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Abstract 19 

Founder effects introduce stochasticity in the genetic structure of species at the regional scale. To 20 

the extent that founder effects are important that they will result in a reduced signature of space, 21 

time and environmental variation in landscape genetic data. We studied the metapopulation 22 

genetic structure of recently founded populations of the microcrustacean Daphnia sinensis in ten 23 

Ethiopian water reservoirs. We used three different approaches of estimating the number of 24 

effective founders applied to two independent genetic marker sets to investigate the role of 25 

founder effects and to estimate effective size of the founding population. Estimates of founding 26 

sizes rarely exceeded eight individuals but were most often limited to less than four individuals. 27 

No associations of genetic identities, gene frequencies, measures of genetic diversity or 28 

differentiation with environmental and spatial variables were found. Age and size of the 29 

reservoirs were not correlated with genetic diversity measures or number of founders in these 30 

reservoirs. These findings indicate that neither strong selection, nor dispersal limitation are 31 

responsible for the observed pattern of genetic variation. Our results suggest a regional 32 

population structure that is strongly impacted by founder events, reflecting colonization by just a 33 

few founders per water body, and not noticeably influenced by subsequent dispersal and gene 34 

flow. Our results show that rapid colonization of empty habitats and fast population growth by a 35 

handful of founders can result in strong founder effects, even in relatively large habitats 36 

(estimated populations sizes of several million individuals) that are likely regularly reached by 37 

new immigrants. 38 

Keywords: colonization, Daphnia sinensis, effective population size, founder effects, 39 

metapopulation, monopolization, zooplankton 40 

  41 
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Introduction 42 

Metapopulation theory describes the interplay between colonization and extinction rates on patch 43 

occupancy as a function of death, birth and dispersal rates (Hanski 1998; Levins 1969). 44 

Population genetics, on the other hand considers occupied patches, and considers how gene flow 45 

and population size interact to influence genetic structure within and among demes of a 46 

metapopulation (Wright 1951). In reality, both extinction-colonization dynamics of local 47 

populations and changes in genetic diversity by gene flow and drift within these local populations 48 

act simultaneously. Dispersal, which is one of the most fundamental processes in ecology, affects 49 

many aspects of evolution and population genetics if translated into successful colonization 50 

(Bilton et al. 2001). Dispersal allows individuals to establish new populations in an empty patch 51 

and promotes range expansion following colonization of new sites. 52 

In a metapopulation genetics context, the colonization of an empty habitat patch by 53 

founders can be considered as a special case of gene flow. As the new local population grows in 54 

size to carrying capacity, new neutral immigrants (having equal expected fitness) can still enter 55 

the population, but their relative contribution to the local gene pool is expected to decrease as 56 

local population size at the time of immigration becomes larger. In this initial colonization 57 

scenario at least two processes are responsible for successful colonization and establishment of a 58 

population in an empty patch. First, the response of the immigrants to the local environmental 59 

conditions of the habitat they colonize. Second, differences in their time of arrival at the site, 60 

which generates a numerical advantage to the first colonizers over late-comers (Boileau et al. 61 

1992; De Meester et al. 2002). In contrast to the relative ease of establishment of founders, which 62 

experience no to a little competition, individuals attempting to immigrate into an established 63 

population close to carrying capacity are faced with strong intraspecific competition by the 64 

resident population and low levels of resources. Due to this, realized rates of gene flow may be 65 
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much lower than expected based on the rates of dispersal (De Meester et al. 2002). This reduced 66 

establishment success may strongly contribute to prolonged persistence of founder effects 67 

(Boileau et al. 1992; De Meester et al. 2002; Ventura et al. 2014). Because founder effects 68 

represent a type of sampling error, they introduce stochasticity in the genetic structure at the 69 

regional scale, which tends to result in a reduced signature of space and environmental variation 70 

in the genetic data (Orsini et al. 2013). 71 

Estimates of the number of founders represent baseline estimates for ecological dispersal 72 

rates (mc, the observed number of migrants), which represent the maximal potential for gene flow 73 

(me, the effective number of migrants) among populations. Gene flow, the realized effect of 74 

ecological dispersal on genetic structure, can be estimated indirectly through population genetics 75 

as well (Broquet & Petit 2009). Although we know from many population genetic studies in 76 

zooplankton that gene flow (me) is often much lower than expected, we have relatively few good 77 

estimates of ecological dispersal rates (mc), because they are so hard to measure directly (Bilton 78 

et al. 2001). Nevertheless, good dispersal estimates provide baseline information for a broad 79 

array of ecological and evolutionary studies (Broquet & Petit 2009). Distinguishing between 80 

dispersal and gene flow is essential, especially for biological conservation of populations and 81 

species.  82 

Here we take advantage of the recent creation of water reservoirs in Northern Ethiopia 83 

and the colonization of these water bodies by zooplankton to estimate the number of founders of 84 

populations of a zooplankton species using genetic methods. The reservoirs studied here are 85 

young (6-18 years) and two to three orders of magnitude larger than most other systems studied 86 

so far on founder effects in zooplankton and small invertebrates (Boileau et al. 1992; Haag et al. 87 

2006; Louette et al. 2007). Specifically, we present patterns of genetic composition and 88 

differentiation of the water flea Daphnia sinensis in reservoirs that range in size from 1.8 to 45.4 89 



5 

 

hectare. Using variation at nuclear (nDNA) and mitochondrial (mtDNA) genetic markers, we 90 

estimate allele frequencies, within-population genetic variation and among-population genetic 91 

differentiation, and relate genetic variation and genotype composition to spatial, environmental 92 

and temporal variables. We use various methods to independently estimate founding population 93 

sizes, and thereby provide baseline estimates of dispersal rates. Using information on the 94 

observed genetic structure (FST) and the associated expected gene flow at various levels of 95 

migration-drift equilibrium and ages of populations, we show that the dispersal rates (mc) are 96 

orders of magnitude higher than the actual gene flow rates (me).  97 

  98 
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Methods 99 

Study region and sampling 100 

The studied reservoirs are part of a set of reservoirs constructed between 1984 and 2001 in the 101 

highlands of Tigray Regional State, Northern Ethiopia. The rainfall in Tigray region is seasonal 102 

and erratic resulting in moisture stress that hampers the rain-fed agriculture (Haregeweyn et al. 103 

