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ABSTRACT 

Technical analysis, also known as "charting," has been a part of financial practice 

for many decades, but this discipline has not received the same level of academic 

scrutiny and acceptance as more traditional approaches such as fundamental analy-

sis. One of the main obstacles is the highly subjective nature of technical analy-

sis-the presence of geometric shapes in historical price charts is often in the eyes 

of the beholder. In this paper, we propose a systematic and automatic approach to 

technical pattern recognition using nonparametric kernel regression, and we apply 

this method to a large number of U.S. stocks from 1962 to 1996 to evaluate the 

effectiveness of technical analysis. By comparing the unconditional empirical dis-

tribution of daily stock returns to the conditional distribution-conditioned on spe-

cific technical indicators such as head-and-shoulders or double-bottoms-we find 

that over the 31-year sample period, several technical indicators do provide incre-

mental information and may have some practical value. 

ONEOF THE GREATEST GULFS between academic finance and industry practice 

is the separation that exists between technical analysts and their academic 

critics. In contrast to fundamental analysis, which was quick to be adopted 

by the scholars of modern quantitative finance, technical analysis has been 

an orphan from the very start. It has been argued that the difference be-

tween fundamental analysis and technical analysis is not unlike the differ-

ence between astronomy and astrology.Among some circles, technical analysis 

is known as "voodoo finance." And in his influential book A Random Walk 
down Wall Street, Burton Malkiel (1996) concludes that "[ulnder scientific 

scrutiny, chart-reading must share a pedestal with alchemy." 

However, several academic studies suggest that despite its jargon and meth-

ods, technical analysis may well be an effective means for extracting useful 

information from market prices. For example, in rejecting the Random Walk 
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Hypothesis for weekly U.S. stock indexes, Lo and MacKinlay (1988, 1999) 

have shown that past prices may be used to forecast future returns to some 

degree, a fact that all technical analysts take for granted. Studies by Tabell 

and Tabell (1964), Treynor and Ferguson (1985), Brown and Jennings (1989), 

Jegadeesh and Titman (1993), Blume, Easley, and O'Hara (1994), Chan, 

Jegadeesh, and Lakonishok (1996), Lo and MacKinlay (1997), Grundy and 

Martin (1998), and Rouwenhorst (1998) have also provided indirect support 

for technical analysis, and more direct support has been given by Pruitt and 

White (1988), Neftci (1991), Brock, Lakonishok, and LeBaron (1992), Neely, 

Weller, and Dittmar (1997), Neely and Weller (1998), Chang and Osler (1994), 

Osler and Chang (1995), and Allen and Karjalainen (1999). 

One explanation for this state of controversy and confusion is the unique 

and sometimes impenetrable jargon used by technical analysts, some of which 

has developed into a standard lexicon that can be translated. But there are 

many "homegrown" variations, each with its own patois, which can often 

frustrate the uninitiated. Campbell, Lo, and MacKinlay (1997, 43-44) pro-

vide a striking example of the linguistic barriers between technical analysts 

and academic finance by contrasting this statement: 

The presence of clearly identified support and resistance levels, coupled 

with a one-third retracement parameter when prices lie between them, 

suggests the presence of strong buying and selling opportunities in the 

near-term. 

with this one: 

The magnitudes and decay pattern of the first twelve autocorrelations 

and the statistical significance of the Box-Pierce Q-statistic suggest the 

presence of a high-frequency predictable component in stock returns. 

Despite the fact that both statements have the same meaning-that past 

prices contain information for predicting future returns-most readers find 

one statement plausible and the other puzzling or, worse, offensive. 

These linguistic barriers underscore an important difference between tech- 

nical analysis and quantitative finance: technical analysis is primarily vi-

sual, whereas quantitative finance is primarily algebraic and numerical. 

Therefore, technical analysis employs the tools of geometry and pattern rec- 

ognition, and quantitative finance employs the tools of mathematical analy- 

sis and probability and statistics. In the wake of recent breakthroughs in 

financial engineering, computer technology, and numerical algorithms, it is 

no wonder that quantitative finance has overtaken technical analysis in 

popularity-the principles of portfolio optimization are far easier to pro- 

gram into a computer than the basic tenets of technical analysis. Neverthe- 

less, technical analysis has survived through the years, perhaps because its 

visual mode of analysis is more conducive to human cognition, and because 

pattern recognition is one of the few repetitive activities for which comput- 

ers do not have an absolute advantage (yet). 
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Figure 1. Two hypothetical price/volume charts. 

Indeed, it is difficult to dispute the potential value of price/volume charts 

when confronted with the visual evidence. For example, compare the two 

hypothetical price charts given in Figure 1.Despite the fact that the two 

price series are identical over the first half of the sample, the volume pat- 

terns differ, and this seems to be informative. In particular, the lower chart, 

which shows high volume accompanying a positive price trend, suggests that 

there may be more information content in the trend, e.g., broader partici- 

pation among investors. The fact that the joint distribution of prices and 

volume contains important information is hardly controversial among aca- 

demics. Why, then, is the value of a visual depiction of that joint distribution 

so hotly contested? 
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In this paper, we hope to bridge this gulf between technical analysis and 

quantitative finance by developing a systematic and scientific approach to 

the practice of technical analysis and by employing the now-standard meth- 

ods of empirical analysis to gauge the efficacy of technical indicators over 

time and across securities. In doing so, our goal is not only to develop a 

lingua franca with which disciples of both disciplines can engage in produc- 

tive dialogue but also to extend the reach of technical analysis by augment- 

ing its tool kit with some modern techniques in pattern recognition. 

The general goal of technical analysis is to identify regularities in the time 

series of prices by extracting nonlinear patterns from noisy data. Implicit in 

this goal is the recognition that some price movements are significant-they 

contribute to the formation of a specific pattern-and others are merely ran- 

dom fluctuations to be ignored. In many cases, the human eye can perform this 

"signal extraction" quickly and accurately, and until recently, computer algo- 

rithms could not. However, a class of statistical estimators, called smoothing 

esttnzators, is ideally suited to this task because they extract nonlinear rela- 

tions m ( . )by "averaging out" the noise. Therefore, we propose using these es- 

timators to mimic and, in some cases, sharpen the skills of a trained technical 

analyst in identifying certain patterns in historical price series. 

In Section I, we provide a brief review of smoothing estimators and de- 

scribe in detail the specific smoothing estimator we use in our analysis: 

kernel regression. Our algorithm for automating technical analysis is de- 

scribed in Section II. We apply this algorithm to the daily returns of several 

hundred U.S. stocks from 1962 to 1996 and report the results in Section 111. 

To check the accuracy of our statistical inferences, we perform several Monte 

Carlo simulation experiments and the results are given in Section IV. We 

conclude in Section V. 

I. Smoothing Estimators and Kernel Regression 

The starting point for any study of technical analysis is the recognition that 

prices evolve in a nonlinear fashion over time and that the nonlinearities con- 

tain certain regularities or patterns. To capture such regularities quantita- 

tively, we begin by asserting that prices {P,}satisfy the following expression: 

where m(X,) is an arbitrary fixed but unknown nonlinear function of a state 

variable X, and { E , )  is white noise. 
For the purposes of pattern recognition in which our goal is to construct a 

smooth function m ( . ) to approximate the time series of prices {p,),we set 

the state variable equal to time, X,  = t. However, to keep our notation con- 

sistent with that of the kernel regression literature, we will continue to use 

X ,  in our exposition. 

When prices are expressed as equation (I), it is apparent that geometric 

patterns can emerge from a visual inspection of historical price series- 

prices are the sum of the nonlinear pattern m(X,) and white noise-and 
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that such patterns may provide useful information about the unknown func- 

tion m(.) to be estimated. But just how useful is this information? 

To answer this question empirically and systematically, we must first de- 

velop a method for automating the identification of technical indicators; that 

is, we require a pattern-recognition algorithm. Once such an algorithm is 

developed, it can be applied to a large number of securities over many time 

periods to determine the efficacy of various technical indicators. Moreover, 

quantitative comparisons of the performance of several indicators can be 

conducted, and the statistical significance of such performance can be as- 

sessed through Monte Carlo simulation and bootstrap techniques.1 

In Section I.A, we provide a briefreview of a general class ofpattern-recognition 

techniques known as smoothing estimators, and in Section 1.Bwe describe in 

some detail a particular method called nonparametric kernel regression on which 

our algorithm is based. Kernel regression estimators are calibrated by a band- 

width parameter, and we discuss how the bandwidth is selected in Section I.C. 

A. Smoothing Estimators 

One of the most common methods for estimating nonlinear relations such 

as equation (1)is smoothing, in which observational errors are reduced by 

averaging the data in sophisticated ways. Kernel regression, orthogonal se- 

ries expansion, projection pursuit, nearest-neighbor estimators, average de- 

rivative estimators, splines, and neural networks are all examples of smoothing 

estimators. In addition to possessing certain statistical optimality proper- 

ties, smoothing estimators are motivated by their close correspondence to 

the way human cognition extracts regularities from noisy data.2 Therefore, 

they are ideal for our purposes. 

To provide some intuition for how averaging can recover nonlinear rela- 

tions such as the function m(.) in equation (I), suppose we wish to estimate 

m(.)  at  a particular date to when Xto = xo. Now suppose that for this one 

observation, Xto, we can obtain repeated independent observations of the 

price Go,say P,: = p,, . ..,Pi: = p, (note that these are n independent real- 

izations of the price at  the same date to, clearly an impossibility in practice, 

but let us continue this thought experiment for a few more steps). Then a 

natural estimator of the function m(.)  at  the point xo is 

'A similar approach has been proposed by Chang and Osler (1994) and Osler and Chang 

(1995) for the case of foreign-currency trading rules based on a head-and-shoulders pattern. 

They develop an algorithm for automatically detecting geometric patterns in price or exchange 

data by looking at  properly defined local extrema. 

See, for example, Beymer and Poggio (1996), Poggio and Beymer (1996), and Riesenhuber 

and Poggio (1997). 
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and by the Law of Large Numbers, the second term in equation (3) becomes 

negligible for large n .  

Of course, if {P,} is a time series, we do not have the luxury of repeated 

observations for a given X,. However, if we assume that the function m(.) is 

sufficiently smooth, then for time-series observations Xt near the value x,, 

the corresponding values of Pt should be close to m(x,). In other words, if 

m( . )  is sufficiently smooth, then in a small neighborhood around x,, m(x,) 

will be nearly constant and may be estimated by taking an average of the P,s 

that correspond to those X, s near x,. The closer the X, s are to the value x,, 

the closer an average of corresponding 4 s  will be to m(x,). This argues for 

a weighted average of the Pts, where the weights decline as the X,s get 

farther away from x,. This weighted-average or "local averaging" procedure 

of estimating m(x) is the essence of smoothing. 

More formally, for any arbitrary x, a smoothing estimator of m ( x )may be 

expressed as 

where the weights {w,(x)} are large for those 6 s  paired with X,s near x, and 

small for those P,s with X,s far from x. To implement such a procedure, we 

must define what we mean by "near" and "far." If we choose too large a 

neighborhood around x to compute the average, the weighted average will be 

too smooth and will not exhibit the genuine nonlinearities of m(.).  If we 

choose too small a neighborhood around x, the weighted average will be too 

variable, reflecting noise as well as the variations in m(.).  Therefore, the 

weights {w,(x)} must be chosen carefully to balance these two considerations. 

