue of nonli-

nearity in classification of cases at each level, or in dealing with a subproblem. If it

is known how each case is classified into classes and subclasses, or each problem is

split into subproblems, the learning task involved is supervised; otherwise, it is

unsupervised. It may be mentioned here that an unsupervised neural learning algo-

rithm for feature weight selection has been described in Section 3.5. In the follow-

ing section we illustrate a supervised scheme for learning feature weights using

neural networks for case selection and retrieval.

3.6.1 Methodology

Let CB ¼ fe1; e2; . . . ; eNg denote a case library, fFj ðj ¼ 1; 2; . . . ; nÞg denote a col-
lection of features, and a variable V represent the action. The ith case ei in the

library can be represented as an ðnþ 1Þ-dimensional vector, ei ¼ ðxi1; xi2; . . . ;
xin; yiÞ, where xij corresponds to the value of feature Fj ð1 � j � nÞ and yi corre-

sponds to the value of action Vði ¼ 1; 2; . . . ;NÞ. The actions yiði ¼ 1; 2; . . . ;NÞ
are considered to be class symbols, and the total number of classes is M. The M

classes are denoted by CM ¼ fC1;C2; . . . ;CMg.

� Input layer. The number of nodes in this layer is equal to the number of

features (n) of the case base. Each node represents a feature.

� Hidden layer. The number of nodes (l) in this layer is determined depending

on the application domain. Experimentally, the number is greater than n but

less than 2n.

� Output layer. This contains M nodes, where M is the number of classes or

clusters. Each node represents a fuzzy cluster (i.e., a discrete fuzzy set defined

on the cluster space CM). The output value of each node represents the

membership value, indicating the degree to which the training case belongs to

the cluster corresponding to the node.

The popularly used sigmoid function is selected as the activation function. For a

given input case (say, the mth case, em, 1 � m � N), the propagation process of the

input vector is described as follows:

Input layer : fxmi j i ¼ 1; 2; . . . ; ng ðof the given input vectorÞ

Hidden layer : ymj ¼ f
Xn

i¼1
uijxmi

� �

; j ¼ 1; 2; . . . ; l ð3:51Þ

Output layer : mmk ¼ f
Xl

j¼1
vjkymj

� �

; k ¼ 1; 2; . . . ;M ð3:52Þ

Here uij and vjk represent the connection weights of the neural network, and the

notation f represents the sigmoid function defined as f ðxÞ ¼ 1=ð1þ e�xÞ. This is
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a traditional full connection network with three layers. The standard BP algorithm

can be used to train this network. In other words, the popular gradient descent

technique can be used to find the values of weights uij and vjk such that the error

function

Er ¼
X

N

m¼1

1

2

X

M

k¼1

mmk � ymkð Þ2
" #

¼
X

N

m¼1

Erm ð3:53Þ

achieves a local minimum, where ymk taking either 0 or 1 corresponds to the action

of the mth case. For example, ðym1; ym2; . . . ymMÞ ¼ ð1; 0; . . . ; 0Þ if the mth case

belongs to the first cluster.

After the training is complete, a set of fuzzy membership values on the cluster

space fC1;C2; . . . ;CMg can be given for each case according to equation (3.52).

Denoting these values by ðmm1; mm2; . . . ; mmMÞ, where each component mmj repre-

sents the degree to which the mth case belongs to the jth cluster, we can reclassify

the case base according to the following criteria. Consider a case em with values

ðmm1; mm2; . . . ; mmMÞ to be reclassified. Let a and b be two thresholds determined

a priori.

� Criterion A. If EntropyðemÞ < b and mmk ¼ max1�j�M mmj  a, the case em is

classified into the kth cluster, where

EntropyðemÞ ¼ �
X

M

j¼1

mmj logmmj ð3:54Þ

� Criterion B. If NonspecðemÞ < b and mmk ¼ max1� j�Mmmj  a, the case em is

classified into the kth cluster, where

NonspecðemÞ ¼
X

M

j¼1

m�mj � m�mðjþ1Þ

� �

logm�mj ð3:55Þ

in which ðm�m1; m
�
m2; . . . ; m�mMÞ is the permutation of ðmm1; mm2; . . . ; mmMÞ,

sorted so that m�mj  m�
mðjþ1Þ for j ¼ 1; 2; . . . ;M and m�

mðMþ1Þ ¼ 0.

Criterion A is based on the fuzzy entropy [equation (3.54)] [67], which will tend

to zero when all mmj tend either to zero or 1. Criterion B is based on the nonspeci-

ficity [equation (3.55)] [68], which will tend to zero when only one mmj tends to 1

and the others tend to zero. The fuzzy entropy and the nonspecificity represent two

different types of uncertainties. According to criterion A or B, the case base can be

classified into M þ 1 clusters. The (M þ 1)th cluster, called the odd (unclassified)

class, contains the cases that cannot be classified into one of the M classes. The

cases in the odd class have poor training results; that is, the output m values of

the network corresponding to these patterns have more than one component with
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high value, thereby causing difficulty in assigning them to a particular class. Since

these odd cases mainly come from the overlapping regions of the current feature

space, their number can be reduced by learning the weights (importance) of

the individual features so that a transformed feature space is generated for repre-

senting the cases with reduced overlapping regions. Such methods have been

described in Section 3.4 using gradient descent technique, a neuro-fuzzy approach,

and a GA-based approach.

After classification of the N cases in the case base is made into M þ 1 classes,

the task of retrieval becomes a problem of mapping a query case to one of these

classes. There are many ways to select a set of representative cases from the class

retrieved. A simple way is to use the concept of case density of a case e in its class

C, which is defined as

Case densityðe;CÞ ¼

P
e02C�feg SM

ðwÞ
ee0

Cj j � 1
ð3:56Þ

where SM
ðwÞ
ee0 represents the weighted similarity between cases e and e0; e; e0 2

C; e 6¼ e0 as defined by equation (3.2). Cj j is the number of cases in class C. The

task of selecting a set of prototype cases from class C is therefore to compute case

densities for all its cases, ranking them in descending order, and selecting a desired

set of cases having higher-density values.

3.6.2 Glass Identification

To illustrate the effectiveness of using a neural network for case selection and

retrieval, we describe here some results on a glass identification problem [69].

The glass database available in UCL (University College London, London)

Machine Learning Repository [70] consists of 214 records, and each record has

11 attributes:

1. Id number: 1 to 214

2. RI: refractive index

3. Na: sodium (unit measurement is weight percent in corresponding oxide; the

same unit measure is applicable to attributes 4 to 10)

4. Mg: magnesium

5. Al: aluminum

6. Si: silicon

7. K: potassium

8. Ca: calcium

9. Ba: barium

10. Fe: iron

11. Type of glass: window glass/non-window glass
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Table 3.1 shows some typical data with feature values. The neural network

package Nerualworks Professional II/Plus version 5.3 was used to investigate the

performance of the back-propagation model for fuzzy classification of the data.

After about 50,000 cycles of training, the network converged and the RMS (root-

mean-square) error was 0.1322. The number of correctly classified samples in each

category and the cases selected thereafter when a ¼ 0:95 are depicted in Table 3.2.

The number of samples in the ODD (unclassified) class was found to be 5 and 8,

corresponding to window and non-window glasses. Only cases with case density

greater than 0.95 are selected here, thereby giving rise to a reduction of about

30% in the case library.

3.7 CASE SELECTION USING A NEURO-FUZZY MODEL

In the present section we describe the method of De and Pal [71] for addressing the

problem of selecting cases from overlapping class regions in a neuro-fuzzy frame-

work. While the learning capability and case representation aspect are taken care of

by neural networks, fuzzy set theory handles the uncertainty arising due to overlap-

ping cases. Here the cases are stored as network parameters. A notion of fuzzy simi-

larity, using a p-type membership function, is incorporated together with repeated

insertion and deletion of cases to determine a stable case base. The architecture of

the network is determined adaptively through the growing and pruning of hidden

nodes under supervised training. The effectiveness of the cases selected by the net-

work is demonstrated for a pattern classification problem using the 1-NN rule, with

the cases as the prototypes. Both results and comparisons are presented for various

artificial and real-life data for different parameter values of the similarity function,

which controls the number of cases.

TABLE 3.1 Sample Cases

RI Na Mg Al Si K Ca Ba Fe Type

1.51215 12.99 3.47 1.12 72.98 0.62 8.35 0 0.31 W

1.51768 12.56 3.52 1.43 73.15 0.57 8.54 0 0 W

1.51652 13.56 3.57 1.47 72.45 0.64 7.96 0 0 W

1.51969 12.64 0 1.65 73.75 0.38 11.53 0 0 N

1.51754 13.39 3.66 1.19 72.79 0.57 8.27 0 0.11 W

1.51911 13.9 3.73 1.18 72.12 0.06 8.89 0 0 W

TABLE 3.2 Case Selection Result

Class Samples Correctly Classified Cases Selected

Window glass 158 112

Non-window glass 43 29
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3.7.1 Selection of Cases and Class Representation

The method described here selects a few samples from each class as representative

cases. (For the sake of convenience, the samples that are not selected as cases are

referred to as patterns in subsequent discussion.) Let êe ¼ ½x1; x2; . . . ; xi; . . . ; xn� be a
pattern vector of known classification in an n-dimensional feature space containing

M classes. The variable elk ¼ ½xlk1; xlk2; . . . ; xlk i; . . . ; xlkn� denotes the lkth case from

the kth class Ck. mlkðêeÞ represents the degree of similarity of êe to a case elk . dlkðêeÞ
stands for the distance between êe and elk . The degree of similarity between a pattern

êe and a case elk is defined as

mlkðêeÞ ¼

1� 2
dlkðêeÞ

l


 �2

0 � dlkðêeÞ <
l
2

2 1�
dlkðêeÞ

l


 �2

l
2
� dlkðêeÞ < l

0 otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:57Þ

Here l is the bandwidth of mlkðêeÞ [i.e., the separation between its two (crossover)

points where mlk ¼ 0:5]. Note that mlkðêeÞ can be viewed as a p-type membership

function characterizing a fuzzy set of points representing a region Rglk with elk

as its center [72]. The distance dlkðêeÞ may be expressed in many ways. Considering

a Euclidean norm, we have

dlkðêeÞ ¼
X

n

i¼1

ðxi � xlk iÞ
2

" #1=2

ð3:58Þ

It is clear from equation (3.57) that mlkðêeÞ decreases with an increase in dlkðêeÞ, and
vice versa. The value of mlkðêeÞ is maximum (¼ 1.0) when dlkðêeÞ is zero (i.e., if a

pattern êe and the lkth case are identical). The value of mlkðêeÞ is minimum (¼ 0)

when dlkðêeÞ  l. When dlkðêeÞ ¼ l=2 ¼ 0:5, an ambiguous situation arises.

A pattern êe is selected randomly from any class Ck, and it is considered to be the

first case if the case base (CBk) corresponding to that class (Ck) is empty. Other-

wise, the mlkðêeÞ values are computed that correspond to the cases elk in the case

base, CBk. The pattern êe is selected as a new case, if mlkðêeÞ � 0:5; 8 lk.
When a case is selected, it is inserted into the case base. After repeating this

process over all of the training patterns, a set of cases for each class is obtained,

and these constitute the case base. The case base, CB, for the entire training set

is the union of all of the CBk (i.e., CB ¼
S

M

k¼1 CBk). After the formation of this

case base, CB, a case elk for which mlkðêeÞ � 0:5 is minimum is deleted from CB

if there are a number of patterns with mlkðêeÞ > 0:5 [or with dlkðêeÞ < l=2]. The pro-
cesses of insertion and deletion are repeated until the case base becomes stable; that

is, the set of cases does not show any further changes. The deletion process reduces

the possibility that a spurious pattern will be considered to be a representative case.
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Therefore, the class Ck can be viewed as a union of all the regions ðRglkÞ around its

different cases, that is,

Ck ¼
[sk

lk¼1
Rglk

where sk is the number of cases in class Ck. Note that as the value of l increases, the

extent of the regions ðRglkÞ representing different areas around the cases (elk )

increases, and therefore the number of cases sk decreases. This implies that the

generalization capability of an individual case increases with an increase in l. Initi-

ally, although the number of cases will decrease with an increase in l, the general-

ization capability of individual cases dominates. If l continues to increase, the

number of cases becomes so low that the generalization capability of the individual

cases may not cope with the proper representation of the class structures.

3.7.2 Formulation of the Network

The network architecture is determined adaptively through growing and pruning of

the hidden nodes. These growing and pruning activities correspond to the respective

tasks of insertion and deletion of cases.

3.7.2.1 Architecture The connectionist model (see Fig. 3.5) consists of three

layers: the input, hidden, and class layers. The input layer represents the set of input

features, so that for each feature there is a node (called an input node) in the input

layer. Similarly, for each case there is a node in the hidden layer. For each hidden

node, there is an auxiliary node that makes the hidden node turn on or off. An aux-

iliary node sends a signal back to the input layer only when it sends a signal to the

corresponding hidden node that makes it turn on. The hidden nodes are turned on

one at a time, while the remaining nodes are kept off. To retain the class informa-

tion of the cases, a class layer consisting of several nodes, where each node (class

node) represents a class, is considered.

The input nodes are connected to the hidden and auxiliary nodes by feedforward

and feedback links, respectively. The weight of a feedforward link connecting the

ith input node with the lkth hidden node is

w0
lk i

¼ 1; 8 lk and i ð3:59Þ

The weight w
ðfbÞ
lk i

of a feedback link connecting the auxiliary node (corresponding to

the lkth hidden node) with the ith input node is the same as the ith feature value of

the lkth case (xlki). That is,

w
ðfbÞ
lk i

¼ xlk i ð3:60Þ

The hidden layer is connected to the class layer via feedforward links. The weight

ðw
ð1Þ
klk
Þ of the link connecting the lkth hidden node with the kth class node is 1 if and
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only if the case corresponding to the hidden node belongs to class Ck. Otherwise,

there is no such link between the hidden node and the class node. That is,

w
ð1Þ
klk

¼
1 if elk 2 Ck

0 otherwise

�

ð3:61Þ

At the beginning of the process, since the case base is empty, there are no hidden

nodes. Hence, the connectivity between the layers is not established. When there is

at least one hidden node, a pattern, êe, is presented to the input layer of the network.

The activation of the ith input node when the lkth hidden node is on is given by

v
ð0Þ
lk i

¼ ðu
ð0Þ
lk i
Þ2 ð3:62Þ

u
ð0Þ
lk i

is the total input received by the ith input node when the lkth hidden node is on,

and this is given by

u
ð0Þ
lk i

¼ xi � u
ðfbÞ
lk i

ð3:63Þ

X1 X2 Xn

Input layer

Hidden layer

Class layer

V1

(2)
V2

(2)
VM

(2)

Figure 3.5 Neural network model. Black circles represent the auxiliary nodes, and white

circles represent input, hidden, and class nodes. (From [71].)
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Here u
ðfbÞ
lk i

¼ ð�1Þw
ðfbÞ
lk i

is the feedback input received by the input node. (The �1 is

the feedback activation value of the auxiliary node corresponding to the lkth hidden

node.) The total input received by the lkth hidden node when it is on is given by

u
ð1Þ
lk

¼
X

i

v
ð0Þ
lk i
w
ð0Þ
lk i

ð3:64Þ

The activation function of the lkth hidden node is the same as mlkðxÞ [i.e., equation

(3.57)]. Thus, the activation ðv
ð1Þ
lk
Þ of the lkth hidden node is given by

v
ð1Þ
lk

¼

1� 2
ðu

ð1Þ
lk
Þ1=2

l

" #2

0 � ðu
ð1Þ
lk
Þ1=2 < l

2

2 1�
ðu

ð1Þ
lk
Þ1=2

l

" #2

l
2
� ðu

ð1Þ
lk
Þ1=2 < l

0 otherwise

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð3:65Þ

Here the value of l is stored in all the hidden nodes.

3.7.2.2 Training and Formation of the Network The network described in

Section 3.7.2.1 is formed through the growing and pruning of the hidden nodes dur-

ing the supervised training phase. Initially, there are only input and class layers. The

patterns are presented in a random sequence to the input layer of the network. The

first pattern presented to the network is considered as a case. A hidden node along

with its auxiliary node representing this case is added to the network. The connec-

tions between these auxiliary and hidden nodes and the input and class layers are

established as described by equations (3.59) to (3.61). For the remaining patterns,

their degrees of similarity with the cases represented by the existing hidden node

are computed, and if they are considered to be new cases (see Section 3.8.1), hidden

nodes are added through growing operation. After the process of addition is over, it

is checked if there is any redundant hidden node. This is done through a pruning

operation depending on the criterion mentioned in Section 3.8.1. In this connection,

one may note that as l increases, the number of cases decreases, along with the

number of hidden nodes. These two operations, which together constitute a single

iteration, are continued until the structure of the network becomes stable; that is,

X

k

X

lk i

w
ðfbÞ
lk i

ðtÞ
�

�

�

�

�

� ¼
X

k

X

lk i

w
ðfbÞ
lk i

ðt � 1Þ
�

�

�

�

�

� ð3:66Þ

where t is the number of iterations. The aforesaid growing and pruning operations

are described below.

Growing Hidden Nodes For a pattern êe 2 Ck, if v
ð1Þ
lk

� 0:5 and w
ðfbÞ
lk

¼ elk 2 Ck

for all the hidden nodes, x is added as a case. A hidden node along with its auxiliary
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node is added to the network to represent this case, and the links are established

using equations (3.59) to (3.61). Note that the task of inserting cases, described

in Section 3.8.1, is performed through this process.

PruningHiddenNodes An lk hidden node is deleted if

v
ð1Þ
lk

¼ min
elk¼w

ðfbÞ

lk
2Ck

v
ð1Þ
lk

� 0:5 ð3:67Þ

and the number of training samples for which v
ð1Þ
lk

> 0:5 is less than a predefined

value. Note that the task of deleting cases, described in Section 3.8.1, is performed

through this process.

3.7.2.3 1-NN Classification Using the Cases To demonstrate the effec-

tiveness of the network model (i.e., the capability of the cases to represent their

respective classes) for pattern classification, the principle of the 1-NN rule, with

the cases as the prototypes, is considered. According to this rule, an unknown sam-

ple, êe, is said to be in class Cj for an Ljth case if

v
ð1Þ
Lj

¼ maxk;lkfv
ð1Þ
lk
g j; k ¼ 1; 2; . . . ;M ð3:68Þ

When performing this task, each node in the class layer (see Fig. 3.5) is considered

to function as a ‘‘winner-takes-all’’ network. A kth class node receives activations

only from the hidden nodes corresponding to the cases in Ck. That is, the activation

received by the kth class node from the lkth hidden node is

u
ð2Þ
klk

¼ v
ð1Þ
lk
w
ð1Þ
klk

ð3:69Þ

The output of the kth class node is

v
ð2Þ
lk

¼ maxlfu
ð2Þ
klk
g ð3:70Þ

where v
ð2Þ
lk

represents the degree of belongingness of x to class Ck. Therefore, decide

that x 2 Cj if

v
ð2Þ
j > v

ð2Þ
k j; k ¼ 1; 2; . . . ;M; j 6¼ k

3.7.2.4 Experimental Results In this section the effectiveness of the net-

work (methodology) for automatic selection of cases is demonstrated by making

the cases function as prototypes for a 1-NN classifier. Some results of investigation

[71] are described when real-life vowel [35] data and medical data [73] were

considered as the inputs. In all these examples, the data set was divided into two
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subsets for training and testing. The variable ‘‘perc %’’ denotes the proportion of

the samples considered during training, and the remaining ‘‘(100� perc) %’’

portion used for testing.

The vowel data [35] consist of a set of 871 Indian Telugu vowel sounds. These

sounds were uttered in a ‘‘consonant–vowel–consonant’’ context by three male

speakers in the age group 30 to 35 years. The data set has three features, F1, F2,

and F3, corresponding to the first, second, and third vowel format frequencies

obtained through spectrum analysis of speech sounds. Figure 3.6 shows the over-

lapping nature of the six vowel classes (i.e., d, a, i, u, e, o) in the F1–F2 plane (for

ease of depiction). The details of the data and their extraction procedure are avail-

able in [35]. These vowel data have been used extensively for more than two dec-

ades in the area of pattern recognition research.

The medical data consist of nine input features and four pattern classes and deal

with various hepatobiliary disorders [73] of 536 patient cases. The input features

are the results of different biochemical tests. These tests are glutamic oxalacetic

transaminate (GOT, Karmen unit), glutamic pyruvic transaminase (GPT, Karmen

unit), lactate dehydrase (LDH, IU/L), gamma glutamyl transpeptidase (GGT,

mU/mL), blood urea nitrogen (BUN, mg/dL), mean corpuscular volume of red

blood cell (MCV, fL), mean corpuscular hemoglobin (MCH, pg), total bilirubin

(TBil, mg/dL), and creatinine (CRTNN, mg/dL). The hepatobiliary disorders alco-

holic liver damage (ALD), primary hepatoma (PH), liver cirrhosis (LC), and cho-

lelithiasis (C) constitute the four classes.

Tables 3.3 and 3.4 depict some of the results obtained with the foregoing data

sets for different values of l when perc¼ 30 is used. The first column of these

tables indicates the number of iteration(s) required by the network until it stabilizes
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Figure 3.6 Scatter plot of the vowel data in the F1–F2 plane.
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TABLE 3.3 Classification Performance for Different l Using Vowel Data

for Perc¼ 30

Recognition Score (%)

Number Number of ————————————

of Iterations l Class Hidden Nodes Training Set Test Set

3 100.0 d 21 95.24 41.18

a 22 100.0 84.13

i 42 98.04 72.73

u 31 97.78 81.13

e 53 98.39 67.59

o 38 94.44 89.69

Overall 207 97.30 75.0

3 150.0 d 18 95.24 64.71

a 13 96.15 93.65

i 23 96.08 86.78

u 20 88.89 96.79

e 37 96.77 80.00

o 26 92.59 85.71

Overall 137 94.21 83.82

3 200.0 d 16 80.95 64.71

a 13 92.31 90.49

i 21 98.04 87.60

u 19 91.11 85.85

e 36 93.55 81.38

o 25 90.74 86.51

Overall 130 92.28 83.99

1 250.0 d 12 71.43 58.82

a 9 88.46 80.95

i 11 92.16 85.95

u 9 84.44 72.64

e 20 91.94 80.69

o 14 81.48 74.60

Overall 75 86.49 77.29

1 300.0 d 10 57.14 52.94

a 8 92.31 80.95

i 10 92.16 86.78

u 8 97.78 83.96

e 20 88.71 80.69

o 11 64.81 59.52

Overall 67 83.78 75.82

3 350.0 d 8 52.38 52.94

a 7 92.31 95.24

i 9 94.12 90.08

u 8 97.78 89.62

e 13 70.97 66.21

o 8 46.30 42.86

Overall 53 75.68 72.06
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during training. It is found from these tables that the recognition scores on the train-

ing set, as expected, are higher than those on the test set. The recognition score dur-

ing training decreases with an increase in the value of l. On the other hand, for the

test data, the recognition score increases with l up to a certain value, beyond which

it decreases. This can be explained as follows.

During training, the recognition score increases when there is a decrease in l,

due to a better abstraction capability although for the test data, as l decreases,

the modeling of class structures improves because there is an increase in the num-

ber of cases, and therefore the recognition score increases up to a certain value of l.

Beyond that value, as mentioned in Section 3.7.1, the number of cases with poor

generalization capability (i.e., similarity functions with very small bandwidth)

increases. As a result, the recognition score decreases due to overlearning.

As mentioned in Section 3.7.2.2, the number of hidden nodes in the network

decreases with an increase in l for all the example data (see Tables 3.3 and 3.4).

Since class ‘‘e’’ of vowel data is most sparse, it needs a maximum number of cases

(and hence a maximum number of hidden nodes) for its representation. This is

reflected in Table 3.3. Similar observations hold good for the medical data, where

the class ‘‘PH,’’ being the sparsest, has the maximum number of hidden nodes.

From these tables it can be noted that for both the data sets, the stability of the

architecture of their respective networks is achieved within a very few iterations.

The effect of the size of a training set on the performance of the network is

demonstrated in Table 3.5 only for the vowel data, as an example. The different

values of perc considered are 10, 20, 30, 40, 50, 60, and 70, with l ¼ 150:0,

200.0, and 250.0. (Note that the network achieves the best generalization capability

TABLE 3.3 (Continued )

Recognition Score (%)

Number Number of ————————————

of Iterations l Class Hidden Nodes Training Set Test Set

1 400.0 d 8 57.14 56.86

a 7 96.15 95.24

i 7 88.24 86.78

u 6 97.78 84.91

e 10 69.35 65.52

o 8 72.22 64.29

Overall 46 80.31 75.16

1 450.0 d 7 71.43 70.59

a 5 84.62 68.25

i 5 58.82 61.16

u 6 93.33 83.02

e 9 83.87 76.55

o 6 68.52 67.46

Overall 38 76.45 71.41
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TABLE 3.4 Classification Performance for Different l Using the Medical Data

for Perc¼ 30

Recognition Score (%)

Number Number of ———————————

of Iterations l Class Hidden Nodes Training Set Test Set

1 150.0 ALD 17 61.76 32.93

PH 30 81.13 48.80

LC 19 91.89 73.56

C 13 42.86 27.71

Overall 79 71.07 46.42

1 160.0 ALD 20 71.43 56.79

PH 35 70.37 29.84

LC 17 78.95 66.28

C 8 58.33 57.32

Overall 80 69.94 50.13

1 170.0 ALD 20 71.43 58.02

PH 34 68.52 29.03

LC 17 78.95 66.28

C 8 55.56 54.88

Overall 79 68.71 49.60

1 180.0 ALD 20 68.57 56.79

PH 34 72.22 31.45

LC 16 71.05 61.63

C 8 55.56 54.88

Overall 78 67.48 49.06

1 190.0 ALD 19 80.00 61.73

PH 33 77.78 36.29

LC 14 76.32 68.60

C 6 8.33 12.20

Overall 72 62.58 43.97

7 200.0 ALD 15 76.47 58.54

PH 25 71.70 45.60

LC 14 72.97 68.97

C 11 25.71 9.64

Overall 137 62.89 45.89

TABLE 3.5 Classification Performance for Different l and Perc on Vowel Data

Recognition Score (%)

—————————————————————————————————

l Perc¼ 10 Perc¼ 20 Perc¼ 30 Perc¼ 40 Perc¼ 50 Perc¼ 60 Perc¼ 70

150.0 70.99 81.55 83.82 80.42 84.67 86.29 87.01

200.0 75.70 82.12 83.99 83.27 84.67 85.71 86.20

250.0 75.06 80.11 77.29 80.23 82.38 83.43 84.03
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for l ¼ 200:0; see Table 3.3.) Table 3.5 shows that the recognition score on the test

set generally increases with the size of the training set, as expected.

The performance of the classifier (where the cases are considered as prototypes)

was also compared with that of the following ones:

� A standard k-NN classifier with k ¼
ffiffiffiffi

m
p

(m being the number of training

samples), where all the perc % samples, selected randomly, are considered as

prototypes. (It is known that as m goes to infinity, if the values of k and k/m

can be made to approach infinity and zero, respectively, the performance of

the k-NN classifier approaches that of the (optimal) Bayes classifier [25]. One

such value of k for which these limiting conditions are satisfied is
ffiffiffiffi

m
p

.)

� Bayes’ maximum likelihood classifier, where a multivariate normal distribu-

tion of samples with different class dispersion matrices and a priori prob-

abilities (¼mj=m, for mj patterns from class Cj) are assumed, and all of the

perc % samples are used to compute the mean vectors and the covariance

matrices.

Table 3.6 depicts that the network (CBNN) performs better than the k-NN

(k ¼
ffiffiffiffi

m
p

) and Bayes’ maximum likelihood classifiers for vowel data. In the case

of medical data, while the performance of CBNN on the training set is better

than those obtained by the others, the reverse is true for the test samples.

TABLE 3.6 Recognition Score of Various Classifiers on Different Data Sets

Recognition Score (%)

—————————————————————————————

CBNN Bayes k-NN

—————————

Data Set Class Training Testing Training Testing Training Testing

Pat1 1 100.0 100.0 100.0 100.0 100.0 99.38

2 100.0 100.0 34.48 19.12 96.55 100.0

Overall 100.0 100.0 88.62 85.90 99.40 99.49

Vowel d 80.95 64.71 38.10 43.14 23.81 33.33

a 92.31 90.48 88.46 85.71 80.77 85.71

i 98.04 87.60 90.20 85.12 88.24 85.12

u 91.11 95.85 91.11 90.57 86.67 76.42

e 93.55 81.38 75.81 90.69 75.81 77.93

o 90.74 96.51 92.59 85.71 92.59 88.89

Overall 92.28 83.99 83.01 81.70 79.92 78.43

Medical ALD 71.43 56.79 61.76 50.00 52.94 46.34

PH 70.37 29.84 54.72 64.80 69.81 77.60

LC 78.95 66.28 51.35 36.78 21.62 29.89

C 58.33 57.32 91.43 75.90 54.29 61.45

Overall 69.94 50.13 63.52 57.56 51.57 56.23
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3.8 CASE SELECTION USING ROUGH SELF-ORGANIZING MAP

In Section 3.7 we explained how a neuro-fuzzy framework can be formulated for

the selection of cases (prototypes) under the supervised mode. The present section

deals with the methodology of Pal et al. [64], demonstrating an integration of rough

sets, fuzzy sets, and self-organizing networks for extracting class prototypes (repre-

sentative cases for the entire data set) under the unsupervised mode of learning. One

may note here that a similar integration of these three soft computing tools under

supervised mode was mentioned in Section 2.3.3, where it is shown how different

class regions can be represented with fuzzy membership functions of a varying

number for generating representative cases in terms of only informative regions

and relevant features (i.e., reduced subsets of original attributes)—thereby enabling

fast case retrieval.

Rough set theory [74] provides an effective means for classificatory analysis of

data tables. The main goal of rough set–theoretic analysis is to synthesize or con-

struct approximations (upper and lower) of concepts from the acquired data. The

key concepts here are those of information granule and reducts. Information granule

formalizes the concept of finite-precision representation of objects in real-life situa-

tions, and the reducts represent the core of an information system (in terms of both

objects and features) in a granular universe. An important use of rough set theory

has been in generating logical rules for classification and association [75]. These

logical rules correspond to different important granulated regions of the feature

space, which represent data clusters. For application of rough sets in pattern recog-

nition and data mining problems, one may refer to the recent special issue [76].

A self-organizing map (SOM) [77] is an unsupervised network that has recently

become popular for unsupervised mining of large data sets. The process of self-

organization generates a network whose weights represent prototypes of the input

data. These prototypes may be considered as cases representing the entire data set.

Unlike those produced by existing case generation methodologies, they are not just

a subset of the original data but evolved in the self-organizing process. Since SOM

suffers from the problem of slow convergence and local minima, a synergistic inte-

gration of rough set theory with SOM offers a fast and robust solution to the initi-

alization and local minima problem, thereby designing rough SOM (RSOM). Here

rough set theory is used to encode the domain knowledge in the form of crude rules,

which are mapped for initialization of weights as well as for determination of the

network size. Fuzzy set theory is used for discretization of feature space. Perfor-

mance of the network is measured in terms of learning time, representation error,

clustering quality, and network compactness. All these characteristics have been

demonstrated experimentally and compared with that of the conventional SOM.

3.8.1 Pattern Indiscernibility and Fuzzy Discretization of

Feature Space

A primary notion of rough set is of indiscernibility relation. For continuous-valued

attributes, the feature space needs to be discretized for defining indiscernibility
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relations and equivalence classes. Discretization is a widely studied problem in

rough set theory, and fuzzy set theory was used for effective discretization. Use

of fuzzy sets has several advantages over ‘‘hard’’ discretization, such as modeling

of overlapped clusters and linguistic representation of data [78]. Here each feature

is discretized into three levels: low, medium, and high; finer discretizations may

lead to better accuracy at the cost of higher computational load.

As mentioned in Sections 2.3.2 and 3.4.2, each feature of a pattern is described

in terms of their fuzzy membership values in the linguistic property sets ‘‘low’’ (L),

‘‘medium’’ (M), and ‘‘high’’ (H). Let these be represented by Lj,Mj, and Hj, respec-

tively. The features for the ith pattern Fi are mapped to the corresponding three-

dimensional feature space of mlowðFi; jÞðêeiÞ, mmediumðFi; jÞðêeiÞ, and mhighðFi ;jÞðêeiÞ by equa-

tion (3.33). An n-dimensional pattern êei ¼ ½Fi1;Fi2; . . . ;Fin� is thus represented as a

3n-dimensional vector [42].

This effectively discretizes each feature into three levels. Then consider only

those attributes that have a numerical value greater than some threshold Th

(¼ 0.5, say). This implies clamping only those features demonstrating high mem-

bership values with unity while the others are fixed at zero. An attribute-value table

is constructed comprising the binary-valued 3n-dimensional feature vectors above.

Here we mention that the representation of linguistic fuzzy sets by �-functions and

the procedure in selecting the centers and radii of the overlapping fuzzy sets are

the same as in Section 2.3.3.1. The nature of the functions is also the same as in

Figure 2.13.

3.8.2 Methodology for Generation of Reducts

After the binary membership values are obtained for all the patterns, the decision

table has been constituted for rough set rule generation. Let there be m sets

O1;O2; . . . ;Om of objects in the attribute-value table (obtained by the procedure

described in Section 3.8.1) having identical attribute values, and cardðOiÞ ¼
nki; i ¼ 1; 2; . . . ;m such that nk1  nk2  � � �  nkm and

Pm
i¼1 nki ¼ nk. As in

Section 2.3.3.3, the attribute–value table is represented as an m� 3n array. Let

nk0
1
; nk0

2
; . . . ; nk0m denote the distinct elements among nk1; nk2; . . . ; nkm such that

nk0
1
> nk0

2
> � � � > nk0m Let a heuristic threshold Tr be defined as in equation

(2.14), so that all entries having frequency less than Tr are eliminated from

the table, resulting in the reduced attribute–value table ŜS. Note that the main

motive of introducing this threshold function lies in reducing the size of the

model. One attempts to eliminate noisy pattern representatives (having lower

values of nki) from the reduced attribute–value table. From the reduced attribute–

value table obtained, reducts are determined using the methodology described

below.

Let fxi1; xi2; . . . ; xipg be the set of those objects of U that occur in ŜS. Now a dis-

cernibility matrix [denoted M(B)] is defined as follows [64,79]:

cij ¼ fAttr 2 B : AttrðxiÞ 6¼ AttrðxjÞg for i; j ¼ 1; 2; . . . ; n ð3:71Þ
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For each object xj 2 fxi1; xi2; . . . ; xipg, the discernibility function fxj is defined as

fxj ¼ ^f_ðcijÞ : 1 � i; j � n; j < i; cij 6¼ fg ð3:72Þ

where _ðcijÞ is the disjunction of all members of cij. One thus obtains a rule ri, that

is, gi ! clusteri, where gi is the disjunctive normal form of fxj ; j 2 i1; i2; . . . ; ip.

