Founding Clones, Inbreeding, Coancestry, and Status Number of Modern Apple Cultivars

Dominique A.M. Noiton

The Horticulture and Food Research Institute of New Zealand Ltd, Havelock North Research Center, Havelock North, New Zealand

Peter A. Alspach

The Horticulture and Food Research Institute of New Zealand Ltd, Riwaka Research Center, Motueka, New Zealand

Additional index words. breeding, genetic diversity, Malus ×domestica

Abstract. Pedigrees of apple (Malus \times domestica Borkh.) cultivars were used to study worldwide genetic diversity among clones used in modern apple breeding. The most frequent founding clones were 'Cox's Orange Pippin', 'Golden Delicious', 'Red Delicious', 'Jonathan', and 'McIntosh'. Coefficients of coancestry between 50 mainstream cultivars and these clones averaged 0.03, 0.12, 0.07, 0.06, and 0.02, respectively, but they were frequently as high as 0.25 with certain pairings. Among a group of 27 cultivars carrying the Vf gene for scab resistance, coefficients of coancestry with the five founding clones were of the same order. Although few of the cultivars sampled were substantially inbred, inbreeding could reach serious levels in their future offspring if current breeding practices are continued. The status effective number was 8 for the mainstream group and 7 for the Vf-carrier clones. This indicates clearly that apple breeders are operating with a population of greatly reduced genetic diversity. Careful consideration of pedigrees and increased size of the genetic base are needed in future apple breeding strategies.

The domestic apple (*Malus* ×*domestica*), one of the world's most ancient and most widely cultivated temperate fruit, may have originated in western Asia from natural hybridization between several species including *M. sylvestris* Mill., *M. sieversii* Ldb., and *M. baccata* (L.) Borkh (Roach, 1985). Twenty-five species and more than 7000 cultivars have been reported in apple; however, despite this vast genetic diversity, modern commercial apple production is dominated by only a few cultivars (Way et al., 1990). This trend toward genetic uniformity in commercial apple orchards is further accentuated by the release of additional mutants of popular cultivars (Brooks and Olmo, 1991, 1994).

Most current commercial apple cultivars have been identified as chance seedlings, but these are slowly being replaced by new selections developed by private breeders or by public research agencies. Unfortunately, financial investment in apple breeding is generally decreasing (Way et al., 1990), and many breeding programs are restricted to commercial cultivar production by crossing well-known parents. Few resources are generally put into long-term population improvement. Consequently, most apple breeders are working within a population of a limited genetic base, which is likely to handicap future genetic improvement and the progress of the apple industry.

During the last 30 years, breeding objectives have mainly focused on meeting aesthetic standards established by supermarkets, but eating quality and disease resistance are now receiving greater priority. The apple breeding programs for resistance to scab (*Venturia inaequalis* Cke.) have mostly concentrated on the *Vf* gene from *M. floribunda* Sieb. clone 821. All cultivars carrying the *Vf* gene originated from a cross between two selections of *M*.

Received for publication 23 Oct. 1995. Accepted for publication 14 Feb. 1996. This study was supported by the New Zealand Foundation for Research and Technology. We are grateful to Tony Shelbourne and Luis Gea from the New Zealand Forest Research Institute for sharing their knowledge on the status effective number. We also thank Mark McNeilage, Ron Beatson, and Alan Seal from HortResearch and Tony Shelbourne for editing the manuscript. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked *advertisement* solely to indicate this fact.

floribunda 821 x 'Rome Beauty'. Since 1970, more than 38 cultivars carrying the *Vf* gene have been released commercially (Crosby et al., 1992).

This study attempts to measure genetic diversity presently use in apple breeding throughout the world. Pedigrees available in the literature were used to study the genetic contribution of five major founding clones to a sample of 77 modern apple cultivars. Coefficients of inbreeding (Malécot, 1948) and coancestry (Cruden, 1949) and status effective number (Lindgren et al., 1995) were calculated for the 77 cultivars as indicators of genetic diversity.