B. Kernel Regression 

For the kernel regression estimator, the weight function w,(x) is con-

structed from a probability density function K(x), also called a hernel:3 

By rescaling the kernel with respect to a parameter h > 0, we can change its 

spread; that is, let 

Despite the fact that K(x) is a probability density function, it plays no probabilistic role in 

the subsequent analysis-it is merely a convenient method for computing a weighted average 

and does not imply, for example, that X is distributed according to K(x) (which would be a 

parametric assumption). 
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and define the weight function to be used in the weighted average (equation 

(4)) as 

If h is very small, the averaging will be done with respect to a rather small 

neighborhood around each of the Xts. If h is very large, the averaging will be 

over larger neighborhoods of the X,s. Therefore, controlling the degree of 

averaging amounts to adjusting the smoothing parameter h ,  also known as 

the bandwidth. Choosing the appropriate bandwidth is an important aspect 

of any local-averaging technique and is discussed more fully in Section 1I.C. 

Substituting equation (8) into equation (4) yields the Nadaraya-Watson 
kernel estimator mh(x) of m(x): 

Under certain regularity conditions on the shape of the kernel K and the 

magnitudes and behavior of the weights as the sample size grows, it may be 

shown that mh(x) converges to m(x) asymptotically in several ways (see 

Hardle (1990) for further details). This convergence property holds for a 

wide class of kernels, but for the remainder of this paper we shall use the 

most popular choice of kernel, the Gaussian kernel: 

C. Selecting the Bandwidth 

Selecting the appropriate bandwidth h in equation (9) is clearly central to 

the success of m,(.) in approximating m(.)-too little averaging yields a 

function that is too choppy, and too much averaging yields a function that is 

too smooth. To illustrate these two extremes, Figure 2 displays the Nadaraya- 

Watson kernel estimator applied to 500 data points generated from the relation: 

where X, is evenly spaced in the interval [ 0 , 2 ~ ] .  Panel 2 (a) plots the raw 

data and the function to be approximated. 
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Simula ted Data: Y = Sin(X) + .5Z 

db a a A  a  

Kernel  Es t imate  f o r  Y =- Sin(X)+.5Z, h z . 1 0  

Figure 2. Illustration of bandwidth selection for kernel regression. 
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Kerne l  E s t i m a t e  f o r  Y = Sin(X)+.5Z, h=.3o 

Kerne l  E s t i m a t e  f o r  Y = Sin(X)+.5Z, h=2.0o 
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Figure 2. Continued 
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Kernel estimators for three different bandwidths are plotted as solid lines in 

Panels 2(b)-(c). The bandwidth in 2(b) is clearly too small; the function is too 

variable, fitting the "noise" 0.562, and also the "signal" Sin(.). Increasing the 

bandwidth slightly yields a much more accurate approximation to Sin(.)  as 

Panel 2(c) illustrates. However, Panel 2(d) shows that if the bandwidth is in- 

creased beyond some point, there is too much averaging and information is lost. 

There are several methods for automating the choice of bandwidth h in 

equation (9),but the most popular is the cross-validation method in which h 

is chosen to minimize the cross-validation function 

1 
CV(h) = -

T , = I  
(P, - mh,t)2, 

where 

The estimator mh,, is the kernel regression estimator applied to the price 

history {P,) with the tth observation omitted, and the summands in equa- 

tion (12) are the squared errors of the m,, ,s, each evaluated at the omitted 

observation. For a given bandwidth parameter h, the cross-validation func- 

tion is a measure of the ability of the kernel regression estimator to fit each 

observation P, when that observation is not used to construct the kernel 

estimator. By selecting the bandwidth that minimizes this function, we ob- 

tain a kernel estimator that satisfies certain optimality properties, for ex- 

ample, minimum asymptotic mean-squared error.4 

Interestingly, the bandwidths obtained from minimizing the cross-validation 

function are generally too large for our application to technical analysis- 

when we presented several professional technical analysts with plots of cross- 

validation-fitted functions mI,(.), they all concluded that the fitted functions 

were too smooth. In other words, the cross-validation-determined bandwidth 

places too much weight on prices far away from any given time t ,  inducing 

too much averaging and discarding valuable information in local price move- 

ments. Through trial and error, and by polling professional technical ana- 

lysts, we have found that an acceptable solution to this problem is to use a 

bandwidth of 0.3 x h", where h" minimizes CV(h).S Admittedly, this is an ad 

hoc approach, and it remains an important challenge for future research to 

develop a more rigorous procedure. 

However, there are other bandwidth-selection methods that yield the same asymptotic op- 

timality properties but that have different implications for the finite-sample properties of ker- 

nel estimators. See Hardle (1990) for further discussion. 

%pecifically, we produced fitted curves for various bandwidths and compared their extrema 

to the original price series visually to see if we were fitting more "noise" than "signal," and we 

asked several professional technical analysts to do the same. Through this informal process, we 

settled on the bandwidth of 0.3 X h' and used it for the remainder of our analysis. This pro- 

cedure was followed before we performed the statistical analysis of Section 111,and we made no 

revision to the choice of bandwidth afterward 



1715 Foundations of Technical Analysis 

Another promising direction for future research is to consider alternatives 

to kernel regression. Although kernel regression is useful for its simplicity 

and intuitive appeal, kernel estimators suffer from a number of well-known 

deficiencies, for instance, boundary bias, lack of local variability in the de- 

gree of smoothing, and so on. A popular alternative that overcomes these 

particular deficiencies is local polynomial regression in which local averag- 

ing of polynomials is performed to obtain an estimator of m ( ~ ) . ~Such alter- 

natives may yield important improvements in the pattern-recognition 

algorithm described in Section 11. 

11. Automating Technical Analysis 

Armed with a mathematical representation m ( . )  of (4)with which geo- 

metric properties can be characterized in an objective manner, we can now 

construct an algorithm for automating the detection of technical patterns. 

Specifically, our algorithm contains three steps: 

1. Define each technical pattern in terms of its geometric properties, for 

example, local extrema (maxima and minima). 

2.  Construct a kernel estimator m ( . )  of a given time series of prices so 

that its extrema can be determined numerically. 

3.  Analyze I % ( . )  for occurrences of each technical pattern. 

The last two steps are rather straightforward applications of kernel regres- 

sion. The first step is likely to be the lnost controversial because it is here 

that the skills and judgment of a professional technical analyst come into 

play. Although we will argue in Section 1I.A that most technical indicators 

can be characterized by specific sequences of local extrema, technical ana- 

lysts may argue that these are poor approximations to the kinds of patterns 

that trained human analysts can identify. 

While pattern-recognition techniques have been successful in automating 

a number of tasks previously considered to be uniquely human endeavors- 

fingerprint identification, handwriting analysis, face recognition, and so on- 

nevertheless it is possible that no algorithm can completely capture the skills 

of an experienced technical analyst. We acknowledge that any automated 

procedure for pattern recognition may miss some of the more subtle nuances 

that human cognition is capable of discerning, but whether an algorithm is 

a poor approximation to human judgment can only be determined by inves- 

tigating the approximation errors empirically. As long as an algorithm can 

provide a reasonable approximation to some of the cognitive abilities of a 

human analyst, we can use such an algorithm to investigate the empirical 

performance of those aspects of technical analysis for which the algorithm is 

a good approximation. Moreover, if technical analysis is an ar t  form that can 

'See Simonoff (1996) for a discussion of the problems with kernel estimators and alterna- 

tives such as local polynomial regression. 
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be taught, then surely its basic precepts can be quantified and automated to 

some degree. And as increasingly sophisticated pattern-recognition tech- 
niques are developed, a larger fraction of the ar t  will become a science. 

More important, from a practical perspective, there may be significant 

benefits to developing an algorithmic approach to technical analysis because 
of the leverage that technology can provide. As with many other successful 

technologies, the automation of technical pattern recognition may not re- 

place the skills of a technical analyst but can amplify them considerably. 

In Section II.A, we propose definitions of 10 technical patterns based on 
their extrema. In Section II.B, we describe a specific algorithm to identify 

technical patterns based on the local extrema of price series using kernel 

regression estimators, and we provide specific examples of the algorithm at 
work in Section 1I.C. 

A. Definitions of Technical Patterns 

We focus on five pairs of technical patterns that are among the most popular 

patterns of traditional technical analysis (see, e.g., Edwards and Magee (1966, 
Chaps. VII-X)): head-and-shoulders (HS) and inverse head-and-shoulders (IHS), 

broadening tops (BTOP) and bottoms (BBOT), triangle tops (TTOP) and bot- 

toms (TBOT), rectangle tops (RTOP) and bottoms (RBOT), and double tops 

(DTOP) and bottoms (DBOT). There are many other technical indicators that 

may be easier to detect algorithmically-moving averages, support and resis- 

tance levels, and oscillators, for example-but because we wish to illustrate 
the power of smoothing techniques in automating technical analysis, we focus 
on precisely those patterns that are most difficult to quantify analytically. 

Consider the systematic component m ( . )of a price history {P,} and sup- 

pose we have identified n local extrema, that is, the local maxima and 

minima, of {P,). Denote by El ,  E,, . . . ,E,, the n extrema and t;, t;, . . . ,t; the 
dates on which these extrema occur. Then we have the following definitions. 

Definition 1 (Head-and-Shoulders) Head-and-shoulders (HS) and in- 

verted head-and-shoulders (IHS) patterns are characterized by a sequence of 

five consecutive local extrema El , .  . . ,E5 such that 

(El is a maximum  

I  
E3 > El, E3 > E,  

HS = 
El and E, are within 1.5 percent of their average 

(E, and E4 are within 1.5 percent of their average, 

(El is a minimum 

I E3 < E l ,  E3 < E 5  
IHS = 

El and E, are within 1.5 percent of their average 

(E, and E, are within 1.5 percent of their average 
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Observe that only five consecutive extrema are required to identify a head- 

and-shoulders pattern. This follows from the formalization of the geometry 
of a head-and-shoulders pattern: three peaks, with the middle peak higher 

than the other two. Because consecutive extrema must alternate between 

maxima and minima for smooth functions? the three-peaks pattern corre- 

sponds to a sequence of five local extrema: maximum, minimum, highest 

maximum, minimum, and maximum. The inverse head-and-shoulders is sim- 
ply the mirror image of the head-and-shoulders, with the initial local ex- 

trema a minimum. 
Because broadening, rectangle, and triangle patterns can begin on either 

a local maximum or minimum, we allow for both of these possibilities in our 

definitions by distinguishing between broadening tops and bottoms. 

Definition 2 (Broadening) Broadening tops (BTOP) and bottoms (BBOT) 

are characterized by a sequence of five consecutive local extrema El , .  . . ,E5 

such that 

1
E, is a maximum 

1
El  is a minimum 

BTOP E l  < E 3  < E 5  , BBOT- E l  > E 3  > E 5  . 

E2 >E4 E2 < E4 

Definitions for triangle and rectangle patterns follow naturally. 