2006). To solve this problem agricultural development through irrigation has been a priority for 104 

the Regional Government of Tigray. Hence, the target of the construction of reservoirs was 105 

mainly to bring food self-sufficiency to the area through irrigation but also to use the water for 106 

household consumptions (Asmelash et al. 2007). Thirty-two of these reservoirs have been the 107 

subject of a detailed limnological survey (Asmelash et al. 2007; Dejenie et al. 2008). Apart from 108 

a single natural lake, not inhabited by the focal species of this study, Daphnia sinensis, no similar 109 

large and deep aquatic systems are known from Tigray (Dejenie et al. 2008). Naturally, this 110 

species occurs in temporary pools and ponds as well as larger temporary ponds and lakes (Gu et 111 

al. 2013). The rapid colonization of these reservoirs shortly after their creation by a considerable 112 

number of zooplankton taxa, including typical lake species (Dejenie et al. 2008), despite a 113 

regional lack of similar habitats suggests that dispersal rates are relatively high and long-distance 114 

dispersal events are rather frequent. Water birds (members of the Podicipidae, Pelecanidae, 115 

Ciconiidae, Anatidae and Charadriidae family) are common in and alongside the reservoirs 116 

(Asmelash et al. 2007) and are probably important vectors of dormant propagules of zooplankton 117 

(Figuerola & Green 2002).  118 

Thirty-two reservoirs were sampled for zooplankton in September 2005 (Dejenie et al. 119 

2008). Ten of these samples contained D. sinensis in large enough numbers for population 120 

genetic analyses (see Table S1, Supporting information). In addition, five temporary natural 121 

wetlands were sampled, two of which contained D. sinensis (henceforth called T1 and T3), 122 
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bringing the total number of independent samples to twelve. All Daphnia samples were preserved 123 

in 100% ethanol until further processing. Although previously identified as D. carinata King by 124 

Dejenie et al. (2008), DNA barcoding indicates that individuals from these reservoirs belong to 125 

D. sinensis , a member of the Daphnia similis species complex (Popova et al. 2016).  126 

Measurements of geographic position and morphometric, physical, chemical, and biotic variables 127 

were recorded for each sampled reservoir (see Table S1, Supporting information; Dejenie et al. 128 

2008). Age of the reservoirs was expressed as number of years at sampling time since 129 

construction of the reservoir. The two natural populations T1 and T3 were first excluded from all 130 

age related analysis, and were in a second analysis arbitrarily given the same age as the oldest 131 

reservoir. 132 

 133 

Genotyping 134 

DNA of individual Daphnia was extracted using the HotShot protocol (Montero-Pau et al. 2008) 135 

Sample sizes ranged from 6 to 35 individuals per population for mtDNA (Table 1; 10 out of 12 136 

samples with 17 or more individuals) and from 15 to 34 individuals per population for nDNA 137 

(Table 2). Differences in sample sizes between both markers are due to unsuccessful 138 

amplification with either approach. A fragment of 341 nucleotides of the mtDNA cytochrome 139 

oxidase gene, subunit 1 (COI) was amplified using primers SCox1F1 (GGC CCC AGA TAT 140 

GGC TTT) and SCox1R2 (GCT CCA GCT AAT ACT GGT AAA CTT), specifically designed 141 

for this study. The polymerase chain reaction mix of 25 µl contained 2 µl DNA, 2.75µl 10x PCR 142 

buffer (10 mM Tris-HCl; pH 8.3; 50 mM KCl), 0.4 µM of each primer, 2.2 mM MgCl2, 0.2 mM 143 

of each dNTP, and 1 unit Silverstar Taq DNA polymerase (Eurogentec®, Liege Belgium). PCR 144 

cycling conditions, PCR product purification and sequencing followed the methods of Mergeay et 145 

al. (2007). The purified fragments were sequenced using 3.2 pmol of SCox1F1 primer and the 146 
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ABI Big Dye Terminator Kit. Sequences were aligned and trimmed in Mega 4.1 (Kumar et al. 147 

2008).  148 

Variation at six microsatellite loci using primers originally developed for the related 149 

species Daphnia magna (B088, B172, B087, S6-38, B064 and Dma15 (Agostini et al. 2010; 150 

Jansen B et al. 2011) was assessed in a single multiplex PCR reaction of 10 µl consisting of 5 µl 151 

HotStar Taq DNA polymerase buffer (Qiagen®, Hilden Germany), 0.15 µM, 0.5 µM, 0.3 µM, 0.2 152 

µM, 0.1 µM and 0.3 µM of each primer of locus Dma15, B087, B064, S6-38, B088 and B172, 153 

respectively, and 2 µl of template DNA. Cycling conditions were 15' hot start denaturation at 154 

95°C followed by 30 cycles of 30" for each step at 95°C, 56°C and 72°C, and a final elongation 155 

step at 60°C for 30'. Polymorphism was assessed on an ABI PRISM® 3130 genetic analyser 156 

(Applied Biosystems®, Foster City, CA, USA), using an internal Liz Gene-scan size standard by 157 

means of the Genemapper 4.0 software (Applied Biosystems®, Foster City, CA, USA). 158 

 159 

Population genetic data analysis 160 

Nucleotide diversity of the sequenced COI fragments was calculated in DNAsp version 161 