Materials and Methods

Pedigrees of 439 apple cultivars (total of 377) and breeding selections from around the world were collected from available literature (Brooks and Olmo, 1972, 1975, 1978, 1984, 1991, 1994; de Coster, 1986; Cripps et al., 1993; Dayton et al., 1977; Fischer and Fischer, 1993a, 1993b; Korban et al., 1990; Le Lezec and Babin, 1992; Sadamori et al., 1973; Sansavini, 1993; Smith, 1971; Tamba et al., 1992; Wang, 1990; Williams et al., 1967, 1975, 1984; Yamada et al., 1980). From this database, 77 cultivars of known parentage released since 1970 were sampled to represent a range of countries of origin (Table 1). They were classified into two groups represented by 50 mainstream cultivars and by 27 Vfcarrier cultivars. The degree of relationship of these 77 clones with the five frequent founding clones, 'McIntosh', 'Golden Delicious', 'Jonathan', 'Cox's Orange Pippin', and 'Red Delicious' was investigated by calculating the individual coefficient of coancestry of each of these clones with the 50 mainstream cultivars and the 27 Vf-carrier cultivars. Inbreeding coefficients were calculated for the 77 cultivars themselves, being the same as the coefficient of coancestry of their two parents. Coefficients of coancestry were also calculated among the 50 mainstream cultivars, among the 27 Vf-carrier cultivars, and among the 77 cultivars together. This formed the base for calculating the status effective number of these populations.

Inbreeding and coancestry. Inbreeding coefficient of an indi-

Table 1. Reported parentage, country of origin, and year of commercial release of 77 modern apple cultivars.

Cultivar	Reported parentage	Origin	Year
	Mainstream group		
Akane	Jonathan x Worcester Pearmain	Japan	1970
Akita Gold	Golden Delicious x Fuji ²	Japan	1990
Aori	Toko ^z x Richared Delicious ^z	Japan	>1970
Arlet	Golden Delicious x Idared ^z	Switzerland	1989
Burgundy	Monroe ^z X (Macoun X Antonovka)	United States	1974
Chantecler	Golden Delicious x Reinette Clochard	France	1977
Charden	Golden Delicious x Reinette Clochard	France	1971
Cloden	Golden Delicious x Reinette Clochard	France	1977
Delcorf	Jongrimes x Golden Delicious	France	1974
Delrouval	Delcorf x Akane	France	1993
Earlidel	Red Delicious x Early McIntosh ^z	Australia	1988
Elan	Golden Delicious x James Grieve	Netherlands	1989
Elstar	Golden Delicious x Ingrid Marie ^z	Netherlands	1972
Empress	Jonamac ^z x Vista Bella	United States	1988
Falstaff	James Grieve x Golden Delicious	England	1989
Feleac	Jonathan open-pollinated	Romania	1980
Fiesta	Cox's Orange Pippin x Idared ^z	England	1986
Fushuai	Early McIntosh ² x Golden Delicious	China	1977
Generos	Frumos de Voinesti x ((Golden Pearmain x <i>M. kaido</i>) x Jonathan)	Romania	1983
Goldsmith	Granny Smith x Golden Delicious	South Africa	1975
Greensleeves	James Grieve x Golden Delicious	England	1977
Himekami	Fuji ² x Jonathan	Japan	1985
Hokuto	Fuji ^z X Mutsu ^z	Japan	>1970
Honeycrisp	Macoun ^z X Honeygold ^z	United States	1991
Hongbaoshi	Ralls Janet x Red Delicious	China	1988
Huaguan	Golden Delicious X Fuji ²	China	1988
Huashuai	Fuji x Starkrimson ²	China	1988
Jinguang	Ralls Janet x Red Delicious	China	1988
Jubile (Delbart)	Golden Delicious X Lundbytorp	France	>1970
Jupiter	Cox's Orange Pippin x Starking Delicious ^z	England	1981
Karmijn	Cox's Orange Pippin x Jonathan	Netherlands	1971
Kent	Cox's Orange Pippin x Jonathan	England	1974
Kogetsu	Golden Delicious X Jonathan	Japan	1981
Korona	(Mother x Red Rome Beauty) x Scotia ²	Canada	1987
	•	China	1988
Luxiangziao Michinoku	Jinhong ^z x (Ralls Janet x Starking Delicious ^v) Kitakami ^z x Tsugaru ^z		1988
	<u> </u>	Japan	1986
Pink Lady	Golden Delicious x Lady Williams London Pippin x Red Delicious	Australia	1980
Predgornoe	**	Ukrainia China	1984
Qinguan Rubinovoe Duki	Golden Delicious X (Ralls Janet X Red Delicious)		
	Jonathan X Aport Alexander	Ukrainia	1989
Sansa	Gala ^z X Akane	Japan	1989
Scarlet	Akane x Starking Delicious ^v	Japan	1984
Senshu	Toko ^z X Fuji ^z	Japan	1980
Shamrock	McIntosh spur type x Starkspur Golden Delicious ^u	Canada	1986
Skifskoe	Golden Delicious x Wagener	Ukrainia	1984
Summerdel	Red Delicious X Earliblaze	Australia	1989
Sundowner	Golden Delicious x Lady Williams	Australia	1979
Suntan	Cox's Orange Pippin x Court Pendu Plat	England	1974
Vista Bella	((Melba x Sonora) x ((Williams x Starr) x USDA34) x Julyred ^z	United States	1974
Yanshanhong	Ralls Janet x Richared Delicious ^v	China	1989
	Vf-based group		
Baujade	Granny Smith x (Reinette du Mans x (Golden Delicious x		
	(Golden Delicious x F2 26829-2-2 ^z)))	France	1988
Britegold	Sandel ^z x (Platt Melba ^z x (Jonathan x F2 26829-2-2 ^z))	Canada	1980
Dayton	((Melba ^z x (Wealthy x Starr)) x (Red Rome Beauty ^y x Melba ^z)) x		
	((Jonathan x F2 26829-2-2 ^z) x ((Melba x (Wealthy x Starr)) x		
	(Red Rome Beauty ^y x Melba ^z)))	United States	1987
Delorina	Grifer x Florina	France	1993
Enterprise	McIntosh x (Starking Delicious x (Golden Delicious x F2 26829-2-2 ^z)) sib.	United Sates	1994