Definition 3 (Diangle) Triangle tops (TTOP) and bottoms (TBOT) are char- 
acterized by a sequence of five consecutive local extrema E l , .  . . ,E, such that 

E l  is a maximum El  is a minimum 

E l  > E3 > E5 , TBOTe E l  < E 3  < E 5  .1E2 < E4 E2 > E4 

Definition 4 (Rectangle) Rectangle tops (RTOP) and bottoms (RBOT) are 
characterized by a sequence of five consecutive local extrema El , .  . . ,E5 such 

that 

(E l  is a maximum 

tops are within 0.75 percent of their average 
RTOP - I bottoms are within 0.75 percent of their average 

(lowest top > highest bottom, 

After all, for two consecutive maxima to be local maxima, there must be a local minimum 

in between and vice versa for two consecutive minima. 
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lEl  is a minimum 

tops are within 0.75 percent of their average 
RBOT - I bottoms are within 0.75 percent of their average 

\lowest top > highest bottom. 

The definition for double tops and bottoms is slightly more involved. Con- 

sider first the double top. Starting a t  a local maximum E l ,  we locate the 

highest local maximum E, occurring after E l  in the set of all local extrema 

in the sample. We require that the two tops, E, and E,, be within 1.5 percent 

of their average. Finally, following Edwards and Magee (19661, we require 

that the two tops occur a t  least a month, or 22 trading days, apart. There- 

fore, we have the following definition. 

Definition 5 (Double Top and Bottom) Double tops (DTOP) and bottoms 

(DBOT) are characterized by an initial local extremum El  and subsequent 

local extrema E, and El, such that 

and 

(E l  is a maximum 

DTOP = El  and E, are within 1.5 percent of their average 1 
(E l  is a minimum 

DBOT = I El  and Eb are within 1.5 percent of their average 

B. The Identification Algorithm 

Our algorithm begins with a sample of prices {PI, . . . ,P,) for which we fit 

kernel regressions, one for each subsample or window from t to t + 1 + d - 1, 

where t varies from 1 to T - 1 - d + 1, and 1 and d are fixed parameters 

whose purpose is explained below. In the empirical analysis of Section 111, 

we set 1 = 35 and d = 3; hence each window consists of 38 trading days. 

The motivation for fitting kernel regressions to rolling windows of data is 

to narrow our focus to patterns that are completed within the span of the 

window-1 + d trading days in our case. If we fit a single kernel regression 

to the entire dataset, many patterns of various durations may emerge, and 

without imposing some additional structure on the nature of the patterns, it 
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is virtually impossible to distinguish signal from noise in this case. There- 

fore, our algorithm fixes the length of the window at 1 + d,  but kernel re- 

gressions are estimated on a rolling basis and we search for patterns in each 

window. 

Of course, for any fixed window, we can only find patterns that are com- 

pleted within I + d trading days. Without further structure on the system- 

atic component of prices m( . ) ,this is a restriction that any empirical analysis 

must contend with.8 We choose a shorter window length of I = 35 trading 

days to focus on short-horizon patterns that may be more relevant for active 

equity traders, and we leave the analysis of longer-horizon patterns to fu- 

ture research. 

The parameter d controls for the fact that in practice we do not observe a 

realization of a given pattern as soon as it has completed. Instead, we as- 

sume that there may be a lag between the pattern completion and the time 

of pattern detection. To account for this lag, we require that the final extre- 

mum that completes a pattern occurs on day t + 1 - 1; hence d is the number 

of days following the completion of a pattern that must pass before the pat- 

tern is detected. This will become more important in Section I11 when we 

compute conditional returns, conditioned on the realization of each pattern. 

In particular, we compute postpattern returns starting from the end of trad- 

ing day t + 1 + d,  that is, one day after the pattern has completed. For 

example, if we determine that a head-and-shoulder pattern has completed 

on day t + 1 - 1(having used prices from time t through time t + I + d - l ) ,  

we compute the conditional one-day gross return as Z1 = Yt+l,.d+l/Yt+l+d 
Hence we do not use any forward information in computing returns condi- 

tional on pattern completion. In other words, the lag d ensures that we are 

computing our conditional returns completely out-of-sample and without any 

"look-ahead" bias. 

Within each window, we estimate a kernel regression using the prices in 

that window, hence: 

where Kh(z) is given in equation (10) and h is the bandwidth parameter (see 

Sec. 1I.C). It is clear that mh(7) is a differentiable function of T. 

Once the function mh(7) has been computed, its local extrema can be readily 

identified by finding times .r such that ~gn(h) , ( . r ) )  = -sgn(m;,(.r + I)), where 

m), denotes the derivative of mh with respect to T and Sgn(.) is the signum 

function. If the signs of m;,(r) and m; , (~  + 1)are + 1and -1, respectively, then 

If we are willing to place additional restrictions on m(. ) ,for example, linearity, we can 

obtain considerably more accurate inferences even for partially completed patterns in any fixed 

window. 
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we have found a local maximum, and if they are -1and + 1, respectively, then 

we have found a local minimum. Once such a time .r has been identified, we 

proceed to identify a maximum or minimum in the original price series {P,} in 

the range [t - 1, t + 11, and the extrema in the original price series are used 

to determine whether or not a pattern has occurred according to the defini- 

tions of Section 1I.A. 

If mi, (7) = 0 for a given .r, which occurs if closing prices stay the same for 

several consecutive days, we need to check whether the price we have found 

is a local minimum or maximum. We look for the date s such that s = inf{s > 
7 : mjZ;,(s)f 0). We then apply the same method as discussed above, except 

here we compare sgn(m~( . r  - 1))and sgn(m;, (s)). 

One useful consequence of this algorithm is that the series of extrema that 

it identifies contains alternating minima and maxima. That is, if the hth 

extremum is a maximum, then it is always the case that the (h + 11th ex- 

tremum is a minimum and vice versa. 

An important advantage of using this kernel regression approach to iden- 

tify patterns is the fact that it ignores extrema that are "too local." For exam- 

ple, a simpler alternative is to identify local extrema from the raw price data 

directly, that is, identify a price Ptas a local maximum ifP,+, < P, and Pt >Pt+, 
and vice versa for a local minimum. The problem with this approach is that it 

identifies too many extrema and also yields patterns that are not visually con- 

sistent with the kind of patterns that technical analysts find compelling. 

Once we have identified all of the local extrema in the window [t, t + l + 
d - 11, we can proceed to check for the presence of the various technical 

patterns using the definitions of Section 1I.A. This procedure is then re- 

peated for the next window [t + 1, t + I + d ]  and continues until the end of 

the sample is reached a t  the window [T  - 1 - d + 1 ,Tl .  

C. Empirical Examples 

To see how our algorithm performs in practice, we apply it to the daily 

returns of a single security, CTX, during the five-year period from 1992 to 

1996. Figures 3-7 plot occurrences of the five pairs of patterns defined in 

Section 1I.A that were identified by our algorithm. Note that there were no 

rectangle bottoms detected for CTX during this period, so for completeness 

we substituted a rectangle bottom for CDO stock that occurred during the 

same period. 

In each of these graphs, the solid lines are the raw prices, the dashed lines 

are the kernel estimators mh(.) ,  the circles indicate the local extrema, and 

the vertical line marks date t + 1 - 1, the day that the final extremum 

occurs to complete the pattern. 

Casual inspection by several professional technical analysts seems to con- 

firm the ability of our automated procedure to match human judgment in 
identifying the five pairs of patterns in Section 1I.A. Of course, this is merely 

anecdotal evidence and not meant to be conclusive-we provide these fig- 

ures simply to illustrate the output of a technical pattern-recognition algo- 

rithm based on kernel regression. 
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(b) Inverse Head-and-Shoulders 

Figure 3. Head-and-shoulders and inverse head-and-shoulders. 
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(a) Broadening Top 

(b) Broadening Bottom 

Figure 4. Broadening tops and bottoms. 
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(a) Triangle Top 

(b) Triangle Bottom 

Figure 5. Triangle tops and bottoms. 
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(a) Rectangle Top 

(b) Rectangle Bottom 

Figure 6. Rectangle tops and bottoms. 
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(a) Double Top 

(b) Double Bottom 

Figure 7. Double tops and bottoms. 
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111. Is Technical Analysis Informative? 

Although there have been many tests of technical analysis over the years, 
most of these tests have focused on the profitability of technical trading 
rules.9 Although some of these studies do find that technical indicators can 
generate statistically significant trading profits, but they beg the question 
of whether or not such profits are merely the equilibrium rents that accrue 
to investors willing to bear the risks associated with such strategies. With- 
out specifying a fully articulated dynamic general equilibrium asset-pricing 
model, it is impossible to determine the economic source of trading profits. 

Instead, we propose a more fundamental test in this section, one that 
attempts to gauge the information content in the technical patterns of Sec- 
tion 1I.A by comparing the unconditional empirical distribution of returns 
with the corresponding conditional empirical distribution, conditioned on the 
occurrence of a technical pattern. If technical patterns are informative, con- 
ditioning on them should alter the empirical distribution of returns; if the 
information contained in such patterns has already been incorporated into 
returns, the conditional and unconditional distribution of returns should be 
close. Although this is a weaker test of the effectiveness of technical analy- 
sis-informativeness does not guarantee a profitable trading strategy-it is, 
nevertheless, a natural first step in a quantitative assessment of technical 
analysis. 

To measure the distance between the two distributions, we propose two 
goodness-of-fit measures in Section 1II.A. We apply these diagnostics to the 
daily returns of individual stocks from 1962 to 1996 using a procedure de- 
scribed in Sections 1II.B to III.D, and the results are reported in Sec- 
tions 1II.E and 1II.F. 

A. Goodness-of-Fit Tests 

A simple diagnostic to test the informativeness of the 10 technical pat- 
terns is to compare the quantiles of the conditional returns with their un- 
conditional counterparts. If conditioning on these technical patterns provides 
no incremental information, the quantiles of the conditional returns should 
be similar to those of unconditional returns. In particular, we compute the 

" For example, Chang and Osler (1994) and Osler and Chang (1995) propose an algorithm for 

automatically detecting head-and-shoulders patterns in foreign exchange data by looking at  

properly defined local extrema. To assess the efficacy of a head-and-shoulders trading rule, they 

take a stand on a class of trading strategies and compute the profitability of these across a 

sample of exchange rates against the U.S. dollar. The null return distribution is computed by a 

bootstrap that samples returns randomly from the original data so as to induce temporal in- 

dependence in the bootstrapped time series. By comparing the actual returns from trading 

strategies to the bootstrapped distribution, the authors find that for two of the six currencies 

in their sample (the yen and the Deutsche mark), trading strategies based on a head-and- 

shoulders pattern can lead to statistically significant profits. See, also, Neftci and Policano 

(1984), Pruitt and White (1988), and Brock et al. (1992). 
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deciles of unconditional returns and tabulate the relative frequency 8j of 

conditional returns falling into decile j of the unconditional returns, j = 

1, .. . , lo:  

number of conditional returns in decile jA

6 
J 
- ' (15)

total number of conditional returns 

Under the null hypothesis that the returns are independently and identi- 

cally distributed (IID) and the conditional and unconditional distributions 

are identical, the asymptotic distributions ofSj and the corresponding goodness- 

of-fit test statistic Q are given by 

Q - C
lo (nj - 0 .10n )~

"xi,
j=l 0.10n 

where nj is the number of observations that fall in decile j and n is the total 

number of observations (see, e.g., DeGroot (1986)). 

