
Foundations of Timed Concurrent Constraint
Programming

Vijay A. Saraswat Radha Jagadeesan Vineet Gupta

Sys. and Practices Lab. Dept. of Math. Sci. Dept. of Comp. Sci.
Xerox PARC Loyola University Stanford University

Palo Alto, Ca 94304 Chicago, Il 60626 Stanford, Ca 94305

April 1994�

Abstract

We develop a model for timed, reactive computation by extending the asynchronous,
untimed concurrent constraint programming model in a simple and uniform way. In
the spirit of process algebras, we develop some combinators expressible in this model,
and reconcile their operational, logical and denotational character. We show how
programs may be compiled into finite-state machines with loop-free computations at
each state, thus guaranteeing bounded response time.

1 Introduction and Motivation

Reactive systems [12,3,9] are those that react continuously with their environment at a
rate controlled by the environment. Execution in a reactive system proceeds in bursts
of activity. In each phase, the environment stimulates the system with an input, obtains
a response in bounded time, and may then be inactive (with respect to the system)
for an arbitrary period of time before initiating the next burst. Examples of reactive
systems are controllers and signal-processing systems. The primary issues that arise in
programming reactive systems are time-criticality, reliability and maintainability in the
face of change.

This paper is concerned with elaborating a simple model for determinate, timed,
reactive systems, and providing a language to describe processes in this model. The
intended application of such languages forces them to satisfy the following criteria:

�To Appear in Proceedings of the 1994 IEEE Symposium on Logic in Computer Science, July 1994,
IEEE Press.

1

Declarative view: There must be a logical view of the language. For program-
ming, the advantage of simple equational presentations is well known [15]. We recall
the advantages of reasoning with executable specifications; cf. Berry’s “What you
prove is what you execute” principle [3], or executable intermediate representations in
compilers [22].

Modularity: The language should support hierarchical and modular construc-
tion of programs/specifications. This is tantamount to demanding an algebra of pro-
grams/specifications that includes concurrency and pre-emption – the ability to stop a
process in its tracks.

Determinacy: Determinate programs and specifications are easier to construct and
analyze. So, the language should not impose indeterminacy.

Executability: The language should be “real-time realizable”, that is, the programs
should have bounded response time.

1.1 Synchronous languages

Arguably, the most natural way of programming such systems is in terms of automata
with simple loop-free transitions, to ensure bounded response. However, automata do
not have hierarchical or parallel structure; in particular, small and succinct changes in
the specification can lead to global changes in the automaton [20].

Synchronous languages such as [6], [10], [8], [11], [7] are based on the hypothesis
of Perfect Synchrony: Program combinators are determinate primitives that respond
instantaneously to input signals. At any instant the presence and the absence of signals
can be detected.

In synchronous languages, physical time has the same status as any other external
event, i.e. time is multiform. So, combination of programs with different notions of
time is allowed. Programs that operate only on “signals” can be compiled into finite
state automata with simple transitions. Thus, the single step execution time of the
program is bounded and makes the synchrony assumption realizable in practice.

The incongruity between internal temporality (there is computation “in between” the
stimulus from the environment and the response) and Perfect Synchrony (at each instant
a signal is either present or not present, there is no “in between”) affects programming
language design and implementation. For example:

Temporal paradoxes: One can express programs that require a signal to be present
at an instant only if it is not present at that instant. Approximate static analysis is used
to eliminate such programs (exact analysis is not possible for standard computability
reasons). This results, in some cases, in rejecting intuitively correct programs [9].
Furthermore, this poses problems in constructing process networks with cycles.

Compilation is not compositional: The compilation of a program fragment has
to take into account the static structure of the entire program [9, Page 93]. This is
in direct contrast to the standard compilation procedures for traditional programming
languages [2].

2

1.2 Our contributions

A re-analysis of the elegant ideas underlying synchronous programming, starting from
the viewpoint of asynchronous computation leads us to timed concurrent constraint
programming, henceforth called tcc, with the following salient features.

Declarative view: tcc has a fully-abstract semantics based on solutions of equa-
tions. tcc programs can be viewed as formulas in an intuitionist linear time temporal
logic.

Modularity: In the spirit of process algebra, we identify a set of basic combinators,
from which programs and reasoning principles are built compositionally.

Expressiveness: tcc supports the derivation of a “clock” construct that allows a
process to be clocked by another (recursive) process; it generalizes the undersampling
constructs of SIGNAL and LUSTRE, and the pre-emption/abortion constructs supported by
ESTEREL. Thus, tcc encapsulates the rudiments of a theory of pre-emption constructs.
In addition, tcc inherits the ability to specify cyclic, dynamically-changing networks
of processes from concurrent constraint programming (cf. “mobility” [19]).