Table 1. Continued.

Cultivar	Reported parentage	Origin	Year
Florina	Jonathan x (Starking Delicious v x (Golden Delicious x F2 26829-2-2 ^z))	France	1977
Freedom	(Macoun ² x Antonovka) x (Golden Delicious x F2 26829-2-2 ²)	United States	1983
Goldrush	Golden Delicious X (Winesap open-pollinated X (Melrose ^z X		
	(Golden Delicious x F2 26829-2-2 ^z)))	United States	1994
Jolana	Spartan x PRI 370/15 ^t	Czechoslovakia	1985
Jonafree	((Golden Delicious x F2 26829-2-2 ^z) x Jonathan) x (Gallia Beauty ^y x Red Spy ^w)	United States	1979
Liberty	PRI 54-12t x Macoun ²	United States	1979
McShay	McIntosh x (Starking Delicious x X (Golden Delicious x F2 26829-2-2 ^z))	United States	1981
Moira	McIntosh x (Jonathan x F2 26829-2-2 ²)	Canada	1978
Novamac	McIntosh x (((Melba ^z x (Wealthy x Starr)) x (Red Rome Beauty ^y x Melba ^z))		
	x (Jonathan x F2 26829-2-2 ^z))	Canada	1978
Pionier	(Verzisoare x Jonathan) x Prima	Romania	1982
Priam	Jonathan x (Golden Delicious x F2 26829-2-2 ^z)	France/USA	1974
Prima	(Golden Delicious x F2 26829-2-2 ^z) x ((Melba ^z x (Wealthy x Starr))		
	x (Red Rome Beauty x Melbaz))	United States	1970
Priscilla	Starking Delicious x (McIntosh x (Golden Delicious x F2 26829-2-2 ²))	United States	1972
Redfree	Raritan ^z x (((Melba ^z x (Wealthy x Starr)) x (Red Rome Beauty ^y x Melba ^z)) x		
	(Jonathan x F2 26829-2-2 ^z))	United States	1981
Retina	(Cox x Oldenburg) x F3 M. floribunda ^t	Germany	1991
Rewena	(Cox x Oldenburg) x F3 M. floribunda ^t	Germany	1991
Selena	Britemac ^z x Prima	Czechoslovakia	1990
Sir Prize	Tetraploid Golden Delicious x (Golden Delicious x F2 26829-2-2 ^z)	United States	1972
Trent	McIntosh x (Jonathan x F2 26829-2-2 ^z)	Canada	1979
Vandat	Jolana x Lord Lambourne	Czechoslovakia	1990
Voinea	Frumos de Voinesti x Prima	Romania	1985
William's Pride	(((Melba x (Wealthy x Starr)) x (Red Rome Beauty x Melba²))		
	x (Jonathan x F2 26829-2-2 ^z)) x (Mollie's Delicious ^z x Julyred ^z)	United States	1988