Another comparison of the conditional and unconditional distributions of 

returns is provided by the Kolmogorov-Smirnov test. Denote by { Z , , ) ~ L ~  and 

{Z2,}~21two samples that are each IID with cumulative distribution func- 

tions Fl(z) and F,(z), respectively. The Kolmogorov-Smirnov statistic is de- 

signed to test the null hypothesis that Fl = F, and is based on the empirical 

cumulative distribution functions Fi of both samples: 

where I ( . )  is the indicator function. The statistic is given by the expression 

Under the null hypothesis Fl = F,, the statistic y,Ll,,2 should be small. More- 

over, Smirnov (1939a, 1939b) derives the limiting distribution of the statistic 

to be 

lim P r ~b (y , , , , ~5 x) = C, (-1)' exp(-2k2x2), x > 0. (20)
r n i n ( 1 ~ ~ , 7 1 ~ ) + m  k = - 00 
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An approximate a-level test of the null hypothesis can be performed by com- 

puting the statistic and rejecting the null if it  exceeds the upper lOOwth 

percentile for the null distribution given by equation (20) (see Hollander and 

Wolfe (1973, Table A.23), Csaki (1984), and Press et al. (1986, Chap. 13.5)). 

Note that  the sampling distributions of both the goodness-of-fit and 

Kolmogorov-Smirnov statistics are derived under the assumption that re- 

turns are IID, which is not plausible for financial data. We attempt to ad- 

dress this problem by normalizing the returns of each security, that is, by 

subtracting its mean and dividing by its standard deviation (see Sec. III.C), 

but this does not eliminate the dependence or heterogeneity. We hope to 

extend our analysis to the more general non-IID case in future research. 

B. The Data and Sampling Procedure 

We apply the goodness-of-fit and Kolmogorov-Smirnov tests to the daily 

returns of individual NYSE/AMEX and Nasdaq stocks from 1962 to 1996 

using data from the Center for Research in Securities Prices (CRSP). To 

ameliorate the effects of nonstationarities induced by changing market struc- 

ture and institutions, we split the data into NYSE/AMEX stocks and Nas- 

daq stocks and into seven five-year periods: 1962 to 1966, 1967 to 1971, 

and so on. To obtain a broad cross section of securities, in each five-year 

subperiod, we randomly select 10 stocks from each of five market- 

capitalization quintiles (using mean market capitalization over the subperi- 

od), with the further restriction that  a t  least 75 percent of the price 

observations must be nonmissing during the subperiod.10 This procedure 

yields a sample of 50 stocks for each subperiod across seven subperiods 

(note that we sample with replacement; hence there may be names in 

common across subperiods). 

As a check on the robustness of our inferences, we perform this sampling 

procedure twice to construct two samples, and we apply our empirical analy- 

sis to both. Although we report results only from the first sample to con- 

serve space, the results of the second sample are qualitatively consistent 

with the first and are available upon request. 

C. Computing Conditional Returns 

For each stock in each subperiod, we apply the procedure outlined in Sec- 

tion I1 to identify all occurrences of the 10 patterns defined in Section 1I.A. 

For each pattern detected, we compute the one-day continuously com- 

pounded return d days after the pattern has completed. Specifically, con- 

sider a window of prices { P , )  from t to t + I + d - 1 and suppose that  the 

If the first price observation of a stock is missing, we set it equal to the first nonmissing 

price in the series. If the tth price observation is missing, we set it equal to the first nonmissing 

price prior to t .  
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identified pattern p is completed at t + I - 1.Then we take the conditional 

return R P  as log(1 + Rt kI , i ,  Therefore, for each stock, we have 10 sets of 

such conditional returns, each conditioned on one of the 10 patterns of 

Section 1I.A. 
For each stock, we construct a sample of unconditional continuously com- 

pounded returns using nonoverlapping intervals of length T, and we compare 

the empirical distribution functions of these returns with those of the con- 

ditional returns. To facilitate such comparisons, we standardize all returns- 

both conditional and unconditional-by subtracting means and dividing by 

standard deviations, hence: 

where the means and standard deviations are computed for each individual 

stock within each subperiod. Therefore, by construction, each normalized 

return series has zero mean and unit variance. 

Finally, to increase the power of our goodness-of-fit tests, we combine the 

normalized returns of all 50 stocks within each subperiod; hence for each 

subperiod we have two samples-unconditional and conditional returns- 

and from these we compute two empirical distribution functions that we 

compare using our diagnostic test statistics. 

D. Conditioning on Volume 

Given the prominent role that volume plays in technical analysis, we also 

construct returns conditioned on increasing or decreasing volume. Specifi- 

cally, for each stock in each subperiod, we compute its average share turn- 

over during the first and second halves of each subperiod, T, and T,, 

respectively. If T, > 1.2 x 3,we categorize this as a "decreasing volume" 

event; if T2 > 1.2 X T ~ ,we categorize this as an "increasing volume" event. If 

neither of these conditions holds, then neither event is considered to have 

occurred. 

Using these events, we can construct conditional returns conditioned on 

two pieces of information: the occurrence of a technical pattern and the oc- 

currence of increasing or decreasing volume. Therefore, we shall compare 

the empirical distribution of unconditional returns with three conditional- 

return distributions: the distribution of returns conditioned on technical pat- 

terns, the distribution conditioned on technical patterns and increasing volume, 

and the distribution conditioned on technical patterns and decreasing volume. 

Of course, other conditioning variables can easily be incorporated into this 

procedure, though the "curse of dimensionality" imposes certain practical 

limits on the ability to estimate multivariate conditional distributions 

nonparametrically. 
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E. Summary Statistics 

In Tables I and 11, we report frequency counts for the number of patterns 

detected over the entire 1962 to 1996 sample, and within each subperiod and 

each market-capitalization quintile, for the 10 patterns defined in Sec- 

tion 1I.A. Table I contains results for the NYSE/AMEX stocks, and Table I1 

contains corresponding results for Nasdaq stocks. 

Table I shows that the most common patterns across all stocks and over 

the entire sample period are double tops and bottoms (see the row labeled 

"Entire"), with over 2,000 occurrences of each. The second most common 

patterns are the head-and-shoulders and inverted head-and-shoulders, with 

over 1,600 occurrences of each. These total counts correspond roughly to four 

to six occurrences of each of these patterns for each stock during each five- 

year subperiod (divide the total number of occurrences by 7 x 50), not an 

unreasonable frequency from the point of view of professional technical an- 

alysts. Table I shows that most of the 10 patterns are more frequent for 

larger stocks than for smaller ones and that they are relatively evenly dis- 

tributed over the five-year subperiods. When volume trend is considered 

jointly with the occurrences of the 10 patterns, Table I shows that the fre- 

quency of patterns is not evenly distributed between increasing (the row 

labeled "r(/1)") and decreasing (the row labeled " r ( ~ ) " )  volume-trend cases. 

For example, for the entire sample of stocks over the 1962 to 1996 sample 

period, there are 143 occurrences of a broadening top with decreasing vol- 

ume trend but 409 occurrences of a broadening top with increasing volume 

trend. 

For purposes of comparison, Table I also reports frequency counts for the 

number of patterns detected in a sample of simulated geometric Brownian 

motion, calibrated to match the mean and standard deviation of each stock 

in each five-year subperiod.11 The entries in the row labeled "Sim. GBM" 

show that the random walk model yields very different implications for the 

frequency counts of several technical patterns. For example, the simulated 

sample has only 577 head-and-shoulders and 578 inverted-head-and- 

shoulders patterns, whereas the actual data have considerably more, 1,611 

and 1,654, respectively. On the other hand, for broadening tops and bottoms, 

the simulated sample contains many more occurrences than the actual data, 

1,227 and 1,028, compared to 725 and 748, respectively. The number of tri- 

angles is roughly comparable across the two samples, but for rectangles and 

l1 In particular, le t  t h e  price process sa t i s fy  

where  W ( t )i s  a standard Brownian motion.  To generate s imulated prices for a single securi ty  

i n  a g iven  period, w e  es t imate  t h e  security's d r i f t  and d i f fus ion  coef f icients  b y  m a x i m u m  l ike-  

lihood and t h e n  simulate prices us ing  t h e  est imated parameter values.  An independent  price 

series i s  s imulated for each o f  t h e  350 securities i n  b o t h  t h e  NYSEIAR4EX and t h e  Nasdaq  
samples.  Finally, w e  u s e  our pattern-recognition algori thm t o  detect  t h e  occurrence o f  each o f  

t h e  10 patterns i n  t h e  s imulated price series. 
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double tops and bottoms, the differences are dramatic. Of course, the simu- 

lated sample is only one realization of geometric Brownian motion, so it is 

difficult to draw general conclusions about the relative frequencies. Never- 

theless, these simulations point to important differences between the data 

and IID lognormal returns. 

To develop further intuition for these patterns, Figures 8 and 9 display the 

cross-sectional and time-series distribution of each of the 10 patterns for the 

NYSE/AMEX and Nasdaq samples, respectively. Each symbol represents a 

pattern detected by our algorithm, the vertical axis is divided into the five 

size quintiles, the horizontal axis is calendar time, and alternating symbols 

(diamonds and asterisks) represent distinct subperiods. These graphs show 

that the distribution of patterns is not clustered in time or among a subset 

of securities. 

Table I1 provides the same frequency counts for Nasdaq stocks, and de- 

spite the fact that we have the same number of stocks in this sample (50 per 

subperiod over seven subperiods), there are considerably fewer patterns de- 

tected than in the NYSE/AMEX case. For example, the Nasdaq sample yields 

only 919 head-and-shoulders patterns, whereas the NYSE/AMEX sample 

contains 1,611. Not surprisingly, the frequency counts for the sample of sim- 

ulated geometric Brownian motion are similar to those in Table I. 

Tables I11 and IV report summary statistics-means, standard deviations, 

skewness, and excess kurtosis-of unconditional and conditional normalized 

returns of NYSE/AMEX and Nasdaq stocks, respectively. These statistics 

show considerable variation in the different return populations. For exam- 

ple, in Table I11 the first four moments of normalized raw returns are 0.000, 

1.000, 0.345, and 8.122, respectively. The same four moments of post-BTOP 

returns are -0.005, 1.035, -1.151, and 16.701, respectively, and those of 

post-DTOP returns are 0.017, 0.910, 0.206, and 3.386, respectively. The dif- 

ferences in these statistics among the 10 conditional return populations, and 

the differences between the conditional and unconditional return popula- 

tions, suggest that conditioning on the 10 technical indicators does have 

some effect on the distribution of returns. 

l? Empirical Results 

Tables V and VI report the results of the goodness-of-fit test (equations 

(16) and (17)) for our sample of NYSE and AMEX (Table V) and Nasdaq 

(Table VI) stocks, respectively, from 1962 to 1996 for each of the 10 technical 

patterns. Table V shows that in the NYSE/AMEX sample, the relative fre- 

quencies of the conditional returns are significantly different from those of 

the unconditional returns for seven of the 10 patterns considered. The three 

exceptions are the conditional returns from the BBOT, TTOP, and DBOT 

patterns, for which the p-values of the test statistics Q are 5.1 percent, 21.2 

percent, and 16.6 percent, respectively. These results yield mixed support 

for the overall efficacy of technical indicators. However, the results of Table VI 

tell a different story: there is overwhelming significance for all 10 indicators 
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Table I 
W 

Frequency counts for 10 technical indicators detected among NYSE/AMEX stocks from 1962 to 1996, in five-year subperiods, in size quintiles, 

and in a sample of simulated geometric Brownian motion. In each five-year subperiod, 10 stocks per quintile are selected a t  random among stocks 

with at  least 80% nonmissing prices, and each stock's price history is scanned for any occurrence of the following 10 technical indicators within 

the subperiod: head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top 

(TTOP), triangle bottom ITBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom (DBOT). The "Sample" 

column indicates whether the frequency counts are conditioned on decreasing volume trend ('r(\)'), increasing volume trend 1'r(/1)'), uncondi- 

tional ("Entiren), or for a sample of simulated geometric Brownian motion with parameters calibrated to match the data ("Sim. GBM). 