4.5 (Rozas et al. 2003). Because we were not interested in the evolutionary relationships among 162 

haplotypes that originated thousands of years prior to the colonization of these reservoirs, no 163 

attempts were made to construct haplotype networks or to calculate genetic differentiation among 164 

populations based on haplotype identity. The observed haplotype frequencies were primarily used 165 

to estimate the number of founders involved in the colonization of each reservoir. We calculated 166 

observed haplotype richness (HR) for each sample as well as haplotype diversity (HD). HD was 167 

calculated as the true diversity equivalent of the Simpson concentration (Jost 2007). These values 168 

were compared to expected HR and HD under the null hypothesis that all reservoirs form one 169 

panmictic population, using 104 permutations in Partition (Veech & Crist 2009). This yields alpha 170 
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(local gene diversity) and beta (average differentiation) estimators that are converted to their true 171 

diversity equivalents (Jost 2007). 172 

Standard measures of genetic diversity (number of alleles, allelic richness per locus and 173 

per population across all loci, observed heterozygosity and expected heterozygosity) at six 174 

microsatellite loci were assessed in R using diveRsity package (Keenan et al. 2013). Identical 175 

multilocus genotypes, on the basis of the combined information of six microsatellite loci, in a 176 

given water body were considered to belong to a single clone. Clonal diversity (CD) was 177 

expressed as the true diversity equivalent of the Simpson concentration, clonal richness (CR) as 178 

the number of multilocus genotypes per water body. Moreover, relative clonal richness was 179 

calculated per sample corrected for sample size expressed as proportion of clones to total 180 

individuals genotyped as R = (G-1) / (N-1), where G is the number of genotypes and N indicates 181 

sample size. We used HWclon (De Meester & Vanoverbeke 1999) to estimate whether or not 182 

observed levels of CD and CR were significantly different from a random distribution, given the 183 

genetic diversity and allelic polymorphism in the population (De Meester & Vanoverbeke 1999; 184 

Vanoverbeke & De Meester 1997). 185 

The standardized genetic variance among populations (FST) was calculated according to 186 

Weir & Cockerham(1984). We used 500 bootstrap pseudoreplicates to estimate 95% confidence 187 

intervals of the FST values. Genetic structure was assessed using the unbiased estimators of Nei & 188 

Chesser (1983) of the overall gene diversity (HT) and subpopulation gene diversity (HS). 189 

 190 

Spatial, environmental and temporal correlates of genetic differentiation 191 

To investigate the role of spatial and environmental variables separately and to 192 

disentangle the unique contribution of each variable matrix to the genetic structure of the studied 193 

populations we used redundancy analyses (RDA, a linear constrained ordination technique Dray 194 
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et al. 2006). In a multivariate variation partitioning analysis, the contributions of local 195 

environmental predictors (n= 16 variables provided in Table S1, Supporting information) and 196 

spatial predictors are tested by generating adjusted redundancy statistics (R2
adj) in an RDA 197 

analysis. A significant effect of environment would imply sorting of clones with different traits 198 

and niches along environmental gradients.  199 

Under a model of persistent founder effects, we expect genetic structure to be mainly 200 

caused by chance events as dispersal is likely not limiting at the investigated spatial scale. Hence, 201 

we expect to find at most a weak spatial genetic structure in the data (Orsini et al. 2013). To test 202 

this, with the nDNA allele frequency data we performed a principle coordinates analysis (PCoA) 203 

and then used the population loadings of the first six PCoA axes as dependent variables in a 204 

distance-based redundancy analysis (db-RDA). In this RDA we attempted to explain the observed 205 

genetic variation as a function of distance-based eigenvector maps (dbMEM) (Dray et al. 2006). 206 

This analysis allows to find spatial patterns in the genetic data other than linear ones, making this 207 

a more powerful approach with lower type II error rates than Mantel tests (Legendre & Fortin 208 

2010). Five positive dbMEM eigenvectors were retained and were used as explanatory variables 209 

in a forward selection procedure. Although this particular approach has the risk of identifying a 210 

false positive spatial signal (see Blanchet et al. 2008), the double stop criterion of Blanchet et al. 211 

(2008) is very conservative with regard to small datasets. Here we take a more liberal approach, 212 

involving forward selection of spatial variables without prior testing of the overall spatial model, 213 

to make sure that any lack of a detectable spatial signal is not due to the use of conservative 214 

statistical methods.  215 

In parallel, we performed a separate RDA relating the mtDNA data to the spatial data 216 

(dbMEM). These mtDNA data were Hellinger-transformed to allow the use of linear regression 217 

analyses in zero-inflated data (Legendre & Gallagher 2001). 218 
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Using non-parametric correlation (Spearman’s rho) analyses, we related diversity 219 

measures (He, AR, HR, HD, CR, CD, number of founders at mtDNA, and number of founders at 220 

nDNA) to age, depth and size of the reservoirs. Under a model of persistent founder effects, 221 

genetic diversity should not be related to age or size of the reservoir, as late-arriving immigrants 222 

are expected to have little impact on the genetic structure compared to the very first founders. If 223 

founder effects still persisted at the time of sampling, we expect that old and large populations do 224 

not differ in genetic structure from younger and/or smaller populations. Specifically, we tested if 225 

a model of population structure including reservoir age, reservoir size or their interaction 226 

explained the genetic structure better than the null model not including age or size using Geste v. 227 

2 (Foll & Gaggiotti 2006). Geste calculates a specific FST value for each population that 228 

represents the population specific contribution to the total genetic differentiation in the 229 

metapopulation. Then, the effect of age and/or size on these FST values is evaluated using 230 

generalized linear models. The posterior probability of each model was used to select the model 231 

with the highest probability given our data. 232 

 233 

Estimating the number of effective founders 234 

We used three different approaches to estimate the number of effective founders, which 235 

reflects how many individuals contributed to the observed genetic diversity in each local 236 

population. First, we used a general approach based on F-statistics from microsatellite data, using 237 

the principle that the inbreeding coefficient among populations just after colonization is 238 

FST = (2K)-1, with K the average number of founders per population (Boileau et al. 1992; Wade 239 