3.8.3 Rough SOM

3.8.3.1 Self-Organizing Maps A Kohonen feature map is a two-layered net-

work. The first layer of the network is the input layer. The second layer, called the

competitive layer, is usually organized as a two-dimensional grid. All interconnec-

tions go from the first layer to the second as in Figure 3.7. For details, see Appendix B.

All the nodes in the competitive layer compare the inputs with their weights and

compete with each other to become the winning unit having the lowest difference.

The basic idea underlying competitive learning is roughly as follows: Assume a

sequence of input vectors {êe ¼ êeðtÞ 2 Rn, where t is the time coordinate} and a

set of variable reference vectors {wiðtÞ : wi 2 Rn; i ¼ 1; 2; . . . ; k, where k is the

number of units in the competitive layer}. Initially, the values of the reference vec-

tors (also called weight vectors) are set randomly. At each successive instant of time

t, an input pattern êeðtÞ is presented to the network. The input pattern êeðtÞ is then
compared with each wiðtÞ and the best-matching wiðtÞ is updated to match the cur-

rent êeðtÞ even more closely. If the comparison is based on some distance measure

dðêe;wiÞ, altering wi must be such that if i ¼ c, the index of the best-matching refer-

ence vector, then dðêe;wcÞ is reduced and all the other reference vectors wi, with

i 6¼ c, are left intact. In this way the various reference vectors tend to become spe-

cifically ‘‘tuned’’ to different domains of the input variable êe.

The first step in the operation of a Kohonen network is to compute a matching

value for each unit in the competitive layer. This value measures the extent to which

N × N

grid Competitive layer

Unit 2 Unit nUnit 1 Input layer

Figure 3.7 Basic network structure for a Kohonen feature map.
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the weights or reference vectors of each unit match the corresponding values of the

input pattern. The matching value for each unit i is k êe� wi k, which is the distance

between vectors êe and wi and is computed by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j

ðêej � wijÞ
2

s

for j ¼ 1; 2; . . . ; n ð3:73Þ

The unit with the lowest matching value (the best match) wins the competition. In

other words, the unit c is said to be the best-matched unit if

k êe� wc k¼ mini k êe� wi kf g; i ¼ 1; 2; . . . ; ðN � NÞ ð3:74Þ

where the minimum is taken over all the N � N units in the competitive layer. If

two units have the same matching value, then by convention, the unit with the lower

index value i is chosen.

The next step is to self-organize a two-dimensional map that reflects the distri-

bution of input patterns. In biophysically inspired neural network models, corre-

lated learning by spatially neighboring cells can be implemented using various

kinds of lateral feedback connections and other lateral interactions. Here the lateral

interaction is enforced directly in a general form, for arbitrary underlying network

structures, by defining a neighborhood set Nc around the winning cell. At each

learning step, all the cells within Nc are updated, whereas cells outside Nc are

left intact. The update equation is

�wij ¼
lðêej � wijÞ if unit i is in the neighborhood Nc

0 otherwise

�

ð3:75Þ

and

wnew
ij ¼ wold

ij þ�wij ð3:76Þ

Here l is the learning parameter. This adjustment results in both the winning unit

and its neighbors, having their weights modified, becoming more like the input pat-

tern. The winner then becomes more likely to win the competition should the same

or a similar input pattern be presented subsequently.

3.8.3.2 Incorporation of Rough Sets in SOM As described in Section

3.8.2, the dependency rules generated using rough set theory from an information

system are used to discern objects with respect to their attributes. However,

the dependency rules generated by rough set are coarse and therefore need to be

fine-tuned. Here the dependency rules are used to get a crude knowledge of the

cluster boundaries of the input patterns to be fed to a self-organizing map. This

crude knowledge is used to encode the initial weights of the nodes of the map,

which is then trained using the usual learning process (Section 3.8.3.1). Since an
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initial knowledge of the cluster boundaries is encoded into the network, the learning

time is reduced greatly, with improved performance.

The steps involved in the process, as formulated by Pal et al. [64], are summar-

ized below.

Step 1. From the initial data set, use the fuzzy discretization process to create the

information system.

Step 2. For each object in the information table, generate the discernibility function

fAða1; a2; . . . ; a3nÞ ¼ ^f_cij : 1 � i; j � n; j < i; cij 6¼ ;g ð3:77Þ

where a1; a2; . . . ; a3n are the 3n Boolean variables corresponding to the attributes

Attr1;Attr2; . . . ;Attr3n of each object in the information system. The expression

fA is reduced to the set of all prime implicants of fA that determines the set of all

reducts of A.

Step 3. The self-organizing map is created with 3n inputs (Section 3.8.1), which

correspond to the attributes of the information table, and a competitive layer of

N � N grid of units where N is the total number of implicants present in

discernibility functions of all the objects of the information table.

Step 4. Each implicant of the function fA is mapped to a unit in the competitive

layer of the network, and high weights are given to those links that come from the

attributes, which occur in the implicant expression. The idea behind this is that

when an input pattern belonging to an object, say Oi, is applied to the inputs of the

network, one of the implicants of the discernibility function of Oi will be satisfied,

and the corresponding unit in the competitive layer will fire and emerge as the

winning unit. All the implicants of an object Oi are placed in the same layer, while

the implicants of different objects are placed in different layers separated by

the maximum neighborhood distance. In this way the initial knowledge obtained

with rough set methodology is used to train the SOM.

This is explained with the following example. Let the reduct of an object Oi be

Oi : ðF1low ^ F2mediumÞ _ ðF1high ^ F2highÞ

where Fð�Þlow;Fð�Þmedium; and Fð�Þhigh represent the low, medium, and high values of

the corresponding features. Then the implicants are mapped to the nodes of the

layer as shown in Figure 3.8. Here high weights ðHÞ are given only to those links

that come from the features present in the implicant expression. Other links are

given low weights.

3.8.4 Experimental Results

Let us explain here some of the results of investigation [64] demonstrating the

effectiveness of the methodology on an artificially generated data set (Fig. 3.9)
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and two sets of real-life data, the speech data ‘‘vowel’’ and the medical data (which

are described in Section 3.7.2.4). The artificial data of Figure 3.9 consist of two

features containing 417 points from two horseshoe-shaped clusters. Vowel data

has three features and 871 samples from six classes, while the medical data have

nine features and deals with hepatobiliary disorders of 536 patients from four

classes.

The following quantities were considered for comparing the performance of the

RSOM with that of the randomly initialized self-organized map.

H H H H

F1low F1medium F1high F2low F2medium F2high

Figure 3.8 Mapping of reducts in the competitive layer of RSOM.
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Figure 3.9 Horseshoe data.
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1. Quantization error. The quantization error ðqEÞ measures how fast the

weight vectors of the winning nodes in the competitive layer are aligning

themselves with the input vectors presented during training. It is calculated using

the equation

qE ¼

Pn
p¼1

P

all wining nodes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j ðxpj � wjÞ
2

q
h i

number of patterns
ð3:78Þ

Here j ¼ 1; 2; . . . ;m (m being the number of input features to the net), xpj is the jth

component of the pth pattern, and n is the total number of patterns. Hence, the

higher the quantization error ðqEÞ, the greater the difference between the reference

vectors and the input vectors of the nodes in the competitive layer.

2. Entropy and b-index. The entropy measure [23] and b-index [80] reflect the

quality of the cluster structure.

Entropy: Let the distance between two weight vectors p and q be

dðp; qÞ ¼
X

j

xpj � xqj

maxj �minj

� �2
" #1=2

ð3:79Þ

where xpj and xqj denote the weight values for p and q, respectively, along the jth

direction, and j ¼ 1; 2; . . . ;m;m being the number of features input to the net; maxj
and minj are, respectively, the maximum and minimum values computed over all

the samples along the jth axis. Let the similarity between p and q be defined as

SMðp; qÞ ¼ e�bdpq ð3:80Þ

where b ¼ � ln 0:5=d, a positive constant such that

SMðp; qÞ ¼
1 if dðp; qÞ ¼ 0

0 if dðp; qÞ ¼ 1
0:5 if dðp; qÞ ¼ d

8

<

:

where d is the average distance between points computed over the entire data set.

Entropy is defined as

E ¼ �
X

l

p¼1

X

l

q¼1

ðSMðp; qÞlogSMðp; qÞ þ ð1� SMðp; qÞÞlogð1� SMðp; qÞÞÞ

ð3:81Þ

If the data are uniformly distributed in the feature space, entropy is maximum.

When the data have well-formed clusters, the uncertainty is low and so is the

entropy.
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b-index: The b-index [80] is defined as

b ¼

Pk
i¼1

Pni
p¼1 ðêe

i
p � êeÞTðêeip � êeÞ

Pk
i¼1

Pni
p¼1 ðêe

i
p � êeiÞTðêeip � êeiÞ

ð3:82Þ

where ni is the number of points in the ith ði ¼ 1; 2; . . . ; kÞ cluster; êeip the pth pattern
ðp ¼ 1; 2; . . . ; niÞ in cluster i; êei the mean of ni patterns of the ith cluster,

P
i ni ¼ n,

where n is the total number of patterns; and êe is the mean value of the entire set of

patterns. Note that b is nothing but the ratio of the total variation and within-cluster

variation. This type of measure is widely used for feature selection and cluster ana-

lysis. For a given data and k (number of clusters) value, the greater the homogeneity

within the clustered regions, the higher the b value would be.

3. Frequency of winning nodes ðfkÞ. This frequency is defined as the number of

winning top k nodes ð fkÞ in the competitive layer, where k is the number of rules

(characterizing the clusters) obtained using rough sets. Here k ¼ 4 for horseshoe

data, k ¼ 14 for vowel data, and k ¼ 7 for medical data. fk reflects the error if all

but k nodes would have been pruned. In other words, it measures the number of

sample points represented correctly by these nodes.

4. Number of iterations. This indicates the number of iterations at which the

error does not change much.

The comparative results for the three data sets are presented in Table 3.7. The

following conclusions [64] can be made from the results obtained:

1. Better cluster quality. As seen from Table 3.7, RSOM has a lower entropy

value, thus implying a lower intracluster distance and a higher intercluster distance

in the clustered space compared to conventional SOM. RSOM also has a higher

b-index value, indicating more homogeneity within its clustered regions. The

quantization error of RSOM is also far less than that of SOM.

2. Less learning time. The number of iterations required to achieve the error

level is far less in RSOM than in SOM. The convergence curves of the quantization

TABLE 3.7 Comparison of RSOM with SOM

Iteration at

Quantization Which Error

Data Initialization Error Converged Entropy fk b-Index

Horseshoe Random 0.038 5000 0.7557 83 0.99

Rough 0.022 50 0.6255 112 0.99

Vowel Random 32.588 8830 0.6717 245 0.06

Rough 0.081 95 0.6141 316 0.96

Medical Random 28.855 8666 0.6744 110 0.61

Rough 0.246 102 0.6121 125 0.71
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errors are presented in Figures 3.10 to 3.12 for the data sets used. It is seen that

RSOM starts from a very low value of quantization error compared to SOM.

3. Compact representation of data. It is seen for RSOM, fewer nodes in the

competitive layer dominate (i.e., they win for most of the samples in the training

set). On the other hand, in conventional SOM this number is higher. This is
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Figure 3.10 Variation of quantization error with iteration for horseshoe data.
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Figure 3.11 Variation of quantization error with iteration for vowel data.
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quantified by the frequency of winning of the top k nodes. It is observed that this

value is much higher for RSOM, thus signifying less error if all but k nodes would

have been pruned. In other words, RSOM achieves a more compact representation

of the data. Therefore, as represented by the weight vectors of the winning nodes,

rough
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Figure 3.12 Variation of quantization error with iteration for medical data.
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Figure 3.13 Frequency of winning nodes using random weights for horseshoe data.
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the cases constitute a compact case base. Since RSOM achieves compact clusters,

this will enable one to extract nonambiguous rules. As a demonstration of the

nature of distribution of the frequency of winning nodes, the results for the

horseshoe data, corresponding to SOM and RSOM are shown in Figures 3.13 and

3.14. Separation between the clusters is seen to be more prominent in Figure 3.14.

These winning nodes may be viewed as the prototype points (cases) representing

the two classes. Unlike the conventional methods, the cases and prototypes selected

here are not just a subset of the original data points, but represent some collective

information generated by the network after learning the entire data set.

3.9 SUMMARY

In this chapter we have explained various similarity measures and the notion of fuz-

zy set theory in measuring them. This was followed by different algorithms and

methodologies for classification/clustering of cases, determination of feature

weights, case matching, case selection, and case retrieval. Both supervised and

unsupervised modes of learning have been considered wherever possible. Various

soft computing approaches using fuzzy logic, genetic algorithms, artificial neural
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Figure 3.14 Frequency of winning nodes using rough set knowledge for horseshoe data.
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networks and rough sets, and hybrid tools such as fuzzy-neural and rough-fuzzy-

neural have been described together with their relevance. The merits of using inte-

grations in a soft computing paradigm have been illustrated with experimental

results.
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CHAPTER 4

CASE ADAPTATION

4.1 INTRODUCTION

The first step in solving a new problem using a CBR system, as described in

Chapter 3, is retrieving the most similar case(s) from the case base. Assuming

that similar problems have similar solutions, the case(s) retrieved are used to derive

the solution for the new problem. Usually, the past solution needs adjustment to fit

the new situation. The process of fixing (i.e., adapting) the old solution is called

case adaptation. The knowledge ‘‘repaired’’ to carry out the adaptation is referred

to as adaptation knowledge.

There are two ways to acquire adaptation knowledge. The traditional approach is

by interviewing domain experts and coding the task-specific adaptation knowledge

manually into the CBR system. This knowledge may be represented as a decision

table, semantic tree, or IF–THEN rules. Alternatively, the adaptation knowledge

can be learned from the cases using machine-learning techniques. Through learning

we generate specialized heuristics that relate the differences in the input specifica-

tions (i.e., problem attributes) to the differences in the output specifications (i.e.,

solution attributes). These heuristics can be used to determine the amount of adap-

tation that is suitable.

Acquiring adaptation knowledge through interviews with domain experts is both

labor intensive and time consuming. It is also difficult to maintain the adaptation

knowledge that has been acquired. Many application systems developed in the

past, such as Chef, Judge, Clavier, and Juliana [1], employed this approach.
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Recently, due to the availability of cases and the increase in computer processing

power, many machine-learning approaches for deriving adaptation knowledge

are developed. Among these, soft computing techniques play a unique role in

capturing adaptation knowledge that is imprecise, uncertain, and approximate in

nature.

In this chapter we describe a variety of ways of using soft computing techniques

for case adaptation. We also provide a review of adaptation strategies and explain

the traditional approaches of representing and using adaptation knowledge. Section 4.2

presents the traditional case adaptation strategies. In this section, three methods

are described: reinstantiation, substitution, and transformation. These are followed

in Section 4.3 by a brief description of a set of methodologies developed mostly by

four leading groups using adaptation matrices, configuration techniques, the process

of learning adaptation cases, and integrating rule- and case-based adaptation

approaches. In Section 4.4 we explain adaptation methods based on various soft

computing paradigms. Several techniques, including fuzzy decision trees, back-

propagation neural networks, Bayesian models, support vector machines, and genetic

algorithms, are explored for learning and optimizing the adaptation knowledge.

4.2 TRADITIONAL CASE ADAPTATION STRATEGIES

In this section we introduce three types of traditional case adaptation strategies:

� Reinstantiation is the simplest form of adaptation, in which the solution of the

new problem is simply copied from the case retrieved and used directly,

without modification.

� Substitution replaces parts of the old solution attributes that are invalid

because they conflict with or contradict the new problem requirements. For

example, in medical diagnosis, parts of a drug prescription in the past may

need to be replaced and updated with more effective medicine for the

treatment of new types of illnesses.

� Transformation is used when no appropriate substitute item is available. A

tailored solution will be derived based on the constraints and the character-

istics of the required solution. A constraint describes or defines the properties

of a component(s) of the solution. It specifies what properties the solution

should or should not have. The solution component must conform to the

constraints, and no contradiction or conflict is allowed. To identify the

constraints, some predefined expert knowledge or heuristic must be available.

In the following subsections we provide examples to illustrate three approaches.

Table 4.1 compares the three methods. Both substitution and transformation are

triggered or based on constraints and feedbacks from the problem and solution

characteristics, while reinstantiation can be performed simply by applying the

old solution directly.
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4.2.1 Reinstantiation

Reinstantiation involves direct copying and use of an old solution from a retrieved

case. If the similarity between the present and retrieved cases is high and no

constraints or requirements are imposed on the solution required, a reinstantiation

strategy can be used. The advantages of this method are its low cost of computation

and quick response for users. Figure 4.1 provides an example of car fault diagnosis

using a reinstantiation strategy. Case A is a new problem, and case B is the closest

case found in the case library. Since these two cases are very similar and no con-

straint is being specified, the case B solution is copied and used to solve the case A

problem.

In applying reinstantiation, the similarity measure is the most important factor. If

the similarity is higher than a certain threshold, the previous successful solution will

be copied and applied directly. Therefore, it is important to determine a suitable

similarity measure and an appropriate threshold. In Chapter 3, several similarity

measures, both with and without fuzziness, are described. They can be used here

for this purpose. Following are the steps in reinstantiation.

Step 1. Determine a suitable similarity measure and an appropriate threshold.

Step 2. Retrieve the most similar case.

TABLE 4.1 Characteristics of the Adaptation Strategy

Adaptation Strategy Based on/Triggered by:

Reinstantiation Null

Substitution Constraints

Feedback

Transformation Constraints

Feedback

Case A (new) Case B (old)  

 Retrieve

Copy

Case ID: 123
Car type: type 1 
Color: red 
Year: 2002
Owner: Niu Ben 
Bat. vol.: 12 V
Problem: front light doesn't work
State of light: OK
State of light switch: OK

Diagnosis: front-light fuse detect
Repair: replace front-light fuse 

Case ID: 456
Car type: type 2 
Color: silver
Year: 2003
Owner: Li Yan 
Bat. vol.: 12.5 V
Problem: front light doesn't work
State of light: OK
State of light switch: OK

Diagnosis: front-light fuse detect
Repair: replace front-light fuse 

Figure 4.1 Reinstantiation.
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Step 3. If the case retrieved has a similarity value above a specified threshold and

no extra constraints are imposed on the solution required, the old solution is copied

and applied to the new problem.

4.2.2 Substitution

Substitution replaces some parts of the old solution attributes that are invalid

because they conflict with or contradict the new problem requirements. There are

two types of substitution: constraint-based and feedback-based.

4.2.2.1 Constraint-Based Substitution A constraint, described or defined

by the properties of a component(s) of the solution required, can generally be

expressed by using such knowledge structures as a decision table, semantic tree,

or IF–THEN rules. Therefore, in constraint-based substitution, the substituting

components can be found by searching the corresponding knowledge structure.

This knowledge structure is usually defined by experts through interviews. For

example, in a semantic tree, the replacing items can be located by traversing the

nodes. If these items are suitable for substitution, the contradicting part(s) of the

old solution will be replaced (i.e., adapted) accordingly. Next, we provide an exam-

ple to illustrate the idea.

Case A (new)

Retrieve

Copy

Adapt
Case C (adapted)

Case ID: 123
Speed: high
Price: middle
Usage: sport 
Antitheft performance: high

Model name: Toyota Sedan 07
Price: 10,500
Antitheft system: product A

Case ID: 456
Speed: high
Price: middle
Usage: sport 
Antitheft performance: middle

Model name: Toyota Sedan 07
Price: 10,500
Antitheft system: product A

Case ID: 123
Speed: high
Price: middle
Usage: sport 
Antitheft performance: high

Model name: Toyota Sedan 07+
Price: 11,000
Antitheft system: product B 

Case B (old)

Figure 4.2 Constraint-based substitution.
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Figure 4.2 illustrates a car-buying example. The objective of the system is to

recommend a suitable car with the antitheft system required. Among all the product

specifications, the customer specifies that the antitheft system satisfy the constraint

‘‘high performance.’’ However, after comparing all the cases in the case library, the

most similar case is case B, which has only a middle level of antitheft performance.

In this situation, a constraint-based substitution will be carried out. The substituting

value (i.e., an antitheft system that has a high level of performance and can be in-

stalled in a Toyota Sedan 07) can be found by searching a semantic tree. Figure 4.3

depicts the semantic tree of an auto system. The thick solid line, the thin solid line,

and the dashed line represent the PART_OF, KIND_OF, and INSTANCE_OF

semantic relation, respectively. For example, the security system is part of the

auto system, antitheft system X is a kind of security system, and product A is an

instance of antitheft system X.

First, the substitution procedure will check all other instances in the class anti-

theft system X in which product A belongs. Since no record is found, the search

moves to the next class (i.e., antitheft system Y) to find a suitable substitution.

In this class, products B and C are found. Both of them will be checked to ascertain

whether they are of high performance and can be installed in Toyota Sedan 07.

After checking, it is found that product B satisfies the constraint, and therefore it

is used in the substitution. As a result, a new solution is derived based on a

constraint-based substitution. Note that other components, such as the price of

the new model, may need readjustment.

Following are the steps in constraint-based substitution.

Step 1. Retrieve the most similar case from the case base.

Step 2. Determine any constraint violation.

Step 3. Substitute the components violated using the predefined semantic knowledge.

Step 4. Perform the substitution and make other adjustments, if necessary.

Auto system

Security system Electrical system

Antitheft system X Antitheft system Y 

Product A Product B Product C 

Engine system

KIND_OFPART_OF   INSTANCE_OF

• • •

Figure 4.3 Semantic tree of an auto system.
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4.2.2.2 Feedback-Based Substitution In feedback-based substitution,

solution adaptation is an iterative process that is guided by evaluation of user feed-

backs. Each time after a solution is carried out, feedback on its successfulness is

returned. If the solution fails, the cause of the failure is analyzed and the result

will be used to modify the adaptation process. Figure 4.4 gives an example of

how to carry out feedback-based substitution. Case A is the query from the user

and case B is the closest-matched case that is retrieved from the case library.

The solution of case B is presented to the customer, but the feedback from the cus-

tomer is: ‘‘Price is too high.’’ In this situation, substitution will be carried out

according to this information. The system will analyze the feedback and propose

a solution that the customer will accept: that is, an alternative model of car and

price will be proposed that satisfies the customer.

One of the advantages of feedback-based substitution is that the adaptation pro-

cess is carried out interactively with user feedbacks. The solutions proposed are

based on the needs and requirements of the users, and therefore they can be

accepted more naturally. Following are the steps in feedback-based substitution.

Step 1. Retrieve the most similar case(s) from the case base.

Step 2. Collect the feedback from the user on the old solution.

Case A (new) Case B (old) 

Retrieve

copy

Car type: sport 
Color: red 
Seating: 2
Valves: 48
Type: 5.7L

Model name: name 1
Price: 200,000 
Year: 2003

Feedback: not successful
Cause: price is too high

Car type: sport 
Color: red 
Seating: 2 
Valves: 48
Type: 5.7L

Model name: name 1
Price: 200,000 
Year: 2003

Feedback: successful

Car type: sport 
Color: red 
Seating: 2
Valves: 40
Type: 3.6L

Model name: name 2
Price: 150,000 
Year: 2000

Feedback: successful

AdaptCase C (adapted)

Figure 4.4 Feedback-based substitution.
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Step 3. Analyze the outcome and determine the cause if the solution fails.

Step 4. Perform the substitution according to the feedback, and make other adjust-

ments if necessary.

4.2.3 Transformation

Transformation is used when there is no appropriate substitute is available. A newly

tailored solution will be derived based on the constraints and characteristics of the

solution required. For example, sometimes it is difficult to find a substituting item

that satisfies the problem requirements exactly. In this situation, the old solution

will need to be adjusted, either partly or totally. Figure 4.5 gives an example of

transformation adaptation. In the car-buying problem, one of the requirements of

the user is the installation of a CD audio system in his new car. However, the

closest-matched cases (i.e., cars) are all equipped with a tape system only, and after

checking the semantic tree shown in Figure 4.6, no substitute is found to be avail-

able for these cars. To provide a workable solution, a tailored audio system with CD

player is needed. The recorder component is removed from audio system A in the

old solution, and a CD player is installed as a transformed solution.

Case A (new)

Retrieve

Copy

Adapt
Case C (Transformation step1: Remove) Case D (Transformation step 2: Add)

Case ID: 123
Speed: speed
Price: middle
Usage: sport 
Video: yes 
Audio: D {4 speakers, CD player}

Price: 10,500
Audio: A {4 speakers, tape recorder}

Case ID: 456
Speed: speed
Price: middle
Usage: sport 
Video: yes
Audio: A {4 speakers, tape recorder}

Price: 10,500
Audio: A {4 speakers, tape recorder}

Case ID: 123
Speed: speed
Price: middle
Usage: sport 
Video: yes
Audio: D {4 speakers, CD player}

Price: 10,000

Audio: 1A  {4 speakers} 

Case ID: 123
Speed: speed
Price: middle 
Usage: sport 
Video: yes 
Audio: D {4 speakers, CD player}

Price: 11,000

Audio: 2A {4 speakers, CD player} 

Case B (old)

Figure 4.5 Transformation.
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Following are the steps in transformation adaptation.

Step 1. Retrieve the most similar case from the case base.

Step 2. Repair the old solution by checking the semantic structure for available

substitutions.

Step 3. If no substitution is available, transform the old solution by replacing some

of its parts with suitable components.

Step 4. Add the new solution to the semantic structure for later use.

4.2.4 Example of Adaptation Knowledge in Pseudocode

In Sections 4.2.1 to 4.2.3, traditional adaptation strategies are presented. Here, a

detailed example of a computer program that can be used to carry out the adaptation

is given in pseudocode. For simplicity, a constraint-based substitution strategy

(Section 4.2.2.1) is used. The adaptation knowledge is represented as IF–THEN

rules, where the condition part is used for constraint checking and the decision

part explains the actions to be performed. Figure 4.7 is an example of pseudocode

that describes the adaptation process. It is written in Cþþ with comments separated

by the ‘‘//’’ symbol.

4.3 SOME CASE ADAPTATION METHODS

Let us describe here some methodologies based on the aforesaid strategies, either

individually or in combination. These methods are developed by four leading

groups working on case adaptation. The first one [2] involves learning adaptation

knowledge from the case data. This knowledge is stored as a set of ‘‘adaptation

cases’’ and used to carry out the task of adaptation. The second method of Leake

et al. [3] integrates the use of rule- and case-based reasoning for adaptation.

Whereas the approach of Göker [4] uses an adaptation matrix to compute the

Auto system

Entertainment system Electrical system

Video system Audio system 

Product A
(tape recorder)

Engine system……

Product B
(tape recorder)

Product C
(tape recorder)

Figure 4.6 Semantic tree of a second auto system.
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Figure 4.7 Pseudocode for constraint-based substitution.
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Figure 4.7 (Continued)
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Figure 4.7 (Continued)
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Figure 4.7 (Continued)
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necessary adaptation for attributes with numeric values, the one developed in [5]

performs case adaptation based on configuration techniques. These are explained

below.

4.3.1 Learning Adaptation Cases

An approach to acquiring adaptation knowledge automatically has been developed

by Jarmulak et al. [2]. This method is suitable for configuration and formulation

tasks, where the final solution consists of a constant number of components with

relatively limited interactions between them. This type of problem can be regarded

as a subclass of design problems. The adaptation process is as follows: After

retrieving the most similar case(s) from the case base, the present case and the cases

retrieved are analyzed and an ‘‘adaptation case’’ is constructed. For numerical attri-

butes, the problem/solution differences between the current case and the cases

retrieved are stored in the adaptation case. For nominal attributes, their ‘‘goodness’’

for predicting a proposed solution is stored. All the adaptation cases constitute what

is called adaptation knowledge. Given a new current case, the most similar case(s)

are retrieved from the case base. The adaptation cases are then used to compute the

adjustment required for the solution proposed. This method has been tested success-

fully on the problem of designing tablet formulation/composition, which requires

the selection of a set of excipients compatible with the drug, and at the same

time satisfying a number of constraints.

Figure 4.7 (Continued )
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4.3.2 Integrating Rule- and Case-Based Adaptation Approaches

A hybrid method described by Leake et al. [3] for case adaptation uses a combina-

tion of rule- and case-based reasoning. When a new problem case is encountered by

the CBR system, the most similar case(s) are retrieved. The adaptation process

begins with a small set of abstract transformation rules (see Section 4.2.3). The sys-

tem then searches the case library and finds the information needed to operationa-

lize (i.e., firing the rules) the transformation rule and apply it to the problems at

hand. The system improves its adaptation capability by case-based reasoning

applied to the case adaptation process itself: A trace of the problem-solving steps

of a proposed solution is stored and reused when similar problems arise in the

future. If the new solution is still not acceptable after using both rules and cases,

users can perform a specific/tailored adaptation through use of the system’s user

interface. The system consists of the following components for adaptation:

� Rule-based (transformation rules) adaptation component. The system per-

forms an adaptation by using adaptation rules, then applies it to the problems

at hand. These rules are obtained by interviewing domain experts.

� Case-based adaptation component. If no rules are suitable for use, the system

tries to retrieve an adaptation case describing successful earlier adaptation of a

similar problem. If the adaptation case is found, it is used for the adaptation;

otherwise, the manual adaptation process is triggered.

� Manual adaptation component. If rule- and case-based adaptations fail to

generate an acceptable solution, the user can perform the adaptation manually

through the system’s user interface.

After the adaptation is successful, the adapted solution and the problem-solving

steps (i.e., adaptation case) are stored for future use.

4.3.3 Using an Adaptation Matrix

In problems where the features are having interactions (e.g., if there is a depen-

dency relationship between two features), the adaptation process needs to consider

these interactions carefully. In Göker [4] an adaptation matrix is developed to

describe this characteristic. The idea is summarized as follows: The attributes of

an object (i.e., a case) are classified into two groups: the independent (base) attri-

butes and the dependent (derived) attributes. For example, a dependent attribute

may be the price of a product, while the independent attributes may be the compo-

nents needed in the manufacturing process. An adaptation matrix can be developed

that describes the relationship (or influence levels) of the independent attributes

with (on) the dependent attributes. Using this matrix, the effects on dependent attri-

butes of changes in the independent attributes can be computed. Given a new case,

the system retrieves the most similar case(s) from the case base. The differences

between the present case and the case(s) retrieved are checked against the adapta-

tion matrix. Adaptation of the retrieved solution can thus be performed. For
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example, only limited adaptation is required if changes are made to independent

attributes that have minimal effects on the dependent attribute (e.g., the solution).

On the other hand, if changes are made to the independent attributes that are having

substantial effects on the dependent attribute, the solution may need a large adjustment.

4.3.4 Using Configuration Techniques

An adaptation method, based on configuration techniques is described by Wilke

et al. [5]. It uses an object-oriented model to facilitate the adaptation process. A

case is an instance of a class (or a concept). It has a set of attributes that character-

ize its properties. The relationships among these classes (i.e., concepts), such as

KIND_OF, PART_OF and HAS_A, are used to build a hierarchical structure that

can provide information for the adaptation. The adaptation tries to build a complete

solution by configurating the components contained in the cases retrieved. The con-

figuration process starts by changing the major components, then subcomponents,

and so on. In each process, a set of constraints that is imposed on the solution is

used to evaluate the result of each configuration. The object hierarchy serves as

semantic knowledge of the relationships among the components that are being

changed or substituted for in the configuration process. This technique has been

used in assisting the configuration of computer systems that are sold on the Web.

Other alternative ways of case adaptation include the divide-and-conquer

approach developed by Fuchs and Mille [6], in which a problem is decomposed

into subproblems. For each subproblem a corresponding adaptation task is per-

formed. By combining the individual adapted components, the overall solution is

obtained. A structural adaptation method that is based on evaluation of the

structural similarity (e.g., class–subclass relationship) among cases is reported [7].

When performing the adaptation, both the values of the attributes and the

structural similarity are taken into consideration. The approach based on

introspective reasoning [8], involves a feedback mechanism to iteratively fine-

tune the adaptation process until the user is satisfied with the solution. The use

of the idea of replaying the problem-solving steps for adaptation is available [9].

4.4 CASE ADAPTATION THROUGH MACHINE LEARNING

In previous sections we have described three traditional case adaptation strategies

and some methods that are based on them, either individually or in combination.

The adaptation knowledge is derived primarily by interviewing the domain experts.

This process of acquiring adaptation knowledge is both labor intensive and time

consuming. The knowledge is also difficult to maintain. In this section, several

machine learning techniques, including those based on fuzzy decision trees, artificial

neural networks, Bayesian models, support vector machines, and genetic algorithms

are described. The task of learning is to generate specialized heuristics that relate

the differences in the input specifications (i.e., problem attributes) to the differences

in the output specifications (i.e., solution attributes). These heuristics can be used to

150 CASE ADAPTATION



determine the suitable amount of adaptation that is required. One of the advantages

of these techniques is that the adaptation knowledge can be learned automatically

from the cases, and therefore this knowledge is more robust. Furthermore, mainte-

nance of this knowledge can be better controlled and managed by relearning and

retraining with the new cases. The idea is expressed below.

First, let there be M clusters in the case base obtained through the use of cluster-

ing techniques described in Chapter 3. For a cluster LE ¼ fe1; e2; . . . ; emg, let each
case be denoted as ei ¼ ðxi1; xi2; . . . ; xin; yiÞ for i ¼ 1, 2, . . . , m, where the jth attri-

bute xij denotes the value of feature Fjð1 � j � nÞ of the ith case, and yi corre-

sponds to the action or value of the solution of the ith case. Compute, for every

case ek in the cluster LE,

fik ¼ ei � ek ¼ ðxi1 � xk1; xi2 � xk2; . . . ; xin � xkn; yi � ykÞ;

where fik is called the ith discrepancy vector of the kth case, and i; k ¼ 1; 2; . . . ;m.

For simplicity, we denote

Xi ¼ ðxi1; xi2; . . . ; xinÞ;

�Xik ¼ ðxi1 � xk1; xi2 � xk2; . . . ; xin � xknÞ;

�yik ¼ ðyi � ykÞ

Given a query problem X (i.e., the problem part of a case), the system retrieves the

most similar case e0 ¼ ðX0; y0Þ. To determine the amount of adjustment (i.e., adap-

tation) needed to modify the solution y0, the discrepancy vectors are used as train-

ing examples to generate some specialized heuristics (knowledge in the form of

rule, say) that relate differences in the input specifications (i.e., problem attributes)

to differences in the output specifications (i.e., solution attributes).