Sample Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT UTOP UBOT 

All Stocks, 1962 to 1996 

Entire 748 1294 

Sim. GBM 1028 1049 

~ ( L J  220 666 

.r(Pi 337 300 

Smallest Quintilr, 1962 to 1996 

Entlre 97 203 

Sim. GBM 256 269 

T ( L )  42 122 

~ ( 7 )  37 41 

2nd Quintile, 1962 to 1996 

Xntire 150 255 

Sim. GBM 251 261 

7(\) 48 135 

r ( r )  63 55 

3rd Quintile, 1962 l o  1996 

Entire 161 291 

Sim. GUM 222 212 

r i b )  49 151 

r (? i  66 67 

4th Quintile, 1962 to 1996 

Entire 173 262 

Sim GUM 210 183 

T ( L )  42 138 

~ ( 7 1  89 56 

Largest Quintile, 1962 to 1996 

Xntire 167 283 

Sim. GUM 89 124 

T ( L ~  39 120 

7 i P l  82 8 1  



Entire 

Sim. GBM 

' ( L )  

r(?) 

Entire 

Sim. GBM 

T ( L )  

r(?) 

Entire 

Sim. GBM 

T ( L )  

r ( P )  

Entlre 

Sim. GRM 

T ( L )  

r ( P )  

Entire 

Sim. GRM 

' ( L )  

r ( P )  

Entire 

Slm. GRM 

T ( L )  

~ ( 3 )  

Entire 

Sim. GRM 

'(\I 
r ( r i  

All Stocks, 1962 to 1966  

103 179  

126 129  

29 93  

39 37  

All Stocks, 1967 to 1971  

134 227  

148 150  

45 126  

57 47  

All Stocks, 1972 to 1976  

93 165  

154 156  

23 88  

50 32  

All Stocks, 1977 to 1981  

110 188  

200 188  

39 100  

44 35  

All Stocks, 1982 to 1986  

108 182  

144 152  

30 93  

62 46  

All Stocks, 1987 to 1991  

98 180  

132 131  

30 86  

43 53  

All Stocks, 1992 to 1996  

102 173  

124 143  

24 80  

42 50  
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Frequency counts for 10 technical indicators detected among Nasdaq stocks from 1962 to 1996, in five-year subperiods, in size quintiles, and in 

a sample of simulated geometric Brownian motion. In each five-year subperiod, 10 stocks per quintile are selected a t  random among stocks with 

at  least 80% nonmissing prices, and each stock's price history is scanned for any occurrence of the following 10 technical indicators within the 

subperiod: head-and-shoulders (HS); inverted head-and-shoulders (IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top ITTOP), 

triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom (DBOT). The "Sample" column 

indicates whether the frequency counts are conditioned on decreasing volume trend ("~(h)"),  unconditionalincreasing volume trend ( " ~ ( p ) " ) ,  

("Entire"), or for a sample of simulated geometric Brownian motion with parameters calibrated to match the data ("Sirn. GBM"). 
.. .- . .-... . --- ----- .--

Samplc Raw HS IHS RTOP BBOT TTOP TBOT RTOP IZROT DTOP DBOT 
.-.- -- ..-..- -- -..- - .. . -. .- .-. -

All Stocks, 1962 to 1996 

Entire 411,010 919 817 414 508 850 789 1134 1320 1208 1147 

Sim. GEM 411,010 434 447 1297 1139 1169 1309 96 91  567 579 h3 
' (L)  .- 408 268 69 133 429 460 488 550 339 580 $ 
T ( ? I  - 284 325 234 209 185 125 391 461 474 229 q 

Smallest Quintile, 1962 to 1996 0 

Entire 81,754 84 64 41 73 111 93 165 218 113 125 3 
Sim. GBM 81,754 85 84 341 289 334 367 11 12 140 125 

T ( L >  36 25 6 20 66 59 77 102 31 81 5.-

T ( ? )  - 31 23 31 30 24 15 59 85 46 

2nd Quintile, 1962 to 1996 l7 % 
Entire 81,336 191 138 68 88 161 148 242 305 219 176 % 
Sim. GBM 81.336 67 84 243 225 219 229 24 12 99 124 5' 
' ( \ I  .- 94 51 11 28 86 109 111 131 69 101 !a 
T(?) .- 66 57 46 38 45 22 85 120 90 42 2  

m  
3rd Quintile, 1962 to 1996 

Entirc 81,772 224 186 105 121 183 155 235 244 279 267 

Sim. GBM 81,772 69 86 227 210 214 239 15 14 105 100 

'(L) - 108 66 23 35 87 91  90 84 78 145 

T(?) 7 1 79 56 49 39 29 84 86 122 58-

4th Quintile, 1962 to 1996 

Entirc 82,727 212 214 92 116 187 179 296 303 289 29 7 

Sim. GBM 82,727 104 92 242 219 209 255 23 26 115 97 

T ( L )  - 88 68 12 26 101 101 127 141 77 143 

T(?) - 62 83 57 56 34 22 104 Y3 118 66 

Idurgest Quintile. 1962 to 1996 

Entire 83,421 208 215 108 110 208 214 196 250 308 282 

Sim. GHM 83,421 109 101 244 196 193 219 23 27 108 133 

T(L)  - 82 58 17 24 99 100 83 92 84 110 
T(?) - 54 83 44 36 43 37 59 77 98 46 



Entire 

Sim. GBM 

r(\) 

~ ( r )  

Entlre 

Slm GBM 

r(\) 

~ ( 7 )  

Entirc 

Sim. GBM 

'(\I 

~ ( 7 )  

Entirc 

Sim. GBM 

T ( L )  

~ ( 1 1 )  

Entirc 

Sim. GBM 

T ( \ )  

~ ( 7 )  

Entirc 

Sim. GBM 

+ L )  

~ ( 7 )  

Entirc 

Sim. GBM 

'(\I 

~ ( 7 )  

All Stocks, 1962 to 1966  

99 182  

123 137  

23 104  

5 1 37  

All Stock?, 1967 to 1971  

123 227  

184 181  

40 127  

51 45  

All Stock?, 1972 to 1976  

30 29  

113 107  

4 5  

2 2  

A11 Stocks 1977 to 1981  

36 52  

165 176  

2 4  

I 4  

All Stock?, 1982 to 1986  

44 97  

168 147  

14 46  

18 26  

All Stock?, 1987 to 1991  

61 120  

187 205  

19 73  

30 26  

All Stock?, 1992 to 1996  

115 143  

199 216  

31 70  

56 45  
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Figure 9. Distribution of patterns in Nasdaq sample. 
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Table I11 

Summary statistics (mean, standard deviation, skewness, and excess kurtosis) of raw and conditional one-day normalized returns of NYSE/ 

AMEX stocks from 1962 to 1996, in five-year subperiods, and in size quintiles. Conditional returns are defined as the daily return three days 

following the conclusion of an occurrence of one of 10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (IHS),broad-

ening top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOI'), rectangle bottom (RBOT). 

double top (DTOP), and double bottom (DBOT). All returns have been normalized by subtraction of their means and division by their standard 

deviations. 
~..-

Moment Raw NS IIIS BTOP BBOT TTOI' TBOT RTOIJ RBOT DTOP IIHOT 

All Stocks, 1962 to 1996 

Mean -0.062 0.021 

S.D. 0.979 0.955 

Skew. 0.090 0.137 

Kurt. 3 169 3.293 

Smallest Quintile, 1962 to 1996 

Mean -0.188 0.036 

S.D. 0.850 0.937 

Skew -0.367 0.861 

Kurt. 0.575 4.185 

2nd Quintile, 1962 to 1996 

Mean -0.113 0.003 

S.D 1.004 0.913 

Skew 0.485 -0.529 

Kurt . 3.779 3.024 

3rd Quintile, 1962 to 1996 

Mean -0.056 0.036 

S.D. 0.925 0.973 

Skew. 0.233 0.538 

Kurt. 0.611 2.995 

4th Quintile. 1962 to 1996 

Mean 0 028 0.022 

S.D. 1.093 0.986 

Skew. 0.537 -0.217 

Kurt. 2.168 4.237 

Largest Quintrie, 1962 to 1996 

Mean -0.042 0.010 

S.D. 0.951 0.964 

Skew. -1.099 0.089 

Kurt. 6.603 2.107 
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Table IV 

Summary statistics (mean, standard deviation, skewness, and excess kurtosis) of raw and conditional one-day normalized returns of Nasdaq 

stocks from 1962 to 1996, in five-year subperiods, and in size quintiles. Conditional returns are defined as  the daily return three days following 

the conclusion of an occurrence of one of 10 t,echnical indicators: head-and-shouldttrs (HS), inverted head-and-shoulders (II-IS), broadening top 

(BTOP), broadening bottom (RROT), triangle top (TTOP), triangle bottom (TBOT), rectangle top (ItTOP), rectangle bottom (RBOT), double top 

(DTOP), and double bottom (DBOT). All returns have been normalized by subtraction oftheir means and division by their standard deviations. 

Moment Raw HS IHS BTOI' 

Mean 

S.D. 

Skew. 

Kurt. 

Mean 

S.D. 

Skew. 

Kurt . 

Mean 

S.D. 

Skew. 

Kurt. 

Mean 

S.D. 

Skevi. 

Kurt. 

Mean 

S.D. 

Skew. 

Kurt. 

Mean 

S.D. 

Skew. 

Kurt. 

BBOT TTOI' TBOT RTOI' RBOT DTOP DBOT 

All Stocks, 1962 to 1996 

0.009 -0.020 

0.995 0.984  

0 586 0.895  

2.783 6.692 

Smallest Quintile, 1962 to 1996 

- 0.153 0.069 

0.894 1.113  

-0.109 2 727  

0.571 14.270 

2nd Quintile, 1962 to 1996  

-0.093 0 . 0 8 5   

1.026 0.805 

0.636 0.036  

:I458 0.689  

3rd Quintrlr, 1962 to 1996 

0.210 - 0.030 

0.971 0.825 

0.326 0.639 

0.430 1.673  

4th Quintile, 1962 to 1996  

- 0.044 0 . 0 8 0  

0.975 1.076 

0.385 0.554 

1.601 7.723 

Largcst Quintile, 1962 to 1996 

0.031 0 052 

1.060 1.076 

1.225 0.409 

0.778 1.970 
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Table V  ul
-4 

0
Goodness-of-fit diagnostics for the conditional one-day normalized returns, conditional on 10 technical indicators, for a sample of 350 NYSEIAMEX 

stocks from 1962 to 1996 (10 stocks per size-quintile with a t  least 80% nonmissing prices are randomly chosen in each five-year subperiod, yielding 

50 stocks per subperiod over seven subperiods). For each pattern, the percentage of conditional returns that falls within each of the 10 unconditional-

return deciles is tabulated. If conditioning on the pattern provides no information, the expected percentage falling in each decile is 10%.Asymptotic 

z-statistics for this null hypothesis are reported in parentheses, and the X" goodness-of-fitness test statistic Q is reported in the last column with 

the p-value in parentheses below the statistic. The 10 technical indicators are as follows: head-and-shoulders (HS), inverted head-and-shoulders 

(IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom 

(RBOT), double top (DTOP), and double bottom (DBOT). 

