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1. A modern reader, familiar with the methods of functional analysis, is struck with 

the conviction tha t  the classical theory of Dirichlet series [3, 5, 6] must  have content 

expressible in more congenial language. Harald  Bohr recognized the analogy between 

harmonic series and the Fourier series of functions on the circle; later his theory of almost- 

periodic functions was shown to be par t  of a theory of Fourier series on compact abelian 

groups tha t  embraced the classical case of the circle group as well. Various generalizations 

t reat  the spaces L ~, and it is fairly clear by now how much of Fourier series can be devel- 

oped in the more general setting. Nevertheless another par t  of the theory of Dirichlet 

series, to which Bohr himself contributed a great deal, does not seem to be harmonic 

analysis. This is the par t  depending on the Dirichlet condition 

21<28<...;  2 , ~  (1) 

imposed on the exponents of a harmonic series. The purpose of this paper  is to suggest 

tha t  par t  of this side of the theory can be approached from the point of view of Banach 

algebra. I shall set forth the ideas as simply as possible, without striving for the greatest 

possible generality, even though this means losing some results tha t  could be got with 

sufficient care. 

2. A Dirichlet series is a formal series 

~, a n e -;~s (2) 
n = l  

involving a variable s=a+it ,  in which the exponents are assumed to satisfy (1). I f  the 

series converges anywhere in the complex plane, then it converges precisely in a half-plane 

a > a o  (where oo may  be - ~ ) ,  perhaps with the addition of some or all the boundary 

(1) The author  acknowledges She support  of the  Nat ional  Science Foundat ion.  
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points. The sum of the series is an analytic function r which may  to be sure have an  

analytic continuation beyond the half-plane of convergence. These statements are t rue  

as well for various summabil i ty methods. One of the broad problems of the subject is to  

describe relations between function-theoretic behavior of ~(s) and summabil i ty properties 

of the series. 

I f  we fix ~ in (2), setting q)r we have a formal expansion in the real 

variable t: 

r ~ ~ (an e-~a) e -i;~t. (3) 
1 

In  harmonic analysis ~r becomes a function on a compactification of the line, whose 

Fourier series is essentially (3). Now, on the contrary, we are going to put  ~r into a space 

B of functions defined on the line tha t  is dual to a space A contained in Ll(-c~, c~). 
The structure of A will determine everything. Before discussing summabil i ty we have to  

introduce these spaces A. 

A is a linear dense subset of L 1, a Banach algebra under convolution, in its own norm 

tha t  satisfies Illll > H 1  (the norm refers to A). I t  is assumed to have the following 

four properties. 

(a) To any real 2o and positive e there is an l in A whose Fourier trans/orm 

f(,~) = /(x) e -~ax dx (4) 

is not 0 at 20, but vanishes outside the interval (2o-e,  ;to+e ). 

(b) The ideal A o o I all • such that f is compactly supported is dense in A.  

(c) Each I in A belongs to the closure I r o/the ideal consisting o /a l l /%g ,  g in A.  

(d) The dual B ol A is a space o//unctions q) with 

of(l) = f ;~  of( - x)/(x) dx = ~ ~e/(0), (5) 

where the integral is assumed to exist absolutely. (Then ~ is defined uniquely up to null-sets.) 

Algebras satisfying similar hypotheses have been studied, with different objectives, 

by  Wermer [7], extending earlier work of Beurling [1]. 

Proper ty  (a) will be the crucial assumption, and the restriction it puts on A limits 

the, power of any summabfli ty theory for Dirichlet series. (b) is technically convenient in 

connection with the hypothesis tha t  A is dense in LI( - ~ ,  ~ ) .  (c) says tha t  A has approxi- 

mate  identities, in the weakest possible sense; we shall require more later. Finally (d) 
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enables us to identify sums, of certain Dirichlet series with functions in B, and thus fur- 

nishes the link between Diriehlet series and Banach algebra. 

These hypotheses are made once for all without further mention. As need arises new 

assumptions will be made. 

3. Let  q0 belong to the space B dual to an algebra A. We say tha t  the Dirichlet series 

o o  

~ ane t~'x (6) 
1 

is summable (A) to qJ i/  q~(/) = ~ anf(,~n) (7) 

/or every / in A o. I n  that case we write 

A o o  

~(x) ~ ~ a n e iz~x, (8) 
1 

and say that q~ has Dirichlet series (6) relative to A .  