The discrepancy vectors, which are used for the learning of adaptation knowl-

edge, are defined as

fi0 ¼ ei � e0 ¼ ð�Xi0;�yi0Þ ð4:1Þ

where ei ¼ ðXi; yiÞ denotes the neighboring cases of e0. After training, the corre-

sponding adjustment amount �y0 can be determined. Thus, the new adapted solu-

tion for case X0 is obtained (i.e., y ¼ y0 þ�y0). In the following sections we

describe several soft computing techniques for learning this adaptation knowledge.

4.4.1 Fuzzy Decision Tree

A fuzzy decision tree method such as fuzzy ID3 has been described in Chapter 3 for

classifying cases. Fuzzy decision trees can also be used to represent adaptation

knowledge. Next, we provide the steps for acquiring such knowledge.

Step 1. Learn the feature weights of the problem attributes.

Step 2. Cluster the cases using the weighted distances.
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Step 3. For every case in each cluster, compare the differences between this case

and other cases in both problem attributes and solution attributes. Obtain a set of

discrepancy vectors.

Step 4. Fuzzify the discrepancy vectors.

Step 5. For every case, a fuzzy decision tree is obtained through training using the

fuzzy discrepancy vectors. Generate the fuzzy decision rules from the tree, and

simplify the rules using the rough set technique (i.e., reducts).

Step 6. Given a new problem, retrieve the most similar case from the case base.

Fuzzify the difference between these two cases in the problem parts. Use the

fuzzified difference as input to the fuzzy decision tree. Obtain the adjustment in

the form of a linguistic variable with certainty factors. Defuzzify them to get the

adjustment amount.

Step 7. Use the adjustment values to adapt the old solution.

The steps above are summarized in Figure 4.8. Note that in step 1, the weights of

the attribute features can be learned using the algorithms described in Section 3.5.

For step 2, the case clustering, the k-NN approach in Section 3.2 or the fuzzy-c

means approach in Section 3.4 can be used. For step 4, equation (2.10) can be

applied to generate the fuzzy membership functions. The defuzzification operation

can be carried out using equation (5.13).

4.4.2 Back-Propagation Neural Network

Many neural network models, such as the radial basis function (RBF) neural net-

work [10] and the back-propagation (BP) neural network, can be used to acquire the

adaptation knowledge using discrepancy vectors. Here we introduce use of a BP

network for such a task. (For details on the BP and RBF neural networks and their

(∆Xi 0,∆θi 0)

∆X 0 ∆q 0

Group of fuzzy rules
about query
problem X

Fuzzify Defuzzify

Determine reduct for simplification of
fuzzy decision rules 

Fuzzification,
decision tree training,
and mapping tree to
fuzzy rules Learning

phase

Figure 4.8 Adaptation using fuzzy decision tree.
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training algorithms, readers can refer to Appendix B.) Following are the steps in

using a back-propagation (BP) neural network for case adaptation.

Step 1. Learn the feature weights of the problem attributes.

Step 2. Cluster the cases using the weighted distances.

Step 3. For every case in each cluster, compare the differences between this case

and other cases in both problem attributes and solution attributes. Obtain a set of

discrepancy vectors.

Step 4. Preprocess (e.g., normalize) the discrepancy vectors for training the neural

network.

Step 5. For each case, use its discrepancy vectors to train the neural network.

Step 6. Given a new problem, retrieve the most similar case from the case base.

Compute the difference between their problem attributes. Preprocess this difference

and use it as the input to the neural network.

Step 7. Obtain the adjustment amount from the neural network by inputting the

preprocessed differences of the attribute values.

Step 8. Postprocess (e.g., denormalize) the adjustment amount and use it to adapt

the old solution for the query problem.

The steps above are summarized in Figure 4.9.

4.4.3 Bayesian Model

We discussed the Bayesian model in Section 2.4.2 for case indexing. This model

can also be used in case adaptation if the sample space contains fuzzified discre-

pancy vectors. Given a new query, the most similar case is retrieved and the differ-

ence between their problem parts is input to the Bayesian model. The output is the

class label that identifies the adjustment strategy. The following steps describe how

to adapt the old solution using the Bayesian model.

Learning
phase

Training  neural
network with BP
algorithm 

Trained neural
network for
problem X

(∆Xi 0,∆θi 0)

∆X 0 ∆q 0

Figure 4.9 Adaptation using BP neural network.
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Step 1. Learn the feature weights of the problem attributes.

Step 2. Cluster the cases using the weighted distances.

Step 3. For every case in each cluster, compare the differences between this case

and other cases in both problem attributes and solution attributes. Obtain a set of

discrepancy vectors.

Step 4. Fuzzify the discrepancy vectors. Estimate the parameters of the Bayesian

model.

Step 5. Given a new problem, retrieve the most similar case from the case base.

Fuzzify the difference between these two cases in the problem parts.

Step 6. Input the problem difference into the Bayesian classifier. Identify the class

label for adjustment using the Bayes formula.

Step 7. Obtain the adjustment in the form of a linguistic variable with certainty

factors. Defuzzify them to get the adjustment amount.

Step 8. Use the adjustment amounts to adapt the old solution.

The steps above are summarized in Figure 4.10.

4.4.4 Support Vector Machine

Support vector machines (SVMs) [11,12] are a class of classifiers that provide good

generalization (i.e., can achieve high accuracy of classification even with a rela-

tively small number of training samples). Therefore, if the available cases are

limited, this method can be used as an alternative to the more traditional

approaches, such as the Bayesian model and the BP neural networks. The process

of using the support vector machine in the case adaptation is as follows. Given a

query problem X (i.e., the problem part of a case), the system retrieves the most

similar case e0 ¼ ðX0; y0Þ. The discrepancy vectors ð�Xi0;�yi0Þ with respect to

X are generated. For simplicity, we assume that the values of �yi0 fall into only

two categories, labeled þ1 or �1, representing two different types of adaptations

Bayes model
Fuzzify Defuzzify

Fuzzify and estimate
Bayes model parameters Learning

phase

(∆Xi 0,∆qi 0)

∆X 0 ∆q 0

Figure 4.10 Adaptation using the Bayesian model.
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(e.g., with adaptation or without adaptation). To predict the value of �y0 given

�X0, we just need to identify its corresponding label. To achieve this goal, an opti-

mal separating hyperplane is constructed using the discrepancy vectors in the form

of ð�Xi0; labeli0Þ, where labeli0 is þ1 or �1. After the hyperplane is constructed,

�X0 is input to the classifier and the corresponding�y0 is obtained by checking the

output of the SVM.

In situations where the discrepancy vectors are not linearly separable, the sample

space is transformed to a new space so that the data can be separated linearly. This

is performed using a kernel mapping f such that

�Xi0 ¼ ðxi1 � x01; . . . ; xin � x0nÞ 7! f ð�Xi0Þ ¼ ð f1ð�Xi0Þ; . . . ; fNð�Xi0ÞÞ ð4:2Þ

Usually, more than one hyperplane can be constructed for correct classification in

the sample space. For example, two hyperplanes L2 (the solid lines in Figure 4.11)

can be used to separate the samples. The optimal one should be chosen so as to have

a lower possibility of misclassification on new (unknown) samples. Note that in

Figure 4.11,

L1 : Kf ðXÞ þ b ¼ 1

L2 : Kf ðXÞ þ b ¼ 0

L3 : Kf ðXÞ þ b ¼ �1

ð4:3Þ

where K and b are parameters determining the position of the hyperplanes.

We find that the hyperplane L2 in Figure 4.11b has a better separation margin

(ability) than the one in Figure 4.11a. This is because the distance between the

two parallel lines L1 and L3 in Figure 4.11b is larger than that of Figure 4.11a,

and this can reduce the possibility of misclassification on the test samples. The dis-

tance between the parallel lines, such as those in Figure 4.11, is 1=jjKjj, where

jjKjj ¼
PN

i¼1 k
2
i

� 	1=2
for K ¼ ðk1; k2; . . . ; kNÞ. The best hyperplane can be found

L2

L2

L3

L3L1

L1

(a) (b)

+1

–1

 +1

–1

Figure 4.11 Samples separated with the hyperplanes.
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by selecting an appropriate K that has the minimal jjKjj value and satisfies the con-

straints in the following quadratic programming problem:

MinhK;Ki yiðhKf ðXiÞi þ bÞ  1; i ¼ 1; 2; . . . ; l ð4:4Þ

where h�;�i denotes the inner product, l the number of training samples, and yi cor-

responds to labeli0. To find K and b, a Lagrangian function is constructed as

LðK; b; aÞ ¼ 1
2
hK;Ki �

X

l

i¼1

ai½yiðhK; f ðXiÞi þ bÞ � 1�; ai  0 ð4:5Þ

According to the Kuhn–Tucker saddle point condition [11,12], if there exists a point

ðK�; b�; a�Þ satisfying

LðK�; b�; aÞ � LðK�; b�; a�Þ � LðK; b; a�Þ ð4:6Þ

the optimal solution h� ¼ ðK�; b�Þ. To obtain ðK�; b�; a�Þ, we need to get the mini-

mum value of L with respect to K and b and the maximum value with respect to a.

Let qL=qK ¼ qL=qb ¼ 0, we have K� ¼
Pl

i¼1 a
�
i yi f ðXiÞ and

Pl
i¼1 a

�
i yi ¼ 0. By

substituting them into L, K and b are eliminated from equation (4.5). The value of

a� can thus be achieved by solving a quadratic programming problem with respect

to a� . To obtain the value of b�, a group of support vectors, which are on the margin

hyperplanes, are identified using the Karush–Kuhn–Tucker condition [11,12].

These support vectors are then used to get the value of b� from the equation of

the hyperplanes (4.3).

Rewriting the optimal hyperplane in the form of inner product, we have

X

l

i¼1

a
�
i yih f ðXiÞ; f ðXÞi þ b� ¼ 0

It can also be rewritten in the form of kernel function
Pl

i¼1 a
�
i yi KerðXi;XjÞþ

b� ¼ 0, where

KerðXi;XjÞ ¼ h f ðXiÞ; f ðXÞi ð4:7Þ

Thus, a general form of the classifier can be represented by

ClassðXÞ ¼ sgn
X

l

i¼1

a
�
i yiKerðXi;XÞ þ b�

 !

ð4:8Þ

where

sgnðxÞ ¼
1 x > 0

0 x ¼ 0

�1 x < 0

8

<

:

ð4:9Þ
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Now, for case adaptation, given a new query problem X, we can input it into equa-

tion (4.8) and output the class label (i.e., either �1 or þ1) to identify the corre-

sponding adaptation strategy. The following kernel functions can be used.

KerðXi;XÞ ¼ XT
i X; KerðXi;XÞ ¼ ðXT

i X þ 1Þd; KerðXi;XÞ ¼ exp
�jjX � Xkjj

2

s2

 !

One of the advantages of SVM is that it requires relatively fewer samples to achieve

a satisfactory result, as can be seen in Figure 4.12. The SVM classifier has a better

performance than the BP neural networks, which require many more samples and

computing efforts to reach the same level of accuracy.

For multiclass problems (i.e., the sample data are classified into n classes), Inoue

and Abe [13] have proposed a fuzzy support vector machine to generate the optimal

boundaries among multiclasses. The extension of SVM with fuzziness makes it

more useful for case adaptation. The steps in using SVM for learning adaptation

knowledge are as follows:

Step 1. Learn the feature weights of the problem attributes.

Step 2. Cluster the cases using weighted distances.

Step 3. For every case in each cluster, compare the differences between this case and

other cases in both problem and solution attributes. Obtain a set of discrepancy vectors.

Step 4. For each case, construct the support vector machine using the discrepancy

vectors.

Step 5. Given a new query, find its most similar case and compare the discrepancy

in the problem part.

Step 6. Input �X0 and output the label corresponding to �y0 to determine the

adaptation strategy.

Step 7. Use the adaptation strategy to derive a new solution.

The steps above are summarized in Figure 4.13.

Figure 4.12 Binary classification of nonlinearly separable data using SVM.

CASE ADAPTATION THROUGH MACHINE LEARNING 157



4.4.5 Genetic Algorithms

In previous algorithms, adaptation knowledge has been acquired directly from

cases. However, in situations when there are not enough cases, we can use genetic

algorithms. The idea is that when an old solution is retrieved, a modification

process is initialized randomly. The solution adapted is tested and the feedback

is collected to determine its fitness. This process is repeated for many cycles until

a satisfactory solution is obtained. The modification can be expressed as a vector

and encoded as a chromosome. Genetic operators such as selection, crossover, and

mutation can be used to work on these vectors and produce offspring. The evalua-

tion of the fitness value of the adapted solution can be determined either by a

domain-specific model or by tests carried out in the real world. For example, in

planning and synthesizing tasks where a CBR system is used to assist a planner

or architect to construct an artifact based on the matching against a set of proto-

typical artifacts in the case base, the adaptation involves the determination of the

correct features in the correct places as well as in the correct order, the values

corresponding to these parameters can be determined using GA.

To illustrate the principle above, the following example is used. In Table 4.2, for

problem 1, three modification vectors are initialized randomly and used to adapt the

Build the support
vector machine

SVM

Learning
phase

(∆Xi 0,labeli 0)

∆X 0 ∆q 0

Figure 4.13 Adaptation using support vector machine.

TABLE 4.2 GA for Case Adaptation

Fitness of the

Problem Modification Vectors New Solution

1 �v
1
11;�v

1
12; . . . ;�v

1
1n fit11

�v
1
21;�v

1
22; . . . ;�v

1
2n fit12

�v
1
31;�v

1
32; . . . ;�v

1
3n fit13

2 �v
2
11;�v

2
12; . . . ;�v

2
1n fit21

�v
2
21;�v

2
22; . . . ;�v

2
2n fit22

�v
2
31;�v

2
32; . . . ;�v

2
3n fit23
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old solution. �v
k
ij is the jth adjustment value in the ith modification vector for the

kth problem. fitki is the fitness value of the solution adapted with the ith adaptation

vector for the kth problem. Each vector is coded and used as the chromosome in

genetic operations. After carrying out the genetic operations successively, the modi-

fication vectors are optimized gradually. The optimized chromosome can then be

used for the adaptation.

4.5 SUMMARY

In this chapter we have presented some of the traditional and the soft computing–

based approaches for case adaptation. Traditionally, the adaptation knowledge is

acquired through interviews with human experts and coded manually into a CBR

system. Three types of traditional adaptation strategies are described: reinstantia-

tion, substitution, and transformation. These methods are both labor intensive

and time consuming. Maintenance of the knowledge base is also difficult. For

machine learning–based methods, soft computing techniques, including those based

on fuzzy decision trees, back-propagation neural networks, Bayesian models, sup-

port vector machines, and genetic algorithms, are presented. One of the advantages

of these techniques is that adaptation knowledge can be determined automatically

from the cases, so that this knowledge is more robust. Furthermore, maintenance of

this knowledge base becomes easier by relearning or retraining with the new cases

available. Although we have presented only the broad principles, the particular

algorithms can be formulated depending on the problems at hand.
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CHAPTER 5

CASE-BASE MAINTENANCE

5.1 INTRODUCTION

In previous chapters we have described different tasks of CBR systems, such as

selection and extraction of prototypical cases, retrieval of cases, establishing an

appropriate similarity function, and defining various adaptation mechanisms. Since

the CBR systems tend to grow in an evolutionary manner, constant maintenance of

the knowledge is necessary to ensure correct system performance in response to

changes in task or environment. The importance of maintaining traditional expert

systems, in particular rule- and frame-based expert systems, has been investigated

and well documented [1–7]. However, the issue of maintenance of CBR systems

has largely been neglected in the past, and only recently, due to the increasing num-

ber of systems being used in the industry, has the problem of case-base maintenance

(CBM) become more prevalent [8–20]. In essence, case-base maintenance can be

viewed as a process of refining a CBR system to facilitate future reasoning for a

particular set of performance objectives [21]. These objectives are usually defined

by users depending on the task domain and external environment. There are two

types of maintenance tasks: qualitative and quantitative. Qualitative maintenance

deals with assurance of the correctness, consistency, and completeness of the

CBR system; quantitative maintenance is concerned with assurance of the problem-

solving efficiency (e.g., the average problem-solving time), the practical limit of the

size of the case base (e.g., storage limits), the reorganization of the case indexes, the

Foundations of Soft Case-Based Reasoning. By Sankar K. Pal and Simon C. K. Shiu
ISBN 0-471-08635-5 Copyright # 2004 John Wiley & Sons, Inc.
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changes of case representation structures, and other house keeping tasks. So far,

many policies and techniques have been applied to maintaining case bases, some

of them based on the soft computing paradigm [22,23]. In this chapter we provide

a brief review of different methods of case-base maintenance, explain the signifi-

cance of soft computing, and demonstrate some maintenance algorithms based on

soft computing. In Section 5.2 the background of knowledge-based system mainte-

nance is provided for the convenience of readers. The meaning of case-base main-

tenance, from both the qualitative and quantitative points of view, is explained in

Section 5.3. In Sections 5.4 and 5.5, respectively, we describe in detail a rough-

fuzzy hybridization method and a fuzzy integral–based competence model for

case-base maintenance.

5.2 BACKGROUND

In the early 1990s there was an explosion of activities in the area of expert system

maintenance [then known in the literature as validation and verification (V&V)].

For example, one of the longest-sequenced workshops at the AAAI (American

Association for Artificial Intelligence) meeting has been the Workshop on Verifica-

tion, Validation and Testing of Intelligent Systems. The first five workshops were

held during 1988–1992, and the latest one was organized by O’Leary and Preece

[24] in 1998. The International Joint Conferences on Artificial Intelligence (IJCAI)

had workshops on V&V since 1989. The European Conference on AI (ECAI) also

has a number of workshops on V&V. Special issues on verification and validation of

expert systems are available in a number of journals: International Journal of

Human-Computer Studies, vol. 44, no. 2, 1996; International Journal of Intelligent

Systems, vol. 9, no. 8, 1994; International Journal of Expert Systems, vol. 6, no. 3,

1993; and Expert Systems with Applications, vol. 1, no. 3, 1990 and vol. 8, no. 3,

1995. Recently, research on maintenance and management of knowledge-based

systems has become a part of the more general issue of knowledge management

(KM). Various KM conferences and workshops have addressed the issue of main-

tenance of intelligent systems: the ECAI-02 workshop on knowledge transforma-

tion; the ECAI-02 workshop on knowledge management and organizational

memories; the Second International Conference on Knowledge Management,

I-KNOW-02; and the Fourth International Conference on Practical Aspects of

Knowledge Management. Parallel to the research activities in the maintenance of

rule- and frame-based knowledge-based systems, the maintenance of CBR systems

was recognized in the late 1980s, and since then research has been conducted by a

number of researchers, such as O’Leary [25], Racine et al. [26–29], Leake et al.

[21,30–32], Smyth and McKenna [33–37], and Shiu et al. [38–40]. Recently, a spe-

cial issue on maintaining CBR systems is published in Computational Intelligence

Journal, vol. 17, no. 2, May 2001. However, the work done so far is quite diverse

and without having a unified framework on case-base maintenance. In the next
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section a systematic method of defining case-base maintenance tasks is given based

on its qualitative and quantitative aspects.

5.3 TYPES OF CASE-BASE MAINTENANCE

Case-base maintenance involves the policies and techniques of adding, deleting,

and updating cases, indexes, and other knowledge structures (e.g., similarity and

adaptation) in a CBR system in order to guarantee its ongoing effectiveness and

performance. Its activities can be divided broadly into two categories: (1) qualita-

tive maintenance and (2) quantitative maintenance. Qualitative maintenance refers

to the assurance of the effectiveness of the CBR system, which includes the correct-

ness, consistency, and completeness of the system. Quantitative maintenance aims

at assuring the problem-solving efficiency of a CBR system, such as improving the

average problem-solving time, controlling the size of the case base, and reorganiz-

ing the case index structure.

5.3.1 Qualitative Maintenance

The purpose of qualitative maintenance is to assure, mainly, the three characteris-

tics of CBR systems: correctness, consistency, and completeness.

5.3.1.1 Correctness The correctness of a CBR system is its ability to

‘‘solve’’ input query problems (i.e., whether a correct CBR system has been built).

For example, in classification problems such as medical diagnosis and equipment

failure analysis, a new case is matched against those in the case base to determine

the correct class label. The correctness of the CBR system is therefore defined as

the degree of successful classification of cases. On the other hand, if the solution

component is a real value, such as the housing price or rental cost of apartments,

the correctness of the CBR system could be defined as the percentage difference

between the actual and predicted housing prices. However, in synthesis tasks where

a CBR system is used to assist a planner or architect to construct an artifact based

on matching against a set of prototypical artifacts in the case base, the correctness

would be more difficult to define. This is because synthesizing tasks involve placing

the correct features in the correct places as well as in the correct order. These tasks

are more difficult to evaluate objectively. Determination of the correctness of a

CBR system is application and domain dependent.

5.3.1.2 Consistency The consistency of a CBR system involves its quality of

providing solutions that are not in conflict with or contradict the same problem. In

general, a CBR system is considered to be inconsistent if it contains one or more of

the following types of cases in its case base: redundant, conflicting, alternative,
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erroneous, dead cases. Inconsistencies are anomalies and are considered as

potential errors. Detection and analysis of these potential errors are crucial in build-

ing and maintaining CBR systems. The aforesaid types of problematic cases are

described as follows:

1. Redundant cases. If two cases are the same (i.e., case duplication) or if one

case subsumes another case, one of the cases duplicated or the case subsumed can

be removed from the case base without affecting the overall problem- solving abil-

ity of the CBR system. The meaning of subsumption is as follows: Given two cases

ep and eq, when case ep subsumes case eq, case ep can be used to solve more pro-

blems than eq. In this case, eq is said to be redundant. For example, let ep and eq be

two successful cases of bank credit card application. Let the ‘‘salary’’ of ep be

above 12K and the ‘‘salary’’ of eq be above 20K, and other attributes be equal.

If ep gets credit card approval with a salary above 12K, eq will get approval as

well. This means that case ep subsumes case eq and ep is a general case of eq. There-

fore eq can be removed.

2. Conflicting cases. Conflicting cases are two or more cases that are very simi-

lar on every problem attribute, yet propose conflicting solutions. This conflict may

be due to the erroneous input of case attributes or may be due to a change in the

‘‘correct’’ solution over time.

3. Alternative cases. In many applications, offering alternative solutions to the

same problem is very useful (e.g., recommending various holiday packages to the

tourists). Therefore, if a system is designed to offer alternative solutions rather than

pure similarity-based suggestions, the detection of these alternative cases will be

very useful.

4. Erroneous cases. A case that is inconsistent with the background knowledge

of the system is an erroneous case. For example, if an attribute value or suggested

solution to a case has something like ‘‘age of a customer is 2003,’’ it is called an

erroneous case because it does not match with reality (i.e., background knowledge).

Erroneous cases result from errors introduced during the case capturing or entering

process. These errors can be detected using standard data validation methods such

as the check digit.

5. Dead cases. A case is a dead case if it cannot be retrieved from the case base

due to missing important attributes or erroneous feature values. Given a new case,

the similarity score with this dead case is always zero (i.e., totally dissimilar).

5.3.1.3 Completeness Completeness of a CBR system involves its coverage

of the problem space in the target domain (i.e., the CBR system contains all the

essential cases that could be used to generate solutions to all possible current cases).

In the process of building CBR systems, cases are collected incrementally, and the

completeness of a case base is also evolving over time. However, the addition of

cases may not necessarily improve the completeness of a case base; therefore,

identification of the essential cases as well as ‘‘missing knowledge’’ becomes
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the primary task in building a comprehensive CBR system with satisfactory

completeness. There are two characteristics that could be used to describe the com-

pleteness of a CBR system: (1) coverage of cases and (2) reachability of cases

[33,34]. Coverage of a case is the set of target problems (i.e., cases) that this

case in question can be used to solve. The reachability of a target problem (i.e.,

a case), on the other hand, is the set of all cases that can be used to solve it. These

concepts are illustrated in Figure 5.1. Here sets A and B represent the coverage and

reachability of case e, respectively. Set C, which is the intersection of A and B,

represents those cases that can be solved by case e as well as can be used to solve

case e. Note that the cases with larger coverage have higher contributions to the

competence of (i.e., the range of problems that can be solved by) a case base.

On the other hand, cases with larger reachability have lower contributions to the

competence of a case base, since these cases can be solved (reached) by many other

existing cases. Therefore, their significance is evident from the viewpoint of select-

ing cases for constructing and/or maintaining case bases.

5.3.2 Quantitative Maintenance

Some typical tasks that are to be assured through quantitative maintenance are as

follows:

1. Controlling the size of the case base. In many CBR applications, the case

base grows at a fast rate, and this causes inefficiency in the case retrieval process.

Purely adding more cases for problem solving does not guarantee that the solution

will be better. On the other hand, deleting too many cases may reduce the compe-

tence of the CBR system. Therefore, there is always a trade-off between the size of

a case base and its competence. This means retaining the minimum number of cases

such that the competence of the system is preserved.

2. Revising the case indexing structure. Case representation and indexing struc-

tures need to be reviewed and updated periodically due to the changes in domain

knowledge (e.g., a different description of the cases) or classifying rules (e.g., the

B

*e

A

C

Figure 5.1 Case coverage and reachability.
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classifying rules are replaced by new ones). Furthermore, indexes of the new cases

may need to be created, and the feature weights for classification may need to be

relearned.

3. Collecting performance statistics. For scheduling and identifying effective

maintenance activities, various performance indicators need to be collected, such

as the use of cases, cost of retrieval, and case access frequency. This information

is useful in fine tuning of the performance of the CBR system. For example, cases

with a high frequency of access will be stored in fast disks or on client nodes over a

distributed network.

4. Detecting irrelevant or obsolete cases. These are the cases that no longer

have value to the system. The solutions of these cases are no longer valid

(e.g., obsolete machine parts/components that are no longer manufactured by the

supplier).

5. Cleaning noisy or missing data. Cases with noisy or missing data are very

common in CBR systems because cases are usually recorded and input by different

persons and from different sources. The same problem may be described in many

different ways, or different problems may be described similarly by different per-

sons. Filling in the missing information and standardizing the case description

therefore become important maintenance tasks of these systems.

6. Gathering user feedback and comments. The main advantage of CBR sys-

tems is that it does not explicitly need the underlying domain theory. The pro-

blem-solving ability is based entirely on the similarity assumption (i.e., similar

problems should have similar solutions). However, this assumption holds only

when feature similarity directly reflects the characteristics of the underlying domain

theory. In many practical real-world problems, this similarity assumption needs to

be evaluated and reviewed regularly by users. The feedback and comments from

them are therefore crucial for CBR developers to rethink and redesign the reasoning

strategy behind CBR systems. For example, a new feature weight training scheme

may be needed, a new adaptation algorithm may be required, and a new interpreta-

tion of similarity may be desirable to make the system up to date.

7. Performing backup and recovery. Similar to other information systems,

many housekeeping tasks are required for CBR systems, such as backup and recov-

ery of the case base, creation of transaction logs, archiving, access controls, crea-

tion of case-base views (i.e., access to certain cases/or fields only), and possibly

many others that could be defined by the user.

5.4 CASE-BASE MAINTENANCE USING A

ROUGH-FUZZY APPROACH

Recently, with the rapid growth of applying intelligent systems on the World Wide

Web (WWW), practitioners are becoming more interested to consider the potential

of distributed case-based reasoning (CBR) systems [41–45]. For example, consider

a distributed CBR help-desk application over the WWW in which the representative
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cases need to be stored physically in the client nodes (i.e., for quick access), and all

the original cases reside in the central server. To keep this distributed CBR system

up to date, a strategy is needed to maintain the cases as well as the reasoning tech-

nique (e.g., similarity function and the case-dispatching strategy) used.

For real-world problems, there is always a limit on the size of the client-side case

bases, a limit that is based on space and performance trade-off. The question then

arises: How should cases be selected for storing on the client side? Usually, the

client-side case base will act as a cache (i.e., storing cases that are most likely to

be needed by individual users). A simple solution is to store those cases that are

similar to such problems that the user has submitted in the past. However, this

would guarantee optimal solutions for only a small portion of the queries. A better

strategy is needed to select the cases for constructing the client-side case base such

that it is competence-rich (i.e., provides comprehensive coverage of the problem

space). In the following section we describe a methodology demonstrating how

such cases can be selected and updated regularly for building a client-side case

base.

5.4.1 Maintaining the Client Case Base

The block diagram of the methodology, consisting of six phases, is shown in

Figure 5.2. The aim of phase 1 is to learn the feature weights of the cases. This is

done using an evaluation function that does not need to know the class information.

Using the information of these weights, the original feature space is transformed

into a weighted feature space such that clustering of cases can be done more

effectively (i.e., similarity/dissimilarity among cases becomes more apparent).

Phase 2 aims to partition the case base into several clusters using the weighted

distance metric based on the concepts of intracluster and intercluster similarity.

Several representative cases are identified in each of these clusters, and a non-

representative case in the cluster is approximated by the representative cases.

The approximation is carried out using a group of fuzzy adaptation rules. Phase 3

aims to mine these adaptation rules using a rough-fuzzy method. Rough sets

are used for removing the redundant attributes through reducts, thereby reducing

the searching time. Fuzzy sets are used to describe the approximation ability of

the fuzzy adaptation rules, and those rules having strong approximation ability

are then selected as the representative ones, thereby reducing their number. These

representative rules are considered as the adaptation knowledge associated with the

representative cases. Based on these adaptation rules, phase 4 uses a reasoning

mechanism to predict the adjustment of the solution for a query case. Phase 5

describes how to select several representative cases from each cluster based on

the concepts of coverage and reachability. Since the sets representing the coverage

and reachability of different cases are usually ill-defined, the notion of fuzzy sets

has been incorporated. The representative fuzzy adaptation rules and the cases thus

obtained then constitute the thin-client-side case base in the distributed CBR

system. (Note that the competence of this case base will be similar to that of the
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original central server, as discussed earlier.) Phase 6 involves periodical updating

and reselection of representative cases because of the changes in domain knowledge

and task environment. These are described below with implementation on a

real-life data [46]. Here phases 3 to 6 (dashed block in Fig. 5.2) are given the

main emphasis, since they are relatively more concerned with the task of case-

base maintenance.

Learning feature weights
information

Partitioning the case base into
k clusters

Mining fuzzy adaptation rules

Selecting representative cases for
maintaining the size of the case base

Update and reselect cases
periodically

Predicting the adjustment of
solution through reasoning 

Figure 5.2 Methodology for building and maintaining a client-size case base.
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5.4.1.1 Learning Feature Weights As described in Section 3.5, there

are several supervised and unsupervised methods for learning feature weights.

They mainly involve defining an evaluation function such that the smaller the

value of the evaluation function, the better the corresponding feature weights.

Thus when this function attains its minimum, the best set of feature weights is

obtained.

5.4.1.2 Partitioning the Case Base into Several Clusters For a large

case base, it is usually necessary to divide it first into several clusters, so that the

representative cases can be selected for description of the concepts conveyed by

these clusters. In this phase the case base is partitioned into several clusters using

the weighted distance metric with the weights learned in phase 1. Since the features

considered here are real-valued, any clustering method such as the c-means algo-

rithm, Kohonen’s self-organized network [47], or a similarity matrix-based

approach [48] can be used.

5.4.1.3 Mining Adaptation Rules by a Rough-Fuzzy Approach Let

there be M clusters in the case base obtained in phase 2. For a cluster LE ¼
fe1; e2; . . . ; emg, let each case be denoted as ei ¼ ðxi1; xi2; . . . ; xin; yiÞ for i ¼ 1; 2;

. . . ;m, where the jth attribute xij denotes the value of feature Fj ð1 � j � nÞ of

the ith case, and yi corresponds to the action or solution (i.e., class label) of the

ith case. Compute, for every case ek in the cluster LE,

fik ¼ ei � ek ¼ ðxi1 � xk1; xi2 � xk2; . . . ; xin � xkn; yi � ykÞ

¼ fyik;1; yik;2; . . . ; yik;n; uikg; i;k ¼ 1; 2; . . . ;m ð5:1Þ

where fik is called the ith discrepancy vector of the kth case, and all such discre-

pancy vectors fik ði; k ¼ 1; 2; . . . ;mÞ constitute a set denoted by fikjfik 2 Rnþ1
;

�

i; k ¼ 1; 2; . . . ;mg. yik; j ¼ xij � xkj; j ¼ 1; 2; . . . ; n, denotes the value of the jth fea-

ture-difference attribute of fik, and uik ¼ yi � yk is the value of the action differ-

ence. Each discrepancy vector fik is seen to be described by ðnþ 1Þ difference

attributes Attrð1Þ;Attrð2Þ; . . . ;AttrðnÞ;Attrðnþ1Þ
� 

; where Attrðnþ1Þ is the solution

(action)-difference attribute.

Now we determine a set of membership functions representing fuzzy sets nega-

tive big (NB), negative small (NS), zero (ZE), positive small (PS), and positive big

(PB) for each difference attribute, construct a set of fuzzy rules corresponding to

each case, reduce the number of attributes of these rules using rough sets, and

then discard the redundant rules. The resulting rules, thus mined, constitute the

adaptation knowledge of the case base.

ConstructingMembership Functions Let each of the ðnþ 1Þ difference attributes

of the discrepancy vector fik be fuzzified into five linguistic terms: NB, NS, ZE, PS,
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and PB. Their membership (triangular) functions—mNB; mNS; mZE; mPS; and mPB—

along the jth attribute (see Fig. 5.3) are defined by

mNBðxÞ ¼

1; x � 2aj
x
aj
� 1; 2aj < x < aj

0; x  aj

8

>

<

>

:

mNSðxÞ ¼

0; x � 2aj; x  0

2� x
aj
; 2aj < x < aj

x
aj
; aj � x < 0

8

>

>

<

>

>

:

mZEðxÞ ¼

0; x � aj; x  bj

1� x
aj
; aj < x < 0

1� x
bj
; 0 � x < bj

8

>

>

<

>

>

:

mPSðxÞ ¼

0; x � 0; x  2bj
x
bj
; 0 < x < bj

2� x
bj
; bj � x < 2bj

8

>

>

<

>

>

:

mPBðxÞ ¼

0; x � bj
x
bj
� 1; bj < x < 2bj

1; x  2bj

8

>

<

>

:

ð5:2Þ

where

aj ¼

P

y2N1
y

CardðN1Þ

bj ¼

P

y2N2
y

CardðN2Þ

ð5:3Þ

and

N1 ¼ fyjy 2 Range ðAttrðjÞÞ; y < 0g

N2 ¼ Range ðAttrðjÞÞ � N1

Range ðAttrð jÞÞ ¼ fy1k; j; y2k; j; . . . ; yðm�1Þk; jg

and Cardð�Þ denotes the cardinality of a crisp set ð�Þ.