Decile: 
.- Q Y

Pattern 1 2 3 4 5 6 7 8 9 10 (p-Value) 2-
HS 8.9 10.4 11.2 11.7 12.2 7.9 9.2 10.4 10.8 7.1 39.31 3 

(-1.49) (0.56) (1.49) (2.16) (2.73) (-3.05) (-1.04) (0.48) (1.04) (-4.46) (0.000) s 
IHS 8.6 9.7 9.4 11.2 13.7 7.7 9.1 11.1 9.6 10.0 40.95 2 

(-2.05) (-0.36) (-0.88) (1.60) (4.34) (-3.44) (-1.32) (1.38) (-0.62) (-0.03) (0.000) % 
BTOP 9.4 10.6 10.6 11.9 8.7 6.6 9.2 13.7 9.2 10.1 23.40 % 

(-0.57) (0.54) (0.54) (1.55) (-1.25) (-3.66) (-0.71) (2.87) (-0.71) (0.06) (0.005) 3 
BBOT 11.5 9.9 13.0 11.1 7.8 9.2 8.3 9.0 10.7 9.6 16.87 2 

(1.28) (-0.10) (2.42) (0.95) (-2.30) (-0.73) (-1.70) (-1.00) (0.62) (-0.35) (0.051) $ 
TTOP 7.8 10.4 10.9 11.3 9.0 9.9 10.0 10.7 10.5 9.7 12.03 c3m 

(-2.94) (0.42) (1.03) (1.46) (-1.30) (-0.13) (-0.04) (0.77) (0.60) (-0.41) (0.212) 

TBOT 8.9 10.6 10.9 12.2 9.2 8.7 9.3 11.6 8.7 9.8 17.12 

(-1.35) (0.72) (0.99) (2.36) (-0.93) (-1.57) (-0.83) (1.69) (-1.57) (-0.22) (0.047) 

RTOP 8.4 9.9 9.2 10.5 12.5 10.1 10.0 10.0 11.4 8.1 22.72 

(-2.27) (-0.10) - 1 . 1 )  (0.58) (2.89) (0.16) (-0.02) (-0.02) (1.70) (-2.69) (0.007) 

RBOT 8.6 9.6 7.8 10.5 12.9 10.8 11.6 9.3 10.3 8.7 33.94 

(-2.01) (-0.56) (-3.30) (0.60) (3.45) (1.07) (1.98) (-0.99) (0.44) (-1.91) (0.000) 

DTOP 8.2 10.9 9.6 12.4 11.8 7.5 8.2 11.3 10.3 9.7 50.97 

(-2.92) (1.36) (-0.64) (3.29) (2.61) (-4.39) (-2.92) (1.83) (0.46) (-0.41) (0.000) 

DBOT  9.7 9.9 10.0 10.9 11.4 8.5 9.2 10.0 10.7 9.8 12.92 

(-0.48) (-0.18) (-0.04) (1.37) (1.97) (-2.40) (-1.33) (0.04) (0.96) (-0.33) (0.166) 



-. 

'l'able VI 

Goodness-of-fit diagnostics for the conditional one-day normalized returns, conditional on 10 technical indicators, for a sample of 350 Nasdaq stocks 

from 1962 to 1996 (10 stocks per size-quintile with a t  least 80% nonmissing prices are randomly chosen in each five-year subperiod, yielding 50 

stocks per subperiod over seven subperiods). For each pattern, the percentage of conditional returns that falls within each of the 10 unconditional-

return deciles is tabulated. If conditioning on the pattern provides no information, the expected percentage falling in each decile is 10%.Asymptotic 

z-statistics for this null hypothesis are reported in parentheses, and the ,y2 goodness-of-fitness test statistic Q is reported in the last column with 

the p-value in parentheses below the statistic. The 10 technical indicators are as follows: head-and-shoulders (HS), inverted head-and-shoulders 

(IHS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom 

(RBOT), double top (DTOP), and double bottom (DBOT). 

2  
Decile: 2 

F: 

.- .- -..-- Q 
Pattern 1 2 3 4 5 6 7 8 9 10 (p-Value) 8-

.. .--- . -- 6' 
HS 10.8 10.8 13.7 8.6 8.5 6.0 6.0 12.5 13.5 9.7 64.41 2 

(0.76) (0.76) (3.27) (-1.52) (-1.65) (-5.13) (-5.13) (2.30) (3.10) (-0.32) (0.000) 

IHS 9.4 14.1 12.5 8.0 7.7 4.8 6.4 13.5 12.5 11.3 75.84 % 
(-0.56) (3.35) (2.15) ( -216)  (-2.45) (-7.01) (-4.26) (2.90) (2.15) (1.14) (0.000) 

BTOP 11.6 12.3 12.8 7.7 8.2 6.8 4.3 13.3 12.1 10.9 34.12 3 

(1.01) (1.44) (1.71) (-1.73) (-1.32) (-2.62) (-5.64) (1.97) (1.30) (0.57) (0.000) $ .  

BBOT 11.4 11.4 14.8 5.9 6.7 9.6 5.7 11.4 9.8 13.2 43.26 R 
(1.00) (1.00) (3.03) (-3.91) (-2.98) (-0.27) (--4.17) (1.00) (-0.12) (2.12) (0.000) L+ 

TTOP 10.7 12.1 16.2 6.2 7.9 8.7 4.0 12.5 11.4 10.2 92.09 2 

(0.67) (1.89) (4.93) (-4.54) (-2.29) (-1.34) (-8.93) (2.18) (1.29) (0.23) (0.000) 

TBOT 9.9 11.3 15.6 7.9 7.7 5.7 5.3 14.6 12.0 10.0 85.26 % 
(-011) (1.14) (4.33) (-2.24) (-2.39) (-5.20) (-5.85) (3.64) (1.76) (0.01) (0.000) %' 

RTOP 11.2 10.8 8.8 8.3 10.2 7.1 7.7 9.3 15.3 11.3 57.08 

(1.28) (0.92) (-1.40) (-2.09) (0.25) (-3.87) (-2.95) (-0.75) (4.92) (1.37) (0.000) 

RBOT 8.9 12.3 8.9 8.9 11.6 8.9 7.0 9.5 13.6 10.3 45.79 

(-1.35) (2.52) (-1.35) (-1.45) (1.81) (-1.35) (-4.19) (-0.66) (3.85) (0.36) (0.000) 

DTOP 11.0 12.6 11.7 9.0 9.2 5.5 5.8 11.6 12.3 11.3 71.29 

(1.12) (2.71) (1.81) (-1.18) (-0.98) (-6.76) (-6.26) (1.73) (2.39) (1.47) (0.000) 

DBOT 10.9 11.5 13.1 8.0 8.1 7.1 7.6 11.5 12.8 9.3 51.23 

(0.98) (1.60) (3.09) (-2.47) (-2.35) (-3.75) (-3.09) (1.60) (2.85) (-0.78) (0.000) 5 
. . --. a . -.. -- -... 

- U7 
li 
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in the Nasdaq sample, with p-values that are zero to three significant digits 

and test statistics Q that range from 34.12 to 92.09. In contrast, the test 
statistics in Table V range from 12.03 to 50.97. 

One possible explanation for the difference between the NYSE/AMEX and 

Nasdaq samples is a difference in the power of the test because of different 
sample sizes. If the NYSE/AMEX sample contained fewer conditional re- 

turns, that is, fewer patterns, the corresponding test statistics might be sub- 

ject to greater sampling variation and lower power. However, this explanation 
can be ruled out from the frequency counts of Tables I and 11-the number 

of patterns in the NYSE/AMEX sample is considerably larger than those of 

the Nasdaq sample for all 10 patterns. Tables V and VI seem to suggest 
important differences in the informativeness of technical indicators for NYSE/ 

AMEX and Nasdaq stocks. 

Table VII and VIII report the results of the Kolmogorov-Smirnov test (equa- 
tion (19)) of the equality of the conditional and unconditional return distri- 

butions for NYSE/AMEX (Table VII) and Nasdaq (Table VIII) stocks, 
respectively, from 1962 to 1996, in five-year subperiods and in market- 

capitalization quintiles. Recall that conditional returns are defined as the 

one-day return starting three days following the conclusion of an occurrence 

of a pattern. The p-values are with respect to the asymptotic distribution of 

the Kolmogorov-Smirnov test statistic given in equation (20). Table VII shows 
that for NYSE/AMEX stocks, five of the 10 patterns-HS, BBOT, RTOP, 

RBOT, and DTOP-yield statistically significant test statistics, withp-values 
ranging from 0.000 for RBOT to 0.021 for DTOP patterns. However, for the 

other five patterns, thep-values range from 0.104 for IHS to 0.393 for TTOP, 
which implies an inability to distinguish between the conditional and un- 

conditional distributions of normalized returns. 
When we also condition on declining volume trend, the statistical signif- 

icance declines for most patterns, but the statistical significance of TBOT 

patterns increases. In contrast, conditioning on increasing volume trend yields 

an increase in the statistical significance of BTOP patterns. This difference 

may suggest an important role for volume trend in TBOT and BTOP pat- 

terns. The difference between the increasing and decreasing volume-trend 
conditional distributions is statistically insignificant for almost all the pat- 

terns (the sole exception is the TBOT pattern). This drop in statistical sig- 

nificance may be due to a lack of power of the Kolmogorov-Smirnov test 
given the relatively small sample sizes of these conditional returns (see Table I 
for frequency counts). 

Table VIII reports corresponding results for the Nasdaq sample, and as in 
Table VI, in contrast to the NYSE/AMEX results, here all the patterns are 
statistically significant a t  the 5 percent level. This is especially significant 
because the the Nasdaq sample exhibits far fewer patterns than the NYSE/ 

AMEX sample (see Tables I and 11), and hence the Kolmogorov-Smirnov test 
is likely to have lower power in this case. 

As with the NYSE/AMEX sample, volume trend seems to provide little 
incremental information for the Nasdaq sample except in one case: increas- 
ing volume and BTOP. And except for the TTOP pattern, the Kolmogorov- 
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Smirnov test still cannot distinguish between the decreasing and in- 

creasing volume-trend conditional distributions, as the last pair of rows of 

Table VII17s first panel indicates. 

IV. Monte Carlo Analysis 

Tables IX and X contain bootstrap percentiles for the Kolmogorov- 

Smirnov test of the equality of conditional and unconditional one-day return 

distributions for NYSE/AMEX and Nasdaq stocks, respectively, from 1962 to 

1996, for five-year subperiods, and for market-capitalization quintiles, un- 

der the null hypothesis of equality. For each of the two sets of market data, 

two sample sizes, m, and m,, have been chosen to span the range of fre- 

quency counts of patterns reported in Tables I and 11. For each sample size 

m,, we resample one-day normalized returns (with replacement) to obtain a 

bootstrap sample of m, observations, compute the Kolmogorov-Smirnov test 

statistic (against the entire sample of one-day normalized returns), and re- 

peat this procedure 1,000 times. The percentiles of the asymptotic distribu- 

tion are also reported for comparison in the cblumn labeled "A". 
Tables IX and X show that for a broad range of sample sizes and across 

size quintiles, subperiod, and exchanges, the bootstrap distribution of the 

Kolmogorov-Smirnov statistic is well approximated by its asymptotic distri- 

bution, equation (20). 