The sum in (7) is finite for every / in A0, so the r ight  side is defined no m a t t e r  what  

the series (6). The requirement is tha t  this should be the restriction to A o of a continuous 

functional on A. Since A 0 is dense in A there cannot be more than  one such functional; 

tha t  is, two different ~ in B cannot have the same Dirichlet series relative to A. Further- 

more a given function ~ cannot possess more than  one Dirichlet series relative to A, be- 

cause the difference of two series would be another Dirichlet series defining the null func- 

tional on A0, whose coefficients would all vanish by  (a). 

A trigonometric polynomial is its own Dirichlet series, relative to any algebra A. 

A convenient formalism like tha t  of the ordinary Fourier transform can be established 

for this abstract  definition of summability.  First we should like to define the convolution 

/~e~ of / in A and q0 in B. By hypothesis, the integral tha t  ought to define this convolution 

s = fS(y) y) dy (9) 

exists absolutely at  0, but nothing so far assumed implies tha t  B is invariant under trans- 

lation. Instead def ine /~-~ to be tha t  y~ in B such tha t  

y)(g) = cf(/~eg) (all g in A). (10) 

I t  follows from the definition tha t  /~(g~e99)=(/~g)-)eq),  and/~(g-)e~)(O) =(/~g)~e~(0) ,  

for a l l / ,  g in A and qo in B, Furthermore,  (9) is really true if q0 is, for example, a trigono- 

metric polynomial. 
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THEOREM 1. Let ] belong to A, q~ to B, and suppose (8) ho/ds. Then 

/ ~ ~0(x) N ~ Can f(~n)) e ~a"x. (11) 
1 

The relation is obvious by (9) if ~ is a trigonometric polynomial, but  in general we 

have to proceed differently. The meaning of (11) is tha t  for any g in A o we have 

] ~-~0(g) = ~ (anf(Zn))g(~'n)" (12) 

By definition the left side of (12) is ~0(]~eg). Nowf~eg is in A o with g, and its Fourier trans- 

form is [.~. Therefore (12) is simply (7) written with/~eg in place of ], so (12) is true and 

the theorem is proved. 

C O R O L L A R Y .  If f(~n)=0 fOr all n, then ]~q~ =0. 

For ] ~-~0 has the null Diriehlet series. 

4. For any Dirichlet sequence A = {~1, 2~ .... } denote by. B A the linear set of ~0 in B 

having Dirichlet series (relative to A) with exponents in A. BA certainly contains the tri- 

gonometric polynomials with exponents in A. 

THEOREM 2. B A is closed in the weak star-topology o / B  relative to A, and its trigono- 

metric polynomials are dense in that topology. 

The theorem is equivalent to this statement: a ]unction q~ in B belongs to B A i /and  

only i/~0(]) =0 ]or all ] in A such that f = 0  on A. First suppose ~0(]) =0  for all / in A such 

that  f = 0  on A. Define a~=q0(]), where f(~n)=1 and ~=0 at  other points of A. There are 

such functions ] by (a); and the value of an does not depend on the choice of ] by the hypo- 

thesis on ~0. Next we verify that  (7) holds with these numbers an, for every ] in A o. Indeed, 

every ] in A o is a sum of finitely many functions ]j, where each ]r vanishes outside a neigh- 

borhood of 2j tha t  includes no other element of A, and a residual function still in A o and 

having a Fourier transform that  vanishes on all of A. Since (7) is true for each of these 

summands it holds for ]. That  is, ~0 has Dirichlet series (6), so ~0 is in B A. 

In the opposite direction, suppose ~0 is in BA with Dirichlet series (6). If ] is in A 

and f=O on A, the Corollary to Theorem 1 asserts tha t  ]~e~0=0. Therefore ~0(]~eg)=0 for 

every g in A, and ~(])= 0 by (e). This completes the proof. 

Since approximation in the star topology is universal (in the sense of the theorem) 

it  cannot be interesting. Most of what follows will support the following doctrinal state- 

ment: 
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The general problem o/summability is to determine which/unctions in BA can be approxi- 

mated in norm by trigonometric polynomials. 

To see what is meant  let us suppose, informally, tha t  A has an approximate ident i ty  

{K1, K S ....  } of some kind. We assume tha t  Kn~-~0 is defined for ~ in B, and the linear 

operations so obtained are to be uniformly bounded. I f  ~0 is a trigonometric polynomial 

it will be obvious tha t  Kn ~+ 9 tends to 9 in norm, and the same fact will hold automatically 

for any ~ tha t  can be approximated by trigonometric polynomials in norm. I f  we can 

describe such 9, and if we phrase the result in terms of the corresponding Dirichlet series, 

we have  a summabil i ty theorem. 

5. To develop this idea we have to broaden the notion of an approximate  identity. 

Say tha t  an operator K in A is a convolution operator if K(/~eg)=(K])~eg for a l l / ,  g in A. 