NB     NS     ZE    PS     PB 

aj 0 bj

Figure 5.3 Five membership functions.
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After the process of fuzzification of the ðnþ 1Þ difference attributes of the dis-

crepancy vector fik using the membership functions [equations (5.2)], the corre-

sponding fuzzy discrepancy vector jik having 5ðnþ 1Þ components is generated

as follows:

jik ¼ fmNBðyik;1Þ; mNSðyik;1Þ; mZEðyik;1Þ; mPSðyik;1Þ; mPBðyik;1Þ;

� � � mNBðyik;2Þ; . . . ; mPBðyik;2Þ; . . . ;

mNBðyik;nÞ; . . . ; mPBðyik;nÞ; mNBðuikÞ; . . . ; mPBðuikÞg ð5:4Þ

where mNBð�Þ; mNSð�Þ; mZEð�Þ; mPSð�Þ, and mPBð�Þ denote the membership values of

ð�Þ to the linguistic fuzzy sets NB, NS, ZE, PS, and PB, respectively, and ð�Þ
represents either the feature-difference attribute (y) or the solution-difference

attribute (u).

Determining Fuzzy Rules (Knowledge Base) For obtaining the fuzzy rule corre-

sponding to this fuzzy discrepancy vector, we determine its n different antecedent

parts (from the n feature-difference attributes) and one consequent part (from the

solution-difference attribute) by selecting the respective fuzzy sets corresponding

to maximum membership values. For example, if

mNSðyik; jÞ ¼ maxfmNBðyik; jÞ; mNSðyik; jÞ; . . . ; mPBðyik; jÞg ð5:5Þ

then the fuzzy set (i.e., linguistic term) NS is chosen as the label for the jth,

j ¼ 1; 2; . . . ; n, antecedent of the rule. The case for the consequent part is similar.

Therefore, for every case in a cluster LE ¼ fe1; e2; . . . ; emg consisting of m

cases, we obtain m fuzzy rules. Let the ith rule, i ¼ 1; 2; . . . ;m, corresponding

to such a case in a cluster be described in terms of its antecedents and consequent

as

ri : IF ½Attrð1Þ ¼ Ai1� AND ½Attrð2Þ ¼ Ai2� � � � AND

½AttrðnÞ ¼ Ain� THEN ½Attrðnþ1Þ ¼ Cj� ð5:6Þ

where Attrð1Þ;Attrð2Þ; . . . ;AttrðnÞ represent the first, second, . . ., nth feature-

difference attributes, respectively. Attrðnþ1Þ is the solution-difference attribute.

Ai1;Ai2; . . . ;Ain and Cj denote different fuzzy labels (sets) representing the antece-

dents and consequent for the ith rule.

Let the m rules obtained corresponding to a case in LE be as shown in Table 5.1.

Here the ith row of the table represents the fuzzy rule ri; i ¼ 1; 2; . . . ;m, taking the

form

\p¼1

n

Aip ) Ci ð5:7Þ
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with true degree ai (see Definition 5.1) and inconsistent degree bi (see Defini-

tion 5.2). These fuzzy rules corresponding to a case that constitutes what is called

its initial fuzzy knowledge base.

ReducingFeature-DifferenceAttributes of FuzzyRules After obtaining the fuzzy

knowledge base for each case in LE, we reduce the number of feature-difference

attributes of each fuzzy rule through generating its minimal reduct using rough

set theory. The reduct of a fuzzy rule ri (Table 5.1) is obtained by selecting a subset

of its antecedents, (e.g., S ¼ fAij1 ;Aij2 ; . . . ;Aijsg, where S � fAi1;Ai2; . . . ;Aing and

fj1; j2; . . . ; jsg � f1; 2; . . . ; ng) as the set of condition attributes such that:

1. The modified (reduced) rule ri is denoted as \s
t¼1Aijt ) Ci (or,

Attrjis ) Ci½ai; bi�, for short) with a true degree ai (Definition 5.1) and an

inconsistent degree bi (Definition 5.2).

2. The cardinality of the subset S is approximately minimal. (Note that the

selection of the global minimal is an NP-hard problem.)

Reducing the Number of Fuzzy Rules Here we use the algorithm of Wang and

Hong [49] for selecting (mining) a subset of the initial fuzzy rules (Table 5.1) so

that they can be used for adaptation. The algorithm performs three tasks. First, it

generates a minimal reduct for each fuzzy rule ri; i ¼ 1; 2; . . . ;m. Then, among

these minimal reducts (fuzzy rules), a subset of rules corresponding to each fik

is identified such that it can cover the respective discrepancy vector fik
; i; k ¼

1; 2; . . . ;m (Definition 5.7). Finally, a minimal subset of fuzzy rules is identified

among those obtained before, based on the ability of each rule to cover all the fuzzy

discrepancy vectors. For example, if rule 1 covers f1, f2, and f5, while rule 2

covers f2 only, rule 1 will be selected.

Before illustrating the algorithms, we provide seven definitions.

Definition 5.1 [50]. The true degree of a fuzzy rule A ) B is a measure of the

strength of the IF–THEN implication of the rule. The higher the value of a, the

stronger the IF–THEN implication. It is defined as a ¼
P

u2U minðmAðuÞ;
mBðuÞÞ=

P
u2U mAðuÞ, where A and B are two fuzzy sets.

Definition 5.2 [49]. The inconsistent degree of a given fuzzy rule is a measure of

the number of possible consequences or actions that this rule could imply. For

TABLE 5.1 Fuzzy Knowledge Base

No. Attrð1Þ Attrð2Þ � � � AttrðnÞ Attrðnþ1Þ True Degree Inconsistent Degree

r1 A11 A12 � � � A1n C1 a1 b1
r2 A21 A22 � � � A2n C2 a2 b2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

rm Am1 Am2 � � � Amn Cm am bm
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example, if A ) B;A ) C, and A ) D, the inconsistent degree of the fuzzy rule

A ) B is 2. It could be defined formally as jBj, where B ¼ fjjAttrjis ¼ Attrjjs;
Ci 6¼ Cjg; jBj denotes the number of elements of the set B.

Definition 5.3 [49]. For a given fuzzy rule Attrjis ) Ci½ai; bi�, an attribute AðA 2 SÞ
is said to be dispensable in the fuzzy rule if AttrjiS�fAg ) Ci has a true degree great-

er than or equal to s (a given threshold) and an inconsistent degree less than or

equal to bi . Otherwise, attribute A is indispensable in the rule.

Definition 5.4 [49]. For a given fuzzy rule Attrjis ) Ci½ai; bi�, if all the attributes in
S are indispensable, this rule is called independent.

Definition 5.5 [49]. A subset of attributes RðR � SÞ is called a reduct of the rule

AttrjiS ) Ci if AttrjiR ) Ci is independent. The set of attributes K, which are

indispensable in the initial rule AttrjiS ) Ci, is called the core of the initial fuzzy

rule.

Definition 5.6 [49]. A minimal reduct of an initial fuzzy rule is denoted as

AttrjiR ) Ci , where R is the minimal set of attributes. R should satisfy the property

that there does not exist S such that S is a reduct of the initial fuzzy rule with S � R

and S 6¼ R:

Definition 5.7 [49]. A fuzzy rule AttrjiS ) Ci ai; bi
� �

is said to cover a discrepancy

vector if the membership degree of attributes and the membership degree of clas-

sification for the vector are all greater than or equal to Z (a threshold).

Based on these definitions, the algorithm [49], having three tasks, is described as

follows:

Task 1. Reduce the number of attributes in the initial fuzzy rules. This has six

steps.

Step 1. For the ith initial fuzzy rule ð1 � i � mÞ, the core K can be determined by

verifying whether or not an attribute is dispensable in the attribute set. (Core K can

be empty.) Set � ¼ 1.

Step 2. Take � attributes Attr1;Attr2; . . . ;Attr� from Ai � K, where Ai ¼ fAi1; Ai2;

. . . ; Aing.

Step 3. Add the attributes Attr1;Attr2; . . . ;Attr� to K.

Step 4. Compute the true degree and the inconsistent degree of the fuzzy rule

AttrjiK ) Ci.

Step 5. If K is a reduction, exit successfully; else some new � attributes Attr1;

Attr2; . . . ;Attr� are taken from Ai � K, and go to step 3.

Step 6. If all the combinations of elements in Ai � K have been used and a

reduction is not found, set � ¼ �þ 1 (K returns to its original state), and go to

step 2.
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Task 2. Identify a set of fuzzy rules that cover each discrepancy vector. For each

ið1 � i � mÞ and the set of rules R from task 1, where R ¼ fr1; r2; . . . ; rmg, and ri is
the minimal reduction of the ith initial rule, Ri, a subset of R, can be determined by

checking whether the rule covers the discrepancy vector fik:

Ri ¼ frjjrj 2 R; rj covers fikg; i; j ¼ 1; 2; . . . ;m ð5:8Þ

Task 3. Select the fuzzy rules as the adaptation rules. Take � ¼ fR1;R2; . . . ;Rmg,
where Riði ¼ 1; 2; . . . ;mÞ is defined in task 2. Let the initial value of R� (used

below) be an empty set. Repeat the following three steps until � become empty.

Step 1. For each ri 2 R determined by task 1, compute the number of times that ri
appears in the family �.

Step 2. Select r� such that the number of times r� appears in the family � is the

maximum.

Step 3. For i ¼ 1; 2; . . . ;m, remove Ri from � if r� 2 Ri, and replace R� with

fr�g [ R�. Return to step 1 and repeat until � becomes empty.

The algorithm thus generates, through pruning of attributes and rules, for all the

cases of a cluster, a set of adaptation rules (fuzzy production rules) R�. These con-

stitute what is called the final knowledge base of the concerned cluster. Note that

the values of the thresholds s and Z, which control the number of attributes and the

rules, are problem dependent. In the next section we describe a reasoning mechan-

ism, based on these adaptation rules, to predict the amount of adjustment required

for the solution of a query (unknown case) case.

5.4.1.4 Predicting Adjustment through Reasoning and Adaptation

Suppose that for a particular case ek ¼ ðxk1; xk2; . . . ; xkn; ykÞ; l
� fuzzy adaptation

rules have been extracted, denoted by fri; i ¼ 1; 2; . . . ; l�g. Let the ith fuzzy adap-

tation rule rið1 � i � l�Þ be represented in the following form:

IF ½Atrrð1Þ ¼ Ai1� AND ½Atrrð2Þ ¼ Ai2� AND � � �AND

½AtrrðnÞ ¼ Ain� THEN ½Attrðnþ1Þ ¼ Ci� ð5:9Þ

in which Attrð jÞð j ¼ 1; 2; . . . ; nþ 1Þ, Aijð j ¼ 1; 2; . . . ; nÞ, and Ci are as in equation

(5.6). Note that some of the antecedents could be absent because of elimination

process stated before.

Let eq ¼ fxq1; xq2; . . . ; xqn; yqÞ be an input query case, where the attribute values

xj ð1 � j � nÞ are known, whereas the action (solution) yq is unknown and needs to

be decided. Assuming that the case ek ¼ ðxk1; xk2; . . . ; xkn; ykÞ has been selected to

provide the solution (i.e., to predict the value of unknown yq) of the query case eq,

we compute the discrepancy vector f between cases e and ek, as in equation (5.1):

fqk ¼ eq � ek ¼ ðxq1 � xk1; xq2 � xk2; . . . ; xqn � xkn; yq � ykÞ

¼ fyqk;1; yqk;2; . . . ; yqk;n; uqkg ð5:10Þ

174 CASE-BASE MAINTENANCE



Here the feature-difference values yqk; jð1 � j � nÞ are known, while the solution-

difference value uqk is unknown. The value of uqk is determined by the following

procedure:

Step 1. For each fuzzy adaptation rule rið1 � i � l�Þ associated with ek, compute

the membership values (i.e., mij values) of yqk; j 2 Aijð1 � j � nÞ of the fuzzy sets

corresponding to antecedents ½Attrð jÞ ¼ Aij� of ri, with Aij 6¼ ; (; is an empty set,

1 � j � n).

Step 2. Compute the overall degree of similarity, SMðiÞ, of the feature-difference

vector fyqk;jg with respect to the antecedents of the ith rule ri as

SMðiÞ ¼ min jðmijÞ; i ¼ 1; 2; . . . ; l�; j ¼ 1; 2; . . . ; n ð5:11Þ

Step 3. Compute the overall degree of similarity, SMl, of the feature-difference

vector fyqk; jg with respect to the antecedents of all the rules having the same con-

sequent fuzzy set Cl ðl ¼ 1; 2; . . . ; 5Þ as

SMl ¼ maxifSM
ðiÞjconsequent fuzzy set ¼ Clg ð5:12Þ

where Cl ðl ¼ 1; 2; . . . ; 5Þ represents the five fuzzy sets NB, NS, ZE, PS, and PB

(Fig. 5.3).

Step 4. Compute the solution-difference uqk [equation (5.10)] using the defuzzifi-

cation formula

uqk ¼
2anþ1SM1 þ anþ1SM2 þ bnþ1SM4 þ 2bnþ1SM5

SM1 þ SM2 þ � � � þ SM5

ð5:13Þ

where the parameters anþ1 and bnþ1, corresponding to the solution attribute, are

defined by equation (5.3).

Step 5. Compute the estimated solution ŷyq of case eq as

ŷyq ¼ yk þ uqk ð5:14Þ

5.4.1.5 Selecting Representative Cases Here we describe a methodology

for selecting representative cases from each cluster for the purpose of maintaining

the size of a case base using the adaptation rules obtained in the preceding phase.

The selection strategy is based on the concepts of e-coverage and e-reliability

[39,51]. Let LE be a cluster of m cases where each case e is accompanied by a

set of adaptation rules RðeÞ, let e be a small positive number, and let

ep ¼ ðxp1; xp2; . . . ; xpn; ypÞ and eq ¼ ðxq1; xq2; . . . ; xpn; yqÞ be two cases in the cluster
LE. Then ep is said to e-cover eq, or eq is said to be e-covered by ep if

jyp þ uqp � yqj ¼ jŷyq � yqj � e ð5:15Þ
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where uqp, the solution difference obtained by equation (5.13) using the adaptation

rules associated with ep, is used to estimate the solution of eq (i.e., ŷyq). The con-

tribution of a case ep (with its associated fuzzy rules) to the competence of (i.e., the

range of problems that can be solved by) the case base can be characterized by the

e-CoverageSet and the e-ReachabilitySet of ep. These are defined as

e-CoverageSetðepÞ ¼ feje 2 LE; e is e-covered by epg ð5:16Þ

e-ReachabilitySetðepÞ ¼ feje 2 LE; e e-covers epg ð5:17Þ

The e-CoverageSet(ep) therefore represents the generalization capability of the case

ep. As the number of cases in the e-CoverageSet(ep) increases, the significance of ep
in representing the cluster increases. On the other hand, the e-ReachabilitySet(ep)

represents the degree to which the case ep can be replaced by other case(s). There-

fore, the smaller the number of cases in the e-ReachabilitySet(ep), the higher the

significance of ep in representing the cluster.

Based on these measures, we explain below an algorithm for eliminating some

of the cases in LE, thereby retaining only the significant ones as the representative

cases for the purpose of maintaining the size of a case base.

Algorithm. Given the cluster LE and an e value, let B be the set of the representa-

tive cases of LE and be initialized to an empty set.

Step 1. For each case e in LE, determine e-CoverageSetðeÞ [equation (5.16)] and

e-ReachabilitySet(e) [equation (5.17)] by a set of adaptation rules RðeÞ associated
with the case e.

Step 2. Find the case(s) e� such that

je-CoverageSetðe�Þj ¼ max eje-CoverageSetðeÞj; e; e� 2 LE

Let E� be the set of such case(s) e�. If jE�j ¼ 1, go to step 3; otherwise, select the

case(s) e�� from E� such that

je-ReachabilitySetðe��Þj ¼ min eje-ReachabilitySetðe
�Þj; e��; e� 2 LE

Let E�� be the set of such case(s) e��. If jE��j ¼ 1, set case e� ¼ e��; otherwise,

select one of the cases randomly from e�� as case e�.

Step 3. Set B ¼ B [ fe�g and LE ¼ LE�e-CoverageSet ðe�Þ. If jLEj ¼ 0, stop;

else, set E� ¼ ; and E�� ¼ ; ; then go to step 2.

B provides the final set of representative cases for the cluster LE.

5.4.1.6 Updating and Reselecting Cases After the case base is constructed

through the selection of representative cases, it is required to maintain it through

periodic reselection and updating of cases, because of changes in the environment/
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domain, by repeatedly applying the tasks described in the preceding five phases. For

example, consider the thin-client case base (Fig. 5.2) in a distributed help-desk

application. Due to various changes in user requirements, one needs to keep the

case base up to date through reselecting new representative cases. Note that the

value of e controls the number of representative cases in a cluster, and therefore

controls the size of the case base. The size of the case base increases as e increases.

5.4.1.7 Examples Here we demonstrate through computation on examples the

various steps of the aforesaid algorithms for mining adaptation rules, obtaining the

solution of a query case by applying them, and then selecting representative cases.

As a first example, let LE ¼ fe1;e2;e3;e4;e5g be one of the clusters, and each case

be represented by three features and an action (solution), such as e1 ¼ ð3;�1;4;2Þ;
e2 ¼ ð�2;3;1;�1Þ; e3 ¼ ð4;7;2;3Þ; e4 ¼ ð�3;�3;9;6Þ, and e5 ¼ ð5;�6;6;1Þ.

Constructing Membership Functions Let us consider first the case e1; compute

the difference between it and the other cases in LE. This generates five discrepancy

vectors (each having three feature-difference attributes, Attrð1Þ;Attrð2Þ;Attrð3Þ, and

one solution-difference attribute, Attrð4Þ) as

f11 ¼ e1 � e1 ¼ ð0;0;0;0Þ; f21 ¼ e2 � e1 ¼ ð�5;4;�3;�3Þ;

f31 ¼ e3 � e1 ¼ ð1; 8;�2; 1Þ; f41 ¼ e4 � e1 ¼ ð�6;�2; 5; 4Þ;

f51 ¼ e5 � e1 ¼ ð2;�5; 2;�1Þ

Here the ranges of these difference attributes are as follows:

RangeðAttrð1ÞÞ ¼ f�6;�5;0;1;2g

RangeðAttrð2ÞÞ ¼ f�5;�2;0;4;8g

RangeðAttrð3ÞÞ ¼ f�3;�2;0;2;5g

RangeðAttrð4ÞÞ ¼ f�3;�1;0;1;4g

Then for each attribute AttrðjÞð j ¼ 1;2;3;4Þ, five membership functions, correspond-

ing to fuzzy sets NB, NS, ZE, PS, and PB (as shown in Figs. 5.4–5.7), are deter-

mined by computing the parameters aj and bjð j ¼ 1;2;3;4Þ as

Attrð1Þ : a1 ¼
�6� 5

2
¼ �5:5; b1 ¼

0þ 1þ 2

3
¼ 1

Attrð2Þ : a2 ¼
�5� 2

2
¼ �3:5; b2 ¼

0þ 4þ 8

3
¼ 4

Attrð3Þ : a3 ¼
�3� 2

2
¼ �2:5; b3 ¼

0þ 2þ 5

3
¼ 2:3

Attrð4Þ : a4 ¼
�3� 1

2
¼ �2; b4 ¼

0þ 1þ 4

3
¼ 1:7
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Then the membership values for each component of these discrepancy vectors cor-

responding to these five fuzzy sets are computed. Consider f21, for example. There

are five membership values for each attribute Attrð jÞ ð j ¼ 1;2;3;4Þ, and they are

listed in Table 5.2.

DeterminingFuzzyRules Consider the first row in Table 5.2. According to equa-

tion (5.5), determine the fuzzy set with maximum membership value, NS, as the

fuzzy label of the first antecedent in r2. Similarly, PS, NS, and NS are selected

NB              NS               ZE     PS     PB

a1 = – 5.5 0 b1 = 1

Figure 5.4 Membership function along Attrð1Þ.

NB              NS         ZE      PS             PB 

a2 = –3.5 0 b2 = 4

Figure 5.5 Membership function along Attrð2Þ.

NB     NS     ZE  PS      PB

a3 = –2.5 0 b3 = 2.3

Figure 5.6 Membership function along Attrð3Þ.

NB     NS     ZE   PS         PB

a4 = –2 0 b4 = 1.7

Figure 5.7 Membership function along Attrð4Þ.
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as the labels for other two antecedents and the consequent of r2, respectively, there-

fore, we write

r2 : IF ½Attrð1Þ ¼ NS� AND ½Attrð2Þ ¼ PS� AND ½Attrð3Þ ¼ NS� THEN ½Attrð4Þ ¼ NS�

Similarly, the fuzzy rules based on the other three discrepancy vectors are generated

as follows:

r3 : IF ½Attrð1Þ ¼ PS� AND ½Attrð2Þ ¼ PB� AND ½Attrð3Þ ¼ NS� THEN ½Attrð4Þ ¼ PS�

r4 : IF ½Attrð1Þ ¼ NS� AND ½Attrð2Þ ¼ NS� AND ½Attrð3Þ ¼ PB� THEN ½Attrð4Þ ¼ PB�

r5 : IF ½Attrð1Þ ¼ PB� AND ½Attrð2Þ ¼ NS� AND ½Attrð3Þ ¼ PS� THEN ½Attrð4Þ ¼ ZEðNSÞ�

Note that in f21, since the membership values of Attrð4Þ to NB and NS are found to

be equal ð¼ 0:5Þ, we randomly choose any of them, say NS, as the label for the

consequent. Similarly, ZE is selected as the consequent part of r5. Moreover, the

fuzzy rule r1 corresponding to f11, as expected, is

IF ½Attrð1Þ ¼ Attrð2Þ ¼ Attrð3Þ ¼ ZE� THEN ½Attrð4Þ ¼ ZE�

Reducing Feature-Difference Attributes of Fuzzy Rules Consider r2 as an

example. Its true degree and inconsistent degree are found, respectively, as

a ¼ 0:63 and b ¼ 0. Assuming that the threshold of the true degree s ¼ 0:62, it

is found that by removing Attrð1Þ ¼ NS or/and Attrð2Þ ¼ PS, we still have the

same values for true degree and inconsistent degree: a0 ¼ 0:63 and b0 ¼ 0. Since

a0 > s, and b0 ¼ b;Attrð1Þ and Attrð2Þ are dispensable attributes, but if they are

removed at the same time, we have a low value, 0.31, for the true degree. In this

situation, only one of them, say Attrð1Þ (which is chosen randomly), can be

removed. On the other hand, if we remove Attrð3Þ ¼ NS, the true degree and incon-

sistent degree are 0.56 and 0, respectively. Since 0:56< s;Attrð3Þ is considered to

be an indispensable attribute for rule r2. Removing Attrð1Þ from r2, we have the

modified rule, in terms of the following reduct, as

r2 : IF ½Attrð2Þ ¼ PS� AND ½Attrð3Þ ¼ NS� THEN ½Attrð4Þ ¼ NS�

TABLE 5.2 Membership Values of f21

f21 NB NS ZE PS PB

Attrð1Þ 0 0.9 0.1 0 0

Attrð2Þ 0 0 0 1 0

Attrð3Þ 0.2 0.8 0 0 0

Attrð4Þ 0.5 0.5 0 0 0
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Similarly, the reducts of the other modified rules, together with the same s value,

are as follows:

r3 : IF ½Attrð1Þ ¼ PS� AND ½Attrð3Þ ¼ NS� THEN ½Attrð4Þ ¼ PS�

r4 : IF ½Attrð1Þ ¼ NS� AND ½Attrð3Þ ¼ PB� THEN ½Attrð4Þ ¼ PB�

r5 : IF ½Attrð2Þ ¼ NS� AND ½Attrð3Þ ¼ PS� THEN ½Attrð4Þ ¼ ZE�

Reducing theNumberofFuzzyRules Consider f21 as an example. Let the thresh-

old be Z ¼ 0:5. For the rule r2 : IF ½Attrð2Þ ¼ PS� AND ½Attrð3Þ ¼ NS�
THEN ½Attrð4Þ ¼ NS�, the degree of membership of Attrð2Þ to PS is 0.8 and

Attrð3Þ to NS is 0.5. Since all the membership values are greater than or equal to

the threshold Zð¼ 0:5Þ; r2 covers f21 [equation (5.8)]. Similarly, one can check

if there are other rules that can cover f21. Finally, it is only r2 that is found to cover

f21; that is, R2 ¼ fr2g.
Similarly, we have R1 ¼ fr1g;R3 ¼ fr3g;R4 ¼ fr4g; and R5 ¼ fr5g. Here each

discrepancy vector is seen to be covered only by its corresponding rule. Therefore,

all these rules are selected as the adaptation rules of e1 for covering all the vectors

fi1ði ¼ 1; 2; . . . ; 5Þ and R� ¼ fr1;r2;r3;r4;r5g.

In the example above, since all the rules are retained, the various steps involved

in reducing the number of rules could not be shown. To illustrate these steps, we

give another example.

Let us consider a situation where a discrepancy vector is covered only by its cor-

responding rule or several other rules, such as R1 ¼ fr1g;R2 ¼ fr2;r3g;R3 ¼
fr2;r3;r4g;R4 ¼ fr4g, and R5 ¼ fr3;r5g. Here the number of occurrences of the

rules riði ¼ 1; 2; . . . ; 5Þ in � are 1, 2, 3, 1, and 1, respectively. Since r3 has occurred

maximum and it covers f21ðR2Þ;f31ðR3Þ, and f51ðR5Þ, we first select r3 and

remove R2, R3, and R5 from �. Similarly, r1 and r4 are then selected, and R1

and R4 are removed from �. Since � becomes empty, the set of adaptation rules

is R� ¼ fr1;r3;r4g.

Predicting Adjustment through Reasoning Let eq ¼ ð4; 1; 3; yqÞ be a query

case, where yq is the unknown solution, and e1 be selected to solve the query

case. The discrepancy vector fq1 is

fq1 ¼ eq � e1 ¼ ðyq1;1; yq1;2; yq1;3; uq1Þ ¼ ð1; 2;�1; uq1Þ; where uq1 ¼ yq � 2

The solution-difference uq1 is determined as follows: Consider r3ðIF½Attr
ð1Þ ¼

PS� AND ½Attrð3Þ ¼ NS� THEN ½Attrð4Þ ¼ PS�, as described before, where we

have two membership values: 1ðyq1;1 2 PSÞ, and 0:5ðyq1;3 2 NSÞ. Then using equa-

tion (5.11), we get

SMð3Þ ¼ minf1;0:5g ¼ 0:5
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Similarly, SMð1Þ ¼ 0; SMð2Þ ¼ 0:4; SMð4Þ ¼ 0, and SMð5Þ ¼ 0. Compute SMl ðl ¼
1; 2; . . . ; 5Þ by equation (5.12); we have for i ¼ 1; 2; . . . ; 5,

SM1 ¼ maxifSM
ðiÞjAttrð4Þ ¼ NBg ¼ 0

SM2 ¼ maxifSM
ðiÞjAttrð4Þ ¼ NSg ¼ SMð2Þ ¼ 0:4

SM3 ¼ maxifSM
ðiÞjAttrð4Þ ¼ ZEg ¼ maxfSMð1Þ

; SMð5Þg ¼ 0

SM4 ¼ maxifSM
ðiÞjAttrð4Þ ¼ PSg ¼ SMð3Þ ¼ 0:5

SM5 ¼ maxifSM
ðiÞjAttrð4Þ ¼ PBg ¼ SMð4Þ ¼ 0

Note that since the label NB does not occur in the consequents of any of the adapta-

tion rules, SM1 is assumed to be 0.

Then the solution-difference uq1 is computed [equation (5.13)] as

uq1 ¼ ð�2Þ � 0:4þ 1:7� 0:5 ¼ 0:05

Thus, the solution of the query case eq is [equation (5.14)]

yq ¼ 2þ uq1 ¼ 2:05

Case Selection Let LE ¼ fe1;e2;e3;e4g; e1 ¼ ð1;4;3Þ; e2 ¼ ð2;5;2Þ; e3 ¼ ð�1;6;

�2Þ; e4 ¼ ð3;�7;�5Þ, and e ¼ 0:2. Consider e1, for example. The solution differ-

ences of ej; uj1 ð j ¼ 2; 3; 4Þ are as follows [equation (5.13)]: u21 ¼ 0:5; u31 ¼ �5,

and u41 ¼ �4. Since

jy1 þ u21 � y2j ¼ jŷy2 � y2j ¼ 3þ 0:5� 2 ¼ 1:5 > eð¼ 0:2Þ

jy1 þ u31 � y3j ¼ jŷy3 � y3j ¼ 3� 5þ 2 ¼ 0 < e

jy1 þ u41 � y4j ¼ jŷy4 � y4j ¼ 3� 4þ 5 ¼ 4 > e

according to equation (5.16), e1e-covers e3, and e1 certainly covers itself. That

is,

e-CoverageSetðe1Þ ¼ fe1;e3g

Similarly, the e-CoverageSets of the other cases are determined as

e-CoverageSetðe2Þ ¼ fe1;e2g

e-CoverageSetðe3Þ ¼ fe3g

e-CoverageSetðe4Þ ¼ fe4g
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Consequently, the e-ReachabilitySet of each case is determined [equation (5.17)] as

e-ReachabilitySetðe1Þ ¼ fe1;e2g

e-ReachabilitySetðe2Þ ¼ fe2g

e-ReachabilitySetðe3Þ ¼ fe1;e3g

e-ReachabilitySetðe4Þ ¼ fe4g

Here e1 and e2 are found to have the greatest coverage. Since the number of cases in

their e-CoverageSets is the same, the case with less reachability (i.e., e2), is

selected. Then the cases that can be covered by it (i.e., e1 and e2), are removed

from LE. Repeat this process, and then select e4 and e3; this ends the algorithm.

Therefore, the final set of the representative cases for LE is obtained as fe2; e3; e4g.

5.4.2 Experimental Results

In this section we present some of the experimental results [46] of the case-base

maintenance method described in Section 5.4.1 using a set of test cases from

the travel domain. The case base Travel has 1024 cases and is available from the

Web site http//www.ai-cbr.org. Each travel case consists of nine attributes: type of

vacation, length of stay, holiday type, hotel, and so on. Table 5.3 shows a sample

record with the feature ‘‘Price’’ used as the solution feature.

Feature weights are determined as noted in Section 5.4.1.1. Table 5.4 shows such

values when the gradient descent technique was used (with the number of learning

iterations¼ 10,000) as an optimization tool. The weighted Travel case base is then

TABLE 5.3 Sample Record of the Travel Case Base

Name Data Type Example

Holiday type Symbolic Recreation

Number of persons Numeric 6

Region Symbolic France

Transportation Symbolic Car

Duration Numeric 14

Season Symbolic January

Accommodation Symbolic Holiday Flat

Hotel Symbolic H. Flat, Cheval Blanc, France

Price Numeric 1728

TABLE 5.4 Feature Weights of the Problem Features

Type No. of Persons Region Trans. Duration Season Accom. Hotel

0.1374 0.0891 0.0662 0.3691 1.0000 0.0440 0.3443 0.0503
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partitioned (as mentioned in Section 5.4.1.2) into 55 clusters (see Table 5.5) using a

similarity matrix–based clustering algorithm. For the convenience of readers, we

describe below the algorithm that first transforms the similarity matrix, computed

based on the similarity between cases, to an equivalent matrix (i.e., the final

similarity matrix SM in step 5 of the following algorithm), and the cases that are

equivalent to each other are considered to be in the same cluster.

Clustering Algorithm

Step 1. Define a significant level (threshold) b 2 ð0; 1�.

Step 2. Determine the similarity matrix SMN�N ¼ ðSMðwÞ
pq Þ according to equations

(3.1) and (3.2).

Step 3. Compute SM1 ¼ SM � SM ¼ ðspqÞ, where spq ¼ maxkðminðSM
ðwÞ
pk ;

SM
ðwÞ
kq ÞÞ.

Step 4. If SM1 ¼ SM, go to step 5; else, replace SM with SM1 and go to

step 3.

Step 5. Determine the clusters based on the rule ‘‘case p and case q belong to the

same cluster if and only if SMpq  b in the final similarity matrix SM,’’ and

compute the number M of clusters.

The following example illustrates the foregoing clustering algorithm. Let us

consider three cases, e1 ¼ ð1;2Þ; e2 ¼ ð1;4Þ, and e3 ¼ ð1;12Þ, and assume that their

TABLE 5.5 Clusters of the Travel Case Base

Cluster Number of Cases Odd or Not-Odd Class

1 40 Not-odd

2 10 Not-odd

3 31 Not-odd

4 76 Not-odd

5 53 Not-odd

6 18 Not-odd

7 13 Not-odd

8 2 Odd

9 32 Not-odd

10 69 Not-odd

11 78 Not-odd

12 116 Not-odd

13 228 Not-odd

� � �
� � �
� � �

53 3 Odd

54 1 Odd

55 2 Odd
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feature weights w and the parameter a are equal to 1. Then according to equations

(3.1) and (3.2), the similarity matrix (i.e., in step 2) is

SM3�3 ¼

1 1
3

1
11

1
3

1 1
9

1
11

1
9

1

2

6

4

3

7

5

Since spq ¼ maxkðminðSM
ðwÞ
pk ; SM

ðwÞ
kq ÞÞ; SM1 is equal to

SM1 ¼

1 1
3

1
9

1
3

1 1
9

1
9

1
9

1

2

6

4

3

7

5

The next step is to compare SM1 with SM. Since the current SM1 6¼ SM, replace

SM with SM1:

SM3�3 ¼ SM1 ¼

1 1
3

1
9

1
3

1 1
9

1
9

1
9

1

2

6

4

3

7

5

Recalculate SM1 until SM1¼ SM, and finally, we get SM1 (i.e., the equivalent

matrix) as

SM1 ¼

1 1
3

1
9

1
3

1 1
9

1
9

1
9

1

2

6

4

3

7

5

After obtaining the equivalent matrix above, clusters can be determined according

to the threshold b.

If b ¼ 1
5
, case e1 and case e2 belong to the same cluster, and case e3 forms an

individual cluster, and therefore M ¼ 2. On the other hand, if b ¼ 1
2
, each case

e1; e2, and e3 forms an individual cluster, respectively, and therefore M ¼ 3. Since

the value of M depends largely on the selection of the value of b, the heuristic rule

[equation (3.31)] based on the concepts of intercluster similarity and intracluster

similarity is used to determine the best value of M.