& McCauley 1988). Confidence intervals (95% CI) for FST were calculated by bootstrapping over 240 

loci (500 replicates). This method provides the average effective size of the founding population. 241 
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Second, we used a general simulation approach in the programming environment R (R 2.14; The 242 

R Foundation for Statistical Computing, 2014) to calculate the expected HR and HD under a 243 

model of random colonization from a regional gene pool with 1, 2... 10, 15 and 20 founders. 244 

Expected HR and HD values were calculated by randomly sampling 104 times the pre-set number 245 

of founders in 200 populations from an estimated regional frequency distribution, which was 246 

based on the actual haplotype counts over all water bodies, or on presence-absence data for each 247 

haplotype per water body. For each of the random samples we calculated the probability that the 248 

expected average HR or HD, over the 200 population, was smaller or larger than the values 249 

observed in our empirical dataset. The product of these values provides the overall probability 250 

that the observed HD or HR is achieved by the corresponding number of founders. The R-script 251 

is available as supplementary information (Table S2, Supporting information), and provides the 252 

average census size of the founding population. Third, we used a population-specific approach 253 

for which we used the Colonize script (Mergeay et al. 2007; Vanoverbeke & Mergeay 2007). 254 

This is a standalone command-line tool that calculates the likelihood that a predefined number of 255 

founders from a predefined source population established the focal population, given the gene 256 

frequency distribution of the source and the sink populations. The number of founders associated 257 

to the highest likelihood score provides the best estimate for the founding propagule size of that 258 

population. Again, this provides the census size of the founding population, which ignores that 259 

some individuals contributed less to the genetic structure of the founding population than other 260 

individuals. For each water body, we calculated likelihood scores for one to thirty founders, and 261 

set both the number of batches and the number of random samples to 500. Ideally, one has 262 

multiple putative source populations from which to sample, so as to assign the most likely source 263 

population as well (see Mergeay et al. 2007, for an example). Here we have no such prior 264 

information, and hence we use the regional gene pool (the average over all our samples) as the 265 
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overall source population. To increase the overall robustness of this approach, three different 266 

prior allele frequency distributions were used. 1) Using the regional frequency of each allele over 267 

the pooled data of all investigated water bodies (distribution = Freq.). Here we used the rare allele 268 

correction in Colonize to account for extremely rare alleles. 2) Using presence-absence of each 269 

allele per population and counting the frequency of occurrence of each allele over all populations 270 

(distribution = Rich.). This approach gives less weight to alleles that dominate in certain 271 

populations but are rare in other populations. 3) Using three abundance classes for the regional 272 

allele frequencies (1: frequency <15%; 2: frequency 15-30%; 3: frequency >30%). This approach 273 

(distribution = Level) gives even more weight to rare alleles. Analyses with Colonize were 274 

performed separately for the mtDNA data and for the nDNA data in order to obtain independent 275 

estimates for both marker types. Overall, these three approaches yield one overall estimate based 276 

on FST (first method), two overall estimates based on mtDNA haplotype richness and haplotype 277 

distributions (second method), and per reservoir three estimates based on mtDNA and three based 278 

on nDNA (third method).  279 

 280 

Testing assumptions 281 

All of the outlined methods to estimate the number of founders rely on similar 282 

assumptions, but vary in their sensitivity to violations thereof. Here we outline how we tested for 283 

violations of the assumptions. First, we assume that genetic drift has not yet strongly affected 284 

allele frequency distributions (especially fixation or loss of alleles), given that they were founded 285 

at most 6 to 18 years before sampling. Second, we assume that all founders are genetically 286 

independent.  287 

The main source of genetic drift in cyclical parthenogens like Daphnia is clonal selection 288 
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(reduction in clonal and genetic diversity as a result of selection among clones in the population) 289 

(De Meester et al. 2006), which may erode genetic diversity considerably and thereby reduce our 290 

estimates of founding population sizes. To assess whether clonal population structure (leading to 291 

a similar signal as genetic bottlenecks) has affected our results, we performed a Spearman Rank 292 

order correlation between clonal diversity (CD) and clonal richness (CR) versus the estimated 293 

number of founders per population. This was performed for all estimates of the number of 294 

founders, which have different sensitivities for common and rare alleles. Significant correlations 295 

would reflect that clonal erosion affects our estimates of founding population sizes. Furthermore, 296 

because drift reduces richness faster than diversity (Cornuet & Luikart 1996), founding 297 

population size estimates based on richness should be lower than those based on diversity indices 298 

if genetic drift is really important. Next, genetic drift affects mitochondrial genetic structure 299 

stronger than nuclear genetic structure, because the effective population size at mitochondrial 300 

genes is smaller (Hamilton 2011). Hence our founding number estimates should be lower when 301 

using mitochondrial data if these were strongly influenced by genetic drift. We used the Student 302 

t-test to test for differences among all these cases.    303 
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Results 304 

Genetic diversity 305 

Among a total of 285 sequences we found 25 polymorphic positions out of 299 nucleotide 306 

positions in the CO1 gene fragment. This resulted in six distinct mitochondrial haplotypes. Two 307 

of these haplotypes, H5 and H6, were singletons detected from Adi Gela and Adi Kenafiz, 308 

respectively. Four haplotypes were common, with overall frequency of occurrence of 36.0, 33.0, 309 

20.3 and 9.70 % for H2, H1, H3 and H4, respectively (Table 1 and Fig. 1). Most populations, 310 

including both natural systems, were dominated by one or two haplotypes (average HD = 1.74). 311 

Overall, the observed haplotype diversity or richness in a given population was always 312 

significantly lower (X2 text, p < 0.0001) than the expected diversity or richness assuming a 313 

panmictic regional metapopulation (Table 1). Pairwise nucleotide diversity among haplotypes 314 

ranged from 0.003 to 0.047 (overall nucleotide diversity = 0.021). 315 

For the microsatellite markers, we found an average of 5.3 ± 3.6 (± standard deviation) 316 

alleles per locus over the whole metapopulation, whereas the mean allelic richness per locus was 317 