²'Britemac' = 'Melba' x 'Kildare'; 'Early McIntosh' = 'Yellow Transparent' x 'McIntosh'; F2 26829-2-2 = ('Rome Beauty' x *M. floribunda* 821) x ('Rome Beauty' x *M. floribunda* 821); 'Fuji' = 'Ralls Janet' x 'Red Delicious'; 'Gala' = 'Kidd's Orange ('Red Delicious' x 'Cox Orange Pippin') x 'Golden Delicious'; 'Honeygold' = 'Golden Delicious' x 'Haralson'; 'Idared '= 'Jonathan' x 'Wagener'; 'Jonamac' = 'McIntosh' x 'Jonathan'; 'Julyred' = (('Petrel' x 'Early McIntosh') x ('Williams' x 'Starr')); 'Jinhong' = 'Golden Delisious' x 'Hongtaiping'; 'Kitakami' = ('McIntosh' x 'Worcester Pearmain') x 'Redgold' ('Golden Delicious' x 'Richared Delicious'); 'Macoun' = 'McIntosh' x 'Jersey Black'; 'Melba' = 'McIntosh' openpollinated; 'Melrose' = 'Jonathan' x 'Red Delicious'; 'Mollie's Delicious' = ('Golden Delicious' x 'Edgewood') x ('Red Gravenstein' x 'Close'); 'Monroe' = 'Jonathan' x 'Rome Beauty'; 'Mutsu' = 'Golden Delicious' x 'Indo'; 'Raritan' = ('Melba' x 'Sonora') x ('Melba' x ('William' x 'Starr')); 'Sandel' = 'Red Delicious' x 'Sandow'; 'Scotia' = 'McIntosh' open-pollinated; 'Spartan' = 'McIntoch' x 'Yellow Newton'; 'Tsugaru' = 'Golden Delicious' open-pollinated; 'Toko' = 'Golden Delicious' x 'Indo'.

vidual was defined by Malécot (1948) as the probability that its allelic pairs were identical by descent. The inbreeding coefficient of an individual depends on the amount of common ancestry of its two parents. The degree of relationship by descent of the two parents is their coefficient of coancestry, f, which is identical with the inbreeding coefficient, F, of their progeny. Inbreeding coefficient was computed using an algorithm developed by Alspach (1976), which is very similar to that of Cruden (1949).

All parents were treated as diploid, and parents of unknown origin were assumed to be unrelated and noninbred. Apples are mostly self-incompatible, and it was assumed that cultivars without known pedigree originated from outcrossed open-pollination, underestimating possible inbreeding. All mutants were regarded as the same as the original cultivar (for example 'Jonared' was listed as 'Jonathan'). Since only few genes are expected to be different between such mutants and the original, this simplification can lead to minor overestimation of inbreeding coefficients. Al-

lelic contributions from both parents were assumed to be equal and unaltered by breeders' selection. As it is uncertain whether apple breeders would select for or against homozygosity, the effect of this assumption on the inbreeding coefficient estimate is unknown.