Executability: tcc programs have bounded response times.
“Paradox-free”: tcc resolves the tension between synchrony and causality. This

is concretely reflected in the modular compilation algorithm that we describe.
In essence, this paper provides a reasonably general construction for lifting an

untimed, asynchronous computation model to a “timed asynchronous” computation
model, while providing finite-state compilability and bounded response time, and pre-
serving determinacy of computation and the ability to specify parallel composition. For
the reader interested in the general construction — and not necessarily sympathetic to
the declarative programming point of view — we want to point out that the details of
the concurrent constraint programming (CCP) paradigm are not crucial. From such a
point of view, CCP may be seen as a simple development of a very general form of
“blocking read” and asynchronous “write” data-flow that must almost inevitably un-
derly any theory of determinate, asynchronous computation. The specific commitments
made in CCP (namely, to an underlying notion of constraint system) are relatively bland
and rarely come in the way — while providing to the initiated a powerful way to fix
intuitions; the unsympathetic reader should feel free to substitute her favorite untimed
asynchronous computation model instead.

1.3 Organization of the paper

The rest of this paper is organized as follows. We first describe the basic intuitions
underlying tcc. Next, we present formally the underlying mathematical model of timed
constraint processes; this encompasses operational, denotational and logical semantics,
and their correspondence properties. We then show how to derive various forms of
pre-emption constructs in the language. We describe a compilation of tcc programs
to automata, and describe the restrictions on constraint systems to guarantee bounded
response times.

3

2 Basic Intuitions

2.1 Concurrent Constraint Programming revisited

Our starting point is the paradigm of concurrent constraint programming [24,25]. CCP
is an asynchronous and determinate paradigm of computation. The basic move in
this paradigm is to replace the notion of store-as-valuation central to von Neumann
computing with the notion that the store is a constraint, that is, a collection of pieces of
partial information about the values that variables can take. Computation progresses via
the monotonic accumulation of information. Concurrency arises because any number
of agents may simultaneously interact with the store. The usual notions of “read” and
“write” are replaced by ask and tell actions. A tell operation takes a constraint and
conjoins it with the constraints already in the store; tells are executed asynchronously.
Synchronization is achieved via the ask operation: ask takes a constraint (say, c) and
uses it to probe the structure of the store: it succeeds if the store contains enough
information to entail c; the agent blocks if the store is not strong enough to entail the
constraint it wishes to check.

Formally, constraint systems C are essentially arbitrary systems of partial informa-
tion [23,24]. They are taken to consist of a set D of tokens with minimal first-order
structure (variables, substitutions, existential quantification), together with an entail-
ment relation `C that specifies when a token x must follow given the tokens y1; : : : ; yn
are known to hold. Examples: (1) Herbrand underlying logic programming (variables
range over finite trees, tokens specify equality of terms), (2) FD [13] for finite domains
(variables range over finite domains, with tokens for equality and for specifying that a
variable lies in a given range), etc.

In the rest of this paper we will take as fixed a constraint system C, with underlying
set of tokens D. Let the entailment closed subsets of D be denoted by jDj. (jDj;�) is
a complete algebraic lattice; we will use the notation t and u for the joins and meets
of this lattice. We shall call (finite) sets of tokens primitive constraints and designate
them by the letters c; d; e. A constraint is an element of jDj generated from a set of
tokens; they will be designated by the letters a; b. For any primitive constraint c, we let
[c] stand for the constraint generated by c.

2.2 Operational intuitions of tcc: Timed Asynchrony

The information accumulated by computation in the CCP paradigm is positive infor-
mation: constraints on variables, or a piece of history recording that “some event
happened”. The fundamental move we now make is to consider the addition of nega-
tive information to the computation model: information of the form “an event did not
happen”. This is the essence of the “time out” notion in real-time programming: some
sub-program may be aborted because of the absence of an event.

How can a coherent conceptual framework be fashioned around the detection of
negative information? The first task is to identify states of the system in which no more
positive information is being generated; the quiescent points of the computation. Only

4

at such moments does it make sense to say that a certain piece of information has not
been generated. Now time can be introduced by identifying quiescent points as the
markers that distinguish one time interval from the next. This allows the introduction
of primitives that can trigger an action in the next time interval if some event did not
happen through the extent of the previous time interval. Since actions of the system
can only affect its behavior at current or future time interval, the negative information
detected is stable. Hence there is some hope that a semantic treatment as pleasant as
that for the untimed case will be possible. Our basic ontological commitment then is to
the following refinement of the Perfect Synchrony Hypothesis — the Timed Asynchrony
Hypothesis:

Bounded Asynchrony: Computation progresses asynchronously in bounded inter-
vals of activity separated by arbitrary periods of quiescence. Program combinators are
determinate primitives that respond in a bounded amount of time to the input.

Strict Causality: Output at time t is a function of the positive information input up
to and including time t and the negative information input at time upto t. The absence
of a signal in a period can be detected only at the end of a period, and hence can trigger
activity only in the next interval.

In contrast to synchronous programming, computation at each instant is regarded
as having a notion of internal temporality: it happens not instantaneously but over a
very short — bounded — period of time. This allows the treatment of causality within
a time-instant which is the reality in any case — sophisticated embedded real-time
controllers may require that certain conditions be checked, and then values created for
local variables, and then subsequently some other conditions be checked, etc. Indeed,
even ESTEREL has such an internal notion of temporality — but it is achieved through
a completely separate mechanism, the introduction of assignable variables and internal
sequencing (“;”). In contrast, tcc does away with the assignable variables of ESTEREL in
favor of the same logical (denotational) variables that are used for representing signals.