2.58 ± 0.5 per population. The number of alleles per locus ranged from 2 to 11, with a total of 32 318 

alleles scored over the six microsatellite loci combined. The total number of alleles observed 319 

across all loci per population ranged from 11 to 20, with a mean allelic richness of 2.32 alleles 320 

per locus (Table 2). The observed heterozygosity for the 12 relatively young Daphnia 321 

populations ranged from 0.21 to 0.57 whereas the expected heterozygosity (He) ranged from 0.24 322 

to 0.54 per population (Table 2 and Table S3, Supporting information).  323 

In total, we found 183 unique multilocus genotypes (MLGs) out of 293 individuals 324 

successfully genotyped. The majority of those MLGs (88%) were represented by a single 325 

individual whereas 5% of the MLGs (n= 10) were represented by two individuals. Only a small 326 
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number of MLGs (n = 18) was shared between reservoirs. The highest clonal richness (CR = 27) 327 

and clonal diversity (CD = 22.3) was observed for Gum Selasa (Table 2). The difference between 328 

the observed clonal richness/diversity and expected clonal richness/diversity was not statistically 329 

different at α = 0.05 for all the 12 populations studied, indicating that there is no substantial 330 

clonal erosion (Table 2).  331 

All values of pairwise genetic differentiation (FST) were significant (p < 0.05). Nearby 332 

population pairs were not more related to each other than distant pairs (Table S4, Supporting 333 

information). The highest pairwise FST value was observed in the comparison between T1 and 334 

Adi Kenafiz (FST = 0.585), while the lowest pairwise FST value (FST = 0.037) was between Gereb 335 

Awso and Dibla (Table S4, Supporting information).  336 

None of the RDA analyses yielded a model with one or more spatial or environmental 337 

explanatory variables that could significantly (p < 0.05) explain the variation in the genetic data, 338 

either in the distribution of the mtDNA haplotypes, or in the allele frequency data of the 339 

microsatellite loci. Exclusion of the two natural systems did not affect the general pattern. Mantel 340 

tests between pairwise genetic distance (Nei’s genetic distance) and geographic distances or 341 

environmental distances yielded correlation coefficients of r = -0.114 (p = 0.658) and r = 0.181 342 

(p = 0.212), respectively, thus confirming the absence of any spatial trend in the genetic data 343 

(Fig. 2).  344 

  345 
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Number of founders  346 

Method 1: FST-based. The overall among-population fixation index (FST) was 0.237, with 95% 347 

confidence intervals (CI) ranging from 0.180 < FST < 0.342. Without T1 and T3, FST equalled 348 

0.219 (95% CI: 0.169 < FST < 0.309). Since FST ≈ 1/2N at colonization, this reflects average 349 

effective founding population sizes of 2.3 individuals (95% CI: 1.6 < Ne < 3.0). Put differently, 350 

the average genetic diversity we observed corresponds to a mean effective founding population 351 

size of 1.6 to 3.0 individuals.  352 

 353 

Method 2: Comparing observed to expected richness and diversity estimates. We found an 354 

average observed haplotype richness HR = 2.5 and an average observed haplotype diversity 355 

HD = 1.74 (Table 1). When comparing the average observed levels of HR and HD to expected 356 

HR and HD, we found that average founding population size estimates smaller than two and 357 

larger than eight are improbable at p-value = 0.05 (Table S5, Supporting information). The 358 

highest probability scores were obtained with 4, 3, 3 and 4 founders for the four types of 359 

simulations (Table S5, Supporting information).  360 

 361 

Method 3: Population-specific simulations. We used population-specific simulations using 362 

mtDNA and nDNA, based on three prior theoretical allele frequency distributions (Freq, Rich, 363 

and Level, in descending order of sensitivity to rare alleles). For mtDNA, all three prior allele 364 

frequency distributions yielded very comparable estimates (Table 3 and Table S6, Supporting 365 

information), with averages ranging between 3.5 and 4 founders (1 ≤ range ≤ 8). This didn’t 366 

change appreciably when the natural systems were excluded (results not shown). For nDNA, 367 

similar average (2.8 to 5.5) values were found (2 ≤ range ≤ 13), although the estimate using the 368 

Freq. prior distribution was somewhat higher and was positively skewed due to higher estimates 369 
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for two populations (Table 3 and Table S6, Supporting information). Confidence in the prior 370 

distribution of regional allele frequencies (Freq.) was unacceptably low (highest observed 371 

likelihood score < 0.05) in six cases for nDNA and two cases for mtDNA. The prior distribution 372 

based on local richness of alleles (Rich) yielded one estimate at nDNA with too low likelihood 373 

scores (Table 3 and Table S6, Supporting information). All these estimates indicate that founding 374 

population sizes were typically smaller than five individuals, and very rarely exceeded ten 375 

individuals.  376 

 377 

Effect of size and age of the reservoir 378 

There was no significant relation (p > 0.05) between He and surface area or log (surface 379 

area) of the water body (S = 183.28, Spearman rank r = 0.3563, p-value = 0.126) or with age of 380 

the reservoir (S = 342.35, Spearman rank r = -0.197, p-value = 0.730, Figs S1, Supporting 381 

information). The only significant correlation found in a total of 42 associations tested (age, 382 

depth, area, versus AR, He, Ho, HR, HD, CR/N, CD/N, FIS, number of founders at mtDNA 383 

(Colonize-Rich), and number of founders at nDNA (Colonize-Rich)) was between He and 384 

average depth (r = -0.79, p < 0.001). However, after Bonferroni correction, this p-value was 385 

larger than 0.05. All other correlations were extremely weak and statistically insignificant at 386 

α=0.05 (absolute value of r < 0.15, uncorrected p > 0.10; Figs S1, Supporting information). 387 