Then also (K/)~g = / ~  (Kg); the Fourier transform of this equation is 

k)/t "" = Kg/g, (13) 

at  least on the set where f and ~ are not 0. By  varying / and g we can give a value/~(~) 

to the quotient for every real A. Then K is continuous on the line and 

KI(~.) = g(,;t)f(~) (14) 
for all / in A. 

The set of all such operators forms a Banach algebra in the operator norm, denoted 

by  A'.  The natural  embedding of A in A' is continuous. 

From now on A'  will be more important  than  A. Instead of making assumptions 

about  A we could have introduced A'  at  the beginning and put  assumptions on A'.  We 

could even dispense with the requirement tha t  A be an algebra, because A' will be an algebra 

anyway. This approach may  be more general than  the one being followed, but  it is more 

complicated and has some other disadvantages. 

To K in A'  corresponds the adjoint operator K in B: 

(Kq:) (l) = q~(Kl). 

A simple computation shows tha t  

(15) 

-f,;-(l-x- r = (K / )  -~ r = I -~  ( k r  (16) 

(The computation consists in showing tha t  these three functionals have the same value 

on each g in A.) From (15) we also obtain this result, which generalizes Theorem l: i/q) 

has a Dirichlet series (8), then 
5 - -  662905 Acta mathematica. 118. I m p r l m ~  le 11 avr i l  1967 
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~ A 

Kq)(x) ,.~ ~ (an ~(2n)) e '~x. (I 7) 

An approximate identity for A is a sequence {Kn} from A'  such tha t  K . f  tends to f 

in norm for every f in A. (We can make a similar definition for a family (Ku} depending 

on a continuous variable.) The norms of operators K~ in an approximate identi ty necessarily 

lie under a common bound. 

For any ~ we have /~ .~( f )  =q~(Kj), and this converges to ~(]) for every f in A. There- 

fore/~n~ tends to ~0 in the star topology of B. But  if ~ is a trigonometric polynomial /~n~ 

tends to ~ in norm (because the topology of a finite-dimensional space is unique); and the 

same is true if r is in the norm-closure of trigonometric polynomials, since the norms of 

the operators K .  are bounded. 

This fact is obvious but  should be mentioned: for any approximate identity {K.},  

the functions t ~  are uniformly bounded and tend uniformly to 1, on every finite interval. 

I t  is a little less obvious tha t  these functions are uniformly bounded over the whole real line. 

The proof uses (d), with its requirement of absolute convergence in (5), but  the result will 

not be needed and the proof is omitted. 

We have, of course, the following general summabil i ty theorem: 

I/q~ in B has Dirichlet series (8) and besides belongs to the norm-closure of trigonometric 

polynomials, and if (K~) is an approximate identity for A, then the functions represented 

by the Dirichlet series 
r162 

anI~n(2.) e '~'x (18) 
1 

converge to q9 in norm. 

This statement,  banal in itself, suggests the following questions to be answered in 

whatever generality is possible: Which functions in B can be approximated by  trigono- 

metric polynomials? Does norm approximation imply pointwise convergence? Are there 

any approximate identities for A? What  happens if x is replaced by  a ,complex variable? 

6. I t  is characteristic of the classical theory of Dirichlet series tha t  hypotheses on the 

sum ~(a + it) of a Dirichlet series bear on ~ as a function of t uniformly over a certain 

interval of a. In  our context the analogous assumption about a Dirichlet series would be 

tha t  a relation (8) implies the existence of functions ~r a > 0 ,  such tha t  

q~. (x) ~ ~ane - ~  e ~x ,  (19) 
1 

with some supplemental s ta tement  about  the norm of these functions in B. Now actually 

(8) contains information of this kind, in the presence of some additional hypotheses about  
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A, and in a broad sense it can be said that  the Fourier relation (8) is an adequate substitute 

for the usual kind of function-theoretic hypothesis. 

The property that  A needs to have is invariance under translation. For any function 

/, set Tt/ (x  ) = / ( x - t )  for all real t. To our list of axioms we add the following one. 

(e) I / / i s  in A,  T t /  is in A / o r  all real t. T t /  moves continuously in A as t varies. 

The closed graph theorem implies that  Tt is a continuous operator for each fixed t. 