Some of these clusters are shown in Table 5.5. Clusters with less than 10 cases

are labeled as odd clusters and the others as not-odd clusters. The learning of fuzzy

adaptation rules is carried out only on the not-odd clusters. In the process of mining

of fuzzy adaptation rules, only the numeric features are fuzzified into five linguistic

variables (Fig. 5.3): NB, NS, ZE, PS, and PB.
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An example of a fuzzy adaptation rule (with both numeric and symbolic

features) generated from the rough-fuzzy method is as follows:

IF ½Attrð1Þ ¼ ½smalljmediumjbigjsymbolic values��

AND ½Attrð2Þ ¼ ½NBjNSjZEjPSjPB��

AND ½Attrð3Þ ¼ ½smalljmediumjbigjsymbolic values��

THEN the change of PriceðAttrð9ÞÞ ¼ ½NBjNSjZEjPSjPB�

Here case e ¼ fholiday type, number of persons, region, transportation, duration,

season, accommodation, hotel, and priceg, and AttrðiÞði ¼ 1; 2; . . . ; 9Þ is a fea-

ture-difference attribute of case e. For simplicity reason, the number of antecedents

of each fuzzy rule is limited to one in this experiment. For example, in cluster 7 (see

Table 5.5), which consists of 13 cases, one of the adaptation rules (with symbolic

antecedents and fuzzy action/ solution) is: IF holiday type is changed from ‘‘educa-

tion’’ to ‘‘city,’’ THEN the change of price is positive small.

According to the case-selecting strategy based on reachability and coverage

defined in Section 5.4.1.5 with e ¼ 0:05, cases {1,8,9,11} are selected as the repre-

sentative cases in cluster 7 (see Table 5.6). It means that of the 13 cases in this

cluster, nine cases have been deleted (see Table 5.7) based on the selection strategy.

As a result of this process, a total of 18ð¼ 5þ 3þ 5þ 5Þ fuzzy adaptation rules are
selected. After applying the case selection strategy to each not-odd cluster, 399

cases are deleted altogether out of 933. In other words, the number of cases in

the Travel case base can be reduced by 43%, and this smaller case base could

be resided in the client CBR system. A further calculation of the relative errors

TABLE 5.6 Reachability and Coverage of Each Case in Cluster 7 of the Travel

Case Base

Number of Cases Actual Cases Number of

Case Covered by Case Covered by Case Adaptation Rules

0 3 4,7,12 2

1 7 2,3,4,5,6,7,10,12 5

2 4 3,5,6 4

3 4 0,2,4,7 7

4 2 0,6 3

5 2 0,4 4

6 2 2,5 5

7 5 0,2,3,4,5 5

8 6 0,2,3,5,6,12 3

9 6 2,3,4,5,10,12 5

10 1 0 4

11 5 2,3,4,6,12 5

12 5 0,2,3,4,6 7
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[equation (5.18)] in this smaller case base indicates that (see the last column and

last row of Table 5.7) the solution generated from it is almost as accurate as that

generated from the original case base (i.e., about 94% accuracy). If more tolerance

of the accuracy is allowed in the selection strategy, a substantially smaller case base

can be generated.

Relative error ¼
actual value of the solution� computed value

actual value of the solution
� 100% ð5:18Þ

5.4.3 Complexity Issues

In the method described in Section 5.4.1, the main idea is to transform a large case

base to a smaller case base together with a group of fuzzy adaptation rules for the

benefit of selecting a competence-rich case base for the client-side CBR system. To

provide a complete picture of this method, we provide an analysis of the time and

space complexities of this approach.

TABLE 5.7 Selection of Representative Cases in All the Not-Odd Clusters

Average Relative

Number of Number of Number of Error of the

Cluster Cases Representative Cases Cases Deleted Cases Deleted (%)

1 40 19 21 6.98

2 10 4 6 1.63

3 31 16 15 4.52

4 76 40 36 5.78

5 53 23 30 5.99

6 18 17 1 0.78

7 13 4 9 3.15

9 32 19 13 3.92

10 69 56 13 4.77

11 78 50 28 6.90

12 116 78 38 6.54

13 228 130 98 8.98

17 30 10 20 6.40

19 12 3 9 6.71

20 12 8 4 1.52

23 24 14 10 3.40

25 41 16 25 5.67

28 26 20 6 2.64

31 13 4 9 3.05

33 11 3 8 3.80

—— —— —— ——————————

933 534 399 Overall average 6.315%

186 CASE-BASE MAINTENANCE



The time complexity is determined by the number of multiplication, division,

maximize and minimize operations required. In the first phase (i.e., learning feature

weights; Section 5.4.1.1), the feature evaluation index function is differentiable

(smooth) and the searching technique used is gradient descent; it can be guaranteed

that the training algorithm is convergent if the learning rate is appropriately small.

The total time complexity of the training algorithm is Oðm2Þ, where m is the num-

ber of cases.

In the second phase (i.e., partitioning cases into clusters; Section 5.4.1.2), the

clustering algorithm mainly involves multiplication of two similarity matrices.

Therefore, the time complexity is equal to Oðm2Þ.
The time complexity of the third phase (i.e., the mining fuzzy rule using the

rough-fuzzy method; Section 5.4.1.3) is the sum of the steps performed by the three

tasks. In task 1, the time complexity for generating the reduct of the initial fuzzy

rule is OðnmÞ, where n is the number of features. In task 2, the time complexity is

Oðm2Þ. In task 3, the time complexity is OðmÞ.
Note that for the fourth phase (i.e., predicting adjustment through reasoning and

adaptation; Section 5.4.1.4) the estimated solution for each case is calculated in the

first step of the case selection process of phase 5 (i.e., step 1 of the case selection

algorithm). This is shown below, where the computational effort is explained

together with that required for the other steps in phase 5. In phase 5 (i.e., selecting

representative cases; Section 5.4.1.5), the selection algorithm requires two major

computations. The first step involves computing the case coverage in each cluster;

on average this requires ðm=MÞðm=M � 1Þm�p� operations, where m is the number

of cases,M the number of clusters, m� the average number of fuzzy adaptation rules

for each case, and p� the average number of antecedents in each rule. Since m� and

p� are very small compared with m, the complexity of step 1 in the selection

algorithm is Oðm2Þ. Steps 2 and 3 involve sorting the cases according to their

coverage ability, and the computation complexity will not exceed Oðm2Þ. There-
fore, the overall computation complexity of the selection algorithm in this phase

is also bounded by Oðm2Þ.
The space complexity is determined by the size of the case base and the tempor-

ary storage required in each phase described in Section 5.4.1. Among these phases,

the multiplication of the two matrices in phase 2 requires the largest amount of

memory (i.e., m2). Since hardware and memory cost have been reduced signifi-

cantly recently, memory space is not a critical concern when using this approach.

5.5 CASE-BASE MAINTENANCE USING A FUZZY

INTEGRAL APPROACH

In Section 5.4, we have presented a rough-fuzzy approach for building and main-

taining a client-side case base. In this section we describe another case-base

maintenance (CBM) method, where the fuzzy integral technique is applied for

modeling the competence of a given CBR system. Case-base competence has

been brought sharply into focus since many maintenance policies are linked directly
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with the heuristics of measuring case-base competence to guide the maintenance

procedures [33,34,51–53]. However, most of the current competence heuristics

provide only coarse-grained estimates of competence. For example, Smyth and

McKenna [54–59] and Smyth and McClave [60] employed a case deletion policy

guided by a category-based competence model, where the cases are classified in

only four basic competence categories. Zhu and Yang [61] provided a case addition

policy based on the concept of case neighborhood, which is a coarse approximation

of case coverage. Modeling case-base competence becomes a crucial issue in the

field of CBM.

Smyth and McKenna proposed a competence model, where the concept of com-

petence group is introduced due to the overlapping of individual case coverage and

is defined in such a way that there are no overlaps within the case coverage in dif-

ferent competence groups. Group size and density have been considered in the defi-

nition of group coverage. Then the overall case-base competence can be computed

simply by summing up the coverage of each group. However, the distribution of

each group is not taken into account in this model. More specifically, it always

assumes that the distribution of cases in each group is uniform, which sometimes

leads to over- or underestimation of case-base competence. This problem is

addressed by adopting a fuzzy integral–based competence model to compute the

competence of a given CBR system more accurately. Consider a competence group;

we first repartition it to ensure that the distribution of cases in each newly obtained

group is nearly uniform. Since there are overlaps among the coverage of different

new groups, fuzzy measures (nonadditive set functions) can be used to describe

these overlaps because of their nonadditive characteristics. Fuzzy integrals are

the corresponding integrals with respect to these fuzzy measures. As the most

important tools of aggregation in information fusion, fuzzy integrals are appropriate

here for computing the overall case-base competence of a CBR system. Some type

of fuzzy measure, together with the corresponding fuzzy integral, the Choquet inte-

gral [62–64], are adopted in this approach. Next we describe briefly fuzzy measures

and fuzzy integrals.

5.5.1 Fuzzy Measures and Fuzzy Integrals

The traditional tool of aggregation for information fusion is the weighted-average

method, which is essentially a linear integral. It is based on the assumption that the

information sources involved are noninteractive, and hence their weighted effects

are viewed as additive. This assumption is not realistic in many applications. To

describe the interaction among various information sources in such cases, a new

mathematical tool, fuzzy measures or nonadditive set functions, can be used

instead. In other words, a nonlinear integral such as the Choquet integral with

respect to the nonadditive set functions can be used instead of the classical

weighted average for information fusion.

More formally, fuzzy measures and fuzzy integrals are defined as follows: Let X

be a nonempty set and PðXÞ be the power set of X. We use the symbol m0 to denote

a nonnegative set function defined on PðXÞ with the properties m
0ð;Þ ¼ 0. If
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m
0ðXÞ ¼ 1; m

0 is said to be regular. It is a generalization of classic measure. When X

is finite, m0 is usually called a fuzzy measure if it satisfies monotonicity; that is,

A 
 B ) m
0ðAÞ � m

0ðBÞ for A;B 2 PðXÞ

For a nonnegative set function m
0, there are some associated concepts. For

A;B 2 PðXÞ; m0 is said to be additive if m0ðA [ BÞ ¼ m
0ðAÞ þ m

0ðBÞ, to be subaddi-

tive if m
0ðA [ BÞ � m

0ðAÞ þ m
0ðBÞ, and to be superadditive if m

0ðA [ BÞ 
m
0ðAÞ þ m

0ðBÞ. If we regard m
0ðAÞ and m

0ðBÞ as the importance of subsets A and

B, respectively, the additivity of the set function means that there is no interaction

between A and B; that is, the joint importance of A and B is just the sum of their

respective importance. Superadditivity means that the joint importance of A and B

is greater than or equal to the sum of their respective importance, which indicates

that the two sets are enhancing each other. Subadditivity means that the joint impor-

tance of the two sets A and B is less than or equal to the sum of their respective

importance, which indicates that the two sets are resisting each other.

Due to the nonadditivity of the fuzzy measures, some new types of integrals

(known as fuzzy integrals), such as the Choquet integral, Sugeno integral, and

N-integral, are used. Here we give only a definition of the Choquet integral, which

is used in this section: Let X ¼ fx1; x2; . . . ; xng; m
0 be a fuzzy measure defined on

the power set of X, and f be a function from X to [0,1]. The Choquet integral of f

with respect to m
0 is defined by

ðCÞ

ð
f dm0 ¼

X
½ð f ðxiÞ � f ðxi�1Þ�m

0ðAiÞ

where we assume without loss of generality that 0 ¼ f ðx0Þ � f ðx1Þ � � � � � f ðxnÞ
and

Ai ¼ fxi; xiþ1; . . . ; xng:

Next, we give an example [65] to illustrate how fuzzy measure and fuzzy inte-

gral describe the interactions of different objects. Let there be three workers, a, b,

and c, working for f ðaÞ ¼ 10, f ðbÞ ¼ 15, and f ðcÞ ¼ 7 days, respectively, to man-

ufacture a particular type of product. Without a manager, they begin work on the

same day. Their efficiencies of working alone are 5, 6, and 8 products per day,

respectively. Their joint efficiencies are not the simple sum of the corresponding

efficiencies given above, but are as follows:

Workers Products/Day

fa;bg 14

fa;cg 7

fa;cg 16

fa;b;cg 18
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These efficiencies can be regarded as a fuzzy measure, m0, defined on the power set

of X ¼ fa; b; cg with m
0ð;Þ ¼ 0 (meaning that there is no product if no worker is

there). Here inequality m
0ðfa; bgÞ > m

0ðfagÞ þ m
0ðfbgÞ means that a and b coop-

erate well, while inequality m
0ðfa; cgÞ < m

0ðfagÞ þ m
0ðfcgÞ means that a and c

have a bad relationship and are not suitable to work together. Here m0 can be con-

sidered as an efficiency measure. In such a simple manner, during the first 7 days,

all workers work together with efficiency m0ðfa; b; cgÞ, and the number of products

is f ðcÞm0ðfa; b; cgÞ ¼ 7� 18 ¼ 126; during the next f ðaÞ � f ðcÞ days, workers a

and b work together with efficiency m
0ðfa; bgÞ, and the number of products is

½ f ðaÞ � f ðcÞ�m0ðfa; bgÞ ¼ 3� 14 ¼ 42; during the last f ðbÞ � f ðaÞ days, only b

works with efficiency m
0ðfbgÞ, and the number of products is ½ f ðbÞ � f ðaÞ�

m
0ðfbgÞ ¼ 5� 6 ¼ 30.

The function f defined on X ¼ fa;b;cg is called an information function. Thus,

the value of the Choquet integral of f with respect to m
0 is

ðCÞ ¼

ð
f dm0 ¼ f ðcÞm0ðfa;b;cgÞ þ ½ f ðaÞ � f ðcÞ�m0ðfa; bgÞ

þ ½ f ðbÞ � f ðaÞ�m0ðbÞ ¼ 198

the total number of products manufactured by these workers during these days.

Note that the meaning of fuzzy measures and fuzzy integrals is problem dependent.

In this section, they are used to describe the coverage contributions of cases in a

case base.

Before the fuzzy integral–based competence model is explained, the closely

related (nonfuzzy) competence model of Smyth and McKenna [33] is described

for convenience, together with its limitations.

5.5.2 Case-Base Competence

Smyth and McKenna [33], Smyth [34], and Smyth and Keane [51] explained the

concept of case-base competence, and subsequently, various concepts such as cov-

erage and reachability for measuring the problem-solving ability of case bases were

developed. Some statistical properties of a case base (e.g., the size and density of

cases) are used as input parameters for modeling case-base competence. A concept

of competence group, which implies that different groups have no interaction (over-

lap) with each other, is also given in Smyth [34] as the fundamental computing unit

of case-base competence.

The competence of a group of cases (G) (i.e., group coverage of G) depends on

the number of cases in the group and its density. This is defined as

GroupCoverageðGÞ ¼ 1þ jGjð1� GroupDensityðGÞÞ ð5:19Þ

Here GroupDensity is defined as the average CaseDensity of the group:

GroupDensityðGÞ ¼
X
e2G

CaseDensityðe;GÞ=jGj ð5:20Þ
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where

CaseDensityðe;GÞ ¼
X

e�2G�feg

SMðe; e�Þ=ðjGj � 1Þ ð5:21Þ

and jGj is the size of the competence group G (i.e., the number of cases in group G).

Various ways of computing the similarity between two cases e and e
� [i.e.,

SMðe; e�Þ] are explained in Chapter 3, depending on the problems at hand.

For a given case base CB, with competence groups fG1;G2; . . . ;Gng, the total

coverage or the case-base competence is defined by

CoverageðCBÞ ¼
X

Gi2G

GroupCoverageðGiÞ ð5:22Þ

From equation (5.22) it is seen that the definition of case-base competence took

only the concepts of group size and group density into account. However, the dis-

tribution of cases in a case base also influences the case-base competence. For

example, consider Figure 5.8, where the cases in part (b) are distributed uniformly,

(a) (b)

(c)

G ′

G1

G2

G3

c*

c**

G2

G1

*
c

G

hole
hole

Figure 5.8 Examples of uniform and nonuniform distributions.
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whereas those in parts ðaÞ and ðcÞ are not. Therefore, it is appropriate and necessary
to incorporate this while computing the case-base competence of a case base.

Moreover, this model assumes that there is no overlap among different compe-

tence groups of cases (e.g., features interaction [66] is a common cause of over-

laps). Therefore, simply by taking the sum of group competences as the overall

case-base competence, without considering the overlapping effects, the resulting

group competence may be over- or underexaggerated. This group overlap

problem has been tackled by Shiu et al. [40] using fuzzy integrals. Details are given

below.

5.5.3 Fuzzy Integral–Based Competence Model

Consider Figures 5.8a and c where we can easily see that cases such as c� and c��

play an important role in affecting the overall competence distribution in the group.

Therefore, it is important to detect such cases (which are called weak links in the

following discussion) for possible identification of smaller competence groups,

such as G1;G2, and G3 in Figure 5.8c, those are having more evenly distributed

cases. The competence of these smaller groups can then be computed using equa-

tions (5.19) to (5.21). It is worth noting that the competence of weak links can be

considered to be their respective individual coverage, which reflects the relation

among the several new groups. A new way of computing group competence based

on this principle is described next.

5.5.3.1 Competence Error In general, competence groups such as G1 and G2

in Figure 5.8a do not necessarily have the same strictly uniform distribution, and

the weak-link case c� is not necessarily a pivotal case (a case that cannot be solved

by other cases). To deal with this situation, GroupDensityðG1Þ [which is assumed to

be equal to GroupDensityðG2Þ] can be replaced by the average group density of

groups G1 and G2, which can be denoted by GroupDensityðGiÞ; i 2 f1; 2g. Let
½GroupDensityðGiÞ � GroupDensityðGÞ� be denoted by �GroupDensity. The

concept of quasi-uniform distribution can be used to describe the case-base distri-

butions that are close to uniform distribution. As mentioned, the other assump-

tion—that c� is a pivotal case in the example—is not necessarily true in many

cases. To address this problem, just consider the individual competence of c� as

its relative coverage, which is defined as

RelativeCoverageðeÞ ¼
X

e02CoverageSetðeÞ

1

jReachabilitySetðe0Þj
ð5:23Þ

Then define

Competence Errorðc�Þ

¼ jGj�GroupDensity� GroupDensityðGiÞ � RelativeCoverageðc�Þ

 jGj�GroupDensity� ðRelativeCoverageðc�Þ þ 1Þ ð5:24Þ
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Since RelativeCoverageðc�Þ is small, we can see that it is �GroupDensity that

leads primarily to competence error.

5.5.3.2 Weak-Link Detection To tackle the problem of nonuniformly distrib-

uted cases, it is necessary first, as noted earlier, to identify the weak links in each

competence group. Definitions of weak link and several other concepts that are

related more directly to the competence of the group in question, are provided

below.

Definition 5.8. Let G ¼ fG1;G2; . . . ;Gng be a set of competence groups in a case

base CB. c� 2 G is called a weak link if Competence Error ðc�Þ a, where a is a

parameter that is defined by the user, depending on the requirement. If 9 c� 2 G; c�

is a weak link, the competence group G is called a nonuniform distributed compe-

tence group. Otherwise, if 8 e 2 G, Competence ErrorðeÞ � a, then G is called a

quasi-uniform distributed competence group.

A recursive method is used here to detect the weak links in a given competence

group G, as follows:

Weak-Link Detection Algorithm

Step 1. W-SET f�g;G-SET f�g; i ¼ jGj.

Step 2. if ði 6¼ 0Þ {Consider each given competence group G in the competence

model of Section 5.5.2, and compute Competence Error ðeÞ; 8 e 2 G; i ¼ i� 1}.

Step 3. If there is no weak link, add G to G-SET, end.

Step 4. If there is a weak link c�, identify the competence groups G1;

G2; . . . ;Gnðn  1Þ in G�fc�g using the competence model in Section 5.5.2; add

c� to the set of weak links W-SET.

Step 5. For ð1 � i � nÞfG Gi; repeat steps 1 to 4}.

Thus, we can obtain the set of weak linksW-SET in a given competence group G

and the set of new competence groups G-SET.

5.5.3.3 Overall Coverage of Competence Group Using Fuzzy Integral

After detecting the weak links in a competence group G and cutting them off, let

n new competence groups G1;G2; . . . ;Gnðn  1Þ be produced. According to the

definition of a weak link, each newly produced group is sure to be quasi- uniformly

distributed. The next task is to compute the overall coverage or competence of G. In

the example described in Figure 5.8a, the overall competence of G can be calcu-

lated simply by the sum of the competence of Gið1 � i � nÞ and the relative cover-

age of c�, but this method is not representative. There could be more complicated

situations, as illustrated in Figure 5.8c, where it is difficult to identify clearly the

contribution of each weak link. For example, in Figure 5.8c, c� has much more

influence on the coverage of G than c�� has, which reflects different relations

among new competence groups. Therefore, a powerful tool, called a fuzzy integral
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(or nonlinear integral) with respect to a fuzzy measure (a nonadditive set function),

is applied to describe this complex relationship.

Determining the l-FuzzyMeasurem0 When the fuzzy integral is used to compute

the overall coverage of the original competence group G, it is necessary first to

determine the importance measure m0 of the n small competence groups

Gið1 � i � nÞ both individually and in all possible combinations, the total number

being ð2n � 1Þ. For cases in Figure 5.8c, there will be seven values of such

measure:

m0ðG1Þ; m
0ðG2Þ; m

0ðG3Þ; m
0ðG1 [ G2Þ; m

0ðG1 [ G3Þ; m
0ðG2 [ G3Þ; m

0ðG1 [ G2 [ G3Þ

where m0 values of the unions of small competence groups can be computed by the

l-fuzzy measure [62], which takes the following form:

m0ðA [ BÞ ¼ m0ðAÞ þ m0ðBÞ þ lm0ðAÞm0ðBÞ; l 2 ð�1;1Þ ð5:25Þ

If l � 0; m0 is a subadditive measure; if l  0; m0 is a superadditive measure; if and

only if l ¼ 0; m0 is additive. So the focus of determining the l-fuzzy measure m0

falls on the determination of the importance of each single group and l. Note

that l  0 in this example.

Given m0ðGiÞ ¼ 1ð1 � i � nÞ, the main problem in computing m0 here is there-

fore to determine the parameter l. It is obvious that the properties of the weak links

between two groups are important for determining l. In this model, coverage of a

group refers to the area of the target problem space covered by the group. In this

sense, the value of l is closely related to the coverage of weak links and the density

of their coverage sets. Consider two arbitrary new groups Gi and Gj. Let the W-SET

between them be C� ¼ fc�1; . . . ; c�hg. CoverageðC
�Þ and DensityðC�Þ are defined as

follows:

CoverageðC�Þ ¼
Xh

i¼1

RelativeCoverageðc�i Þ

DensityðC�Þ ¼
Xh

i¼1

GroupDensityðCovðc�i ÞÞ=h

where Covðc�i Þ is the coverage set of the ith weak link c�i between Gi and Gj. The

coverage contribution of Gi [ Gj must be directly proportional to CoverageðC�Þ and
inversely proportional to DensityðC�Þ. With these assumptions, the parameter l is

defined as

l ¼ CoverageðC�Þð1� DensityðC�ÞÞ ð5:26Þ

The l-fuzzy measure m0 of ðGi [ GjÞ can then be determined using equation (5.25).
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Using the Choquet Integral to Compute Competence (Coverage) Due to the non-

additivity property of the set function m0, a new type of integral (known as nonlinear

integrals) are used to compute the overall coverage of the original competence

group G based on the m0 measures of the n constituting competence groups and their

unions. A common type of nonlinear integral with respect to nonnegative monotone

set functions is the Choquet integral [63]. Its use in computing the competence of

group G is described below.

Let the competence group G ¼ fG1;G2; . . . ;Gng be finite, where G1;G2; . . . ;Gn

are the new small competence groups as defined earlier. Let fi ¼ Group

Coverage ðGiÞ and the importance measure m0 satisfy

m0ðGiÞ ¼ 1ð1 � i � nÞ

m0ðA [ BÞ ¼ m0ðAÞ þ m0ðBÞ þ lm0ðAÞm0ðBÞðl  0Þ

where l is determined by Equation (5.25). The process of calculating the value of

the Choquet integral is as follows:

Step 1. Rearrange f f1; f2; . . . ; fng into a nondecreasing order such that

f �1 � f �2 � � � � � f �n

where ð f �1 ; f �2 ; . . . ; f �n Þ is a permutation of ð f1; f2; . . . ; fnÞ.

Step 2. Compute

CoverageðGÞ ¼

ð
f dm0 ¼

Xn
j¼1

ð f �j � f �j�1Þm
0ðfGj;Gjþ1; . . . ;GngÞ

where f �0 ¼ 0.

The value of the Choquet integral provides the coverage of the competence

group G being considered. For a case base with several competence groups,

the sum of the coverage of the individual groups gives the overall coverage of the

case base.

5.5.4 Experiment Results

In this section some empirical results are provided to demonstrate the effectiveness

of the fuzzy integral method (Section 5.5.3) in closely matching the actual compe-

tence of a case base. At the same time, the model in Section 5.5.2 is shown not to be

a good predictor when the case base is not uniformly distributed. For this purpose, a

small case base containing 120 cases, each of dimension 2, is considered. Each case

is chosen randomly so that the case base satisfies nonuniform distribution. During
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the investigation, 50 randomly chosen cases in the case base are used as unknown

target problems; the remaining 70 cases are used to form the experimental case

bases.

The success criterion used is a similarity threshold: If the system does not

retrieve any cases within this threshold, a failure is announced. True competence

is regarded as the number of problems solved successfully. The experiment was

repeated 100 times. The results shown in Table 5.8 are the average values computed

over these iterations. In the table, ‘‘error_percent’’ represents the relative error of

coverage of a model with respect to the true model, and is defined as error_

percent¼ error_number/true_competence.

As expected, the error_percent of the fuzzy integral model is rather lower than

that of the model in Section 5.5.2. When the number of cases increases, the former

can reduce the competence error strikingly compared to the latter. In this experi-

ment, the case base considered has a nonuniform distribution, but in the situation

of uniform distributed case bases, the fuzzy integral competence model can still be

used because if there is no weak link, the competence computed by the fuzzy inte-

gral model will be the same as that obtained using the model in Section 5.5.2.

5.6 SUMMARY

In this chapter we first presented the concepts and different techniques of case-base

maintenance. Then the use of fuzzy set, rough set, and fuzzy integral for maintain-

ing a distributed case-base reasoning system is demonstrated along with some

experimental demonstrations using a source datum from the travel domain. Differ-

ent features are explained through examples. The application of these soft comput-

ing techniques has proven to be very useful, particularly in the modeling and

extraction of the domain knowledge in the case base. Future research includes

the study of other soft computing techniques, such as neural networks, genetic

algorithms, and various hybrid approaches for the maintenance of CBR systems.
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CHAPTER 6

APPLICATIONS

6.1 INTRODUCTION

As discussed in the previous chapters, soft computing techniques allow reasoning

with uncertainty and imprecision, efficient learning of intractable classes

(concepts), and robust parameter estimation through parallel searching. They are

very useful for enhancing the overall problem-solving ability of CBR systems. In

this chapter we describe briefly some successful soft CBR applications that are used

in various domains, such as law, medicine, e-commerce, finance, oceanographic

forecasting, and engineering. They provide advice and decision support to users

by recalling previously successful cases for use as a guide or template. This chapter

is organized as follows. In Section 6.2 we describe a fuzzy CBR application for

Web access path prediction, where the concept of fuzzy set is used in case

representation and mining association rules. In Section 6.3, a case-based medical

diagnosis system incorporated with fuzzy neural network for case selection and

adaptation is explained. Section 6.4 illustrates the application of a connectionist

neural network for oceanographic forecasting. The use of fuzzy logic to capture

the ambiguity of legal inference in a legal CBR system is explained in Section

6.5. This is followed, in Section 6.6, by a description of a residential property

evaluation system that integrates CBR techniques with fuzzy preferences in

determining similarities among cases. In Section 6.7 we describe an application

using GAs to support bond rating and bankruptcy prediction. In Section 6.8, a

color-matching system is described in which fuzzy logic is used in case

Foundations of Soft Case-Based Reasoning. By Sankar K. Pal and Simon C. K. Shiu
ISBN 0-471-08635-5 Copyright # 2004 John Wiley & Sons, Inc.
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representation and matching. A CBR system in fashion footwear design is

explained in Section 6.9, where a neuro-fuzzy technique is used in case indexing

and case retrieval. In Section 6.10, other applications using soft computing tech-

niques are mentioned.

6.2 WEB MINING

A fuzzy CBR application for predication of Web access patterns has been

developed and tested by Wong et al. [1,2]. Here a fuzzy association rule mining

algorithm, together with fuzzy case representation, is used to facilitate candidate

case selection. With these rules, Web designers are able to interpret user interests

and behavior. The personalization and prefetching of critical Web pages become

possible. The method has experimentally demonstrated better prediction accuracy

than some existing methods.

6.2.1 Case Representation Using Fuzzy Sets

Let a Web page be represented by a t-dimensional vector, where t is the number of

permissible terms (i.e., features) in the Web page. Absence of a term is indicated by

a zero, while the presence of a term is indicated by a positive number known as the

weight. The normalized weighting function of a term in terms of its frequency of

occurrence is defined as

wij ¼
tfij � idfj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pt
j¼1 ðtfijÞ

2ðidfjÞ
2

q ð6:1Þ

where wij is the weight of term j in Web page i, and tfij is the term frequency of term

j in Web page i. idfj is the inverse Web page frequency of term j in Web page i and

is computed as

idfj ¼ log
N

nj
ð6:2Þ

where N is the number of Web pages in the case base and nj is the number of Web

pages in the case base that contain the term tj.

After computing all the term weights, they are used as the universe of discourse

to formulate the linguistic variable term weight importance. Five fuzzy sets are

defined for the term weight importance: highly frequent (HF), frequent (F), medium

(M), less frequent (LF), and rare (R). A center-based membership function

approach is used to determine a three-point triangular fuzzy membership function.

The fuzzy c-means clustering algorithm is used to determine the centers of the

triangular functions that use the term weights as the input data. The resulted shapes

of the five membership functions are shown in Figure 6.1.
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6.2.2 Mining Fuzzy Association Rules

The relation between successive access paths of a user is regarded as sequentially

associated. For example, if ui is a user transaction with access sequence

fa1; a2; . . . ; ang, Web access pages aiði ¼ 1; 2; . . . ; nÞ are then considered to be

sequentially associated. The similarity between every two pages in a fixed order

is computed based on a similarity measure defined on the features extracted. The

similarity values are stored in cases as shown in Table 6.1.

6.2.2.1 Data Fuzzification To discover the fuzzy association rules from the

Web case base, similarity values of the access pages in a user transaction are

fuzzified into five linguistic terms: highly similar (HS), quite similar (QS), medium

(M), not so similar (NSS), and not similar (NS). The process of determining the five

membership functions is similar to that used in case representation (Section 6.2.1).

6.2.2.2 Mining Fuzzy Association Rules A fuzzy association rule is

defined follows:

IF X ¼ fx1; x2; . . . ; xng is A ¼ ff1; f2; . . . ; fn�1g

THEN Y ¼ fy1; y2; . . . ; yng is B ¼ fg1; g2; . . . ; gn�1g;

where X is the sequence of URLs accessed and A is the associated fuzzy set and Y is

the sequence of URLs predicted and B is the associated fuzzy set. X is the problem

part of the transaction ui in the case base and Y is the corresponding solution part.

0

0.2

0.4

0.6

0.8

1

Term weight

R LF M F HF

Figure 6.1 Fuzzy membership functions for the term weight.

TABLE 6.1 Similarity Values of Web Pages

Case SMða1; a2Þ SMða2; a3Þ SMða3; a4Þ � � � SMðai; aiþ1Þ � � �

1 87 89 90 � � � � � � � � �
2 56 78 70 � � � � � � � � �
3 75 83 80 � � � � � � � � �
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Therefore, the fuzzy association rule in the form ‘‘IF the interpage similarity of X is

A THEN the interpage similarity of Y is B’’ is to be mined. A and B represent the

fuzzy sets associated with the corresponding accesses. Each fuzzy set, called an

item, represents the linguistic term describing the similarity between two Web

pages. As in a binary association rule, ‘‘X is A’’ is called the antecedent of the

rule, and ‘‘Y is B’’ is called the consequent of the rule. In the traditional sense,

for a rule to be interesting, it needs to have enough support and a high confidence

value. To minimize the set of resulting fuzzy association rules, only the items that

have transaction support above a user-specified threshold are used. Item sets with

minimum support are called frequent item sets.

Let us now examine methods of computing fuzzy support and fuzzy confidence

values. The fuzzy support value is computed by first summing the transactions of all

the items in the specified item sets, then dividing it by the total number of records.

A fuzzy support value reflects not only the number of records supporting the item

set, but also their degree of support. The fuzzy support value of the item sets of

hX,Ai is computed as

FShX;Ai ¼

P
ui2CB

Q
xj2X;fj2A

ui : ðxj; fjÞ

jCBj
ð6:3Þ

where jCBj is the cardinality of the case set.

The following example is used to illustrate the computation of the fuzzy support

value. Let X¼ {URL1,URL2} and A¼ {highly Similar, medium}. Some typical

cases are shown in Table 6.2. Using the cases in the table, the fuzzy support value

of the rule ‘‘IF the interpage similarity of URL1 and URL2 is highly similar THEN

the interpage similarity of URL2 and URL3 is medium’’ is calculated [using

equation (6.3)] as

FShX;Ai ¼
ð0:5Þð0:8Þ þ ð0:6Þð0:6Þ þ ð0:4Þð0:8Þ þ ð0:7Þð0:2Þ

4
¼ 0:305

The frequent item sets are used to generate all possible rules. If the union of an

antecedent and a consequent has enough support, and the rule has high confidence,

this rule is considered interesting. When a frequent item set hZ;Di is obtained,

fuzzy association rules of the form ‘‘IF X is A THEN Y is B’’ are generated, where

TABLE 6.2 Cases with Membership Values

hInterpage Similarity of URL1 hInterpage Similarity of URL2

and URL2, Highly Similari and URL3, Mediumi

0.5 0.8

0.6 0.6

0.4 0.8

0.7 0.2
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X � Z, Y ¼ Z � X, A � D, B ¼ D� A, hX,Ai is the antecedent, and hY,Bi is the
consequent.

The fuzzy confidence value is obtained as follows:

FChhX;Ai;hY ;Bii ¼
FShZ;Di

FShX;Ai

¼

P
ui2Cs

Q
zj2Z;dj2D

ui : ðzj; djÞ
P

ui2Cs

Q
xj2X;fj2A

ui : ðxj; fjÞ
ð6:4Þ

where Z ¼ X [ Y and D ¼ A [ B. Since the fuzzy confidence value is a measure of

the degree of support given by the transactions, it is also used to estimate the inter-

estingness of the generated fuzzy association rules. In the equation, the fuzzy sup-

port of hZ,Di is divided by the fuzzy support of hX,Ai. Using the cases in Table 6.2,

the fuzzy confidence of the rule ‘‘IF the interpage similarity of URL1 and URL2 is

highly similar THEN the interpage similarity of URL2 and URL3 is medium’’ is

FChhX;Ai; hY ;Bii ¼
0:4þ 0:36þ 0:32þ 0:14

0:5þ 0:6þ 0:4þ 0:7
¼ 0:555

As a result, the fuzzy sequential association rules are mined whose fuzzy support

and fuzzy confidence are above a given threshold. A set of candidate cases that

satisfy the fuzzy rules is selected from the case base. Based on the assumption

that people accessing similar page content will have similar access paths, these can-

didate cases are then used to predict the user Web access patterns and recommend

the Web pages to be prefetched.