Inclusion of size and/or age of the reservoir did not provide a better model (Geste v. 2) for 388 

genetic structure than the more parsimonious null model. All of these results support the 389 

hypothesis that founder effects are the main drivers of genetic structure and indicate that clonal 390 

genetic drift did not markedly influence our estimates of founding population sizes. In addition, 391 

none of the tests we did could show a significant difference between founding population size 392 

estimates based on mitochondrial versus nuclear genetic data, or based on richness versus 393 
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diversity estimates (all p values > 0.05). Thus, we have no indication that the assumptions 394 

concerning genetic drift were violated (see Table S7 and Fig. S1, supporting information).  395 

 396 
  397 
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Discussion  398 

Although we included a broad set of environmental and spatial variables, we found no 399 

pattern with environmental variation, space and time (age) in the distribution of genetic variation 400 

of the studied Daphnia sinensis populations inhabiting reservoirs in Tigray. Both the nuclear and 401 

mitochondrial markers that we used are expected to behave neutrally. As such, we expected a 402 

stronger signature of space than of environment. Still, a correlation with environmental variables 403 

may result when particular haplotypes would hitchhike with particular genotypes or fixed allele 404 

combinations that are favoured under certain conditions. Two studies on strictly asexual 405 

zooplankton with comparable sample sizes and statistical power found clear environmental 406 

and/or spatial structuring in their studies (Aguilera et al. 2007; Pantel et al. 2011) suggesting that 407 

the lack of patterns in our dataset is not merely a consequence of insufficient statistical power. 408 

Evolution-mediated priority effects, the key feature of the monopolisation hypothesis (De 409 

Meester et al. 2002; De Meester et al. 2016), are expected to be less important in asexual taxa 410 

than in similar sexual taxa, due to a reduced ability for rapid local adaptation in the asexuals. As a 411 

consequence, it is expected that fitness differences among dispersed clones will lead to a match 412 

between environmental gradients and landscape genetic structure in asexual taxa, similar to 413 

species sorting in communities (De Bie et al. 2012; Leibold et al. 2004). Conversely, if the 414 

colonizing propagules of a sexual species harbours sufficient genetic variation to allow local 415 

genetic adaptation, the increased fitness of resident populations may reduce establishment 416 

success of new immigrants and thus reduce gene flow (De Meester et al. 2016). As a result, the 417 

match between environmental and genetic variation is expected to be less strong in sexual than in 418 

asexual species, which is the emergent pattern from our study on a cyclically parthenogenetic 419 

Daphnia species and contrasts with the two aforementioned studies that focused on obligately 420 

parthenogenetic Daphnia.  421 
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To investigate the number of founders typically involved in the colonization of new 422 

moderately-sized freshwater systems (ranging from 1.8-45.4 ha in size), we used three different 423 

approaches that rely on different test statistics with varying prior parameters, applied on two 424 

independent sets of genetic markers. All approaches indicated that typically less than five 425 

founders per habitat were responsible for the observed pattern of genetic diversity in the studied 426 

reservoirs. Irrespective of whether we used estimates based on richness data or more detailed 427 

frequency data, we obtained very similar estimates, showing that our results are robust to strong 428 

allele frequency changes that may have occurred since colonization. Admittedly, the different 429 

approaches we used all rely on similar assumptions, including an absence of genetic drift since 430 

colonization, and genetic independence of each founder. The second assumption that the founders 431 

are genetically independent from each other may have been violated to some extent. Birds, for 432 

example, may disperse more than one dormant stage at the same time from a single source, 433 

thereby introducing multiple related propagules. Especially results from mtDNA are expected to 434 

be prone to such bias, given the much lower local and regional genetic variation compared to the 435 

levels of variation found at nDNA. Estimated numbers of founders for nDNA and mtDNA were, 436 

however, very similar.  437 

We have detected high genetic differentiation among population (FST= 0.232) and no 438 

isolation by dispersal limitation. This indicates low levels of gene flow among populations. 439 

Furthermore, we failed to detect isolation-by-environment (IBE), which rules out the possibility 440 

that sorting of genotypes along environmental gradients similar to species sorting in communities 441 

(Leibold et al. 2004)  might have driven the observed high genetic differentiation among 442 

populations. Thus, our results support the idea that colonization dynamics in a newly created 443 

metapopulation are strongly affected by founder effects exerted by a limited number of founding 444 

genotypes. The founder effects observed here indicate that metapopulation and colonization 445 
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dynamics in this species resemble a lottery model (Sale 1977). In Sale’s (1977) lottery model, 446 

individuals compete for a limited number of discrete resources and once a resource is claimed, an 447 

individual cannot be usurped from it. The classic lottery model was formulated at the community 448 

level and with respect to microsites. However, it here acts at the level of genetic variants of a 449 

species, and at the habitat level in a metapopulation. Populations are thus founded by a small 450 

number of individuals from a varied array of regional sources. As long as a local genetic variant 451 

persists (also if persistence is mediated through dormant stages; (Mergeay et al. 2007), the niche 452 

space will continue to be occupied by these local variants, thereby pre-empting niche space for 453 

immigrants. Several empirical studies focusing on colonization of novel habitats have shown that 454 

dispersal rates in zooplankton are high (Cáceres & Soluk 2002; Jenkins & Buikema 1998; 455 

Louette & De Meester 2005). The lack of spatial genetic patterns in our dataset also suggests that 456 

dispersal per se is not limiting at the spatial scale here studied.  457 

The sole environmental variable that showed a significant but negative correlation with 458 

genetic diversity was average lake depth. One may speculate that the negative correlation 459 

between depth and He reflects a species-specific preference for shallow waters, thereby reducing 460 

the likelihood that a colonizing propagule will survive in deep reservoirs. This is indeed expected 461 

from an organism that seems to naturally inhabit shallow pools. In that case, however, we would 462 

also expect a similar negative relation between depth and number of founders, or other measures 463 

of genetic diversity, which was not the case. An alternative explanation is that deeper lakes result 464 

in more stable habitat conditions and therefore in populations that survive year-round and are 465 

thus less dependent on dormant egg banks for survival. It is well known that more permanent 466 

populations in Daphnia exhibit lower genetic diversity because of ongoing clonal erosion (De 467 