Denote its norm by ~(t), and let eo be the smallest even function that  increases for positive 

t and majorizes ~: 
~o(t) = s u p  q(u). (20)  

lul<ltl 

Form the spaces L~, L~ of measurable functions on the line with norms 

f lk(x)l (x) dx, f lk(x)l to(x)dx. (21) 

For k in L 1 (and a/ortiori for k " 1 m L~) and any / in A, the Bochner integral 

f k(t) Tt / dt (22) 

exists in A. Clearly the operation K defined by (22) belongs to A'  and 

IIKI[ < Ilkll , (23) 

where the norms refer to A' and respectively. In particular we have that 

LEMMA. ~ is bounded on each/inite interval, and/or  all t, u we have 

e(t)/> 1, e(t +u) <e(t)e(u}. (24) 

The same assertions hold/or ~o. 

These facts are mentioned in [7], but I will recall the proofs, especially because Wer- 

mer's algebras are not quite the same as ours. The fact that  ~ is bounded on finite intervals 

is a consequence of the uniform boundedness principle in this context. To prove the first 

inequality for ~ observe that  the adjoint of Tt is the operator T_ t in B. Since B contains 

constant functions, which are left invariant by T_t, this operator (and thus also Tt acting 

in A) cannot have norm smaller than 1. The second inequality is obvious from the defini- 

tion of Q. Both inequalities are inherited by co from ~. 
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The lemma implies tha t  L~ and L 1 are Banach algebras in their norms with the con- 

volution operation. They are dense in L 1, and their norms are larger than the norm of L 1. 

So these algebras are just of the type we are studying; and following Wermer's ideas we 

shall derive information about A from our knowledge concerning the associated algebras 

L lo and L 1. The next  lemma, of no precise origin, is basic. 

LEMMA. I /  ~ is a weight/unction satis/ying (24), the space L~ has property (a) i / and  

only i/ 
~r lo_g q(t) 

l + t  ~ dr<co. (25) 

I / t h i s  condition is satisfied, and i /~  is even and increasing/or positive t, then L 1 has pro- 

Terries (b, c, d) as well. 

This result not only serves the purposes of our general theory, but  also provides 

examples of algebras A among which, it happens, are those most important  in application. 

The part  about (a) is exactly Lemma 4 of [7]. The sufficiency of the condition for (b) is 

Lemma 5, and the proof in fact covers (c) as well. Finally (d) is obvious from the fact 

that  every linear functional in L 1 is given by (5), where q is a measurable function such that  

ess sup ] ~( - x) ~(X) -1 [ (26) 

is finite (and this quanti ty is the norm of ~). 

Let  ~ be a weight function satisfying (24) and (25). The Poisson formula defines a 

harmonic function in the lower half-plane with boundary values log Q(x) on the real axis. 

This harmonic function is evidently non-negative in the half-plane. I t  is the real part  of 

an analytic function log L(z); the function L so obtained is analytic in the lower half- 

plane and satisfies 
]L(z)] >~ 1, I L(x)[ = ~(x). (27) 

We also have for a > 0 

l f a l o g o ( x )  d.  1 ~loge(ax) 
l o g ] L ( - i a ) [ = ~  a 2 + x  ~ = ~ J  l + x  ~ dx. (28) 

The function L and the relation (28) will be useful in the next  proof. 

THEOREM 3. Suppose that (24) and (25) ho/d. Then L 1 has/unctions K~, a > 0 ,  such that 

-~,(2) = e - ~  (all 2/> 0) (29) 

and the norm o/Ko in L~ is not greater than 

I (log ~(ax) 
e x p : ~ j  l + x ~ dx. 
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We simply define Ko (x) L(x)-l" aL( - ia) 
= ~ (y2 + X 2'  g - -  ( 3 0 )  

7~ 

/ 'L (x) -1 
Then we have go (2)= u j a-V~-~x ~ e - '~  dx. (31) 

The integrand is analytic in the lower half-plane except for a simple pole at x = - i a ,  

where it has residue 
L ( - ia) -1 e -~~ 

- 2 i a  (32) 

When 2 is positive the residue calculus is applicable, leading directly to (29). For the norm 

of K~ in L~ we have 

I~l f I i ( x ) - l l  fa~-~x ~ dx= ] i ( - i cr )  I. (33) cr ~ + x9 " ~ ( x )  d x  = I L( - i(~)l 1 
7g 

This concludes the proof. 

Now we are in a position to extend the sum of a Dirichlet series from a line into a 

half-plane. 

COROLLARY. Let A be an algebra whose translation norm Q satis /ies (25). Let cp be in B 

and have Dirichlet Series (6), with 21 >~ O. Then/or ~ > 0 there are/unctions q~ in B such that 

q)o (x) ~ ~ane -~"~ e *~x, (34) 
1 

and the norm o/cf~ does not exceed the norm o] cf multiplied by that o] K~. 