6.3 MEDICAL DIAGNOSIS

To help less-experienced physicians, Hsu and Ho [3,4] developed a hybrid CBR

system incorporating fuzzy logic, neural networks, and induction technique to

facilitate medical diagnosis. Details are given below.

6.3.1 System Architecture

The system consists of a case base, a commonsense knowledge base, a general

adaptation knowledge base, a user interface, a data analyzer, a specification conver-

ter, and a case-based reasoner (see Fig. 6.2). In this system, each instance of the

medical diagnosis is called a case. It has three parts: (1) a diagnosis description

describing the scenario of how a diagnosis is processed; (2) a patient description

describing both the subjective and objective findings, the pathology and the

laboratory testing results of a patient; and (3) some domain-specific knowledge

(i.e., case-specific adaptation rules) for case adaptation.
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The user interface allows physicians to interact with the system by means of a

friendly human body image. In the data analyzer, a medicine-related commonsense

knowledge base is used to filter unreasonable input as well as to select the relevant

features. The specification converter fuzzifies the significant features: the important

patient data items along with the corresponding fuzzy degrees. In the case retrieval

process, a distributed neural network is used to perform approximate matching. In

case evaluation and adaptation, the constrained induction tree is used to determine

the valuable features for adaptation. The neuro-fuzzy method used in this system is

explained in the next section. This is followed by the method of case evaluation and

adaptation using induction tree.

6.3.2 Case Retrieval Using a Fuzzy Neural Network

A distributed fuzzy neural network is used to select the most relevant cases to

provide candidate solutions for a given input. It contains two layers (see Fig. 6.3).

The first layer, the symptom net, determines the fuzzy similarity of the subjective

and objective symptoms between the query patient case and the cases in the case

base. Similar to the symptom net, the pathology net is used to compute the fuzzy

similarity of the pathology and laboratory data between the query patient case and

the cases in the case base. Each layer is further divided into subnets according to the

pathological types of the cases: congenital type, neoplasm type, infection type,

obstructive type, and noncongenital type [5]. The principal advantage of the subnet

Common sense
knowledge base

Clinician
User

interface

Data

analyzer
Specification

converter

Fuzzy medical problem
specification

Retrieval

Evaluation

Knowledge
base

Adaptation

Diseases diagnosed

Maintenance

Case base

Case-based

reasoner

Figure 6.2 Structure of hybrid medical diagnosis system.
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design is to reduce the training load. When a new case is added to the case base, the

system only needs to retrain the corresponding subnet(s) while keeping the others

unchanged. Using this fuzzy neural network, one or more candidate cases are

selected to provide potential solutions.

6.3.3 Case Evaluation and Adaptation Using Induction

In the evaluation phase, an induction tree is used to identify the relevant features in

the candidate case(s). The nodes in the induction tree include both feature nodes

and case nodes. Each feature node is branched into several child nodes, correspond-

ing to different feature values. A case node is reached at the end of each branch. For

example, for the candidate cases listed in Table 6.3, the induction tree shown in

Figure 6.4 is developed. The significance of each feature is described by the

expected utility (EU) for each node in the induction tree. Set EU(ei)¼U(ei), where

U(ei) is the utility of case i computed by taking into account its adaptability [6].

Then the EU values of the father nodes of ei (i.e., all the feature nodes) are

computed recursively as

EUðFjÞ ¼
Xn

k¼1

EUðFjkÞPðFj ! FjkÞ ð6:5Þ

where Fjk is the kth child node of feature node Fj, n the number of children of

feature node Fj, and PðFj ! FjkÞ the probability of having the feature value Fjk

given the feature Fj. PðFj ! FjkÞ is determined by the domain experts. It represents

the probability of occurrence of the feature value Fjk in the case base. The more

Fuzzy medical problem specification

Pathology dataPatient data

Symptom net

Pathology net

Candidate cases

Congenital

subnet

Neoplasm

subnet

Infection

subnet

Obstractive

subnet

Noncongenital

subnet

Congenital

subnet

Neoplasm

subnet

Infection

subnet

Obstractive

subnet

Noncongenital

subnet

Figure 6.3 Distributed fuzzy neural networks for case retrieval. (From [3].)
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frequently a feature value occurs in the case base, the higher the probability that it is

relevant to the new problem.

Subsequently, with the help of adaptation knowledge (including case-specific

adaptation rules and the general knowledge base), the corresponding adaptation

strategy can be determined. For those features whose relevance is above a given

threshold, no adaptation is needed. On the other hand, for those features whose

relevance is below a given threshold, adaptation is carried out to create the final

diagnosis for the patient.

In general, artificial neural networks (ANNs) are useful in medical case match-

ing, selection, and retrieval, especially when there is insufficient domain knowledge

or relevant information. However, the user needs to consider the resources required

for successful training of the ANNs. Other approaches, such as k-NN (k-nearest

neighbor) and RBS (rule-based system), may be feasible alternatives if the domain

knowledge is or can be made available.

Another example of soft CBR application in medicine is the ELSI (error

log similarity index) system [7,8]. It was developed to find the error patterns

automatically using diagnostic information from computed tomography (CT)

scanners. The results are categorized and stored as cases that could be used by

TABLE 6.3 Example Candidate Cases

Features Case 1 (e1) Case 2 (e2)

Disease category (DC) Respiratory Respiratory

Disease organ (DO) Pulmonary Pulmonary

Practical illness 1 (PI1) Cough Cough

Practical illness 2 (PI2) Dyspnea Dyspnea

Effusion protein (EP) High High

Specific gravity (SG) High High

Chief complaint 1 (CC1) Chest pain Chest pain

Diagnostic 1 (DI1) Pleural effusion Pleural effusion

Diagnostic 2 (DI2) Pneumococcal (DI2-1) Streptococci pneumonia (DI2-2)

Cytology (CY) Liver tumor (CY1) Normal (CY2)

Diagnostic procedure 1 (DP1) Pleural biopsy Pleural biopsy

Diagnostic procedure 2 (DP2) Pleurosocopy Pleurosocopy

Source: [3].

DC DO CC1 DI2 

DI2-1 CY1 e1

DI2-2 CY2 e2

Figure 6.4 Example of the induction tree.

208 APPLICATIONS



less experienced service engineers for control of CT scanners. In this application,

the error log information is not well formatted and often contains erroneous mes-

sages. A membership function is introduced to describe the confidence of the case

matching. The use of fuzzy logic has been shown to increase accuracy and reduce

maintenance cost.

6.4 WEATHER PREDICTION

In 2001, Corchado and Lees [9] presented a universal forecasting model. It is a

hybrid system in which a neural network is integrated within the CBR frame to

provide improved case adaptation performance. Here universal means the ability

to produce accurate results anywhere on any ocean at any time. The structure of

the model and the case adaptation method using ANN are described below in brief.

6.4.1 Structure of the Hybrid CBR System

The hybrid system is composed of a CBR system and a radial basis function ANN

(RBFANN). It is capable of adapting itself in real time to different oceanographic

water masses. The experiments were carried out using data sets recorded in the

Atlantic Ocean (cruises AMT 4), which include the sea-surface temperature

recorded in real time by sensors in the vessels and satellite pictures received

weekly. Figure 6.5 shows the detailed information flow throughout the CBR cycle,

and especially how the ANN has been integrated with CBR operation to form a

hybrid forecasting system.

6.4.2 Case Adaptation Using ANN

In the case adaptation algorithm, the training time required for the RBFANN is very

short and no human intervention is required. This network obtains the most repre-

sentative solution from a number of retrieved cases. Only a small number of rules

supervise the training of the ANN, and it can learn without forgetting by adapting

its internal structure (adding or deleting its centers). A case in the case base is

described by a set of temperature values (called a feature vector). According to

the similarity measure defined on the feature vectors, k best matches to the problem

case can be retrieved using the k-NN algorithm (Section 3.2.5). These k cases will

be used to train the RBFANN in the adaptation stage. Every time that the ANN is

retrained, its internal structure is adapted to the new problem and the cases are

adapted to produce the solution, which is a generalization of those cases. The para-

meter values of the RBFANN are shown in Table 6.4. This ANN uses nine input

neurons, 20 to 35 neurons in the hidden layer, and one neuron in the output layer.

Initially, 20 feature vectors chosen randomly from the training data set (i.e., the set

of retrieved cases) are used as the centers of the radial basis functions used in the

hidden layer of the ANN. The number of feature vectors depends on the data sets

extracted in the AMT cruises [10] and changes during training. The topology of the
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ANN (i.e., the number of neurons in each layer) is determined empirically before-

hand.

To make the centers as close as possible to many vectors from the input space,

the center and weight must be adapted. This type of adaptation is particularly

important because of the high dimensionality of the input layer.
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Figure 6.5 Structure of the hybrid system. (From [9].)
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6.4.2.1 Center Adaptation All the centers are associated with a Gaussian

function, the width of which for all the functions is set as the Euclidean distance

between the two centers that are separated the most from each other. The closest

center to a particular input vector is moved toward the input vector by a percentage

a of the present distance between them. a is initialized to 20 every time that the

ANN is retrained, and its value is decreased linearly with the number of iterations

until a becomes 0; then the ANN is trained for a number of iterations (e.g., between

10 and 30 iterations for the entire training data set, depending on the time left for

the training) in order to obtain the most satisfied weights for the final value of the

centers. The thresholds that determine the centers and weight adaptation are

determined empirically.

6.4.2.2 Weight Adaptation The delta rule [equation (B.9) in Appendix B] is

used to adapt the weighted connections from the centers to the output neurons [11].

In particular, for each pair of input and desired output vectors presented, one adap-

tation step, according to the delta rule, is made. A new center can be inserted

between the most distant center C (which can be determined by Euclidean distance)

and the center closest to it when the average error in the training data set does not

fall by more than 10% after 10 iterations (of the entire training set). Centers are also

eliminated if the absolute value of the weight associated with a neuron is less than

20% of the average absolute value computed on the five smallest weights. The num-

ber of neurons in the middle layer is kept above 20. This is a simple and efficient

way of reducing the size of the ANN without decreasing its memory dramatically.

After the adaptation of the ANN is complete, a more satisfactory solution (i.e., a

crisp value) for the problem can be obtained, but in practice, this solution is hardly

completely accurate. The next step is therefore to make some adaptation of the

solution. Since this is a real-time problem, it is impossible to evaluate the outcome

of the system before it is used. To improve this situation to some extent, an error

limit can be defined to substitute the crisp output with a band (or error interval)

around the output of the ANN. For example, if y is the crisp solution obtained

TABLE 6.4 Parameter Values of the Radial Functional Basis ANN

Number of input neurons 9

Number of neurons in the 20–35

hidden layer

Number of neurons in the 1

output layer

Input data The difference between the present temperature

values and those of the input profile taken every

4 km

Output data The difference between the temperature at the

present point and the temperature 5 km ahead
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by the ANN and EL is the corresponding error limit, the error interval, defined as

[y� EL; yþ EL], is used as the prediction instead of using the crisp value y. If the

error limits are too wide, the forecast will be meaningless. Therefore, a trade-off is

made between a broad error limit (that will guarantee that the real solution is

always within its bands) and the crisp solution.

For each water mass, a default error limit, EL0, has been obtained empirically.

Every time a cruise crosses a water mass, a new error limit ELz (where 0 < z < 6)

is calculated by averaging the errors in all the predictions made. Therefore, there

are at most five error limits associated with a water mass, which are used to deter-

mine the error limit for the present prediction. Note that this number of error limits

is not critical. It is found that a smaller number can also guarantee stability, whereas

a larger number may not provide a better result. The average error of each case

retrieved, which is a measure of the average error for the previous predictions using

this case, is also used in determining the error limit. The error limit determines the

error interval centered in the crisp temperature value obtained by the ANN, and it is

expected that there is a high probability that the forecast is within this interval. In

this application, although the value of the probability varies depending on the

distance of the forecast, it is required to be higher than 0.9.

The error limit, EL, is determined as shown below. If the output of the ANN is y,

the average value of the accumulated errors of the cases taking part in a given fore-

cast is AE, and ACL is the average value of ELz (0 < z < 6), then EL is computed

by

EL ¼ AE� 0:65þ ACL� 0:35 ð6:6Þ

The corresponding error interval is

½y� ððAE� 0:65Þ þ ðACL� 0:35ÞÞ; yþ ððAE� 0:65Þ þ ðACL� 0:35ÞÞ�

The constant terms used in equation (6.6) were obtained empirically using a

sufficient amount of data from all the water masses of the Atlantic Ocean.

Another methodology, combining CBR with fuzzy set theory to predict the

weather, was developed by Bjarne and Denis [12] by determining the features

of the cases that are significant in computing the similarity between cases. The

knowledge is encoded in a similarity measure function and then used to retrieve

k nearest neighbors (k-NN) from a large database. Prediction(s) for the query

case are made from a weighted median of the outcomes of retrieved (past) cases.

Past cases are weighted according to their degrees of similarity to the present case,

which is described by fuzzy sets. Such a fuzzy k-NN-based prediction system,

called WIND-1, is tested with the problem of producing six-hourly predictions of

cloud ceiling and visibility in an airport, given a database of over 300,000 conse-

cutive, hourly, airport weather observations (36 years of records). Its prediction

accuracy is measured using standard meteorological statistics and compared with

that of a benchmark prediction technique, persistence climatology (PC). In realistic
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simulations, WIND-1 is found to be significantly more accurate and efficient. It

takes about only 1 minute to produce a forecast.

Several other approaches based on the CBR in conjunction with statistical tech-

niques [13], with supervised ANN [14] and with unsupervised ANN [13], have been

studied in the area of oceanographic foresting. The result of these methods suggests

that to obtain accurate forecast in an environment in which the parameters are chan-

ging continuously, both temporally and spatially, a methodology is needed that can

incorporate the strengths and abilities of several artificial intelligence approaches.

6.5 LEGAL INFERENCE

In this section a CBR legal system [15–17] is explained. Fuzzy logic is used to

describe the fuzziness of the legal inference as well as for case representation

and case matching. This system is used to teach the principles of contract laws

in universities. The cases come from the United Nation’s Convention on Contracts

for the International Sale of Goods (CISG), which has been used in many countries.

The system has four main components: case base, case retrieval engine, inference

engine, and user interface.

6.5.1 Fuzzy Logic in Case Representation

In the legal case base, each case (or precedent) consists of a number of issues. Each

issue has a set of features and case rules. It is stored as a frame, as follows:

Case n:

((Issue n1)
.

.

.

(Feature n1)
.

.

.

(Case rule n1)
.

.

.

(Issue n2)
.

.

.

(Issue nm)
.

.

.

)

Each issue consists of a legal argument point and a court judgment. It can be further

interpreted (or categorized) into a number of features and case rules by law experts

according to the statute rule and facts of the precedents. The case rules act as some

specific knowledge to facilitate the legal inference. It can be interpreted as the

connections between the precedents and the court judgments.

6.5.1.1 Membership and Vagueness Values To represent cases with

uncertainty, membership values and vagueness values are being stored in frames

called fuzzy frames. Each feature value in a case is described by a linguistic term
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such as ‘‘completely no,’’ ‘‘probably no,’’ . . ., or ‘‘completely yes.’’ The linguistic

term is represented by a membership value. The degree of uncertainty of this term

is described by a vagueness value. The values of membership and vagueness can be

assigned by the domain experts. For example, the corresponding relationships

between the numerical representation and linguistic representation are shown in

Table 6.5. There are five values for the membership and three values for the vague-

ness. Determining the number of values is problem dependent.

6.5.1.2 Example of Fuzzy Frame Representation Assume that there is a

situation description concerning an issue ‘‘The proposal is sufficiently definite’’ as

follows:

Event: Proposal

Description of event:

The goods are jet engine systems.

The quantity of engine systems can be calculated by the quantity of planes

that will be purchased.

Concerning the price:

The price of Boeing jet engine is fixed.

The jet engine system includes a support package, services, and so on.

With the help of available statutes and rules, the situation description for the given

issue is first represented by a case in frame form. One of the statute rules, article 14

of the CISG, can be used to determine the relevant features for the issue and the

judgment about whether the proposal is sufficiently definite. The statements in

article 14 are: A proposal for concluding constitutes an offer if it is sufficiently

definite and indicates the intention of the offerer to be bound in case of acceptance.

TABLE 6.5 Membership and Vagueness Values of the

Linguistic Terms

Membership (m)

Completely no (CN) 0

Probably no (PN) 0.25

More or less (ML) 0.5

Probably yes (PY) 0.75

Completely yes (CY) 1

Vagueness (v)

Vague (V) 1

Roughly (R) 0.5

Clearly (C) 1
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A proposal is sufficiently definite if it indicates the goods and expressly or impli-

citly fixes or makes provision for determining the quantity and price.

According to article 14, the information that is relevant to goods, quantity, and

price is considered to be important to represent the previous situation. Therefore, it

can be characterized as follows:

Argument point: The proposal is sufficiently definite.

Judgment: No (N)

Features: The goods are indicated.

The quantity is fixed.

The entity price is not fixed.

A part price is fixed.

Further, it is represented by such a fuzzy frame, where the name of the frame is

the argument point about a case, the frame value is the judgment about a case, the

slot name is the feature about a case, and slot value has the values m and v. These

are shown in Table 6.6. Similarly, the precedent in the case base can be represented

by fuzzy frames. The case rules extracted from the relevant statutes and rules are

also stored in a case. They are in the form of some questions providing to users, and

they give a judgment about whether the candidate case(s) can be reused according

to the question answers from the users. The case rule judgments are represented by

fuzzy sets. The triangular membership functions are used.

6.5.2 Fuzzy Similarity in Case Retrieval and Inference

In the fuzzy frame representation of a case, based on the membership and vagueness

values, each feature value and the case-rule judgments are represented by different

fuzzy sets. Therefore, the similarity measures of cases become equivalent to simi-

larity of fuzzy sets, which can be defined as the distance between the two centers of

gravity. Let the membership function of a fuzzy set A be mA. The center of gravity

of A for x 2 ½a1; a2� is then computed by [also refer to equation (3.15)]

CGðAÞ ¼

R
a2

a1
xmAðxÞ dxR

a2

a1
mAðxÞ dx

ð6:7Þ

TABLE 6.6 Fuzzy Frame Case Representation

N

———————

The proposal is sufficiently definite m V

The goods are indicated. 1.0 0.0

The quantity is fixed. 1.0 0.0

The entity price is fixed. 0.0 0.0

A part price is fixed. 1.0 0.0
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The fuzzy similarity between two fuzzy sets A and B is defined as [also refer to

equation (3.16)]

SMðA;BÞ ¼ ð1� jCGðAÞ � CGðBÞjÞ ð6:8Þ

The similarity of fuzzy frames, including several features for a given issue, is com-

puted, based on equations (6.7) and (6.8), by taking the minimum similarity values

of fuzzy sets, which represent different features.

According to the similarity measure, the solution(s) of the most similar case or

cases can be selected as the proposed solution(s) for the query case, and then an

inference about whether the retrieved precedent conclusion can be adapted is

made by the system using the case rules. The similarity measure defined in equation

(6.8) is performed on the fuzzy sets representing the judgment of case rule for the

precedent and query case. If the degree of similarity is greater than a given thresh-

old, the query case conclusion can be obtained according to that of the precedent.

Another system, called HILDA [18], which uses ANNs for knowledge extrac-

tion, has been applied in the area of law. It incorporates rule- and case-based

reasoning to assist a user in predicting case outcomes and generating arguments

and case decisions. The knowledge extracted from an ANN guides the rule infer-

ences and case retrieval.

6.6 PROPERTY VALUATION

The task of residential property valuation is to estimate the dollar value of proper-

ties in the dynamic real world. The most common and successful method used by

expert appraisers is referred to as the sales comparison approach. The method con-

sists of finding comparables (i.e., recent sales that are similar to the subject property

using sale records); after contrasting the subject property with the comparables,

adjusting the comparables’ sales price to reflect their differences from the subject

property; and reconciling the comparables’ adjusted sales prices to derive an esti-

mate for the subject property (using any reasonable averaging method). A system,

Property Financial Information Technology (PROFIT), was developed by Bonis-

sone and Cheetham [19] to automate this process. It uses fuzzy logic in case match-

ing and retrieval to describe the user preference for case selection. It has been tested

successfully on thousands of real estate transactions.

6.6.1 PROFIT System

PROFIT uses CBR with fuzzy predicates and fuzzy similarity measures [20] to

estimate residential property value for real estate transactions. It consists of the

following steps:

Step 1. Retrieve recent sales from a case base. Recent sales are retrieved from a

case base using a small number of features to select potential comparables.
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Step 2. Compare the subject property with the cases retrieved. The comparables are

rated and ranked on a similarity scale to identify those most similar to the subject

property. This rating is obtained from a weighted aggregation of the decision-maker

preferences, expressed as fuzzy membership distributions and relations.

Step 3. Adjust the sale price of the cases retrieved. Each property’s sale price is

adjusted to reflect the cases differences from the subject property. These

adjustments are performed by a rule set that uses additional property attributes,

such as construction quality, conditions, pools, and fireplaces.

Step 4. Aggregate the adjusted sales prices of the cases retrieved. The best four to

eight comparables are selected. The adjusted sale price and similarity of the

properties selected are combined to produce an estimate of the subject value with

an associated reliability value.

Step 2, in which fuzzy logic is incorporated to represent user preferences, is

discussed in detail in the following section.

6.6.2 Fuzzy Preference in Case Retrieval

A set of potential comparables is extracted initially using standard SQL (structured

query language) queries for efficiency. Retrieval involves comparing a number of

specific attributes of the subject with those of each comparable. Then the concept

of fuzzy preference is introduced to reflect user preferences, which greatly influence

the similarities between the properties of the subject and comparables. These simi-

larity values determine the rating or ranking of the comparables retrieved, and guide

the selection and aggregation processes, leading to estimation of the final property value.

Six attributes—address, data of sale, living area, lot area, number of bathrooms,

and number of bedrooms—are used in the initial case selection because their values

are not missing in over 95% of the records in the database. Users’ preference for the

1

0

Living area

75% 94% 106% 125% 50% 112.5%87.5% 150%

Lot size

1

1

0 .253 6 9 12 .50 .75 1.0
miles

1

Month since

date of sale

0

month

Distance

Figure 6.6 Attribute preference functions.
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first four attributes can be expressed as trapezoidal fuzzy membership functions

(shown in Fig. 6.6). For each attribute, the support set of the preference function

represents the range of tolerable values; and the core represents the most desirable

range of the top preference with the membership value 1. The remaining two fea-

tures, number of bathrooms and number of bedrooms, are evaluated in a similar

way. For example, the preference function of the number of bedrooms is repre-

sented by reflexive asymmetric fuzzy relation, which is illustrated in Table 6.7.

As a result of the evaluation, each comparison gets a preference vector, whose value

lies in the interval [0,1]. These values represent the partial degrees of membership

of each feature value in the fuzzy sets and fuzzy relations, which represented users’

selection preference.

The similarity measure is a function of the preference vectors and of the users’

priorities. These priorities are represented using the weights reflecting the attri-

butes’ relative importance in the specific market area. For example, in Bonissone’s

experiment, the weights that are listed in the weight column can be obtained by

interviewing expert appraisers using Saaty’s pair wise comparison methods [21].

The evaluation representing the attributes’ degree of matching obtained using the

above membership functions, are listed in the preference column. The product of

the preference score and the weights for an attribute is given in the weighted pre-

ference column. The similarity measure is then obtained as in Table 6.8. With the

TABLE 6.7 Preference Function for Number of Bedrooms

Comparable

Subject 1 2 3 4 5 6þ

1 1.00 0.50 0.05 0.00 0.00 0.00

2 0.20 1.00 0.50 0.05 0.00 0.00

3 0.05 0.30 1.00 0.60 0.05 0.00

4 0.00 0.05 0.50 1.00 0.60 0.20

5 0.00 0.00 0.05 0.60 1.00 0.80

6þ 0.00 0.00 0.00 0.20 0.80 1.00

TABLE 6.8 Similarity Measure Computation

Weighted

Attribute Subject Comparable Comparision Preference Weight Preference

Months since � 6 months 6 months 0.67 0.222 0.1489

data of sale

Distance � 0.2 mile 0.2 mile 1.00 0.222 0.2222

Living area 2,000 1,800 90% 0.79 0.333 0.2633

Lot size 20,000 35,000 175% 0.75 0.111 0.0367

No. bedrooms 3 0% 1.00 0.056 0.0556

No. bathrooms 2.5 2 2.5> 2 0.75 0.056 0.0417

Similarity measure (sum of weighted preference/sum of weights) 0.768333
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similarity measure, the initially extracted potential comparables are ranked and then

one or more candidates are selected from them.

6.7 CORPORATE BOND RATING

We describe here the hybrid approach of Shin and Han [22] using genetic algo-

rithms (GAs) to support CBR for corporate bond rating. GA is applied to find an

optimal or nearly optimal weight vector for the attributes of cases in case indexing

and retrieving. These weight vectors are used in the matching and ranking proce-

dures of CBR, which guide effective retrievals of useful cases.

6.7.1 Structure of a Hybrid CBR System Using GAs

The overall structure of the hybrid approach is shown in Figure 6.7. It has three

phases:

Phase 1. Search an optimal or nearly optimal weight vector with precedent cases

(or reference cases) using GAs.

Phase 2. Apply the derived weight vector obtained from phase 1 to the case

indexing scheme for the case-based retrieval process and evaluate the resulting

model with additional validation cases (or test cases) having known outcomes.

Phase 3. Present new (unclassified) data to the model for solving.

Solution

Matching and ranking

Case indexing

Case
representation

New problemHistorical
data

Case
representation

Optimal or
nearly optimal

weight
vector

Genetic
learning

Evaluation

Reference
case

Test
case

Figure 6.7 Structure of a hybrid GA–CBR system. (From [22].)
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6.7.2 GA in Case Indexing and Retrieval

In phase 1, GA is introduced to determine optimal weights from the historical cases.

The weight vectors assign importance values to each feature and are used in

computing the similarity between the cases (for the purpose of case retrieval).

The algorithm involves primarily the application of crossover and mutation

operators to generate a new population for the problem solution, obtaining good

solution(s) by evaluating the fitness of different weight vectors. The process is illu-

strated in Figure 6.8.

Depending on the problem, the weight values are encoded in a string, called a

chromosome, and the range of the weights is set in [0,1]. The classification accuracy

rate of the test set is used as the fitness function, which is expressed as

CR ¼
1

n

X

n

i¼1

CAi ð6:9Þ

such that

CAi ¼
1 if OðTiÞ ¼ OðSj�ðiÞÞ
0 otherwise;

�

Problem
representation

Code to initional
population

Output
vectors satisfied?

Retrieval

yes

no

Mutation

Crossover

Selection

Calculate fitness

Figure 6.8 Genetic algorithm for determining optimal weight values for case retrieval.
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where

Sj�ðiÞ ¼ min
j2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l

k¼1

wkðTik � RjkÞ
2

v

u

u

t ð6:10Þ

CR is the overall classification accuracy rate of the test set; CAi is the classification

accuracy of the ith case of the test set denoted by 1 and 0 (1 means correct and 0

means incorrect); OðTiÞ is the target output of ith case of the test set; OðSj�ðiÞÞ is the
output of jth case of the reference set that has the minimum distance with the ith

case of the test set; Sj*(i) is the distance between the ith case of the test set and the

jth case in the reference set R; Tik is the kth feature of the ith case of the test set (T);

Rjk is the kth feature of the jth case in the reference set; wk is the importance (or

weight) of the kth feature of a case; l denotes the number of features; and n is the

number of test cases. As a stopping criterion, 2500 trials were used.

The experiment was performed on data consisting of 168 financial ratios (i.e.,

features) and corresponding bond ratings of Korean companies. The ratings had

been performed by the National Information and Credit Evaluation Inc., which is

one of the most prominent bond-rating agencies in Korea. The total number of

samples available from 1991 to 1995 includes 3886 companies. The method was

found experimentally to support effective retrieval of cases and to increase the

overall classification accuracy rate significantly.

6.8 COLOR MATCHING

General Electric Plastics (GEP), one of the world’s largest plastics producers, cur-

rently provides a color-matching service to customers. Customers give a physical

sample of the color plastic they want and GEP either finds a close match from their

color libraries or formulates a new color to meet the customers’ need. The metho-

dology of CBR is incorporated here to reduce the cost and shorten the turnaround

time. Fuzzy logic is applied in the frame of CBR to achieve a consistent measure of

multiple criteria for case selection.

6.8.1 Structure of the Color-Matching Process

The color-matching process developed by Cheetham and Graf [23] is shown in

Figure 6.9. It involves selecting colorants and their respective amounts to generate

a color that satisfies the customer requirement when combined with the plastic. The

color matcher places the physical color standard in the spectrophotometer and reads

the spectrum of the color standard into the color-matching system. Next, the color

matcher enters key information, such as the resin and grade of material to generate

the match. Then the system searches its case base of previous matches for the

‘‘best’’ one(s) and adjusts them to produce a match for the new standard. If this

new match is acceptable, the adapted loadings are saved in the database and the
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match is finished. If the new match is not acceptable, the system adapts it to match

the requested color and application more closely. The color matcher then makes a

physical chip using the adapted formula until a match is found. When the ‘‘end’’

oval is reached, a formula is obtained that gives the ‘‘best’’ color match and balance

of all other important properties.

6.8.2 Fuzzy Case Retrieval

There are multiple criteria that the color match must satisfy: for example, the color

of the plastic must match the standard under multiple lighting conditions, there

must be enough pigments to hide the color of the plastic, and the cost of colorant

formula should be as low as possible. The principle of nearest neighbor is applied in

case retrieval. The case selection needs to provide a consistent meaning of similar-

ity for each attribute mentioned above to find the nearest neighbor. The consistency

start

Read color
standard

Search database

Pull physical chip

Match?

end

yes

Adapt loading

Make trial chip

Read trial

Search database Match?

Save color match

Adjust

no

no

yes

Figure 6.9 Color-matching process. (From [23].)

Excellent 0.95

Good 0.75

Fair 0.25

Poor 0 Attribute
difference1 2 3 4

Figure 6.10 Example of the fuzzy preference function.
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is achieved through the use of fuzzy linguistic terms associated with measured

differences, such as excellent, good, fair, and poor, to represent each attribute.

A fuzzy preference function is used to calculate the similarity of an attribute of a

case with the corresponding attribute of the subject. For example, a difference of 1

unit in the values of that attribute for the subject and comparable would be consid-

ered as excellent, 2 would be good, 3 would be fair, and 4 would be poor. This rat-

ing is then transformed into the fuzzy preference function shown in Figure 6.10.

The fuzzy preference function, which is used to transform a quantifiable value

for each attribute into a qualitative description of the attribute, allows a comparison

of properties that are based on entirely different scales, such as cost measured

in cents per pound and spectral curve match measured in reflection units. Based

on a discussion with experts and the classification analysis in terms of linguistic

terms, it is found that there is enough precision in the evaluation of the similarity

of the attributes to have four linguistic terms. Table 6.9 shows the linguistic terms

and the similarity scores that correspond to them.

Fuzzy preference functions are created for each of the following attributes of the

color match: color similarity, total colorant load, cost of colorant formula, optical

density of color, and color shift when molded under normal and abusive conditions.

As a result, a vector called the fuzzy preference vector is generated which contains a

fuzzy preference value for each attribute. A summation of the preference value of

each attribute can then be obtained with a weight of unity for each attribute, or with

different weight values for different attributes if the end users desire to emphasis

one attribute over another. Based on the summation of the preference value of

each attribute, the similar cases can be retrieved from the case base, and the

similarity calculation can also be used to guide the adaptation process.

6.9 SHOE DESIGN

A CBR system for fashion shoe design [24] is described in this section. Fuzzy sets

are used to represent cases. Multilevel supervised neural nets are incorporated to

carry out the task of case retrieval. The use of neural networks and fuzzy logic

has been found to be a useful means to improve the retrieval accuracy. During test-

ing, the cases retrieved are found to be the closest match of the cases in the case

base in 95% of tests carried out. In the other 5%, the retrieved cases are still useful

for adaptation, although not the closest possible match. The principal features of

TABLE 6.9 Linguistic Terms and Similarity

Fuzzy Rating Maximum Score Minimum Score

Excellent 1 0.95

Good 0.94 0.75

Average/fair 0.74 0.25

Poor 0.24 0
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fuzzy representation and neural network–based retrieval methods are described here

in brief.

6.9.1 Feature Representation

In shoe design, the features that define a case and index that case in a case base are

of different types (i.e., Boolean, continuous, multivalued, and fuzzy), which need to

be represented in different ways. In the following discussion, the representation of a

fuzzy feature is described.

For example, consider a question: How high is the shoe? Is the footwear item a

sandal, shoe, short boot, or long boot? It is explained by the example shown in

Figure 6.11. The height of a shoe can be small (sandal), medium (shoe), high (short

boot), or very high (long boot). The actual data are classified into these four ranges

of values (categories). This is a problem, as values can be considered to be between

groups or in more than one group. A pair with an inside back height of 30 cm would

be considered very high (a long boot), and a pair with an inside back height of 5 cm

would be considered medium (a shoe) and 10 cm high (a short boot). When it

comes to a value of 7 cm, is that average or high? What about 8 or 9 cm? What

is the boundary between a shoe and a short boot? A large number of the features

that characterize shoe design cases frequently consist of linguistic variables that are

best represented using fuzzy feature vectors.

The inside-back height of a shoe is classified as very high (a long boot), high (a

short boot), medium (a shoe), or low (a type of sandal), but some shoes will not fit

into the crisp separations of categories. This is represented by using four linguistic

variables: ‘‘low,’’ ‘‘medium,’’ ‘‘high,’’ and ‘‘very high.’’ Each shoe would have a

value for each of the four variables.

??

Sandal Shoe Short boot Long boot

Figure 6.11 Footwear item between height categories.
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� A low shoe (e.g., a mule) would have attributes with these values: low, 1;

medium, 0; high, 0; very high, 0.

� A long boot with a large inside-back height would have the following values:

low, 0; medium, 0; high, 0; very high, 1.

� A traditional shoe (of 5 cm) would have the following values: low, 0; medium,

1; high, 0; very high, 0.