Status effective number. The status effective number of a breeding population (Lindgren et al., 1995) is defined as the number of unrelated and noninbred genotypes in an ideal panmictic population that would produce progeny with the same average coefficient of inbreeding as the progeny of the genotypes of a panmictic breeding population. Self-pollination and free mating with relatives is assumed in the panmictic breeding population. Status effective number, which can be compared with the actual census number of a population, measures the genetic diversity of that population. It can be derived for any population of known pedigree through calculating the matrix of coancestries. It can never be higher than the census number, and it generally declines with time. Status number is calculated as Ns = 0.5/f, where Ns is

^{&#}x27;Made equivalent to 'Rome Beauty'; 'Gallia Beauty' and 'Red Rome Beauty' = mutations of 'Rome Beauty'.

^xMade equivalent to 'Melba'; 'Platt Melba' = mutation of 'Melba'.

[&]quot;Made equivalent to 'Northern Spy'; 'Red Spy' = mutation of 'Northern Spy'.

^{&#}x27;Made equivalent to 'Red Delicious'; 'Starking Delicious' = mutation of 'Red Delicious'; 'Starkrimson' = mutation of 'Starking Delicious'; 'Richared Delicious' = mutation of 'Red Delicious'.

[&]quot;Made equivalent to 'Golden Delicious'; 'Starkspur Golden Delicious' = mutation of Golden Delicious'.

^tIncomplete parentage.

Table 2. Inbreeding coefficients and coancestry coefficients with 'Cox's Orange Pippin', 'Red Delicious', Golden Delicious', 'Jonathan', and 'MacIntosh' of 77 modern apple cultivars.

			Coef	ficient of coancestry	with	
	Inbreeding	Cox's Orange	Red	Golden		
Cultivar	coefficients	Pippin	Delicious	Delicious	Jonathan	MacIntosh
		Mainst	ream group			
Akane	0.000	0.000	0.000	0.000	0.250	0.000
Akita Gold	0.000	0.000	0.125	0.250	0.000	0.000
Arlet	0.000	0.000	0.000	0.250	0.125	0.000
Burgundy	0.000	0.000	0.000	0.000	0.125	0.063
Chantecler	0.000	0.000	0.000	0.250	0.000	0.000
Charden	0.000	0.000	0.000	0.250	0.000	0.000
Cloden	0.000	0.000	0.000	0.250	0.000	0.000
Delcorf	0.000	0.000	0.000	0.250	0.000	0.000
Delrouval	0.000	0.000	0.000	0.125	0.125	0.000
Earlidel	0.000	0.000	0.250	0.000	0.000	0.125
Elan	0.000	0.000	0.000	0.250	0.000	0.000
Elstar ^z	0.000	0.125	0.000	0.250	0.000	0.000
Empress	0.063	0.000	0.000	0.000	0.125	0.188
Estivale	0.000	0.000	0.250	0.125	0.000	0.000
Falstaff	0.000	0.000	0.000	0.250	0.000	0.000
Feleac	0.000	0.000	0.000	0.000	0.250	0.000
Fiesta	0.000	0.250	0.000	0.000	0.125	0.000
Fushuai	0.000	0.000	0.000	0.250	0.000	0.125
Generos	0.000	0.000	0.000	0.000	0.125	0.123
Goldsmith	0.000	0.000	0.000	0.250	0.123	0.000
Greensleeves	0.000	0.000	0.000	0.250	0.000	0.000
Himekami	0.000	0.000	0.125	0.000	0.250	0.000
Hokuto	0.000	0.000	0.125	0.125	0.000	0.000
Honeycrisp	0.000	0.000	0.000	0.125	0.000	0.125
Hongbaoshi	0.000	0.000	0.250	0.000	0.000	0.000
Huaguang	0.000	0.000	0.125	0.250	0.000	0.000
Huashuai	0.250	0.000	0.375	0.000	0.000	0.000
Jinguang	0.000	0.000	0.250	0.000	0.000	0.000
Jubilee	0.000	0.000	0.000	0.250	0.000	0.000
Jupiter	0.000	0.250	0.250	0.000	0.000	0.000
Karmijn	0.000	0.250	0.000	0.000	0.250	0.000
Kent	0.000	0.250	0.000	0.000	0.250	0.000
Kogetsu	0.000	0.000	0.000	0.250	0.250	0.000
Korona	0.000	0.000	0.000	0.000	0.000	0.125
Luxiangziao	0.000	0.000	0.125	0.125	0.000	0.000
Michinojku	0.063	0.000	0.063	0.188	0.000	0.063
Pink Lady	0.000	0.000	0.000	0.250	0.000	0.000
Predgornoe	0.000	0.000	0.250	0.000	0.000	0.000
Qinguan	0.000	0.000	0.125	0.250	0.000	0.000
Rubinovoe	0.000	0.000	0.000	0.000	0.250	0.000
Sansa	0.000	0.063	0.063	0.125	0.125	0.000
Scarlet	0.000	0.000	0.250	0.000	0.125	0.000
Senshu	0.000	0.000	0.125	0.125	0.000	0.000
Shamrock	0.000	0.000	0.000	0.250	0.000	0.250
Skifskoe	0.000	0.000	0.000	0.250	0.000	0.000
Summerdel	0.000	0.000	0.250	0.000	0.000	0.000
Sundowner	0.000	0.000	0.000	0.250	0.000	0.000
Suntan	0.000	0.250	0.000	0.000	0.000	0.000
Vista Bella	0.109	0.000	0.000	0.000	0.000	0.125
Yanshanhong	0.000	0.000	0.250	0.000	0.000	0.000
Mean	0.010	0.029	0.073	0.121	0.055	0.024
			rrier group	- · · · ·		
Baujade	0.000	0.000	0.000	0.094	0.000	0.000
Britegold	0.000	0.000	0.125	0.000	0.063	0.063
Dayton	0.297	0.000	0.000	0.000	0.063	0.003
Dayton	0.297	0.000	0.063	0.000	0.063	0.094