V. Conclusion 

In this paper, we have proposed a new approach to evaluating the efficacy 

of technical analysis. Based on smoothing techniques such as nonparametric 

kernel regression, our approach incorporates the essence of technical analy- 

sis: to identify regularities in the time series of prices by extracting nonlin- 

ear patterns from noisy data. Although human judgment is still superior to 

most computational algorithms in the area of visual pattern recognition, 

recent advances in statistical learning theory have had successful applica- 

tions in fingerprint identification, handwriting analysis, and face recogni- 

tion. Technical analysis may well be the next frontier for such methods. 

We find that certain technical patterns, when applied to many stocks over 

many time periods, do provide incremental information, especially for Nas- 

daq stocks. Although this does not necessarily imply that technical analysis 

can be used to generate "excess" trading profits, it  does raise the possibility 

that technical analysis can add value to the investment process. 
Moreover, our methods suggest that technical analysis can be improved by 

using automated algorithms such as ours and that traditional patterns such 

as head-and-shoulders and rectangles, although sometimes effective, need 

not be optimal. In particular, it  may be possible to determine "optimal pat- 

terns" for detecting certain types of phenomena in financial time series, for 

example, an optimal shape for detecting stochastic volatility or changes in 

regime. Moreover, patterns that are optimal for detecting statistical anom- 

alies need not be optimal for trading profits, and vice versa. Such consider- 
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Kolmogorov-Smirnov test of the equality of conditional and unconditional one-day return distributions for NYSEIAMEX stocks from 1962 to 
iP 

1996, in five-year subperiods, and in size quintiles. Conditional returns are defined as the daily return three days following the conclusion of an 

occurrence of one of 10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening top (BTOP), broadening 

bottom (RROT), triangle top (TTOP), triangle bottom (TBOT), rectangle top IRTOP), rectangle bottom (RBOT), double top (DTOP), and double 

bottom (DBOT). All returns have been normalized by subtraction of their means and division by their standard deviations. p-values are with 

respect to the asymptotic distribution of the Kolmogorov-Smirnov test statistic. The syinbols "T(\)" and " ~ ( 7 ) "  indicate that the conditional 

distribution is also conditioned on decreasing and increasing volume trend, respectively. 

Stat is t~c HS 11-1S RTOP HBOT TTOP TROT RTOP RBOT DTOP DROT 

All Stocks, 1962 to 1996 

Y 1.76 0.90 1.09 

p-value 0.004 0.393 0.185 

Y T(L) 0.62 0.73 1.33 

p-value 0.839 0.657 0.059 

r r ( j l !  1.59 0.92 1.29 

p-value 0.013 0.368 0.073 

y Diff. 0.94 0.75 1.37 

p-value 0.342 0.628 0.046 

Smallest Quintile, 1962 to 1.996 

Y 1.20 0.98 1.43 

p-value 0.114 0.290 0.033 

y :( \)  0.69 1.00 1.46 

p-Vdl~10 0.723 0.271 0.029 

y 7 i 7 )  1.03 0.47 0.88 

p-value 0.236 0.981 0.423 

y Diff 0.68 0.48 0.98 

p-value 0.741 0.976 0.291 

2nd Quintile, 1962 to 1996 

Y 0.92 0.82 0.84 

p value 0.365 0.505 0.485 

Y 7(\J 0.42 0.91 0.90 

p-value 0.994 0.378 0.394 

7 7 i / J  0.83 0.89 0.98 

p-value 0.497 0.407 0.289 

y [)Iff 0.71 1.22 0.92 

p value 0.687 0.102 0.361 



r 
p-value 

r T ! L )  

p-value 

r T ( P )  

p-value 

y Diff. 

p-value 

Y 

p-value 

Y T ( L )  

p-value 

Y T ( P )  

p-value 

y 1)iff. 

p-value 

r 
p-value 

r T ( L )  
p-value 

r ~ ( 7 )  

p-value 

y Uiff. 

p -value 

Y  

p-value 

r T ( L )  

p-value 

r ~ ( 7 )  

p-value 

y Diff. 

p-value 

3rd Quintile, 1962 to 1996 

1.28 0.57 1.03 

0.074 0.903 0.243 

0.76 0.61 0.82 

0.613 0.854 0.520 

1.14 0.63 0.80 

0.147 0.826 0.544 

0.48 0.50 0.89 

0.974 0.964 0.413 

4th Quintile, 1962 to 1996 

0.84 0.61 0.84 

0.479 0.855 0.480 

0.96 0.78 0.84 

0.311 0.585 0.487 

0.96 1.16 0.69 

0.316 0.137 0.731 

1.16 1.31 0.78 

0.138 0.065 0.571 

Largest Quintile, 1962 to 1996 

0.48 

0.977 

0.78 

0.580 

0.61 

0.854 

0.64 

0.800 

0.72 

0.671 

0.80 

0.539 

0.84 

0.475 

0.76 

0.50 

0.964 

0.64 

0.806 

0.69 

0.729 

0.76 

0.607  

All Stocks, 1962 to 1966  

0.75 

0.634 

0.63 

0.826 

0.58 

0.894 

0.60 

0.615 0.863 

0.80 

0.544 

1.17 

0.127 

0.81 

0.532 

1.21 

0.110 

1.32 

0.062 

1.80 

0.003 

1.40 

0.040 

1.90 

0.001 

continued r 
4
ul 
CT( 





Y 
p-value 

Y T ( L )  

p-value 

Y ~ ( 7 ' )  

p-value 

y Diff. 

p-value 

Y 

p-value 

Y T(\)  

p-value 

Y ~(7)  

p-value 

y Diff. 

p-value 

Y 

p-value 

Y T ( L )  

p-value 

Y ~ ( 7 ' )  

p-value 

y Diff. 

p-value 

1.46 

0.029 

1.30 

0.070 

0.62 

0.831 

0.81 

0.532 

0.67 

0.756 

0.72 

0.673 

1.37 

0.046 

1.06 

0.215 

1.89 

0.002 

0.89 

0.404 

1.42 

0.036 

0.49 

0.971 

All Stocks, 1982 to 1986 

1.47 1.04 

0.027 0.232 

1.53 1.21 

0.018 0.106 

0.83 1.23 

0.499 0.097 

0.74 1.21 

0.643 0.107 

All Stocks, 1987 to 1991 

0.75 0.86 

0.627 0.456 

1.03 0.81 

0.235 0.522 

0.74 1.10 

0.639 0.181 

0.67 0.93 

0.753 0.357 

All Stocks, 1992 to 1996 

1.27 0.94 

0.078 0.343 

1.11 1.03 

0.174 0.242 

1.02 0.58 

0.246 0.895 

0.43 0.81 

0.993 0.528 
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Kolmogorov--Smirnov test of the equality of conditional and unconditional one-day return distributions for Nasdaq stocks from 1962 to 1996, in 
03 

five-year subperiods, and in size quintiles. Conditional returns are defined as the daily return three days following the conclusion of an occur- 

rence of one of 10 technical indicators: head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening top (BTOP), broadening bottom 

(BBOT), triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT), double top (DTOP), and double bottom 

(DBOT). All returns have been normalized by subtraction of their means and division by their standard deviations. p-values are with respect to 

the asymptotic distribution of the Kolmogorov-Smirnov test statistic. The symbols "r(\,)" and "~(7)"indicate that the conditional distribution 

is also conditioned on decreasing and increasing volume trend, respectively. 

Statistic HS IHS BTOP BBOT TTOP TROT RTOP RROT DTOP DBOT 

All Stocks, 1962 to 1996 

Y 1.84 2.81 2.34 

p-value 0.002 0.000 0.000 

Y 7( \ )  0.99 1.97 1.95 

p-value 0.281 0.001 0.001 

Y ~ ( 7 )  1.59 1.89 1.18 

p-value 0.013 0.002 0.126 

y Diff. 0.80 1.73 0.74 

p-value 0.542 0.005 0.637 

Smallest Quintile, 1962 to 1996 

Y 1.68 1.22 1.55 

p-value 0.007 0.101 0.016 

Y 7 ( \ )  1.14 1.25 1.62 

p-value 0.150 0.089 0.010 

Y '(7) 2.00 1.34 0.79 

p-value 0.001 0.055 0.553 

y Diff. 1.44 1.39 0.78 

p-value 0.031 0.042 0.574 

2nd Quintile, 1962 to 1996 

Y 1.44 1.24 1.08 

p-value 0.031 0.095 0.192 

Y 7( \ )  0.92 1.23 0.79 

p-value 0.371 0.097 0.557 

Y ~ ( 7 )  0.97 1.38 1.29 

p-value 0.309 0.044 0.073 

y Diff. 0.69 1.02 1.05 

p-value 0.733 0.248 0.224 



Y 

p-value 

Y T ( L )  

p-value 

Y T ( P )  

p-value 

y DiE. 

p-value 

Y 
p-value 

Y T ( L )  
p-value 

Y d?) 
p-value 

y Diff. 

p-value 

Y  

p-value 

Y T ( L )  

p-value 

Y ~ ( 2 ' )  

p-value 

y Diff. 

p-value 

Y 
p-value 

Y T ( L )  

p-value 

Y T ( P )  

p-value 

y Diff. 

p-value 

3rd Quintile, 1962 to 1996 

1.71 1.41 1.52 

0.006 0.038 0.020 

1.23 1.06 1.02 

0.097 0.213 0.245 

1.37 0.75 1.01 

0.047 0.633 0.262 

0.46 0.61 0.89 

0.984 0.844 0.404 

4th Quirrtile, 1962 to 1996 

0.98 1.30 1.25 

0.298 0.067 0.087 

1.05 0.92 1.06 

0.217 0.367 0.215 

0.53 2.25 0.71 

0.938 0.000 0.696 

0.97 1.86 0.62 

0.301 0.002 0.843 

Largest Quintile, 1962 to 1996 

0.66 0.92 0.68 

0.778 0.360 0.742 

0.47 0.77 0.76 

0.981 0.587 0.612 

0.93 0.88 1.25 

0.358 0.415 0.089 

0.84 0.76 1.11 

0.476 0.617 0.169 

All Stocks, 1962 to 1966 

0.82 0.71 0.70 

0.508 0.697 0.718 

1.05 0.51 1.13 

0.224 0.956 0.155 

0.73 1.35 0.49 

0.663 0.052 0.972 

0.69 1.29 0.58 

0.735 0.071 0.892 



Table VIII-Continu,ecl 

.-

Statistic IHS BTOP 
-

BBOT TTOP TBOT RTOP RBOT DTOP DBOT 
-

Y 

p-value 

Y 7 ( \ )  

p-value 

Y 7( /1)  

p-value 

y Diff. 

p-value 

1.00 

0.273 

0.70 

0.714 

1.12 

0.165 

0.66 

0.770 

All Stocks, 1967 to 1971 

0.74 1.27 

0.637 0.079 

0.87 1.24 

0.438 0.092 

0.64 0.79 

0.810 0.566 

0.78 1.07 

0.585 0.203 

0.74 

0.642 

0.83 

0.490 

0.53 

0.941 

0.40 

0.997 

1.21 

0.107 

1.45 

0.031 

0.69 

0.723 

0.76 

0.602 

Y 1.84 

All Stocks, 1972 to 1976 

1.13 1.45 0.96 1.76 
p-value 

Y r ( \ )  

p-value 

Y r(/1) 

p-value 

y Diff. 