This is straightforward for the instances that fall exactly into one of the main cate-

gories. However, for those cases that do not fit so nicely (e.g., the 7-cm case), one

needs to define a function that determines the value for in-between cases. Although

this function can take many forms, the authors [24] used piecewise linear forms

(Fig. 6.12) to determine the values associated with the height of the shoe.

6.9.2 Neural Networks in Retrieval

The shoes are divided into larger and smaller groups in a hierarchy; each case (i.e.,

a particular design) is attached to an appropriate subclass. For each classification,

since a single-layer network is insufficient, a three-layered network (i.e., with one

hidden layer) is used at each level for classification. Such a network builds its

own internal representation of the inputs and determines the best weights. The

back-propagation algorithm is used for its training.

Determination of features that are important for the classification of cases is a

major knowledge engineering task. For example, to determine the features that

should be used as inputs into the highest-level neural network, one needs to look

at the classes into which the superclass is divided and how the cases in each of those

subclasses differ from each other. Distinguishing the features between classes is not

easy in the case of the shoe design problem. Determination of the correct features

involves looking at the cases of previous designs, seeing the major differences

between them, and using these features to train a network successfully. The method

used is as follows: (1) when a network learns the set of input patterns to give a low

error, the features are considered to be correct; (2) if there are patterns (or cases)

that this network cannot classify, new features are added that can distinguish

between these cases. Once the additional features are determined, the input patterns

1

5 10 30

Height (cm)

Low

Medium

High

Very high

Figure 6.12 Fuzzy representation of shoe height.
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for the neural network are modified to include the additional attributes and the net-

works retrained. This training and testing cycle continued until all the networks had

negligible error rates. After retrieval of the best case, the design is modified by mak-

ing up the parts where the retrieved design does not meet the required design. Every

time a new successful design was created, it was added to the case base.

To add a new case to the footwear design system, the case first needs to be

classified or grouped as the best possible with similar designs. This may involve

some change(s) to the hierarchical structure of the case base. Once the case has

been classified, the neural networks used in its classification need retraining. This

is simple when new features are not needed for the classification. If the addition of a

new case requires the addition of some new input to a neural network, a new neural

network has to be created and trained.

6.10 OTHER APPLICATIONS

A software system using CBR and fuzzy logic, named CREW [25], was developed

to simulate a time-series model of astronaut crews. Without the expense and risk of

actual flights, it can predict how a given crew might respond to mission stress under

different scenarios. In the frame of CBR, some adaptation rules, coming from the

statements of researchers, act as a supplement to the case base. The conditions of

these rules are often described by linguistic terms such as ‘‘low,’’ ‘‘medium,’’ and

‘‘high’’ with modifiers such as ‘‘very’’ or ‘‘not.’’ The nonquantitative nature of

these rules lends itself to formulation and computation using fuzzy logic. They

are translated reasonably into numeric computations by the defined membership

functions, preserving sufficient precision considering the limited effect that any

given rule or condition has on the overall simulation.

In 2002, Passone et al. [26] provided an application of CBR technology to sup-

port the design of estuarine models (i.e., models for evaluating water quality). The

system aims to help nonexpert users to select a model that matches their goal and

the nature of the problem to be solved. It consists of three components: a case-based

reasoning scheme, a genetic algorithm, and a library of numerical estuarine models.

Once an appropriate model procedure is selected using the case-based reasoning

scheme, a genetic algorithm with problem-specific knowledge is activated to adjust

the model parameters. An example based on the Upper Milford Haven estuary in

the United Kingdom is used to demonstrate the efficiency of the system’s structure

for supporting estuarine model design.

6.11 SUMMARY

In this chapter we have briefly described some soft CBR applications so that the

reader gains some insight into the scope of these application areas. The soft

CBR systems show improvement of case retrieval accuracy, handling of multiple

selection criteria, constructing a user’s preference membership function, as well
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as improvement in adaptation ability. Especially, use of the membership function

allows a greater accuracy and smoothness in the selection phase. Handling of

multiple selection criteria enables the system to detect the potential problems dur-

ing the selection step, and incorporating the generalization ability of ANN enhances

the performance of case adaptation.
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APPENDIXES

In the appendixes, the basic concepts, definitions, and characteristic features of four

soft computing techniques—fuzzy logic, artificial neural networks, genetic algo-

rithms, and rough sets—are described. The treatment of these topics here is both

introductory and fundamental. Readers will find this background knowledge useful

for an understanding of the ideas and techniques presented in the text.

In Appendix Awe define fuzzy subsets, membership functions, basic operations,

measure of fuzziness, and fuzzy classification. In Appendix B, the architecture,

training methods, and advantages of artificial neural networks are described.

Here, four basic neural network models—perceptron, multilayer perceptron, radial

basis function neural network, and Kohonen neural network—which are widely

used, are considered. In Appendix C, the basic principle, algorithm, and merits

of genetic algorithms are given. Finally, rough set theory is presented in Appendix

D. This includes information system, indiscernibility relation, set approximations,

rough membership, and the dependency between attributes.

Note that the tools above act synergistically, not competitively, for enhancing the

problem-solving ability of each other. The purpose is to provide flexible informa-

tion-processing systems that can exploit the tolerance for imprecision, uncertainty,

approximate reasoning, and partial truth in order to achieve tractability, robustness,

low solution cost, and close resemblance to human decision making.

Foundations of Soft Case-Based Reasoning. By Sankar K. Pal and Simon C. K. Shiu
ISBN 0-471-08635-5 Copyright # 2004 John Wiley & Sons, Inc.
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APPENDIX A

FUZZY LOGIC

Fuzzy logic (FL), initiated in 1965 by Lotfi Zadeh [1], is a powerful problem-

solving technology. It provides a simple and useful way to draw definite conclusions

from vague, ambiguous, or imprecise information. Basically, fuzzy logic is an

extension of Boolean logic. In fuzzy logic, the truth value of a proposition lies

between 0 and 1. This allows expressing the knowledge with subjective concepts

such as tall, short, cold, fast, and slow. In a sense, fuzzy logic resembles human

decision making in its use of approximate information and uncertainty to generate

decisions. There are two important concepts within fuzzy logic that play a central

role in its applications [2]:

� Linguistic variable: a variable whose values are words or sentences in a

natural or synthetic language

� Fuzzy IF–THEN rule: a production rule in which the antecedent and

consequent are propositions containing linguistic variables

The basic concepts of fuzzy logic are described below; interested readers may

refer to references such as [1–19] for more detail information.

Foundations of Soft Case-Based Reasoning. By Sankar K. Pal and Simon C. K. Shiu
ISBN 0-471-08635-5 Copyright # 2004 John Wiley & Sons, Inc.
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A.1 FUZZY SUBSETS

A crisp subset A of U (i.e., universe of discourse) is defined by a characteristic func-

tion wA, which takes a value 1 for the elements that belong to A and zero for those

elements that do not belong to A.

wAðxÞ : U ! f0; 1g

wAðxÞ ¼
0 if x =2 A

1 if x 2 A

�

A fuzzy subset A of U is defined by a membership function that associates to

each element x of U a membership value mAðxÞ. This value represents the grade

of membership (i.e., between 0 and 1) of x to A:

mAðxÞ : U ! ½0; 1�

Note that if mA only takes value 0 or 1, the fuzzy subset A becomes a crisp subset of

U. Thus, a crisp subset can be regarded as a special case of a fuzzy subset.

In general, a fuzzy subset A is represented as follows:

� If U is finite [i.e., U ¼ fx1; x2; . . . ; xng], fuzzy subset A can be denoted as

A ¼ fðmAðxiÞ; xiÞ; i ¼ 1; 2; . . . ; ng ¼
mAðxiÞ

xi
; i ¼ 1; 2; . . . ; n

� �

ðA:1aÞ

A ¼
X

x2U

mAðxÞ

x
¼
mAðx1Þ

x1
þ
mAðx2Þ

x2
þ � � � þ

mAðxnÞ

xn
ðA:1bÞ

where ‘‘þ’’ denotes union.

� If U is infinite [i.e., U ¼ fx1; x2; . . . ; xn; . . .g],

A ¼

Z

mAðxÞ

x

In the following, some concepts of fuzzy subset A are given.

� Support. The support of A, denoted as support(A), is the crisp set of all points

in U such that the membership function of A is nonzero:

supportðAÞ ¼ fxj x 2 U; mAðxÞ > 0g

Note: If the support of a fuzzy set contains only one single element x1 2 U,
then A ¼ m1=x1 is called a fuzzy singleton. If m1 ¼ 1, then A ¼ 1=x1 is called a

nonfuzzy singleton.
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� Kernel. All the elements that belong absolutely (i.e., with degree 1) to A

constitute the kernel of A, denoted as ker(A):

kerðAÞ ¼ fxjx 2 U; mAðxÞ ¼ 1g

If A is a crisp subset of U, it is called normalized. In this case, A is identical to

its support and its kernel.

� Cardinality. This is the sum of the membership degrees of all the elements

of U belonging to A:

jAj ¼
X

x2U

mAðxÞ

If A is a crisp subset of U, its cardinality represents the number of elements

of A.

An example that describes a set of young people using a fuzzy subset is given

below. In general, if a person is less than 20 years old, he or she will be considered

as ‘‘young.’’ The fuzzy subset of ‘‘young’’ therefore can be characterized by the

following equation:

myoung ¼
1 x < 20

� 1
20
xþ 2 20 � x < 40

0 x  40

8

<

:

where x is a element of U ¼ f0; 1; 2; . . . ; 50g. Let this fuzzy subset be denoted as A,
and thus

supportðAÞ ¼ f0; 1; . . . ; 39g; kerðAÞ ¼ f0; 1; . . . ; 20g; and jAj ¼ 30:5

50

1
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Figure A.1 Membership function of fuzzy subset ‘‘young.’’
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From Figure A.1, people in the age group [0,20] (i.e., 0 � x � 20) are absolutely

members of the set ‘‘young’’ (i.e., they have a membership degree of 1). People in

the group [20,30] are partial members of the set ‘‘young’’ (e.g., a person 30 years

old is ‘‘young’’ with a membership degree of 0.5). People over 40 are nonmembers

of the set ‘‘young.’’ Note that there are many possible membership functions that

can be used to characterize the fuzzy subset ‘‘young.’’

� Linguistic variable. A linguistic variable is a variable whose values are

words (i.e., linguistic terms) or sentences in a natural or synthetic language.

For example, for a linguistic variable such as ‘‘age,’’ its values can be

‘‘very young,’’ ‘‘young,’’ ‘‘middle-aged,’’ ‘‘old,’’ ‘‘very old,’’ and so on. A

linguistic variable can be interpreted as a label of a fuzzy set that is

characterized by a membership function, and its formal definition is given

below.

Definition A.1. A linguistic variable is characterized by the quintuple

hX; T ;U; g; si, in which X is the name of the variable whose values range over

the universal set U, T is a finite set of linguistic terms ft0; t1; . . . ; tng that describes

X, g a grammar for generating linguistic terms, and s a semantic rule mapping each

term t 2 T to a fuzzy subset [i.e., sðtÞ] on U.

For example, for describing the age of the students in a university, the linguistic

variable ‘‘age’’ can be used. From Definition A.1, X ¼ age and U consists of the

possible values of the age of a university student [e.g., U ¼ f0; 1; 2; . . . ; 90g].
These values are described by a preordered set T , such as T ¼ {young, middle-

aged, old}. The grammar g is used for generating additional terms, such as

‘‘very young’’ and ‘‘very old.’’ The semantic rule s maps each term, such as

‘‘young,’’ to a fuzzy subset [i.e., s(young)].

A.2 MEMBERSHIP FUNCTIONS

A membership function specifies the degree of membership of an element to a

fuzzy set. Determination of membership functions is subjective in nature and

context dependent. Some popular membership functions are triangular membership

function, trapezoid membership function, sigmoid membership function, Gaussian

membership function, bell membership function, S function, and p function. The

simpler ones are described below.

� Triangle membership function. This membership function (see Fig. A.2) is

defined as

triangleðx; a; b; cÞ ¼ max min
x� a

b� a
;

c� x

c� b

n o

; 0
n o

ðA:2Þ
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� Trapezoid membership function. This membership function (see Fig. A.3) is

defined as

trapezoidðx; a; b; c; dÞ ¼ max min
x� a

b� a
; 1;

d � x

d � c

� �

; 0

� �

ðA:3Þ

Note that the triangle membership function is a special form of the trapezoid

membership function. These straight-line membership functions have the

advantage of simplicity.

� Sigmoid membership function. This membership function (see Figs. A.4 and

A.5) is defined as

sigmoidðx; a; cÞ ¼
1

1þ e�aðx�cÞ
ðA:4Þ

From Figures A.4 and A.5, if the parameter a > 0, this function is continuous

and open on the right side, while if a < 0, this function is continuous and open

on the left side. This function can be used for describing concepts such as

‘‘large’’ or ‘‘small’’ and are often used in neural networks as an activation

function.

x
a

triangle (x; a, b, c)

1

0
b c a b c d

x

trapezoid (x; a, b, c, d)

1

0

Figure A.2 Triangle membership function. Figure A.3 Trapezoid membership function.
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Although the membership functions are subjective, they cannot be defined arbi-

trarily. For example, a fuzzy set of ‘‘integers around b’’ can be represented by some

function as in Figure A.2, in which the membership value first increases monoto-

nically until x ¼ b, where it attains a maximum value of unity, and then decreases;

and therefore this fuzzy set can not be represented by a function as in Figure A.4

or A.5.

A.3 OPERATIONS ON FUZZY SUBSETS

Basic operations related to fuzzy subsets A and B of U having membership degrees

mA(x) and mB(x), x 2 U, respectively, are given below:

� A is equal to BðA ¼ BÞ ) mAðxÞ ¼ mBðxÞ for all x 2 U.

� A is a complement of BðA ¼ �BBÞ ) mAðxÞ ¼ m�BBðxÞ ¼ 1� mBðxÞ for all x 2 U.

� A is contained in BðA 
 BÞ ) mAðxÞ � mBðxÞ for all x 2 U.

� The union of A and BðA [ BÞ ) mA[BðxÞ ¼ _ðmAðxÞ; mBðxÞÞ for all x 2 U,
where _ denotes maximum.

� The intersection of A and BðA \ BÞ ! mA\BðxÞ ¼ ^ðmAðxÞ; mBðxÞÞ for all

x 2 U, where ^ denotes minimum.

� The concentration (Con) and dilation (Dil) operators for a fuzzy subset A are

characterized, respectively, by

mConðAÞðxÞ ¼ ðmAðxÞÞ
2

mDilðAÞðxÞ ¼ ðmAðxÞÞ
1=2

ðA:5Þ

� The modifiers, such as ‘‘not,’’ ‘‘very,’’ and ‘‘more or less’’ on fuzzy subset A

can be characterized as

mnot A ¼ 1� mA ðA:6Þ

mvery A ¼ ðmAÞ
2 ðA:7Þ

mnot very A ¼ 1� ðmAÞ
2 ðA:8Þ

mmore or less A ¼ ðmAÞ
0:5 ðA:9Þ

A.4 MEASURE OF FUZZINESS

The measure of fuzziness, denoted as FM, of a fuzzy set indicates on a global level

the average amount of difficulty in determining whether or not an element belongs

to a set. In general, it should have the following properties:
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� FMðAÞ ¼ minimum iff 8 xi mAðxiÞ ¼ 0 or 1

maximum iff 8 xi mAðxiÞ ¼ 0:5

�

� FM(A) FM(A*), where A* is a sharpened version of A, defined as

mA�ðxiÞ  mAðxiÞ if mAðxiÞ  0:5

mA�ðxiÞ � mAðxiÞ if mAðxiÞ � 0:5

� FMðAÞ ¼ FMðAÞ, where A is the complement set of A.

Different methods for computing FM have been proposed by [9,10,20–23]. One

of the most popular measures is given here [10]: The FM of a fuzzy set A having n

supporting elements can be computed as

FMðAÞ ¼ 2

nk
dðA;AÞ ðA:10Þ

where dðA;AÞ denotes the distance between A and its nearest crisp set A, which is

defined by

mAðxÞ ¼
0 if mAðxÞ � 0:5

1 if mAðxÞ > 0:5

�

ðA:11Þ

Note that, the value of k depends on the distance metric being used. For example, if

d is Hamming distance, k ¼ 1, and

FMðAÞ ¼ 2

n

X

n

i¼1

jmAðxiÞ � mAðxiÞj ðA:12Þ

For Euclidean distance, k ¼ 1
2
, and

FMðAÞ ¼ 2
ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

mAðxiÞ � mAðxiÞ
h i2

s

ðA:13Þ

A.5 FUZZY RULES

In conventional (crisp) classification problem, a sample is considered either a mem-

ber of a class or not a member (i.e., the degree of class membership is binary). In

fuzzy classification, a sample is considered to belong to more than one class (i.e.,

different classes) with different degrees of membership. The task of fuzzy classifi-

cation is to select the best-fit class to which the particular sample in question

belongs. In the following sections, an example of fuzzy classification is presented.
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A.5.1 Definition

Linguistic variables and fuzzy sets are used as the antecedents and consequences of

fuzzy rules. These rules are also called fuzzy IF–THEN rules. The definition of a

fuzzy rule is given in Definition A.2.

Definition A.2. A fuzzy IF–THEN rule relates m antecedent variables, A1;

A2; . . . ;Am, to n consequent variables, B1;B2; . . . ;Bn, and has the form

IF ½X1 ¼ A1� AND ½X2 ¼ A2� ; . . . ;AND ½Xm ¼ Am� THEN

½Y1 ¼ B1� AND ½Y2 ¼ B2� ; . . . ;AND ½Yn ¼ Bn�

where X ¼ ðX1; X2; . . . ; XmÞ and Y ¼ ðY1; Y2; . . . ; YnÞ are linguistic variables,

and ðA1; A2; . . . ; AmÞ and ðB1; B2; . . . ; BnÞ are their corresponding linguistic

values. Here all linguistic values are in the form of fuzzy sets with membership

functions such as mAi
and mBi

.

An example of a fuzzy IF–THEN rule is

IF½pressure ¼ ‘‘low’’� AND ½temperature ¼ ‘‘high’’� THEN ½volume ¼ ‘‘big’’�

A collection of fuzzy rules constitutes a fuzzy rule base that can be used to provide

advice or decision support to input queries.

A.5.2 Fuzzy Rules for Classification

Consider the following fuzzy rule:

IF ½feature F1¼ ‘‘low’’�AND ½featureF2¼ ‘‘medium’’�

AND ½feature F3¼ ‘‘medium’’�AND ½feature F4¼ ‘‘medium’’�

THEN ½class¼ ‘‘class 4’’�
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Figure A.6 Membership functions of the linguistic terms in fuzzy rule.
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where each linguistic term, such as ‘‘low’’ and ‘‘medium,’’ is described by fuzzy

sets shown in Figure A.6. A fuzzy rule base, consisting of n rules, is shown in

Table A.1. For example, r1: IF [F1 ¼ ‘‘low’’] AND [F2 ¼ ‘‘medium’’] AND

[F3 ¼ ‘‘medium’’] AND [F4 ¼ ‘‘medium’’] THEN [Class¼ class 1] is the first

fuzzy rule in the rule base.

Given an input x ¼ (x1,x2,x3,x4), the procedure to determine its class label is as

follows:

Step 1. Compute the membership degrees for each element of x (i.e., x1,x2,x3,x4)

with respect to all the fuzzy rules. For example, for r1 the degree of membership of

x1 to low is 0.75; the degree of membership of x2 to medium, x3 to medium, and x4
to medium is 0.32, 0.6, and 0.5, respectively.

Step 2. Determine the overall truth degree of each rule by taking the minimum of

membership degrees of all the antecedents. That is, in r1, the truth degree is 0.32, as

computed by

degreeðr1Þ ¼ minfmlowðx1Þ; mmediumðx2Þ; mmediumðx3Þ; mmediumðx4Þg

¼ minf0:75; 0:32; 0:6; 0:5g

¼ 0:32

Step 3. Determine the membership degree of x to each class (e.g., class 1) by taking

the maximum of the membership degrees of all the rules where ‘‘class 1’’ is the

consequence part. Assuming only two rules r1 and r4 are being considered, and both

of them are having ‘‘class 1’’ as the consequence, and degree(r4)¼ 0.56; thus,

degreeðclass 1Þ ¼ max fdegreeðr1Þ; degreeðr4Þg ¼ maxf0:32; 0:56g ¼ 0:56

Therefore, a fuzzy set with respect to x is generated and represented, considering all

the classes, as

A ¼
degreeðclass 1Þ

class 1
þ
degreeðclass 2Þ

class 2
þ � � � þ

degreeðclass 5Þ

class 5

TABLE A.1 Example for a Fuzzy Rule Base

Feature

Rule F1 F2 F3 F4 Class

r1 Low Medium Medium Medium 1

r2 Medium High Medium Low 2

r3 Low High Medium High 3

r4 Low High Medium High 1

r5 Medium Medium Medium Medium 4

. . . . . . . . . . . . . . . . . .

rn Low High Medium Low 5
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Step 4. To obtain a crisp classification, the fuzzy output (i.e., A) has to be

defuzzified. There are several heuristic-based methods for defuzzification, such as

the maximum method, where the class with the maximum degree to the input is

chosen. That is, if

degreeðclass iÞ ¼ maxfdegreeðclass 1Þ; degree ðclass 2Þ; . . . ; degree ðclass 5Þg

class i is chosen as the crisp class (to which the input belongs) with the crisp output

value degree(class i).

Another widely used defuzzification method is to take the center of gravity of

the fuzzy set as the crisp output value. For more details, readers may refer to [2,18].
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APPENDIX B

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are inspired by the biological nervous systems—

the brain, which consists of a large number (approximately 1011) of highly con-

nected elements (approximately 104 connections per element) called neurons.

The brain stores and processes the information by adjusting the linking patterns

of the neurons. Artificial neural networks are signal processing systems that try

to emulate the behavior of and ways of processing information in the biological

nervous systems by providing a mathematical model of the combination of neurons

connected in a network [1].

In an artificial neural network, artificial neurons are linked with each other

through connections. Each connection is assigned a weight that controls the flow

of information among the neurons. When the information is input into a neuron

through the connections, it is summed up first and then undergoes a transformation

by an activation function f ðx;wÞ. The outputs of this activation function will be sent
to other neurons or back to itself as input. A neuron that has three input connections

and three output connections is shown in Figure B.1, where x ¼ (x1,x2,x3) denotes

the input vector and w ¼ (w1,w2,w3) denotes the weight vector of the connections.

In artificial neural networks, input information is processed in parallel in the

neurons. This improves the processing speed and the reliability of the neural net-

work. Some advantages of ANN are summarized below:

� Adaptive. The network can modify its connection weights using some training

algorithms or learning rules. By updating the weights, the ANN can optimize
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its connections to adapt to the changes in the environments. This is the most

important characteristic of ANN.

� Parallel. When the information is input into the ANN, it is distributed to

different neurons for processing. Neurons can work in parallel and synerge-

tically if they are activated by the inputs. In this arrangement, the computing

power of the neural network is fully utilized and the processing time is reduced.

� Rugged. If one of the neurons fails, the weights of the connections can be

adjusted for preserving the performance of the ANN. The working neurons

will establish a stronger connection with each other, while the connections to

the failed neuron will be weakened. By doing so, the reliability of the ANN is

improved.

B.1 ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS

The architectures of ANNs can be classified into two categories based on the con-

nections and topology of neurons:

� Feedforward networks. The inputs travel in only one direction, from input to

output layer, and no feedback is allowed. Figure B.2 depicts a three-layered

x i

w i

f (x,w)
y i

Inputs Neuron Outputs

Figure B.1 Neuron.

Input layer

Hidden layer

Output layer

Figure B.2 Simple feedforward ANN.
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feedforward ANN, where the information presented to the ANN travels from

the input layer to the output layer following the direction of the arrows (i.e.,

from left to right). No loop or feedback occurs in the same layer. The recurrent

ANNs are different from the feedforward ANNs because they consist of loops

or feedbacks.

� Recurrent (or feedback) networks. The inputs can travel in both directions;

loop is allowed. Figure B.3 depicts a simple recurrent ANN that has a loop in

the connections. Before using an ANN, it needs to be trained. In the training

phase, the weights are adjusted using some gradient-based algorithms or

predefined learning rules. After training the ANN successfully, it can be used

for problem solving.

B.2 TRAINING OF ARTIFICIAL NEURAL NETWORKS

There are principally three ways of training ANNs: supervised, unsupervised, and

reinforcement training. In supervised training, weight modification is carried out by

minimizing the difference between the ANN outputs and the expected outputs. In

unsupervised training, weight modification is driven by the inputs. The weights are

trained with some predefined learning rules that determine how to modify the

weights. For example, the simple Hebb learning rule states that if two neighbor

neurons show similar outputs, their connection will be strengthened (see Fig. B.4)

as shown by

�wij ¼ lyiyj ðB:1Þ

Neuron

 Loop connection

Figure B.3 Simple recurrent ANN.

yi

wij

yj

Figure B.4 Simple Hebb rule.
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where �wij is the modification of the weight and yi and yj are the output of the ith

and jth node, respectively. l is the step length, which is a small positive number,

controlling the learning rate. In equation (B.1), the change in weight between the ith

and jth nodes is proportional to the product of their outputs. If the outputs yi and yj
are both positive or are both negative, the weight is increased and the link is

strengthened. The system modifies its weights until the weight space is stabilized

or comes to an oscillating state.

Reinforcement training is similar to supervised training, except that the training

samples are obtained through the use of outputs from the neural networks. If the

feedback of the output is successful, the input–output pair is stored as a training

sample, and no modification is performed on the weight vector. Otherwise, the out-

put will be repaired using some domain knowledge, which may be expressed in the

form of a decision table or some IF–THEN rules. The repaired input–output pair

will be stored and used as the training sample to modify, using supervised training,

the weight vectors. This reinforcement training process is shown in Figure B.5.

In many applications, ANNs using supervised training, such as the back-propa-

gation (BP) neural network and the radial basis function (RBF) neural network, are

used to model the input–output relations of some complex systems, where an expli-

cit mathematical model is hard to establish. ANNs using unsupervised training such

as the Kohonen neural network, on the other hand, are suitable for data clustering.

No

yes

Data are input into the ANN and
output is obtained

Outputs are evaluated

 Is the result
acceptable?

Store the input–output pair as a
training sample 

Repair the output using
expert knowledge 

Train the ANN in supervised
mode with the samples

no

Figure B.5 Reinforcement training.
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Neural networks using reinforcement training can be used when there are not

enough training samples.

B.3 ANN MODELS

In this section we introduce four types of ANN models that are most commonly

studied and used: the single-layered perceptron, multilayered perceptron, RBF

neural network, and Kohonen neural network.

B.3.1 Single-Layered Perceptron

A single-layered perceptron (SLP) is the simplest neural network that has only one

layer. In the one-output SLP, it consists of one neuron with many inputs. This type

of neural network can be used for classification in the sample space that is linearly

separable. As shown in Figure B.6, the perceptron has a set of weights, wj,

j ¼ 1; 2; . . . ; n, and a threshold or bias Th. Given an input vector x ¼ ½x1;
x2; . . . ; xn�

T
, the net input to the neuron is

v ¼
Xn

j¼1

wjxj � Th ðB:2Þ

The output y of the perceptron is þ1 if v > 0, or 0 otherwise. þ1 and 0 represent

two classes in a binary classification. The linear equation

Xn

j¼1

wjxj � Th ¼ 0 ðB:3Þ

represents the decision boundary that separates the space into two regions. Rosen-

blatt [2] developed a methodology for training the weights and threshold for clas-

sification. The following steps describe how to train the weights of the perceptron:

xi

Inputs

Output

Neuron

y

f (x, w)

wi

Figure B.6 Perceptron.
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Step 1. Initialize the weights and threshold as small random numbers.

Step 2. Input the training vector [x1, x2, . . ., xn]
T and evaluate the output of the

neuron.

Step 3. Adjust the weights with equation (B.4) as

wjðt þ 1Þ ¼ wjðtÞ þ lðŷy� yÞxj ðB:4Þ

where ŷy is the desired output, t the iteration number, and l (0:0 < l < 1:0) the step

length.

Rosenblatt has proved that if the training patterns are drawn from a linearly

separable sample space, the perceptron learning procedure converges after a finite

number of iterations. However, if the sample space is not linearly separable, the

perceptron fails. This leads to the development of the multilayer perceptron,

discussed in the next section.

B.3.2 Multilayered Perceptron Using a Back-Propagation Algorithm

A multilayered perceptron (MLP) [3] is a network of more than one layer of

neurons. The outputs of one layer become the inputs of the next layer and there

is no connection among the nodes in the same layer. This type of neural network

is capable of classifying the nonlinear separable data.

The training process is carried out using the gradient descent method. Initially,

the training samples are preprocessed (e.g., normalized) and the weight space is

initialized with random numbers. A sample is then selected from the training set,

and its input is sent to the input layer and fed forward to the output layer through

the hidden layer(s). The output of the ANN is compared with the desired output,

and an error function that takes the weights as variables is established to measure

the difference. To adjust the weights, the error function is minimized using the

gradient descent method. In calculating the gradient, the derivative of the error

function with respect to the weight vector of a certain node can be worked out using

a recursive equation that back-propagates the weight adjustment from the output

layer to the input layer. This process will repeat for many cycles until the value

of the error function becomes smaller than a user-specified threshold. This entire

process may be repeated using other samples for further training of the network.

After getting trained with all the samples, the neural network can be seen as a model

of the input–output relation of the sample space. It can then be used for problem

solving. This is explained below with respect to a multilayered perceptron

(Fig. B.7).

Here j, jþ 1, and L denote the jth layer, the ( jþ 1)th layer, and the Lth layer

(output layer), respectively; i and m denote the ith node in the jth layer and the

mth node in the ( jþ 1)th layer, respectively; N( j) is the number of nodes in the

jth layer; yLi ðkÞ is the output of the ith node in the Lth layer in the kth training cycle;

ŷyi is the expected output of the ith node in the ouput layer; s
j
i and w

j
i are the
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weighted sum and the weight vector of the ith node in the jth layer; and w
jþ1
mi is

the weight between the mth node in the ( jþ 1)th layer and the ith node in the jth

layer.

The sum of the squares of the errors in the output layer,

ErðkÞ ¼
X

NðLÞ

v¼1

½yL
v
ðkÞ � ŷyv �

2 ðB:5Þ

is used as the error function. The weights of the network are adjusted by minimizing

this function. To minimize ErðkÞ the gradient descent method is used. The gradient

of ErðkÞ with respect to the weight vector of the ith node in the jth layer is

qErðkÞ

qw
j
iðkÞ

¼ 2
X

NðLÞ

v¼1

½ yL
v
ðkÞ � ŷyv�

qyL
v
ðkÞ

qw
j
iðkÞ

ðB:6Þ

To work out equation (B.6), we use the chain rule:

qyL
v
ðkÞ

qw
j
iðkÞ

¼
qyL

v
ðkÞ

qs
j
iðkÞ

qs
j
iðkÞ

qw
j
iðkÞ

¼
qyL

v
ðkÞ

qs
j
iðkÞ

O j�1 ðB:7Þ

As O j�1 is the output vector from the ( j� 1)th layer, which is already known, we

only need to solve equation (B.7). Since qy
j
lðkÞ=qs

j
iðkÞ ¼ 0, when l 6¼ i, the formula

is simplified to

qyL
v
ðkÞ

qs
j
iðkÞ

¼
X

Nð jþ1Þ

m¼1

qyL
v
ðkÞ

qs
jþ1
m ðkÞ

qs jþ1
m ðkÞ

qs
j
iðkÞ

¼
X

Nð jþ1Þ

m¼1

qyL
v
ðkÞ

qs
jþ1
m ðkÞ

X

Nð jÞ

l¼1

qw
jþ1
ml ðkÞy j

lðkÞ

qs
j
iðkÞ

" #

¼
qy

j
iðkÞ

qs
j
iðkÞ

X

Nð jþ1Þ

m¼1

qy L
v
ðkÞ

qs
jþ1
m ðkÞ

w
jþ1
mi ðkÞ ðB:8Þ

i

m

j j + 1 L

y1 (k)L

y2 (k)L

(k)y
N (L)
L

y1
^

y2
^

yN (L)
^

Figure B.7 General structure of a multilayer perceptron.
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Denote �
j
ivðkÞ ¼ ðyL

v
ðkÞ � ŷyvÞqy

L
v
ðkÞ=qsjiðkÞ; thus from equation (B.8) we have

�
j
ivðkÞ ¼

qy
j
iðkÞ

qs
j
iðkÞ

X

Nð jþ1Þ

m¼1

�
jþ1
mv

ðkÞw jþ1
mi ðkÞ ðB:9Þ

Equation (B.9) is called the delta rule. Since the delta value in the Lth layer is

�
L
ivðkÞ ¼

ðyL
v
ðkÞ � ŷyvÞ

qyL
v
ðkÞ

qsL
v
ðkÞ

i ¼ v

0 i 6¼ v

8

<

:

ðB:10Þ

all the delta values can be calculated recursively with equations (B.9) and (B.10).

Therefore,

qErðkÞ

qw
j
iðkÞ

¼ 2
X

NðLÞ

v¼1

�
j
ivðkÞO

j�1ðkÞ ðB:11Þ

So, to adjust the weight space iteratively,

w
j
iðk þ 1Þ ¼ w

j
iðkÞ � l

X

NðLÞ

v¼1

�
j
ivðkÞO

j�1ðkÞ ðB:12Þ

where l is the step length, which is a small positive number, predefined by the user,

to control the learning rate.

B.3.3 Radial Basis Function Network

The RBF neural network is a type of feedforward ANN with an architecture similar

to that of a three-layered MLP. Figure B.8 depicts a RBF neural network with inputs

of n-dimension and outputs of m-dimension. The differences between the RBF

1

2

n

m

Output  1

HiddenInput

···

···

Figure B.8 Radial basis function network.
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neural network and the MLP can be summarized as: (1) in RBF NN, the input is

sent to the hidden layer without being weighted; (2) the hidden layer uses a radial

basis function (e.g., the Gaussian function); and (3) the final layer outputs the

weighted sum of the hidden layer’s outputs without transformation.