			Coef	ficient of coancestry	with	
	Inbreeding	Cox's Orange	Red	Golden		
Cultivar	coefficients	Pippin	Delicious	Delicious	Jonathan	MacIntosh
Enterprise	0.250	0.000	0.125	0.063	0.000	0.250
Florina	0.000	0.000	0.125	0.063	0.250	0.000
Freedom	0.000	0.000	0.000	0.125	0.000	0.063
Goldrush	0.063	0.000	0.031	0.281	0.031	0.000
Jolana ^y	0.000	0.000	0.000	0.000	0.000	0.125
Jonafree	0.066	0.000	0.031	0.094	0.156	0.000
Liberty ^y	0.000	0.000	0.000	0.000	0.000	0.125
McShay	0.000	0.000	0.125	0.063	0.000	0.250
Moira	0.000	0.000	0.000	0.000	0.125	0.250
Novamac	0.063	0.000	0.000	0.000	0.063	0.281
Pionier	0.000	0.000	0.000	0.063	0.125	0.031
Priam	0.000	0.000	0.000	0.125	0.250	0.000
Prima	0.031	0.000	0.000	0.125	0.000	0.063
Priscilla	0.000	0.000	0.250	0.063	0.000	0.125
Redfree	0.000	0.000	0.000	0.000	0.063	0.031
Retina ^y	0.000	0.125	0.000	0.000	0.000	0.000
Rewera ^y	0.000	0.125	0.000	0.000	0.000	0.000
Selena	0.063	0.000	0.000	0.063	0.000	0.094
Sir Prize	0.250	0.000	0.000	0.375	0.000	0.000
Trent	0.000	0.000	0.000	0.000	0.125	0.250
Vanda ^y	0.000	0.000	0.000	0.000	0.000	0.063
Voinea	0.000	0.000	0.000	0.063	0.000	0.031
William's Pride	0.033	0.000	0.000	0.031	0.078	0.078
Mean	0.041	0.009	0.032	0.064	0.056	0.084
Grand mean	0.021	0.022	0.058	0.101	0.055	0.045

²'Ingrid Marie' assumed to derived from 'Cox's Orange Pippin' open pollination.

the status number, and f is the average coancestry of the population (including selfing).