To summarize, computation in tcc proceeds in intervals. During the interval,
positive information is accumulated and detected asynchronously, as in CCP. At the
end of the interval, the absence of information can be detected, and the constraints
accumulated in the interval are discarded. We do not provide for the implicit transfer
of positive information across time boundaries to maintain the bounded size of the
constraint store; this must be done explicitly by the programmer by using the basic
combinators.

2.3 Denotational intuitions

Earlier work [25] identified a cc program with the observations that can be made about
the program. The observations of a program are the set of quiescent points – the set of
elements of jDj on which the program quiesces without adding any new information.
It was further shown that the set S of quiescent points of a program is determinate that
is, satisfies the property that for any point x, the glb of any non-empty subset of S
above x is also in S. Such a model is rich enough to distinguish an “abort” process —
that quiesces on no input (and has hence the empty set of quiescent points) — from the

5

process that causes the store to become inconsistent. Technically, the set of quiescent
points determinate a partial closure (extensive and idempotent) operator.1

The model is extended to the timed case by following the intuition that “Processes
are relations extended over time” [1]. Thus, processes are taken to be subsets of finite
sequences of finite constraints that are determinate at every time instant.

The formal development follows. First, we extend the set of observations over time:

Definition 2.1 Obs, the set of observations, is the set of finite sequences of constraints.

Intuitively, we shall observe the quiescent sequences of constraints for the system.
We let c; d range over finite sets of tokens, and a; b over constraints. We let s; u; v

range over sequences of constraints. We use “�” to denote the empty sequence. The
concatenation of sequences is denoted by “�”; for this purpose a constraint a is regarded
as the one-element sequence hai. Given S � Obs and s 2 Obs, we will write
S after s for the set fa 2 jDj j s � a 2 Sg of quiescent points of S in the instant after
it has exhibited the observation s.

Definition 2.2 P � Obs is a process iff it satisfies the following conditions:

1. (Non-emptiness) � 2 P ,

2. (Prefix-closure) s 2 P whenever s � t 2 P , and

3. (Determinacy) P after s is determinate whenever s 2 P .

We will let Proc designate the set of all processes, and let P;Q range over Proc.
From elementary considerations it follows that Proc is a complete lattice with least upper
bounds (henceforth, lubs) given by intersection and greatest lower bounds (henceforth,
glbs) given by the glb-closure of the union. The least element is True = Obs and the
greatest element is False = f�g.

3 Process algebra

We now identify basic processes and process combinators in the model. The combina-
tors fall into two categories: (1) CCP constructs: Tell, Parallel composition and Timed
Positive Ask are inherited from CCP. These do not, by themselves, cause “extension
over time”. (2) Timing constructs: Timed Negative Ask, Unit Delay, and Abortion that
cause extension over time.

We present the denotational, operational and logical semantics simultaneously. The
denotational and logical semantics are summarized in Appendix A and B. Unless
otherwise noted, all the combinators introduced are well-defined (produce processes if

1[25] presents several variant models for determinate CCP; the construction we are describing here
generates correspondingly variant timed models.

6

their arguments are processes) and monotone and continuous in their process arguments,
allowing recursion to be handled using least fixed-points.

The operational semantics is defined via two binary transition relations �!;;

over configurations. �! represents transitions within a time instant. ; represents a
transition from one time instant to the next. A configuration will be simply a (possibly
empty) multiset of agents, the syntactic representatives of processes. We implicitly
represent the store in a configuration: for Γ a multiset of agents, we will let �(Γ) be
the sub-multiset of tokens in Γ.

Judgements in the proof system have the form:

A1; : : : ; An ` A

where A;Ai are agents. Intuitively, such a judgement is valid iff the intersection of
the denotations of the Ai is contained in the denotation of A; equivalently, if any
observation that can be made of the parallel system of agents A1; : : : ; An can also be
made of A.

3.1 Timing constructs

We first present the denotational and logical views of the constructs and then the
operational semantics, in particular the; relation.

Skip. skip is the process that does nothing at all at every time instant. Hence every
sequence of constraints is quiescent for it. Thus:

[[skip]] d
= Obs

Operationally, skip has no effect:

Γ; skip �! Γ

Abortion. abort is the process that instantly causes all interactions with the environ-
ment to cease. Hence the only observation that can be made of it is �.

[[abort]] d
= f�g

Operationally, abort annihilates the environment:

Γ; abort �! abort

Unit Delay. Unit Delay is a variant of the unit delay primitives in synchronous
languages [18,4]; intuitively,A = next B is the process that behaves like B in the next
time instant. When is o = a � s, an arbitrary (non-empty) element of Obs, in [[A]]?

7

There are no restrictions on o. Since A behaves like B from the next time instant, s
must be an observation of B.