The functions Kr of the Theorem belong to A'  and so the Corollary is an immediate 

consequence of (17) and (23), 

COROLLARY. I[ eo satis/ies (25) in place o/Q, then cf~ is bounded as a decreases to O. 

I /c f  is in the closure o/the set o/trigonometric polynomials, then q~ tends to cp in norm. 

The right side of (28) is increased by  replacing e with w. This quanti ty is finite by  

hypothesis, and decreases with ~ because of the monotonic character of w. Therefore the 

norms of K~ are bounded in L~ as a decreases to 0; this proves the first assertion. I f  

is a trigonometric polynomial it is obvious t h a t / ~  converges to ~ as a decreases to 0, 

and this property remains true in the closure of the trigonometric polynomials. 

One can see in the case of simple weight functions tha t  the bound I L ( - i a ) l  given by  

the theorem is exact for the norm of the functional tha t  assigns to ~ the number  ~ ( - i a ) ,  
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defined anyway on the class of trigonometric polynomials with negative exponents. Thus 

the norm of ~0a must  be expected to increase with ~, even though the Dirichiet series con- 

verges more readily for large q. 

7. There is an interesting converse question: suppose ~ is in B, and the functions 

~ = / ~  have Dirichlet series (34) for large values of a. Does q0 itself have a Dirichlet 

series, and is it (34) with a =07 

We are really interested only in the subspace B+ consisting of all ~ tha t  vanish as 

linear functionals on all the functions / in A 0 whose transforms vanish on the positive 

real axis. This is a star-closed subspaee of B containing all ~ having Diriehlet series in 

which 2~ ~>0. Here is our result concerning the question just raised. 

THEOREM 4. Sutrpose that A is an algebra whose translation/unction ~ satis/ies (25). 

Let q~ be in B+ and let {34) ho/d/or at least one positive (r. Then (34) is true ]or all (r>~O. 

The hypothesis means tha t  the relation 

/~.~(l)  = ~ an e-~"t(2~) (35) 

holds for each / in A0, for a certain positive a (and hence for all larger a, although tha t  is 

not  important).  Suppose tha t  ~(2) = 0 for all 2 > T. By the hypothesis made on the transla- 

t ion function L~ is a regular Banach algebra; therefore we can find M in L~ such tha t  

~r(2) /~(2)  =1  for all 2 in (0, T). Since M / i s  in A 0 with / we have 

~1[{o~(/) = I~,q~(M/) = ~. anf(2,). (36) 

On the other hand, ~IKoq~(/) = q~(MK~/). (37) 

But  the Fourier transforms of / and of M K ~ / a r e  equal on the positive axis, and so ~ has 

the same value on these two functions. Hence 

~(/) = ~ aJ(2n) (38) 

for every ] in A o. Tha t  is, ~ has a Diriehiet series with the expected coefficients, and the 

t ru th  of (34) for all positive a follows. 

8. At last we can formulate a genuine summabil i ty theorem. 

THEOREM 5. Su~aose the translation/unctions ~ in A satis/ies (25). Let q~ be an element 

o/ B with a Dirichlet series. Then q)~ can be approximated in norm by trigonometric poly- 

nomials , /or  every r > O. 
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For example, we can take L ~ for B: i/qJ is a bounded/unction with spectrum in a 

Dirichlet sequence, then qJr is uni/ormly almost-periodic,/or each positive a. This proposition 

is not hard to prove directly but  its s tatement  shows what  the theorem means in a simple 

case. 

We choose and fix a positive number  ~, and we assume tha t  ~l i> 0. For  positive num- 

bers ~ define 
Ja(x) = e - ~  e'~XK~(x). (39) 

The Fourier transform of J~(x) is e -~" for 2 > ~ ,  and the norm of Ja  in L~ is e - ~  times 

the norm of K~ (a fixed number  u, since a will not vary). 

Now let ~ have Diriehlet series (6). Denote by q(g) the distance from ~a to the linear 

span of the exponentials 
e ~ ' ~  . . . .  , e ~ ' ~  (40) 

where n is the integer such tha t  2~ ~ ~ <2~+1- The theorem amounts to the s ta tement  tha t  

q(a) tends to 0 as ~ increases without bound. This span is finite-dimensional, and thus 

star-closed in B. Therefore 
q(~) = sup I~( / )1 ,  (41) 

where / ranges over those elements of A having norm at  most 1 and vanishing as linear 

functionals on the exponentials (40): f(2s)=0 ( ]=  1 . . . .  , n). (If the subspaee were not star- 

closed we should have to replace / in (41) by  a general element from the conjugate space 

of B, which would be very inconvenient.) 