0.002 

99.00 

0.000 

-99.00 

0.000 

- 99.00 

0.156 

0.91 

0.376 

-99.00 

0.000 

99.00 --- 

0.029 

1.39 

0.042 

9 9 . 0 0  

0.000 

9 9 . 0 0  

0.314 

0.98 

0.292 

0.76 

0.611 

0.55 

0.004 

0.94 

0.344 

0.65 

0.798 

0.37 
p-value 0.000 0.000 0.000 0.925 0.999 

Y 

p-value 

Y 7 ( \ )  

p-value 

1.03 

0.236 

9 9 . 0 0  

0.000 

All Stocks, 1977 to 1981 

1.02 1.55 

0.249 0.016 

-99.00 0.96 

0.000 0.317 

0.62 

0.842 

0.79 

0.554 

1.28 

0.077 

0.68 

0.748 

Y ~ ( 2 ' )  

p-value 

y Diff. 

p-value 

0.80 

0.542 

9 9 . 0 0  

0.000 

99 .00  

0.000 

- 99.00 

0.000 

1.46 

0.028 

0.35 

1.000 

0.82 

0.514 

0.37 

0.999 

0.94 

0.336 

0.53 

0.944 

y
$ 

3
5 
3 
R 
h 

5'
'3 

12 

2  



Y 

p-value 

Y T ( L )  
p-value 

Y ~(7') 
p-value 

y Diff. 
p-value 

Y 

p-value 

Y T(\) 
p-value 

Y d ? )  
p-value 

y Diff. 

p-value 

Y 
p-value 

Y T(\) 
p-value 

Y ~(7') 
p-value 

y Diff. 

p-value 

0.73 

0.654 

0.74 

0.641 

0.42 

0.995 

0.42 

0.994 

0.88 

0.421 

0.78 

0.580 

1.32 

0.060 

1.28 

0.075 

0.90 

0.394 

0.78 

0.578 

1.00 

0.275 

0.62 

0.840 

All Stocks, 1982 t o  1986 

1.46 1.69 

0.028 0.006 

0.95 1.47 

0.330 0.027 

1.17 1.04 

0.129 0.231 

0.85 0.43 

0.462 0.993 

All Stocks, 1987 t o  1991 

1.28 1.41 

0.074 0.039 

1.68 0.92 

0.007 0.369 

0.65 1.27 

0.787 0.078 

1.22 0.92 

0.102 0.360 

All Stocks, 1992 to 1996 

0.97 0.91 

0.299 0.379 

0.81 0.93 

0.532 0.357 

1.10 1.04 

0.180 0.231 

1.15 1.14 

0.139 0.148 
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Table M 

Bootstrap percentiles for the Kolmogorov-Smirnov test of the equality of conditional and un- 

conditional one-day return distributions for NYSE/AMEX and Nasdaq stocks from 1962 to 

1996, and for size quintiles, under the null hypothesis of equality. For each of the two sets of 

market data, two sample sizes, lnl and 1n2, have been chosen to span the range of frequency 

counts of patterns reported in Table I. For each sample size m, , we resample one-day normal- 

ized returns (with replacement) to obtain a bootstrap sample of m, observations, compute the 

Kolmogorov-Smirnov test statistic (against the entire sample of one-day normalized returns), 

and repeat this procedure 1,000 times. The percentiles of the asymptotic distribution are also 

reported for comparison. 

NYSE/AMEX Sample Nasdaq Sample 
-

Percent~le r r ~ ,  A,,,,,, 117, 1,,,>,, 1 m I A,,, , ,, rr1.2 A,,, > ,, 

All Stocks, 1962 to 1996  
725 0.435 0.441 1320  
725 0.535 0.520 1320  
725 0.590 0.571 1320  
725 0.836 0.828 1320  
725 1.237 1.224 1320  
725 1.395 1.358 1320  
725 1.611 1.628 1320  

Smallest Quintile, 1962 to 1996  
78 0.406 0.441 218  
78 0.502 0.520 218  
78 0.559 0.571 218  
78 0.814 0.828 218  
78 1.204 1.224 218  
78 1.330 1.358 218  
78 1.590 1.628 218  

2nd Quintile, 1962 to 1996  
146 0.428 0.441 305  
146 0.505 0.520 305  
146 0.553 0.571 305  
146 0.823 0.828 305  
146 1.210 1.224 305  
146 1.343 1.358 305  
146 1.626 1.628 305  

3rd Quintile, 1962 to 1996  
145 0.458 0.441 279  
145 0.508 0.520 279  
145 0.557 0.571 279  
145 0.835 0.828 279  
145 1.251 1.224 279  
145 1.397 1.358 279  
145 1.661 1.628 279  

4th Quintile, 1962 to 1996  
173 0.418 0.441 303  
173 0.516 0.520 303  
173 0.559 0.571 303  
173 0.815 0.828 303  
173 1.183 1.224 303  
173 1.313 1.358 303  
173 1.592 1.628 303  

Largest Quintile, 1962 to 1996  
167 0.425 0.441 308  
167 0.500 0.520 308  
167 0.554 0.571 308  
167 0.817 0.828 308  
167 1.202 1.224 308  
167 1.308 1.358 308  
167 1.615 1.628 308  

1 
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Table X 

Bootstrap percentiles for the Koln~ogorov-Smirnov test of the equality of conditional and un- 

conditional one-day return distributions for NYSEIAMEX and Nasdaq stocks from 1962 to 

1996, for five-year subperiods, under the null hypothesis of equality. For each of the two sets of 

market data, two sample sizes, m1 and in,, have been chosen to span the range of frequency 

counts of patterns reported in Table I. For each sample size in,, we resample one-day normal- 

ized returns (with replacement) to obtain a bootstrap sample of m, observations, conlpute the 

Kolmogorov-Smirnov test statistic (against the entire sample of one-day normalized returns), 

and repeat this procedure 1,000 times. The percentiles of the asymptotic distribution are also 

reported for conlparison. 

NYSE/AMEX Sample Nasdaq Sample 

Percentile A,?, , , ,  n22 A,,,,, ,  A 7711 A , , , , , ,  7122 A,,,,, ,  

All Stocks, 1962 to 1966 
0.431 85 0.427 0.441 342 0.460 72 0.417  
0.516 85 0.509 0.520 342 0.539 72 0.501  

0.576 85 0.559 0.571 342 0.589 72 0.565  
0.827 85 0.813 0.828 342 0.849 72 0.802  

1.233 85 1.221 1.224 342 1.242 72 1.192  

1.359 85 1.363 1.358 342 1.384 72 1.339  
1.635 85 1.711 1.628 342 1.582 72 1.684  

All Stocks, 1967 to 1971 
0.432 112 0.423 0.441 227 0.435 65 0.424  
0.522 112 0.508 0.520 227 0.512 65 0.498  
0.588 112 0.562 0.571 227 0.571 65 0.546  

0.841 112 0.819 0.828 227 0 811 65 0.812  
1.194 112 1253  1.224 227 1.179 65 1.219  

1.315 112 1.385 1.358 227 1.346 65 1.357  
1.703 112 1.563 1.628 227 1.625 65 1.669  

All Stocks, 1972 to 1976 

0.439 82 0.440 0.441 58 0.433 25 0.405  

0.518 82 0.503 0.520 58 0.495 25 0.479  

0.588 82 0.554 0.571 58 0.542 25 0.526  
0.854 82 0.798 0.828 58 0.793 25 0.783  

1.249 82 1.208 1.224 58 1.168 25 1.203  
1.406 82 1.364 1.358 58 1.272 25 1.345  

1.685 82 1.635 1.628 58 1.618 25 1.616  

All Stocks. 1977 to 1981 
0.426 110 0.435 0.441 96 0.430 36 0.417  
0.519 110 0.504 0.520 96 0.504 36 0.485  
0.573 110 0 555 0.571 96 0.570 36 0.542  
0.841 110 0.793 0.828 96 0.821 36 0.810  
1.262 110 1.184 1.224 96 1.197 36 1.201  
1.383 110 1.342 1.358 96 1.352 36 1.371  
1.598 110 1645  1.628 96 1.540 36 1.545  

All Stocks. 1982 to 1986 

0.462 106 0.437 0 441 120 0.448 44 0.417  
0.542 106 0.506 0.520 120 0.514 44 0.499  
0.585 106 0.559 0.571 120 0 579 44 0.555  
0.844 106 0.819 0.828 120 0.825 44 0.802  

1.266 106 1.220 1.224 120 1.253 44 1.197  

1.397 106 1369  1.358 120 1.366 44 1 3 3 7   
1.727 106 1.615 1.628 120 1692  44 1.631  

All Stocks, 1987 to 1991 
0.443 98 0.449 0.441 312 0.455 50 0.432  

0 513 98 0.522 0.520 312 0.542 50 0.517  

0.565 98 0 566 0.571 312 0.610 50 0.563  

0.837 98 0.813 0.828 312 0.878 50 0.814  
1.200 98 1.217 1.224 312 1.319 50 1.216  
1.336 98 1 3 4 8  1.358 312 1.457 50 1.323  
1.626 98 1.563 1.628 312 1.701 50 1.648  

All Stock?, 1992 to 1996 
0.438 102 0.432 0.441 361 0.447 87 0.428  
0.522 102 0.506 0 520 361 0.518 87 0.492  
0.567 102 0.558 0.571 361 0.559 87 0 550  
0.824 102 0 818 0.828 361 0.817 87 0 799  
1.220 102 1.213 1.224 361 1.226 87 1.216  
1 3 2 1  102 1310  1.358 361 1.353 87 1.341  
1.680 102 1616  1.628 361 1.617 87 1.572  
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ations may lead to an entirely new branch of technical analysis, one based 

on selecting pattern-recognition algorithms to optimize specific objective func- 

tions. We hope to explore these issues more fully in future research. 
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Discussion 

NARASIMHAN JEGADEESHK 

Academics have long been skeptical about the usefulness of technical trad- 

ing strategies. The literature that evaluates the performance of such trading 

strategies has found mixed results. This literature has generally focused on 

evaluating simple technical trading rules such as filter rules and moving 

average rules that are fairly straightforward to define and implement. Lo, 

Mamaysky, and Wang (hereafter LMW) move this literature forward by eval- 

uating more complicated trading strategies used by chartists that are hard 

to define and implement objectively. 

Broadly, the primary objectives of LMW are to automate the process of 

identifying patterns in stock prices and evaluate the usefulness of trading 

strategies based on various patterns. They start with quantitative defini- 

tions of 10 patterns that are commonly used by chartists. They then smooth 

the price data using kernel regressions. They identify various patterns in 

the smoothed prices based on their definitions of these patterns. Their al- 

gorithms allow them to recognize patterns objectively on the computer rather 
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