[[next B]]
d
= f�g [fa � s 2 Obs j s 2 [[B]])g

Logically, unit delay should be read as the temporal “next time” modality, following
the identification in [1], and has the associated proof-rules.

Timed Negative Asks Timed Negative Ask is the only way to detect “negative infor-
mation” in tcc. Intuitively,A = now c else B is the process that behaves like B in the
next time instant if on quiescence of the current time instant the store was not strong
enough to entail c.2

When is o = a � s, an arbitrary element of Obs, in [[A]]? There are two possibilities.
Either a � [c] or not. If a � [c], A behaves like skip, so s can be any observation
whatsoever. If not, A behaves like B from the next time instant; so s must be an
observation of A. Thus:

[[now c else A]]
d
= f�g [fa � s 2 Obs j a 6� [c]) s 2 [[A]]g

Operationally, if the current store entails c, then we can eliminate A:

�(Γ) ` c

(Γ; now c else B) �! Γ
Logically, now c else A behaves as the formula c _ next A, with the proof rules those
induced by this reading. In the following for an agent now c else A we say that c is the
“antecedent” and A the “body”.

Operational semantics: the ; relation. Consider now the situation in which
computation in the current time instant has quiesced. This means that all reductions
that could have been caused because of the entailment of Positive Asks have been
done, and all Negative Asks whose antecedents are entailed have been eliminated.
Computation can now progress to the next time instant.

The active agents at the next time instant are the bodies of the remaining Negative
Ask agents or the bodies of agents within a Unit Delay. All other agents, including
the current store, will be discarded. Formally, if ∆ ranges over multisets of agents
(including constraints) other than Negative Ask, Unit Delay and Abort agents, we can
write the transition rule as:

∆; fnow ci else Ai j i < ng 6�!

∆; fnow ci else Ai j i < ng; fnext Bj j j < mg

; fAi j i < ng; fBj j j < mg

Note that a configuration Γ can make a;-transitioneven if Γ is the empty set of agents;
however, it cannot make any;-transition if it contains abort.

2In reality, we allow the more general combinator A = now fc1; : : : ; cng else B — it behaves like B
provided that the store on quiescence is not above each of the constraints ci. The details are straightforward.

8

Guarded Recursion. A program is a pair of declarations D and an agent A; a
declaration is of the form g :: A (In the following, we let F;G range over programs.)
We require that the recursion is guarded, i.e. the recursion variable occurs within the
scope of an else or a next. The important consequence of this restriction is that the
recursion equations have unique solutions, and that computation in each time-step is
lexically bounded (i.e., bounded by a function of the size of the program).

To ensure bounded “extension in time” we also need to ensure that recursions
are bounded, that is, at run-time there are only boundedly many different procedure
calls. There are several ways of achieving this. For instance, we could require that
procedures take no parameters. This is a familiar restriction in the realm of synchronous
programming; for example, the sole recursion construct in ESTEREL is “loop”. (In
actuality, we make a slightly more liberal assumption that is detailed in Appendix D.)
From a logic programming perspective, this restriction may seem severe. However, this
is not the case since constraints are not carried over from one time instant to the next:
hence the same variable name may be “reused” at subsequent time-instants.

Note that procedures with parameters that take values in finite domains can be
compiled away using the parameterless procedure and hiding constructs available in
tcc.

The operational and denotational semantics of recursion is standard using least
fixed-points. The proof rules for recursion are the same as for the least fixed points in
[16]. In the following, we shall sometimes use the syntax �Q:A to denote an agent Q
under the assumption that the program contains a (unique) procedure declaration of the
form Q :: A.

3.2 Combinators from CCP

The semantics of these combinators follows traditional treatment [25] and we only
sketch them here.

Tell. This process adds c in the current store. Denotationally, it is quiescent in any
observation that contains at least as much information as c at the first instant. Since
the store is represented in the configuration, there is no explicit operational transition.
Logically, the relevant proof rule relates entailment in the underlying constraint system
to entailment on agents.

Parallel composition. The quiescent points of the parallel composition of two agents
agents A and B is the intersection of the quiescent points of A and B. Operationally,
parallel composition is transformed into the “,” of multiset union [5]. Logically, A k B

behaves like the conjunctionA ^B.

Timed Positive Ask. A = now c then B is the process that checks if the current store
is strong enough to entail c; and if so, behaves likeB. The quiescent states ofA follows
this operational intuition. Logically, positive ask behaves like intuitionist implication.

9

Hiding. XˆA is a process where the variable X is hidden from the environment.
For the operational semantics, we find a variable Y that does not occur free in the
configuration, and substitute it for the bound variable. Logically, XˆA behaves like
9X:A. The denotational semantics follows the logical intuitions [21].

3.3 Correspondence Results

The observations of a program G1 for inputs (c1; : : : ; cn) (in the free variables V) is
denoted O(G1)(c1; : : : ; cn). For a finite set of variables V and a constraint d, let �V:d
designate the constraint obtained from d by existentially quantifying all its variables
except those that appear in V .