Now let ] be one of the functions envisaged in (41), and take ~=~t~. Then K ~ / a n d  

J j  have Fourier transforms agreeing at  every 23: they are both zero a t  21 ... . .  2n, and they  

are both e-~f(~)  beyond that  point. By  Theorem 2, 

~ ( / )  = ~(K~/) = ~(J~/). (42) 

Hence 1 < IIZ ll I1 11 (43) 

By taking the supremum on [ we see tha t  q(~) tends to 0, as was to be proved. 

9. In  all this development no mention has been made of the continuity of functions 

~0 in B. Even the extensions ~ of a function ~ with a Dirichlet series can presumably 

be discontinuous. Now finally by  specializing still further we shall find the classical situa- 

tion, in which sums of Dirichlet series are continuous analytic functions in a region of the 

complex plane. The new axiom we need is this. 

(f) There is an approximate identity/or A consisting o//unctions K n belonging to A,  

with norms bounded in A.  
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Under hypothesis (e) we can always find approximate identities for A in A' ,  and 

these functions have bounded norms in A'.  We are strengthening this fact by  requiring 

the functions to lie in A, and to have their norms in A bounded (and not merely their 

norms as elements of A'). 

THEOREM 6. Let A satis/y hypotheses (a, b, c, d, e, f). Denote the closure o/the trigono- 

metric polynomials in B by B o. Then 

(i) each q~ in B o is continuqus; 

(i.i) i/q~n in B o tends to q~ in norm, q)n(-x)/~(x) tends uni/ormly to cp(-x)/Q(x); 

(iii) ~v(x) =o(o)(x)) /or q~ in Bo, at least if m is unbounded. 

We have postulated the invariance of A under translation, but  no restriction has 

been put  on the growth of ~. On the other hand, the requirement of an internal approximate 

identity for A is a severe restriction in another direction. 

For the proof, first observe t h a t / ~ r 1 6 2  is a continuous function, for any / in A and ~0 

in B, because T t / m o v e s  continuously in A. Indeed we have 

l ~ ( x )  = qJ( T _ , l )  = O(Q( - x )  ). (44) 

This is true for any algebra with translation operators; our problem is to refine (44) by 

means of (f) for ~0 in B o. 

For  the functions Kn of the hypothesis, K~e~(0)  represents a bounded sequence of 

linear functionals on B. I f  ~o is a trigonometric polynomial the sequence converges to 

q(0); for ~0 in B o it follows tha t  the sequence converges to some number,  which we denote 

provisionally by  ~'(0). Similarly Kn~q(x)  converges to a number  q'(x) for any x and ~0 

in Bo, and the function ~v' is identical with ~0 if ~0 is a trigonometric polynomial. Further- 

more we have 

where ul is the upper bound of the numbers I]Knl[. The next  step depends on the following 

result, which is valid in algebras satisfying (a, b, c, d). 

LEMMA. There is a constant ~ such that 

(46) 

/or all / in A and y) in B. 

Let  B' be the space of functions v 2 having the following property: the transformation 

tha t  carries / to ~ ( - x ) / ( x )  is a continuous mapping of A into L r The requirement of Con- 
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tinuity can be omitted; such a transformation is automatically continuous by  the closed 

graph theorem. (The proof is easy if one observes tha t  convergence of a sequence in A 

carries with it pointwise convergence of a subsequence.) I t  follows from (d) tha t  B is con- 

rained in B' .  On the other hand, every element of B '  obviously defines a continuous linear 

functional on A by integration, so B'  is no larger than B. 

B '  is a Banach space in its operator norm. I t  is obvious for every ~ tha t  

ll H I] ll, (47) 

where the prime denotes the norm in B'.  The closed graph theorem asserts tha t  these 

norms are equivalent, and that  proves the lemma. 

The rest of the proof of the Theorem is simple. For each ~'  derived from ~ in B 0 we 

have 

f [~'(-x)/(x)ldx<liminff lK.~(-x)/(x)ldx<~l~ll/llll~l [. (48) 

The first inequality is Fatou 's  lemma, and the second one is a case of the lemma just 

proved. Hence ~'  is in B, with norm at  most UlU~ times the norm of ~. Now the transfor- 

mation tha t  carries ~ to ~ '  is defined and continuous in B 0, with range in B. But  this 

transformation is the identity on trigonometric polynomials, and so it is the identity on 

all of B 0. Thus (45) is a s tatement  about  ~ itself; the second assertion of the theorem follows 

immediately. In  particular every function in B o is the pointwise limit of trigonometric 

polynomials, uniformly on each bounded interval, so all the functions of B 0 are contin- 

uous. Finally, if eo is unbounded (iii) is true for trigonometric polynomials, and the same 

will be true for their limits. This concludes the proof. 