Meester et al. 2006; Hebert 1987). 468 

Earlier studies (Boileau et al. 1992; Haag et al. 2006) already showed that founder events 469 
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can strongly determine metapopulation structure, but the habitats they studied were very small 470 

(less than <100 m2). The systems we study are thousand times larger than the typical size of the 471 

small habitats studied earlier, with associated differences in carrying capacity, effective 472 

population size, genetic drift and inbreeding. Although the results shown here should be 473 

interpreted with some caution given that the limited number of reservoirs that was inhabited by 474 

the studied Daphnia species resulted in a reduced statistical power in detecting spatial and 475 

environmental patterns, our analyses strongly indicate that zooplankton populations of these new 476 

large water bodies are typically founded by just a handful of individuals. Interestingly, the 477 

number of founders in these reservoirs (on average 4-6) is strikingly similar to the range found in 478 

ponds with population sizes that are up to a thousand times smaller (Boileau et al. 1992; Louette 479 

et al. 2007). Similarly, the local recolonization by Daphnia barbata of the 150 km2 large Kenyan 480 

Lake Naivasha happened most likely by no more than nine individuals from an old dormant egg 481 

bank (Mergeay et al. 2007).  482 

Inbreeding effective population size (Ne) in populations is a function of the number of 483 

founders and is thus generally small in our zooplankton population. It seems that in zooplankton, 484 

habitat size per se, at least within given boundaries, may have little influence on the effective 485 

population size. Next to the low number of founders that seem typically involved, our results 486 

indicate that these founder effects were equally high irrespective of the age of the reservoirs. 487 

Several case studies on the propagule banks of Daphnia populations have demonstrated high 488 

local genetic stability  over periods of 50-150 years (Decaestecker et al. 2007; Mergeay et al. 489 

2007). Recently, Ventura et al. (2014) even provided empirical evidence for founder effects 490 

lasting thousands of years. All this evidence indicates that zooplankton populations primarily 491 

have founder-controlled populations (Okamura & Freeland 2002), similar to founder-controlled 492 

communities (Sale 1977). In such populations, dispersal contributes little to gene flow and is 493 
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mostly prevalent during the initial phase of colonization of empty or newly created habitats. 494 

While dormant propagules are the main unit of dispersal in most zooplankton, their most 495 

pervasive impact on landscape genetic structure may be their role in the short-term and long-term 496 

local persistence of populations as well as in fostering colonization of empty habitats rather than 497 

that they contribute to continuous gene flow among populations. Even seemingly extinct 498 

populations may still be recolonized by local dormant egg banks once the habitat becomes 499 

suitable again after decades (Mergeay et al. 2007). This has profound consequences for our view 500 

on metapopulation biology of zooplankton and other micro-organisms, as these species often 501 

share the lack of landscape genetic structure reflecting strong isolation-by-distance (Okamura & 502 

Freeland 2002). More specifically, we should not equal high potential for dispersal into high rates 503 

of gene flow (De Meester et al. 2016). In very small water bodies, however, negative effects of 504 

genetic drift and inbreeding can be pronounced, and the positive influence on fitness of 505 

immigrant alleles or genotypes from immigrants may then promote immigration and gene flow 506 

(Ebert et al. 2002). One might therefore expect a shift from a gene flow dominated system in 507 

extremely small populations (Ebert et al 2002) to metapopulations that are more strongly 508 

dominated by local processes combined with extinction-recolonization dynamics in somewhat 509 

larger systems such as the reservoirs studied here, shallow lakes and the sometimes much smaller 510 

(approx. 100 m2) farmland ponds (De Meester et al. 2002; Louette et al. 2007; Vanoverbeke & 511 

De Meester 1997). 512 
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List of tables  642 

Table 1: Genetic diversity in mtDNA haplotypes: observed frequencies (expressed as fractions) 643 
of each haplotype per water body and diversity descriptors. N: number of individuals extracted 644 
per sampling site. HR: haplotype richness. HD-Si: true haplotype diversity measured with the 645 
Simpson index. Average observed alpha diversity is the average observed within-sample 646 
diversity weighted by sample size. Average expected alpha diversity gives the expected value of 647 
HR or HD given a panmictic population over all water bodies, using 10,000 permutations. The 648 
range of the expected values shows the lowest and highest value among all permutations over 649 
individuals. All observed values deviate significantly (p<0.0001) from expected values. True beta 650 
diversity is calculated as gamma/alpha. 651 
 652 
  Haplotype n°   
Water body N 1 2 3 4 5 6 HR HD-Si 
Adi Gela  17 0 0.71 0.06 0.18 0.06 0 4 1.86 
Adi Kenafiz  18 0 0 0.39 0.56 0 0.06 3 2.16 
Dibla  27 0.26 0.07 0.67 0 0 0 3 1.93 
Gereb Awso  35 1.00 0 0 0 0 0 1 1.00 
Gereb Mihiz  31 0.45 0.16 0.39 0 0 0 3 2.63 
Gum Selasa  33 0.27 0.06 0.27 0.39 0 0 4 3.25 
Haiba  6 0.83 0 0.17 0 0 0 2 1.38 
Mai Leba  29 0.03 0.93 0 0.03 0 0 3 1.15 
Meala  32 0.97 0.03 0 0 0 0 2 1.06 
Tsinkanet  12 0 1.00 0 0 0 0 1 1.00 
Temp 1 (T1 ) 22 0.14 0.36 0.50 0 0 0 3 2.49 
Temp 3 (T3) 23 0 1.00 0 0 0 0 1 1.00 
Overall frequency 0.33 0.36 0.203 0.097 0.005 0.005   
Average observed (alpha) 0.38 0.30 0.19 0.12 0.01 0.01 2.5 1.74 
Total diversity (gamma)       6 3.43 
Average expected alpha       4 3.40 
Range expected alpha       3.7-4.2 3.01-3.67 
True beta diversity       2.4 2.10 
 653 
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Table 2: Clonal and genetic diversity based on microsatellite loci (nDNA). N: sample size; n: number of individuals with complete 654 

genotypic information (6 loci) on which calculations of clonal richness (CR) and clonal diversity (CD) were based. CR=clonal 655 

richness; CD=clonal diversity.  656 

Water 
body 

    
Observed   Expected$   

            