O(G1)(c1; : : :cn)
d
= (�V:d1; : : : ; �V:dn);

if Gi k ci �! Ri+1; �(Ri) = di; Ri ; Gi+1; 1 � i < n

The full-abstraction proof follows analogous proofs for CCP languages [25,14].

Theorem 3.1 (Adequacy, Full abstraction) Two programs are denotationallydistinct
iff there is a context which can operationally distinguish between them.

For the logical theory, we have Cut Elimination, Soundness and Partial Complete-
ness. The reason for the partial completeness is that as in CCP, certain non-logical laws
hold for existential quantification [25]. These laws arise because we are using an im-
poverished enough fragment of first-order logic (no arbitrary universal quantification)
that the identity of variables substituted for existentially quantified variables cannot be
distinguished from the environment.

Theorem 3.2

Soundness: A ` B ! [[A]] � [[B]]

Partial Completeness: Let A and B be two agents without procedure calls and
existential quantifiers. If [[A]] � [[B]] then A ` B is derivable using the above
rules and axioms.

3.4 Expressiveness: Some derived combinators

We now show how to define some natural patterns of temporal activity in tcc.

Multiform time: time A on c. time A on c denotes a process whose notion of time
is the occurrence of the tokens c — A evolves only at the time instants at which the
store entails c. Formally, using the notation s # a to denote the subsequence of s with
all elements � a, we have:

[[timeA on c]]
d
= fs 2 Obs j s # [c] 2 [[A]]g

10

Watchdogs: doA watching c: This is an interrupt primitive related to weak abortion
in ESTEREL [4]. do A watching c behaves like A till a time instant when c is entailed;
when c is entailed A is killed from the next time instant onwards. (We can similarly
define the related exception handler primitive, do A watching c timeout B, that also
activates a handler B when A is killed.) In the following, for s 2 Obs, we use the
notation s 6� a to mean b 6� c for every element b 2 s. Formally,

[[do A watching c]] d
=

fs 2 Obs j s 2 [[A]]; s 6� [c] g
[fs � a � t 2 Obs j s � a 2 [[A]]; a � [c]g

Suspension-Activation primitive: ScAe(A): This is a premeption primitive that is a
variant of weak suspension in ESTEREL [4]. ScAe(A) behaves like A till a time instant
when c is entailed; when c is entailedA is suspended from the next time instant onwards
(hence the Sc). A is reactivated in the time instant when e is entailed (hence the Ae).
The familiar (control� Z; fg) is a construct in this vein. Formally,

[[ScAe(A)]]
d
=

fs 2 Obs j s 2 [[A]]; s 6� [c]g
[fs � a � t 2 Obs j

s � a 2 [[A]]; s 6� [c]; a � [c]; t 6� [[e]]g
[fs � a � t � a0 � u 2 Obs j

s � a � a0 � u 2 [[A]];
s 6� [c]; d � [c]; t 6� [[e]]; d0 � [[e]]g

The clock combinator. The combinators discussed above have a common basic idea
— they allow for the introduction of time steps that are ignored by the underlying agent
A. This suggests the introduction of a combinator that directly captures this intuition:
clock B do A is a process that executes A only on those instants which are quiescent
points of B.

Let P be a process. We identify the maximal subsequence tP of the sequence t that
is an element of the process P . tP is defined inductively by:

�P = �

(s � a)P =

�
(sP) � a; if a 2 (P after (sP))
(sP); otherwise

Now, recognizing thatA is executed only at the quiescent points ofB we can state:

clock B do A d
= ft 2 Obs j t[[B]] 2 [[A]]g

It is easy to see that clock B do A is non-empty and prefix-closed if [[B]] and [[A]]
are. However, clock B do A may not be determinate for arbitrary [[B]]. A sufficient
condition is that [[B]] after s is upwards-closed, for all s 2 [[B]]. (Such processes can

11

be thought of as arising by “extending over time” the basic processes of the form tell
c.) Accordingly, we identify the syntax for “basic processes” by:

(Basic Agents) B ::=
skip j abort j c
j now c then next B
j now c else B j B k B j g

(Basic Procedures) D ::= g :: B

The clock combinator is not monotone or anti-monotone in its first argument. Never-
theless, it is possible to show that

clock (�g:B) do A = �g:clock B do A

holds, using the fact that recursion is guarded and fixed-points are unique.
Table C in the Appendix shows how to compositionally reduce programs containing

this construct into programs that do not. We use the following abbreviations. always A
executes A repeatedly; it is the agent �g:A k next g. whenever c do A executes A at
the first instant at which c is entailed; it is the agent�g:(now c thenA) k (now c else g).
Note that [[always A]] and [[whenever c do next A]] are basic processes if [[A]] is.