THEOREM 7. Let A satis/y (a, b, c, d, e, f) and (25), I/q~ is in B and has a Dirichlet 

series, then q ~ ( - x )  is an analytic/unction o / s  = a + ix in the bali-plane a > O. 

The new hypothesis (25) is needed to give meaning to ~ ,  and to guarantee the con- 

clusion of Theorem 5. Approximation by trigonometric polynomials in norm gives uniform 

approximation with respect to the weight function Q( -x )  -x, and the rest of the proof is easy. 

10. I t  lies beyond my  interest and competence to describe aU the classical results 

tha t  can be derived from these theorems, and I certainly do not wish to claim tha t  every- 

thing can be. I do wish to make the point tha t  functional analysis, or more accurately 

algebraic analysis, has something to say about the subject of Dirichiet series. For this 

purpose I shall discuss two families of algebras of recognized importance, one giving rise 

to summation by typical means, and the other to a theorem of F. Carlson. 
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First take for A the algebra L~ with ~ ( x ) = ( l +  Ixl) ~, where a is a fixed positive 

number. The translation operator Tt  has norm (1 § It[) ~, because 

(1 + I x -  tl) ~ = (1 + Itl) ~- 
sup~ (1 + I~1) ~ 

Good approximate identities can be found in A. Indeed an approximate identi ty in L 1 

is likely to be one in A if only its functions belong to A, because the process of pushing 

mass towards the origin has the effect of reducing norm in A. 

To a Dirichlet series (6) are at tached [5] two types of typical means: 

~ a n ( 1 - ~ ) " e  ~x, ~ an(1-e$"-r)" e ta'~:: (49) 

where the sums rang~ over n such tha t  2n < T, and u is a positive number  called the order 
of summation. (Ordinary convergence corresponds to u = 0 ,  but  this case is exceptional.) 

We assume tha t  21 ~0.  

The relation f:2"e-~d2=s-'-i f~2"e-~d2 (50) 

is obvious if s is real and positive, and it follows immediately for complex s with positive 

real part.  That  is, aside from a constant factor, the function vanishing for negative 2 

and equal to 2xe - ~  for positive 2 is the transform of (a-ix)-"-l; this function is in A 

provided u > ~. Convolute this function with an element of A whose transform is e xa on 

the interval (0, 1); the result is a function L in A such tha t  L(2) vanishes for negative 2, 

and equals 2 x for 0 --<2 ~< 1. 

By linear change of variable we obtain a function K in A such tha t  /~(2) is ( 1 - 2 )  ~ 

for 0~<2~<1, and vanishes for 2>~1. Define Kr(x) to be TK(Tx) for positive T, so tha t  

/~r(2) =K(2/T). These functions are bounded in A as T tends to infinity, and they have 

the effect of an approximate identi ty on trigonometric polynomials with positive fre- 

quencies. By  Theorem 5, if ~0 has a Dirichlet series (6) with 21>~0 then 

Kr+q).(x)=~.an 1 -  e-~'~ e t ~  ( 2 . < T )  (51) 

converges in norm to r for every positive o. Thus we obtain the well-known result [5, 

Theorem 41] on the summabfli ty of Diriehlet series by  typical means of the first kind 

in the region where ~ is uniformly O(Ixl~'), ~ < x .  (Under a supplementary hypothesis 

we can take ~ = x  [5, Theorem 44], but  the improvement  is only apparent.)  
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Evidently any function K in A with .~(0)= 1 a n d / ~  compactly supported leads to a 

summability method in exactly the same way. In  constructing the function K above we 

used the fact that  A has local inverses; this eliminated some of the explicit calculations 

that  usually have to be made, and the device would be even more useful if the kernel were 

more complicated. 

The means of the second kind arc not obtained by dilation of a single function K in A, 

and are more complicated to treat. For any positive T we can find a function in A with 

transform equal to (1-e~-r )  ~ for 0~<2 ~< T, and vanishing for ,~ >/T; but it is easy to see 

that  the family cannot be bounded in A as T tends to infinity. Instead we choose and 

fix a positive number ~, and seek functions K r such that  

(1-e~-r)~e-;Z (0~<2<T) 
- ~ ( 2 )  = (52) 

o (2 >/T). 

Provided ~ can be taken as close to 0 as we please, these functions will establish summa- 

bility in the same half-plane as we should get with ~ = 0. 

First of all there is an element L of A'  such that  

L(2) = (1 - d - ~ )  ~ (~-<<T) (53) 
0 (T<.A<~T+I). 

Indeed, 1 - L  can easily be completed to be the transform of a function in A. Furthermore 

the norm of L does not depend on T. 