As shown in Figure B.8, x ¼ (x1, x2, . . ., xn) 2 Rn and y ¼ (y1, y2, . . ., ym) 2 Rm

are the input and output respectively, and h is the number of the nodes in the hidden

layer. Thus, the output vj of the jth node in the hidden layer is

vj ¼ exp �
ðx� cjÞ

Tðx� cjÞ

s2
j

" #

; j ¼ 1; 2; . . . ; h ðB:13Þ

Here cj 2 Rn is the center of the Gaussian function for node j and sj is the width of

the jth center. The output yj of the jth node in the output layer is

yj ¼ wT
j v; j ¼ 1; 2; . . . ;m ðB:14Þ

where wj is the weight vector of the jth node in the output layer and

v ¼ ðv1; v2; . . . ; vhÞ 2 Rh is the output vector from the hidden layer. To train the

neural network, the parameters cj, sj, and wj need to be identified. By establishing

an error function Er and using the gradient descent method, these parameters can be

determined:

Er ¼
1

2

X

m

j¼1

ðyj � ŷyjÞ
2 ðB:15Þ

where yj and ŷyj are the neural network output and the desired output of the jth node

in the final layer, respectively. After initializing the parameters, the parameters of

the neural network can be updated using

wjðk þ 1Þ ¼ wjðkÞ � l1
qErðkÞ

qwjðkÞ
; j ¼ 1; 2; . . . ;m ðB:16Þ

cjðk þ 1Þ ¼ cjðkÞ � l2
qErðkÞ

qcjðkÞ
; j ¼ 1; 2; . . . ; h ðB:17Þ

sjðk þ 1Þ ¼ sjðkÞ � l3
qErðkÞ

qsjðkÞ
; j ¼ 1; 2; . . . ; h ðB:18Þ

Here k denotes the kth cycle in the training process; h and m are the number of

nodes in the hidden layer and the output layer, respectively; and l1, l2, and l3

are the step lengths, controlling the learning rates, corresponding to the parameters

weight, center, and width.
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B.3.4 Kohonen Neural Network

The Kohonen neural network [4,5] is a type of competitive learning network.

Unlike other neural networks, such as BP and RBF, which require the input–output

sample pairs for the gradient-based training, the Kohonen network is trained based

on competitive learning rules using only the input samples. Kohonen network can

be used in unsupervised data clustering. Figure B.9 depicts the structure of a Koho-

nen network that generates four clusters from l three-dimensional input points. In

Figure B.9, all the input units i, i ¼ 1, 2, 3, are connected to all the output compe-

titive neurons j, j ¼ 1, 2, 3, 4, with the weight wij. The number of the input neurons

is equal to the dimension of the input patterns, while the number of the output neu-

rons corresponds to the number of the clusters.

The center of a cluster is represented by the weight vector connected to the cor-

responding output unit. To determine the centers, the weight vectors are trained

using inputs that are sequentially presented. The following steps describe how to

find cluster centers by training the neural network:

Step 1. Present a three-dimensional input vector x to the neural network and select

the winning weight vector wc that satisfies

jjx� wcjj ¼ min
i

jjx� wijj; i ¼ 1; 2; 3; 4 ðB:19Þ

where jj � jj is defined as the Euclidean distance.

Step 2. Update the winning vector and all of its neighbors with

�wi ¼ lðx� wiÞ; i 2 Nc ðB:20Þ

where Nc denotes a set of nodes lying in a window centred at wc, and l is the step

length, which is a small positive number used to controll the learning rate. To

achieve a better convergence, l should decrease gradually with each iteration of

weight adjustment.

x1 x2 x3

Figure B.9 Kohonen network.
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The width or radius of Nc can be time variable; in fact, for good global ordering,

it has turned out experimentally to be advantageous to let Nc be very wide in the

beginning and shrink monotonically with time. This is because a wide initial Nc,

corresponding to a coarse spatial resolution in the learning process, first induces

a rough global order in the wi values, after which narrowing of Nc improves the

spatial resolution of the map; the acquired global order, however, is not destroyed

later. This allows the topological order of the map to be formed.

By repeating the above-mentioned two learning steps for several cycles, the

weight vectors will converge to the cluster centers of the data set. Therefore, the

trained Kohonen network provides twofold quantization: (1) the l input points

are quantized to four prototypes, preserving the data (density) distribution; and

(2) the three-dimensional input space is reduced to a two-dimensional map reflect-

ing the topological distribution of the data.
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APPENDIX C

GENETIC ALGORITHMS

The genetic algorithm (GA), conceived by John Holland in the early 1970s, is an

adaptive and heuristic-based search algorithm inspired by natural evolution. It is

based on biological evolutionary mechanisms such as natural selection, crossover,

and mutation. GAs are becoming increasingly popular because of their wide uses in

many applications, especially in optimization. In the following, the basic concepts

of GAs are described; readers can refer to [1–11] for more detailed information.

C.1 BASIC PRINCIPLES

Genetic algorithms [4,7] are adaptive and robust computational procedures mod-

eled on the mechanics of natural genetic evolutionary systems. They are viewed

as randomized, yet structured, search and optimization techniques. GAs are exe-

cuted iteratively on a set of coded solutions, called a population, with three basic

operators: selection, crossover, and mutation. To determine the optimal solution of

a problem, a GA starts from a set of assumed solutions (i.e., chromosomes) and

evolves better sets of solutions over a sequence of iterations. In each generation

(or iteration) the objective function (i.e., fitness) determines the suitability of

each solution, and based on these values, some of the solutions (which are called

parent chromosomes) are selected for reproduction. The number of offspring repro-

duced by an individual parent is proportional to its fitness value; thus the good

(highly fitted) chromosomes are selected and the bad ones are eliminated.
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The following explains how GAs mimic some of the principles observed in

natural evolution [2]:

� Evolution takes place at the level of chromosomes rather than on the living

beings themselves. Therefore, GAs operate on the encoded possible solutions

(called chromosomes) of the problems.

� Nature obeys the principle of Darwinian ‘‘survival of the fittest.’’ The

chromosomes with high fitness values will, on average, reproduce more often

than those with low fitness values. In GAs, selection of chromosomes also

tries to mimic this principle.

� Biological entities adapt themselves in response to changes in the natural

environment. Similarly, GAs use the objective function to evaluate chromo-

somes, and those having high fitness values are selected in the selection process.

C.2 STANDARD GENETIC ALGORITHM

The standard genetic algorithm is the one most used in applications of GAs. It con-

sists of three primary steps: selection, crossover, and mutation. Given an initial

population of solutions (i.e., choromosomes), the algorithm is carried out iteratively

to find an optimal solution(s) that satisfies user requirements. The pseudocode of

this algorithm is shown in Figure C.1.

The basic concepts and operations in the standard GA, include the following:

1. Chromosome. The solution of a problem is encoded as chromosomes before

being used in genetic operations. For example, if the integer 240 is a solution of a

problem, it can be encoded as a binary string 11110000. Each bit in the string is

called a gene and the entire string is called a chromosome or an individual.

Figure C.1 Standard algorithm.

254 APPENDIX C: GENETIC ALGORITHMS



2. Population. A group of chromosomes/individuals constitute a population.

Since each chromosome represents a solution, a population is thus a solution set of

the problem.

3. Fitness value. Each individual (e.g., xi), corresponds to a fitness value f ðxiÞ
(i.e., the fitness of xi). The larger the value of f ðxiÞ, the better the fitness of an

individual to the environment. Individuals with large fitness values will have more

chances of being selected for reproduction than those with small fitness values. In

real-life applications, the fitness function is constructed depending on the problem

domain.

4. Selection operation. The objective of selection is to choose the good

individuals from the population and use them for reproduction. To mimic the

‘‘survival of the fittest’’ principle, individuals with larger fitness values will have

more chances of being selected for reproduction. To determine the chance/

possibility for an individual, the following equation can be used:

Selecprob ¼
f ðxiÞPn
i¼1 f ðxiÞ

ðC:1Þ

where f ðxiÞis the fitness value of the individual xi and Selecprob is the selection

probability for xi.

5. Crossover operation. Living beings reproduce new generations by perform-

ing the crossover operations on their chromosomes. This concept is also introduced

into GA. To make crossover between two chromosomes a and b selected from the

population, a cutting point (cross site) is selected. The genes behind this cutting

point will then be exchanged to generate new chromosomes a0 and b0:

# #

a ¼ 11000 10101 01000 01111 10001 ! b ¼ 10001 01110 11101 00110 10100

a0 ¼ 11000 10101 01101 00110 10100 ! b0 ¼ 10001 01110 11000 01111 10001

where # marks the position of the cutting point. The last 10 bits of a and b are

exchanged with each other.

6. Mutation operation. Besides the crossover operation, the mutation operation

is also important for reproducing individuals with new features. This operation is

performed on some randomly selected genes of a chromosome. For example, a

mutation may occur on b0 by inverting its last bit from 1 to 0, thereby generating a

new chromosome b00:

b0 ¼ 10001 01110 11000 01111 10001 ! b00 ¼ 10001 01110 11000 01111 10000

So far, GAs have been used successfully, especially in optimization (e.g., the travel-

ing salesman problem, the scheduling problem, and the nonlinear programming

problem). In the next section, two examples are given to illustrate the use of GAs.
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C.3 EXAMPLES

The first example shows how to find the maximum point of a real value function.

The second one describes how to use the GA to solve the traveling salesman

problem (TSP).

C.3.1 Function Maximization

Given a two-dimensional function [12],

f ðx; yÞ ¼ ð1� xÞ2e�x2�ðyþ1Þ2 � ðx� x3 � y3Þe�x2�y2
; ðx; yÞ 2 ½�3; 3� � ½�3; 3�

ðC:2Þ

find its maximum point.

The following steps show how to solve this problem using GAs.

Step 1. Initialize the population of the chromosomes. Each chromosome is encoded

as a binary string with x-part and y-part. A sample chromosome c1 takes the

form shown in Figure C.2. Break the chromosome into an x-part and a y-part and

convert them to the decimal numbers. For the sample chromosome c1, see

Figure C.3. Since the value of the 8-bit decimal ranges from 0 to 255, which may

exceed the boundary of [�3,3], a proportion conversion is made. The proportion

factor is

3� ð�3Þ

255
¼ 0:0235294

To obtain the values of x and y, we multiply the decimal value with the proportion

factor 0.0235294 and then subtract 3 from the results; thus

x1 ¼ ð138Þ10 � 0:0235294� 3 ¼ 0:2470588

y1 ¼ ð59Þ10 � 0:0235294� 3 ¼ �1:6117647

1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1x y

Figure C.2 Chromosome.

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

(10001010)2 = (138)10 (00111011)2 = (59)10

x y

Figure C.3 Chromosome is broken into x-part and y-part.
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Step 2. Input x and y to calculate the fitness of the chromosomes, and then compute

the selection probability of each chromosome. For the sample chromosome we

have

f ðc1Þ ¼ f ðx1; y1Þ ¼ f ð0:2470588; �1:6117647Þ ¼ 0:05737477

Other fitness values can be calculated similarly. The selection probability of the

chromosome is

Selecprob ¼
f ðc1ÞPn
i¼1 f ðciÞ

ðC:3Þ

where n is the number of the chromosomes of the population and ci is the ith

chromosome. The number of times that ci is being selected for reproduction is

Selectimes ¼ n � Selecprob ðC:4Þ

Step 3. Randomly select a pair of chromosomes for performing crossover based on

the crossover probability, and set the cross site (cutting point) randomly. Perform

crossover operation by exchanging the genes that lies behind the cutting point.

Step 4. Set the mutation probability (Mutaprob) to a value, say, 0.001. The number

of the genes that will be changed in the population is then

Mutagenesu m ¼ 16n� 0:001

Convert the bits from 1 to 0, or 0 to 1, to create a new generation of chromosomes.

Step 5. Repeat steps 1 to 4 until the fitness values of the chromosomes satisfy the

user requirement. The individual with the highest fitness value thus represents the

maximum point of the real value function.

The different states of the population during the process of searching the maxi-

mum point are demonstrated in Figures C.4 to C.7. Figure C.4 shows the initial
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Figure C.4 Initial generation. (From [12].)
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Figure C.5 First generation. (From [12].)
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Figure C.6 Local maximum. (From [12].)
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Figure C.7 Global maximum. (From [12].)
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state of the population, where the individuals are far from the maximum point.

After many cycles of GA operations, as shown in Figure C.5, the individuals get

closer to the maximum point. Figures C.6 and C.7 show two final states that are

possible for the individuals. In Figure C.6 the individuals reach to a local maximum

point; in Figure C.7 the individuals arrive at the point of the global maximum.

Whether or not individuals can converge to the global maximum point depends

on many factors, including the initial value assigned to the chromosomes. Readers

may refer to [2] for detailed information on the convergence properties of GAs.

C.3.2 Traveling Salesman Problem

The traveling salesman problem is stated as follows: ‘‘Given the cost of travel

between n cities, how should the salesman plan his itinerary for the minimum total

cost of the entire tour?’’ [7]. Each tour is a permutation of the cities visited in order.

For a given permutation of the cities pmk ¼ ðc1k; c2k; . . . ; cnkÞ, the total cost func-

tion is defined as

TotalcostðpmkÞ ¼
Xn�1

i¼1

dðcik; ciþ1kÞ þ dðcnk; c1kÞ ðC:5Þ

where d is the cost function between two cities. The fitness function of the TSP is

f ðpmkÞ ¼
1

TotalcostðpmkÞ
ðC:6Þ

It can be seen that a permutation of the n cities is a candidate solution, so there are a

total of n! patterns of permutations. These patterns form a very large data set.

Searching for the qualified solutions in such a huge data set is time consuming

or even impossible. In this situation, GAs can be applied to get the optimized solu-

tion more efficiently. The following steps describe how to use GAs to solve the TSP

problem:

Step 1. Encode the traveling routes as the chromosomes. Each chromosome is

represented as a string that shows the sequence of the visited cities. For example, if

there are nine cities and the traveling order is

5 ! 1 ! 7 ! 8 ! 9 ! 4 ! 6 ! 2 ! 3

the solution is encoded as (5 1 7 8 9 4 6 2 3). A group of chromosomes in this form

will be initialized to create a population.

Step 2. Use the fitness function [equation (C.6)] to calculate the fitness of the

chromosomes. Then make selections using

SelecprobðpmkÞ ¼
f ðpmkÞPn
i¼1 f ðpmiÞ

ðC:7Þ

EXAMPLES 259



Step 3. Set cutting points randomly and perform crossover operations. For

example, for a given couple pm1 and pm2, the crossover is performed as follows:

Gene mapping: 4 ! 1; 5 ! 8; 6 ! 7; 7 ! 6

where the # marks the cutting point. First we exchange genes between the cutting

points. This derives a mapping between genes in the exchanged section. Since a

valid permutation should not contain the duplicated genes (i.e., no loop is allowed

in the traveling route), we replace the duplicated genes with their corresponding

mappings. For example, the chromosome

has duplicated genes 1 and 8. These two genes are replaced by their mappings 4

and 5, respectively.

Step 4. Mutate the chromosomes to create a new generation. For example, we can

reverse the order of the genes between the cutting points for mutation.

Other couples are processed in the same way. The final solution should be an opti-

mized or a nearly optimized route that provides an itinerary with low traveling cost.

It should be noted that there are many other encoding methods, crossover

operators, and mutation operators that can be used for the TSP problem. Interested

readers can refer to [34] for more details.
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APPENDIX D

ROUGH SETS

Rough set theory, developed by Zdzislaw Pawlak in the early 1980s, provides a

mathematical approach to deal with problems with uncertainty and vagueness

[1–3]. It is often used to uncover irregularities and relationships in data. The

main advantages of this theory [4] are that it:

� Provides efficient algorithms for discovering hidden patterns in data

� Identifies relationships that would not be found while using statistical methods

� Allows the use of both qualitative and quantitative data

� Finds the minimal sets of data that can be used for classifications (i.e., data

reduction)

� Evaluates the significance of data

� Generates sets of decision rules from data

Before we provide the definition of rough set, we first present some of the basic

concepts and mathematical definitions related to rough set theory. For more details,

readers can refer to [1–20].

D.1 INFORMATION SYSTEMS

In applying rough sets, the data used are usually represented in a flat table as

follows: Columns represent the attributes, rows represent the objects, and every
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cell contains the attribute value for the corresponding objects and attributes. In

rough set terminology, such tables are called information systems. More formally,

an information system is a pair ŜS ¼ ðU;AÞ, where U is a nonempty finite set of

objects called a universe and A is a nonempty finite set of attributes. Every attribute

Attr 2 A has an attribute value set VAttr associated with it (i.e., Attr: U ! VAttr). An

example of an information system is shown in Table D.1. In this information

system, there are six objects (i.e., some department stores), which are characterized

by three attributes: E, Q, and L, where E represents the experience of the sales

personnel, Q the perceived quality of the merchandises, and L refers to the avail-

ability of a nearby train station. From Table D.1, department stores 2 and 3 have

exactly the same attribute values, and therefore the two stores are indiscernible

using the attributes available.

In many real-life classification problems, the outcome (or class label) is already

known. This class label is referred as a decision attribute. An information system

that includes the decision attribute is called a decision system, which is denoted as

Ts ¼ ðU, A [ fd�g), where d� =2A is the decision attribute. The elements of A are

called conditional attributes. More generally, a decision system is represented by

Ts ¼ ðU, Tc, TdÞ, where Tc is the set of condition attributes and Td is the set of

decision attributes. Table D.2 shows an example of a decision system. This table is

the same as Table D.1 except that it has the decision attribute Pf, which represents

the profit status of the department stores. In this table, department stores 2 and 3

have the same condition attribute values but with different decision attribute values

(i.e., loss and profit, respectively).

TABLE D.1 Example of an Information System

Object Attribute 1 Attribute 2 Attribute 3

(e.g., Department Store) (e.g., E) (e.g., Q) (e.g., L)

1 High Good No

2 Medium Good No

3 Medium Good No

4 Low Average No

5 Medium Average Yes

6 High Average Yes

TABLE D.2 Example of a Decision System

Store E Q L Pf

1 High Good No Profit

2 Medium Good No Loss

3 Medium Good No Profit

4 Low Average No Loss

5 Medium Average Yes Loss

6 High Average Yes Profit
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D.2 INDISCERNIBILITY RELATION

Given an information system, each subset of attributes can be used to partition the

objects into clusters. The objects in the same cluster have the same attribute values.

Therefore, these objects are indiscernible (or similar) based on the available infor-

mation. An indiscernibility relation can be defined to describe this property. Before

doing so, some relevant concepts are given first.

Definition D.1. An ordered pair is a set of a pair of objects with an order asso-

ciated with them. If objects are represented by x and y, we write an ordered pair

as (x,y) or (y,x). In general (x,y) is different from (y,x).

Definition D.2. A binary relation from a set X to a set Y is a set of ordered pairs

(x,y) where x is an element of X and y is an element of Y.

When an ordered pair (x,y) is in a relation R, we write x R y or (x,y) 2 R. It means

that element x is related to element y in relation R. When X¼ Y, a relation from X to

Y is called a (binary) relation on Y.

Definition D.3. The set of all ordered pairs (x,y) is called the Cartesian product of

X and Y, denoted as X� Y, where x is an element of X and y is an element of Y.

Thus for a binary relation R from X to Y, it is a subset of Cartesian product X� Y

denoted as R 
 X � Y .

Definition D.4. A binary relation R 
 X � X, which is reflexive (i.e., an object is in

relation with itself, denoted as x R x), symmetric (if x R y, then y R x) and transitive

(if x R y and y R z, then x R z) is called an equivalence relation. The equivalence

class of an element x 2 X, denoted as ½x�R, consists of all objects y 2 X such that

x R y. The family of all equivalence classes of R is denoted by U/R.

Now let us provide a definition of the indiscernibility relation.

Definition D.5. Given an information system ŜS ¼ ðU;AÞ, with any B 
 A, there is

an associated equivalence relation IB:

IB ¼ fðx; yÞ 2 U � Uj8Attr 2 B;AttrðxÞ ¼ AttrðyÞg ðD:1Þ

IB is called the B-indiscernibility relation.

If ðx; y0Þ 2 IB, the objects x and y0 are indiscernible from each other by attributes

from B. The family of all equivalence classes of IB (i.e., the partition determined

by B) will be denoted by U=IB, or simply U=B; an equivalence class of IB contain-

ing x will be denoted by [x]B. Now we use the information system given in

Table D.2 to illustrate the indiscernibility relation and the corresponding equiva-

lence classes.
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Here are six nonempty conditional attributes sets: {E}, {Q}, {L}, {E,Q}, {E,L},

{Q,L}, and {E,Q,L}. Considering the attribute set {E,Q}, by equation (D.1) we can

get the {E,Q}-indiscernibility relation, IfE;Qg, and the partition determined by it is

as below:

U=IfE;Qg ¼ ff1g; f2; 3g; f4g; f5g; f6gg

Considering f2; 3g 2 IfE;Qg, objects 2 and 3 are indiscernible from each other by E

and Q and belong to the same equivalence class.

Similarly for the other attribute sets, we can obtain their corresponding indis-

cernibility relations and equivalent classes. Below are partitions determined by

the indiscernibility relations IfQ;Lg, IfEg, and IfE;Q;Lg, respectively.

U=IfQ;Lg ¼ ff1; 2; 3g; f4g; f5; 6gg

U=IfEg ¼ ff1; 6g; f2; 3; 5g; f4gg

U=IfE;Q;Lg ¼ ff1g; f2; 3g; f4g; f5g; f6gg

D.3 SET APPROXIMATIONS

Before describing the concept of rough sets, let us define set approximation.

Definition D.6. Consider an information system ŜS ¼ ðU;AÞ. With each subset

X 
 U and B 
 A, we associate two crisp sets

BX ¼ fxj½x�B 
 Xg ðD:2Þ

BX ¼ fxj½x�B \ X 6¼ ;g ðD:3Þ

called the B-lower and B-upper approximations of X, respectively.

The set BX (or BX) consists of objects, which surely (or possibly) belong to X

with respect to the knowledge provided by B. The set BNBðXÞ ¼ BX � BX, called

the B-boundary region of X, consists of those objects that cannot surely belong to X.

A set is said to be rough if the boundary region is nonempty with respect to B.

That is, if BNBðXÞ 6¼ ;, the set X is called rough (i.e., inexact) with respect to B;

and if BNBðXÞ ¼ ;, the set X is crisp (i.e., exact) with respect to B, in contrast. The

set U � BX is called the B-outside region of X, and it consists of objects that

certainly cannot belong to X (on the basis of knowledge in B).

An example of set approximation is shown below. Let X ¼ fxjPfðxÞ ¼ Profitg.
From Table D.2 we then obtain X ¼ f1; 3; 6g. Let us assume that B ¼ {E,Q,L};

then

½1�B ¼ f1g; ½2�B ¼ ½3�B ¼ f2; 3g; ½4�B ¼ f4g; ½5�B ¼ f5g; ½6�B ¼ f6g
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By the definitions of the lower and upper approximations, we have

BX ¼ f1;6g; BX ¼ f1;2;3;6g; BNBX ¼ f2;3g

It can be seen that the boundary region is not empty, and this shows that the set X is

rough. Objects in the store set {1,6} surely belong to those making profit, and the

store set {1,2,3,6} includes objects possibly making profit, where objects 2 and 3

included in the boundary region cannot be classified either as making a profit or

having a loss. U � BX ¼ f4;5g shows that stores 4 and 5 certainly do not belong

to those that are making profit. Here the approximations of X are shown in

Figure D.1.

A rough set can also be described numerically using the concept of accuracy of

approximation as follows:

aBðXÞ ¼
jBXj

jBXj
ðD:4Þ

where jXj denotes the cardinality of X 6¼ ;, and 0 � aBðXÞ � 1. If aBðXÞ ¼ 1, X

is crisp with respect to B. Otherwise [i.e., if aBðXÞ <1], X is rough with respect to B.

D.4 ROUGH MEMBERSHIP

The degree of object x belonging to X can be described by rough membership func-

tion. This membership function quantifies the degree of relative overlap between

the set X and the equivalence class ½x�B, and it is defined by

m
B
X : U ! ½0; 1� and m

B
XðxÞ ¼

j½x�B \ Xj

j½x�Bj
ðD:5Þ

If the attribute set B is given, for a certain subset X 
 U, the membership function

can be determined, and correspondingly, the degree of each element x 2 U belong-

ing to X is obtained.

{4,5]

{2,3] Yes/NoYes

{1,6}

No

BXBX

Figure D.1 Approximating the set of profit stores using three conditional attributes.
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Using a rough membership function, we can define the lower-approximation,

upper-approximation, and boundary region of the set X as follows:

BX ¼ fxjmBXðxÞ ¼ 1g ðD:6Þ

BX ¼ fxj0 < m
B
XðxÞ � 1g ðD:7Þ

BNBðxÞ ¼ fxj0 < m
B
XðxÞ < 1g ðD:8Þ

U � BX ¼ fxjmBXðxÞ ¼ 0g

These definitions are consistent with those given in Section D.3.

In addition, using this membership function, we can also define an arbitrary level

of precision a 2 ½0; 1� of the lower- and upper approximations:

B aX ¼ fxjmBXðxÞ  ag ðD:9Þ

BaX ¼ fxjmBXðxÞ > 1� ag ðD:10Þ

D.5 DEPENDENCY OF ATTRIBUTES

In data analysis, it is important to discover dependencies between the condition and

decision attributes. Using these dependencies, one can identify and omit the un-

necessary attributes (which are considered to be redundant information in the deci-

sion system) and the corresponding values for making decision or classification.

Intuitively, we say that a set of decision attributes Td depends totally on a set of

condition attributes Tc, denoted as Tc ) Td, if all the values of decision attributes

are determined uniquely by values of the condition attributes. This implies that

there exists a functional dependency between values of Tc and Td. Note that the

dependency can also be partial, which means that only some values of Td can be

determined by values of Tc. Now we give its formal definition:

Definition D.7. Let C and D be subsets of A, D \ C 6¼ ; and D [ C ¼ A. We say

that D depends on C in a degree k ð0 � k � 1Þ, denoted C )k D, if

k ¼ gðC;DÞ ¼
X

X2U=D

jCXj

jUj
ðD:11Þ

where jXj indicates the cardinality of X and U/D denotes the partition determined

by D (i.e., the family of all equivalence classes of ID).

If k ¼ 1, we say that D depends totally on C, and if k < 1, we say that D depends

partially (with a degree k) on C. The degree k, called the degree of the dependency,

means the ratio of all elements of the universe that can be properly classified into

the partition U/D employing attributes from C. For example, in the decision system
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illustrated in Table D.2, the attribute Pf depends on the set of attributes {E,Q,L} of

degree 2
3
. This is explained below.

C ¼ fE;Q;Lg;D ¼ fPfg;U=D ¼ ff1;3;6g; f2;4;5gg;

if X ¼ f1;3;6g;CX ¼ f1;6g;

if X ¼ f2;4;5g;CX ¼ f4;5g:

k ¼ gðC;DÞ ¼
X

X2U=D

jCXj

jUj
¼

jf1;6gj

jf1; 2; . . . ; 6gj
þ

jf4;5gj

f1; 2; . . . ; 6gj
¼

2

3

This means that only four of the six objects in U (i.e., {1,4,5,6}) can be identified

exactly by using the attributes E, Q, and L. Here the decision attribute Pf depends

partially on the condition attributes E, Q, and L, of degree 2
3
.
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Artificial neural network (ANN)

case adaptation, 150, 152, 208
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case generation, 52, 69

case retrieval, 105, 208, 225

case selection, 105

delta rule, 249

feed forward networks, 243

growing of nodes, 113

Kohonen neural network, 251

multilayer perceptron, 247

pruning of nodes, 113

radial basis function network, 249

recurrent networks, 244

single-layer perceptron, 246

soft case-based reasoning, 27

Bayes classifier, 119

Bayesian model

case adaptation, 153

case indexing, 64

classifier, 119

b-index, 127

Bond rating, 219

case indexing/retrieval, 220

hybrid CBR system, 219

Case

adaptation, 18. See also Case adaptation

base, 3. See also Case base

definition, 11

density, 21, 108, 190

distance, 19. See also Case distance

evaluation, 207

generation, see Case generation

indexing, 11, 15

inference, see Case inference

learning, 19

record, 13

representation, 11. See also Case

representation

retrieval, 15. See also Case retrieval

selection, see Case selection

similarity, 76. See also Fuzzy similarity

Case adaptation

methods, 143

adaptation matrix, 149

Bayesian model, 153

case-based adaptation, 149

configuration techniques, 150

fuzzy decision tree, 151

genetic algorithms, 158

induction tree, 207

learning adaptation cases, 148
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Case adaptation (Continued)

neural network, 152, 209

rule-based adaptation, 149

support vector machine, 154

pseudo code, 144

strategies, 137

reinstantiation, 138

substitution, 139

transformation, 142

Case base, 2. See also Case organization

client, 167

maintenance, 20. See also Case-base

maintenance

Case-base competence

case density, 108, 191

competence error, 192

coverage, 190

fuzzy integral, 188

group coverage, 190

group density, 190

l-fuzzy measure, 194

link detection, 193

reachability, 190

relative coverage, 192

Case base maintenance

completeness, 164

consistency , 163

correctness, 163

fuzzy integral approach, 187

qualitative, 163

quantitative, 165

rough-fuzzy approach, 166

updating cases, 167

Case-based reasoning

components, 2

example, 21

features, 2

guidelines of using, 9

learning, 19

life-cycle, 6

retain, 7

retrieve, 7

reuse, 7

revise, 7

merits, 9

methodology or technology, 26

soft case-based reasoning, 27. See also Soft

case-based reasoning

structure, 3, 4

task-method decomposition, 7

vs. human reasoning, 5

vs. rule-based system, 4

Case coverage, 165

Case density, 21, 108, 190

Case distance, 19. See also Fuzzy similarity;

Similarity

Case evaluation, 207

Case feature weighting

genetic algorithms, 102

gradient-descent technique, 99

learning, 169

neural networks, 101

Case generation. See also Case selection

fuzzy representation, 52

linguistic representation, 54

methodology, 56

1-NN classification, 62

reducts, 52. See also Rough sets

retrieval, 60

rule generation, 58

Case indexing

back propagation neural network, 71

Bayesian model, 64

definition, 23

genetic algorithms, 219

prototype-based neural network, 69

traditional method, 63

Case inference , 215

Case organization

breadth-fist graph search, 35

discrimination networks, 36

flat memory, 35

hierarchical memory, 36

parallel search, 36

redundant discrimination networks, 36

serial search, 35

shared feature networks, 35

Case representation

comparison, 42

flat feature-value vector, 23

fuzzy frame, 214

fuzzy sets, 80, 201, 213, 224

object-oriented, 40

predicate, 41

relational, 38

Case retrieval

fuzzy neural network, 206

fuzzy sets, 215. See also Fuzzy similarity

genetic algorithms, 220

neural network, 105, 225

rough-fuzzy approach, 60

Case selection. See also Case generation

Bayes classifier, 119

b-index, 127

deletion, 110

entropy, 126

272 INDEX



Case selection (Continued)

formulation of network, 111

insertion, 110

k-NN classifier, 119

neural network, 105

neuro-fuzzy model, 109

1-NN classification, 114

quantization error, 126

retrieval, 105. See also Case retrieval

rough-self organizing map, 120

CBR, see Case-based reasoning

Choquet integral, 189

Classification and clustering of cases

fuzzy ID3, 93

ID3, 92

intercluster similarity, 91

intracluster similarity, 91

Client case-base, 167

Color matching, 221

fuzzy case retrieval, 222

fuzzy preference function, 223

matching process, 221

Cosine coefficient, 78

Coronary heart disease, 104

CREW, 226

e-coverage, 175

e-reachability, 175

Entropy, 92, 126

Error log similarity index (ELSI),

208

Euclidean distance, 76

Evolutionary computing, 28

Forest cover data, 60

Fuzzy classification of cases

fuzzy ID3, 93

ID3, 92

Fuzzy clustering of cases

confidence of the nodes, 94

fuzziness measure, 94

fuzzy c-means, 96

Fuzzy c-means, 96

Fuzzy decision tree, 92, 151

Fuzzy interactive dichotomizer 3 (ID3),

92

Fuzzy neural network, 206

Fuzzy rough computing, 166, 169

Fuzzy sets/logic

a-cut, 55

case adaptation, 150

case base maintenance, 166, 187

case generation, 52

case representation, 43, 202, 213, 224

case retrieval, 60, 206, 215

case selection, 110

Choquet integral, 189

classification, 92

clustering, 96

confidence value, 205

definition, 28, 80, 232

discretization, 120

integrals, 188

measures, 188

membership function, 234

number, 44

operation, 236

preference, 217

rules, 171, 237

Fuzzy similarity

amendment accuracy, 84

between cases, 85

between centers of gravity, 84

between two fuzzy sets, 85

case inference, 215

case retrieval, 215

conceptual similarity, 84

intercluster similarity, 91

intracluster similarity, 91

relevance, 81

Genetic algorithms (GA)

basic principles, 30, 158, 253

case adaptation, 158

case feature weighting, 102

case indexing, 220

crossover operation, 255

fitness, 255

fitness function, 220

function maximization, 256

mutation operation, 255

population, 255

selection operation, 255

traveling salesman problem, 259

Glass identification, 108

Group coverage, 190

Group density, 190

Hamming distances, 78

Hepatobiliary disorders, 115

HILDA, 216

Interactive dichotomizer 3 (ID3), 92

Interpretive reasoner, 5

Introspective learning, 103

Iris data, 60

INDEX 273



k-NN classifier, 119

k-NN principle, 80

l-fuzzy measure, 194

Legal inference, 213

case inference, 215

fuzzy frame, 214

Medical diagnosis, 205

case evaluation, 207

case retrieval, 206

fuzzy neural network, 206

induction tree, 207

Mining adaptation rules, 169

Mining fuzzy association rules, 203

Multiple feature data, 60

Neural network, see Artificial neural network

Neuro-fuzzy computing, 28, 109

Nonspecificity, 107

Oceanographic forecasting, 209

1-NN classification, 62, 114

Probabilistic computing, 28

Property valuation, 216

case retrieval, 217

fuzzy preference, 217

preference function, 218

PROFIT, 216

Reachability, 190

Reducts, 49

Relative coverage, 192

REs, 7. See also Case-based reasoning, life cycle

Rough fuzzy computing, 120, 166, 169

Rough sets

case base maintenance, 166

case retrieval, 59

case selection, 120

definition, 265

dependency of attributes, 267

indiscernibility relation, 264

information systems, 262

lower approximation, 265

pattern indiscernibility, 120

reducts, 48

rough membership, 266

rough-self organizing map, 120

upper approximation, 265

Rule-based system, 4

Self-organizing maps, 120

Shoe design, 223

fuzzy feature representation, 224

retrieval, 225

Similarity. See also Fuzzy similarity

cosine coefficient, 78

Hamming distances, 78

k-NN principle, 80

Levenshtein distances, 78

matrix, 183

other measures, 79

weighted-Euclidean distance, 76

Soft case-based reasoning, 27

Soft computing, 27, 30, 43

Support vector machine, 154

Travel data, 182185

Traveling salesman problem (TSP), 259

Vowel recognition, 115, 125

Weather prediction, 209

case adaptation, 209

error interval, 212

error limit, 212

hybrid case-based reasoning system,

209

Web mining, 202

fuzzy confidence value, 204

mining fuzzy association rule, 203

web page frequency, 202

WIND-1, 212
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