We illustrate how some standard temporal constructs can be expressed using clocks.
Clearly, this construct is in the flavor of the when construct (undersampling) in LUS-
TRE and SIGNAL, generalizd to general processes B instead of boolean streams. The
combinators introduced above can be expressed thus:

now c else A =
clock (now c then next abort) do next A

whenever c do A = clock c do A

time A on c = clock (always c) do A

do A watching c =
clock (whenever c do next abort) do A

ScAe(A) = clock (whenever c do next e) do A

Repeated pause/resumptions of a process can be expressed by:

clock (�g:whenever c do next (e k next g)) do A

4 Implementation

In this section, we sketch the compositional compilation of tcc programs into determin-
istic finite automata, with loop-free computation at each state. This is the only result in
this paper that uses the assumption that procedures do not have parameters.

12

The automaton for a program is specified by the following data: (1) a set of states
Z, with each state z 2 Z labeled with a finite, recursion-free determinate concurrent
constraint program (2) a distinguishedstart state, and (3) a set of directed edges between
pairs of states, labeled with constraints. The automata will satisfy the property that
for every node the set of labels on outgoing edges are closed under least upper bounds
(lubs).

Execution of automaton. At any given time instant, the automaton is in a given state;
at the first instant it is in the start state. When the environment passes in an input, the
program in the state is executed in conjunction with the input. The resulting store is
the output at that time instant. The edge labeled with the greatest constraint less than
the output of the current state is used to go to the next state. The execution process is
repeated in this state at the next time instant.

Bounded response. We assume that the time taken by the underlying constraint
system to answer a query is bounded in the size of the inputs. This assumption is
satisfied by most constraint systems (Herbrand (which is linearly-bounded), FD, real
arithmetic etc.).

Since the cc program labeling a state is finite and recursion free, there are compile-
time determinable bounds on the number of constraints and queries at each state. Under
the further assumption that at any time-step the environment supplies constraints whose
total size is bounded, we get that the computation at each step is bounded.

tcc programs are finite state. This result crucially depends on the assumption that
procedures do not have parameters. As in analogous results for synchronous program-
ming languages, the finite state character of tcc programs is attested to by the fact that
the set of all possible derivatives [9], the “state space” of the program, is finite.

Construction of automaton. As in synchronous languages, the finiteness of the set
of derivatives of a program induces a non-compositional compilation algorithm for tcc
programs. However, tcc admits a compositional compilation as well. We sketch below
the automaton construction for parallel composition. This is the key case that causes
non-compositionality in synchronous languages [9]; other cases are not difficult and
omitted from this extended abstract.

Automaton for P1 k P2. This is a variant of the classical product construction on
automata. We are given the automaton for P1 and P2, say A1 and A2 respectively. The
states of the automaton, say A, for P1 k P2, are induced by pairs of states q1; q2 from
A1; A2. We will call the induced state hq1; q2i. The start state corresponds to the pair
of start states.

The cc program in hq1; q2i is the parallel composition of the programs in the qi’s.
The correct handling of the causality within a time instant is captured by the parallel
composition of the cc programs from q1 and q2.

13

There is a transition ht1; t2i from hq1; q2i to hq01; q
0

2i, with label c = c1 t c2 if
1) there are a pair of transitions, say t1 with label c1 from q1 to q01 in A1 and t2 with
label c2 from q2 to q02 in A2.
2) For i = 1; 2, ci is the greatest constraint entailed by c in the set of labels in Ai.
An example of a tcc program and its compiled automaton is in the Appendix.

5 Future work

A theory of pre-emption. The unification of the pre-emption combinators in LUS-
TRE, SIGNAL and ESTEREL suggests that tcc encapsulates the rudiments of a theory
of pre-emption constructs. A fully developed theory would identify the properties
of an ambient category of processes that would allow the “orthogonal” addition of
pre-emption constructs. A first step would be to explore the connections of tcc with
Interaction categories [1], a general description of synchronous processes.

Verification. Recall that deterministic safety properties correspond precisely to
safety automata [17] that have a single designated failure state. Also note that tcc
allows programs and properties to be expressed in the same language. This leads to the
promise of reducing general safety properties to checking the state of a single variable,
say a boolean variable. We intend to tackle the verification process itself via extant
model-checking techniques, for example [7], or theorem-proving techniques.

Acknowledgements. We gratefully acknowledge extended discussions with Danny
Bobrow, Jerry Burch, Adam Farquhar, Lalita Jategaonkar, John Lamping, and Brian
Smith.

References

[1] S. Abramsky. Interaction categories. Available by anonymous ftp from pa-
pers/Abramsky:theory.doc.ic.ac.uk, 1993.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Principles, techniques and
tools. Addison Wesley series in Computer Science. Addison Wesley, 1985.

[3] G. Berry. Real-time programming: General purpose or special-purpose languages.
In G. Ritter, editor, Information Processing 89, pages 11 – 17. Elsevier Science
Publishers B.V. (North Holland), 1989.

[4] G. Berry. Preemption in concurrent systems. In Proc. of FSTTCS. Springer-Verlag,
1993. LNCS 781.

[5] G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of the
17th Annual ACM Symposium on Principles of Programming Languages, 1990.

14

[6] G. Berry and G. Gonthier. The ESTEREL programming language: Design, seman-
tics and implementation. Science of Computer Programming, 19(2):87 – 152,
November 1992.