There is a function M in A whose transform satisfies 

e - ~  ( 0 < ~ < T )  
~fi(2) = (54) 

0 ( T +  1 <2). 

:For a single T we merely subtract from the exponential a function that  is equal to e -ao 

for 2 ~> T + 1, vanishes for 2 ~< T, and is infinitely differentiable. The same correction 

function works for larger T, after translation and multiplication by constants that  become 

smaller. Thus the norm of M is bounded by a number independent of T. 

Now L2~/has the properties required in (52) of/~r;  this function is the transform of 

a function in A whose norm is bounded by a number independent of T. 

The summabflity theorem for means of second type is the same as the theorem for 

means of first type, and the rest of the proof is evident. 

The argument just given can be applied to any kernels that  arise by translation 

from the transform of a single element of A'. The introduction of the exponential factor 

overcomes the difficulty inherent in the fact that  such a transform must have the same 

limit at  one end of the real axis as at the other end. 
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In  classical summabil i ty theory very little is said about  the sum of a Dirichlet series 

outside the region in which it has polynomial growth, which is to say the region in which 

the typical means of various .orders are effective. The stronger methods tha t  have been 

defined (for example one investigated by Hardy  [6, p. 39]) are rightly considered esoteric. 

The reason is tha t  the classical literature does not recognize the barrier (25), which deter- 

mines whether any  compactly supported kernel can be effective for all Dirichlet series 

subject to a given growth condition. Thus no compactly supported kernel can define a 

summation method (by the processes we have been studying) for functions allowed to 

grow exponentially. On the other hand, there are interesting function spaces within the 

barrier (25) tha t  are outside the reach of the typical means of finite order. For  example, 

we can form L~ with ~(x)=exp Ixl �89 In  this space the translation norm is once again the 

same function ~. Since ~ satisfies (25), the space contains functions whose transforms vanish 

outside finite intervals. We can easily write down summation methods of first and of 

second kind for Dirichlet series of corresponding growth. 

11. Functional analysis has created a great array of Banach spaces on the line, for 

their own interest and for application to differential equations, harmonic analysis, and 

other subjects. Some of these norms give algebras of the type we have been studying. 

Here is an example rather  different from the weight spaces of the last section. I t  is one 

space in a family defined by  Beurling [2]; although our results can be applied to many  of 

his algebras, I shall only describe one in which we find a striking classical result. 

Really it  is only necessary to describe B, taking the properties (a, b, c, d) for A from 

Beurling's paper. B is the set of functions r on the line tha t  are locally square-summable, 

with finite norm defined by 

)' 1 ~ dx  (55) sup �9 
r > 0  r 

Now A is invariant  under translation; from (55) it is easy to show tha t  the norm of trans- 

lations is given by  Q(t) = (2It I + 1) �89 Thus Theorem 5 is applicable: for ~ in B with a Dirichlet 

series, and a > 0 ,  ~ belongs to B 0. 

I f  ~ is a trigonometric polynomial with coefficients an, then obviously 

T 

I t  follows tha t  every function in B 0 has a harmonic expansion whose coefficients are the 

limits of the coefficients of approximating polynomials, and tha t  (56) holds. Therefore, 

if ~0 is in B with Dirichlet series (6), we have for a > 0  
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i f  lim ~ Iq~( (~+ix )12dx=~lan l2e -2~"<~ .  (57) 
r ---> oo  r 

The existence of this limit is part of the assertion. 

This result is a well-known theorem of F. Carlson [4]. His hypothesis was naturally 

phrased differently. He asserts that  (57) holds for a Dirichiet series as far to the left in 

as ~0(a + ix) is uniformly of polynomial growth, and has finite supremnm (rather than limit) 

in r on the left side. 

Carlson's proof is the origin of this paper. He shows clearly that  (57) is the consequence 

of approximation in the norm of a linear space. The linear thread is recognizable all through 

the function-theoretic detail. This achievement in 1922 gives its author the right to a 

distinguished place in the history of linear spaces. 

12. There is satisfaction in having found out, from my own point of view, what this 

part of the theory of Dirichlet series is about, but I would like to claim a more substantial 

point of novelty for the exposition now concluded. In  Fourier series people stopped long 

ago trying to sum series to functions, and began instead to use functions to generate series. 

This change in point of view set a new direction that  the subject has followed ever since. 

The classical subject of Dirichlet series, on the contrary, has never escaped from its de- 

pendence on contour integration, and could not make that  shift. My optimistic hope is 

that  I have found a way round the difficulty so that  Dirichlet series can follow power 

series to the center of algebraic analysis. 
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