  N n CR CD CR/n CD/n CR ± S.e CD ± S.e A AR Ho He HWE¥ FIS 

AG 30 20 19 18.18 0.95 0.91 20.92±0.09 20.86±0.02 20 2.97 0.38 0.54 0.001 0.302 
AK 30 20 15 11.11 0.75 0.56 12.04±0.03 11.40±0.05 11 1.76 0.39 0.34 0.335 -0.164 
DIB 30 27 19 12.79 0.70 0.47 25.13±0.05 22.86±0.08 15 2.29 0.41 0.32 0.085 -0.29 
GA 32 31 13 8.50 0.42 0.27 21.35±0.06 16.10±0.08 14 1.95 0.34 0.27 0.108 -0.242 
GM 36 34 19 6.64 0.56 0.20 28.09±0.10 25.05±0.08 19 2.46 0.43 0.39 0.001 -0.106 
GS 40 32 27 22.26 0.84 0.70 22.93±0.03 22.08±0.05 18 2.63 0.38 0.47 0.000 0.19 
HA 16 16 16 16.00 1.00 1.00 14.99±0.01 14.98±0.01 17 2.62 0.35 0.41 0.001 0.145 
ML 29 23 22 21.16 0.96 0.92 23.68±0.02 23.42±0.03 13 2.13 0.57 0.47 0.012 -0.19 
MA 30 20 3 1.23 0.15 0.06 21.71±0.04 20.67±0.06 13 1.85 0.51 0.29 0.000 -0.755 
TS 18 15 11 7.76 0.73 0.52 14.99±0.01 14.98±0.01 18 2.92 0.39 0.52 0.000 0.258 
T1 26 23 15 8.97 0.65 0.39 18.37±0.04 14.58±0.06 14 2.10 0.21 0.24 0.272 0.138 
T3 32 32 31 30.12 0.97 0.94 29.63±0.04 28.52±0.06 14 2.13 0.45 0.47 0.335 0.032 
CR/n and CD/n refers to clonal richness and diversity, respectively, corrected for sample size expressed as proportion of clones to total 657 
individuals genotyped. A = number of alleles; Ar = allelic richness; Ho = observed heterozygosity; He = expected heterozygosity; FIS = 658 
fixation index between individuals within local populations. ¥The numbers are the p-value from a goodness of fit to HWE expectations 659 
test using Fisher’s exact test method. $refers to the expected clonal richness (CR) and clonal diversity (CD) under Equilibrium using 660 
randomisation tests implemented in Hwclon (De Meester & Vanoverbeke 1999)There is no significant difference (at α= 0.05) between 661 
Observed CR/CD and expected CR/CD values for all population comparisons  662 
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Table 3: Summary results of Colonize analyses with three prior allele frequency distributions 663 
(Freq, Rich, Level; see main text for explanation), showing the most likely number of founders 664 
for each population, based on either mtDNA or nDNA data, for each population and averaged 665 
over all populations. Sd: standard deviation. Values with asterisk indicate that the likelihood 666 
score was too low (p < 0.05) to represent a reliable estimate. Non-integer values represent the 667 
average of shared highest scores. 668 
 669 
 N° of founders with highest likelihood score (Colonize) 
 mtDNA nDNA 
Water body Freq Rich Level Freq Rich Level 
Adi Gela 4* 4 4 2* 2 2 
Adi Kenafiz 5* 8 7 7* 7 5 
Dibla 5 4 4 5 3 2 
Gereb Awso 1 1 1 5 2 2 
Gereb Mihiz 5 6 4 12.5 4 4 
Gum Selasa 8 8 7.5 13 5 4 
Haiba 2.5 2 2 3* 2 2 
Mai Leba 4 3.5 3 5 3 2 
Meala 2 2 2 2* 2 2 
Tsinkanet 1 1 1 3* 3* 4 
T1 5 5 5 3* 2 2 
T3 1 1 1 6 3 2 
Average 3.63 3.79 3.46 5.54 3.17 2.75 
Standard deviation 2.17 2.55 2.23 3.71 1.53 1.14 
 670 
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 672 

 673 

Figure 1: Geographic location of the sampling sites and mtDNA haplotype frequencies in each 674 

population. Major cities are indicated with a star. Inset on the right shows the overall regional 675 

frequency of the six encountered haplotypes. AG = Adi Gela; AK = Adi Kenafiz; Di = Dibla; GA 676 

= Gereb Awso; GM = Gereb Mihiz; Ha = Haiba; ML = Mai Leba; Me = Meala; Ts = Tsinkanet; 677 

T1 = Temporary pond 1; T3 = Temporary pond 3.  678 
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 680 

  681 

Figure 2. Relationship between Nei’s genetic distance and geographic distance (panel A; testing 682 

for an isolation-by-distance and thus for dispersal limitation; r = -0.114; p = 0.662) and the 683 

Euclidean distance for environmental variables (panel B; testing for isolation-by-environment; r = 684 

0.181; p= 0.212).  685 

 686 

A 

B 


	Introduction
	Methods
	Study region and sampling
	Genotyping
	Population genetic data analysis
	Spatial, environmental and temporal correlates of genetic differentiation
	Estimating the number of effective founders
	Testing assumptions
	Results
	Genetic diversity
	Number of founders

	Discussion
	Acknowledgments
	Data Accessibility
	References
	List of tables