[7] E. M. Clarke, D. E. Long, and K. L. McMillan. A language for compositional
specification and verification of finite state hardware controllers. Proceedings of
the IEEE, 79(9), September 1991.

[8] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming real
time applications with SIGNAL. In Special issue on Another Look at Real-time
Systems, Proceedings of the IEEE, September 1991.

[9] N. Halbwachs. Synchronous programming of reactive systems. The Kluwer
international series in Engineering and Computer Science. Kluwer Academic
publishers, 1993.

[10] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous programming language
LUSTRE. In Special issue on Another Look at Real-time Systems, Proceedings of
the IEEE, Special issue on Another Look at Real-time Systems, September 1991.

[11] D. Harel. Statecharts: A visual approach to complex systems. Science of Computer
Programming, 8:231 – 274, 1987.

[12] David Harel and Amir Pnueli. Logics and Models of Concurrent Systems, vol-
ume 13, chapter On the development of reactive systems, pages 471–498. NATO
Advanced Study Institute, 1985.

[13] Pascal Van Hentenryck, Vijay A. Saraswat, and Yves Deville. Constraint process-
ing in cc(fd). Technical report, Computer Science Department, Brown University,
1992.

[14] R. Jagadeesan, P. Panangaden, and K. Pingali. A fully-abstract semantics for a
functional language with logic variables. ACM Transactions on Programming
Languages and Systems, 13(4), October 1991.

[15] G. Kahn. The semantics of a simple language for parallel programming. In J.L.
Rosenfeld, editor, Proceeedings of IFIP Congress 74, pages 471–475., August
1974.

[16] Dexter Kozen. Results on the propositional �-calculus. Theretical Computer
Science, 27:333 – 354, 1983.

[17] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings of
the ACM SIGPLAN conference on Principles of Programming langauges, 1990.

[18] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

15

[19] R. Milner, J. G. Parrow, and D. J. Walker. A calculus for mobile processes, part i
and ii. LFCS Report ECS-LFCS-89-85, University of Edinburgh, 1989.

[20] G. Murakami and R. Sethi. Terminal call processing in esterel. Technical Report
150, AT& TBell labs, 1990.

[21] P. Panangaden, V. Saraswat, P. Scott, and R. Seely. A hyperdoctrinal view of con-
current constraint programming. In J. deBakker, G. Roszenberg, and W. deRoever,
editors, Proceedings of the REX Workshop, 1992. LNCS 666.

[22] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill. Dependence
Flow Graphs: An algebraic approach to program dependencies. In Proceedings
of the ACM Symposium on Principles of Programming Languages, pages 67–78,
January 1991.

[23] Vijay A. Saraswat. The Category of Constraint Systems is Cartesian-closed. In
Proc. 7th IEEE Symp. on Logic in Computer Science, Santa Cruz, 1992.

[24] Vijay A. Saraswat. Concurrent Constraint Programming. Logic Programming and
Doctoral Dissertation Award Series. MIT Press, March 1993. Yes, it is actually
out!

[25] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Semantic founda-
tions of concurrent constraint programming. In Proceedings of Eighteenth ACM
Symposium on Principles of Programming Languages, Orlando, January 1991.

A Summary of syntax and semantics

Syntax.

(Agents) A ::= c (Tell)
j now c then A (Timed Positive Ask)
j now c else A (Timed Negative Ask)
j next A (Unit Delay)
j abort (Abort)
j skip (Skip)
j A k A (Parallel composition)
j XˆA (Hiding)
j P (Nested program)
j g (Procedure Call)

(Proc) g ::= p(t1; : : : ; tn)
(Decl) D ::= g :: A (Definition)

j D:D (Conjunction)
(Prog) P ::= fD:Ag

(1)

16

Semantic Domain. We take as fixed a constraint system C, with underlying set of
tokens (or primitive constraints) D and let the finitary inference relation ` (that relates
finite set of tokens to tokens) record which (primitive constraint) follows from which
ollection of primitive constraints. Let the `-closed subsets of D be denoted by jDj.
(jDj;�) is a complete algebraic lattice; we will use the notation t and u for the joins
and meets of this lattice. A (finite) constraint is an element of jDj generated from
a (finite) set of primitive constraints. We usually denote (finite) sets of tokens by the
letters c; d; e, and constraints by the letters a; b. For any set of tokens c, we let [c] stand
for the constraint generated by c.

Definition A.1 Obs, the set of observations, is the set of finite sequences of constraints.

Concatenation of sequences is denoted by “�”; for this purpose a constraint a is
regarded as the one-element sequence hai. For any S � Obs, and sequence s 2 Obs,
let S after s be the set fa 2 jDj j s � a 2 Sg. A subset S of a partially ordered set T is
said to be determinate if for every x 2 T , the subset of S above x is empty or contains
a minimum.

Definition A.2 A process P 2 Proc is a non-empty, prefix-closed subset ofObs such
that P after s is determinate for all s 2 P .

Semantic Equations. For a sequence of constraints s, by 9X:s we shall mean the
element-wise existential quantification over X.

[[c]] = f�g [fd � s 2 Obs j d � [c]g

[[now c then A]] = f�g [fd � s 2 Obs j d � [c]) d � s 2 [[A]]g

[[now c else A]] = f�g [fd � s 2 Obs j d 6� [c]) s 2 [[A]])g

[[next A]] = f�g [fd � s 2 Obs j s 2 [[A]])g

[[skip]] = Obs

[[abort]] = f�g

[[A k B]] = fs 2 Obs j s 2 [[A]]^ s 2 [[B]]g

[[XˆA]] = fs 2 Obs j 9X:s = 9X:t; for some t 2 [[A]]g

B Logic underlying tcc

The syntax of formulas in the logic is exactly the same as that of agents.

(Agents) A ::= c j now c then A j now c else A j next A
j A k A j skip j abort j XˆA j g

(2)

17

Sequents are of the formA1; : : : ; An ` A, where Ai; A are agents. Intuitively, such
a sequent is valid if every observation that can be made of system consisting of the Ai

running in parallel can be made of A.
The rules of inference for the logic include the structural rules of Exchange, Weak-

ening and Contraction, and the Identity and Cut rules. The entailment relation of the
underlying constraint system is tied to that for agents by:

d1; : : : ; dn `C c

d1; : : : ; dn ` c
(Constraint)

The rules for the combinators are obtained from those of intuitionistic logic by
writing now c then A as c! A, now c else A as c _ next A, A k B as A ^B, XˆA
as 9X:A, skip as true and abort as ? (false). In addition, the rules for next A are:

Γ ` B

next Γ ` next B
(Step)

C Clock algebra

The following laws hold for the clock combinator:

clock P do abort = abort
clock P do skip = skip
clock P do (A1 k A2) = (clock P do A1) k (clock P do A2)
clock P do XˆA = Zˆclock P do A[Z=X]3

clock P do �Q:A = �Q:clock P do A

clock c do A = whenever c do A

clock abort do A = skip

clock skip do A = A

clock (B1 k B2) do A = clock B1 do (clock B2 do A)

clock �G:B do A = �G:clock B do A

For P = next B:

clock P do d = d

clock P do (now d then A) = now d then clock P do A
clock P do (now d else A) = now d else clock B do A
clock P do (next A) = next clock B do A

18

For P = now c then next B:

clock P do d = d

clock P do (now d then A) = now d then clock P do A

clock P do (now d else A)
= now c then clock next B do (now d else A)

k now (c; d) else A
clock P do (next A)

= (now c then (next clock B do A))
k (now c else A)

For P = now c else B:

clock P do d = d

clock P do (now d then A) = now d then clock P do A

clock P do (now d else A)
= now c then now d else A

k now (c; d) else clock B do A
clock P do (next A)

= now c then next A
k now c else clock B do A

D Example of compilation

We will allow ourselves the liberty of writing programs with recursive procedures that
take parameters. However, we shall require that any procedure call (for a recursive
procedure) take exactly the same parameters as the procedure declaration. That is, for
any set of mutually recursive declarations:

p(X1; : : : ; Xn) :: A:
q(Y1; : : : ; Ym) :: B:
: : :

any call to a procedure p, q, : : : in A, B, : : : is exactly of the form p(X1; : : : ; Xn),
q(Y1; : : : ; Yn), : : : .

It is not difficult to show that this liberalization does not affect finite-state com-
pilability. (In essence, this restriction is equivalent to the parameterless procedures
restriction provided that procedure definitions are allowed to be nested within agents,
so that bodies of procedure definitions can refer to variables in the lexical scope.)

The following program is a controller for a mouse. It waits for the signal start,
then starts counting the number of clicks of the mouse upto the time it receives stop.

19

It then reports whether it received zero, one or many clicks. Here the variables start,
stop, zero, one, many are assumed to be bound in the lexical scope. We use the syntax

now c then A else B

for the agent now c then A k now c else B, and use “,” for parallel composition.

controller ::
Xˆ(do whenever start do (X = 0; mouse(X))

watching stop;

whenever stop do (now X = 0 then zero;

now X = 1 then one;

now X = 2 then many)):

mouse(Z) :: mouse zero(Z); mouse one(Z); mouse many(Z):

mouse zero(Z) :: now Z = 0 then
now click then next Z = 1 else (Z = 0; mouse zero(Z)):

mouse one(Z) :: now Z = 1 then
now click then next Z = 2 else (Z = 1; mouse one(Z)):

mouse many(Z) :: now Z = 2 then always Z = 2:

20

STOP−−>ZERO

STOP−−>ONE STOP−−>MANY TRUE

STOP, STOP&CLICK

STOP, STOP&CLICK

STOPCLICK

C
L

IC
K

START&CLI
CK

START

START&STO
P&CLICK

STO
P, STO

P&START

START
&STOP−>ZERO−

Figure 1: Automaton for the mouse program

21