Results and Discussion

Founding clones. About 64% of 439 cultivars and selections studied was found to be descended from only five founding clones: 'McIntosh' (101 cultivars), 'Golden Delicious' (87 cultivars), 'Jonathan' (74 cultivars), 'Cox's Orange Pippin' (59 cultivars), and 'Red Delicious' (56 cultivars). Among these, 96 cultivars had two or more of the five founding clones in their parentage. Other frequent cultivars occurring in pedigrees included 'James Grieve', 'Rome Beauty', and 'Wealthy'.

'McIntosh' was extensively used as a parent in Canada (it is present in pedigrees of 37 of the 65 Canadian cultivars sampled), the United States (34 of 115), and eastern Europe (11 of 41), but rarely occurred in pedigrees from other countries (5 of 159). 'Golden Delicious' was found in the pedigrees of many cultivars from Pacific-Rim countries such as Japan, China, Australia, and New Zealand (26 of 47), from western Europe (18 of 50), and to a lesser extent from the United States (21 of 115). 'Jonathan' was mostly used in breeding programs in western Europe (13 of 50) and in the United States (29 of 115). 'Cox's Orange Pippin' contributed to 30 of the 62 cultivars released from the United Kingdom compared to 15 of the 50 cultivars from western Europe and 10 of the 227 cultivars from all other countries. 'Red Delicious' was frequent in pedigrees of cultivars from Pacific-Rim countries (17 of 47)) and from the United States (26 of 115).

Of 439 cultivars and selections sampled, 41% of those released

before 1930 was related to at least one of the five main founding clones. This increased to 74% during 1940–60 and remained at 73% in recent releases.

These results support Brown's concern (1973) about the trend in excessive use of 'Cox's Orange Pippin', 'Golden Delicious', 'Jonathan', 'Red Delicious', and 'McIntosh' as parents. The problem of restricted number of founding clones in apple breeding is common to many fruit crops, such as raspberry (Dale et al., 1993), blueberry (Hancock and Siefker, 1982), and peach (Scorza et al., 1988). The predominance of only five founding clones in modern apple cultivars may be explained by the lack of information on the breeding value of apple germplasm, which deters breeders from using untested parents. Cultivars such as 'Golden Delicious', 'Red Delicious', 'Jonathan', 'McIntosh', and 'Cox's Orange Pippin' have been reported to be generally valuable parents (Davis et al., 1954; Lantz, 1936). 'Red Delicious' seems to transmit red color, while 'Cox's Orange Pippin' and 'Golden Delicious' are useful to breed yellow and green apples (Brown, 1992; Percival and Proctor, 1994). In addition, mutants of 'Red Delicious', 'McIntosh', and 'Golden Delicious' are used in breeding for compact, spur-type, and dwarf growth habits (Brown, 1992).

Coancestry of apples. The mean coefficients of coancestry (Table 2) of the 77 cultivars included in this study were 0.101 with 'Golden Delicious', 0.058 with 'Red Delicious', 0.055 with 'Jonathan', 0.044 with 'McIntosh', and 0.022 with 'Cox's Orange Pippin'. Coefficients of coancestry ranged between 0 for most pairings to 0.281 for 'GoldRush' with 'Golden Delicious' and 'Novamac' with 'McIntosh'. The high levels of coancestry found

yIncomplete parentage available.

Clone	Akane	Akita Gold	Aori	Arlet	Burgundy	Chantecler	Charden	Cloden	Delcorf	Defrouval	Earlide	Elan	Eistar	Empress	Falstaff	Feleac	Fiesta	Fushuai	Generos	Goldsmith	Greensleaves	Himekami	Hokuto	Honeycrisp	Hongbaoshi	Huaguan	Huashuai
Akane	500	<u> </u>		63	63		-	-	-	250	-	- -	-	63		125	63		63	-	_	125	-				- -
Akita Gold	-	500				125	125	128	125	63	63	125	125	i -	125	i -		125	_	125	125	125	188	63	125	250	188
Aori	-	125				125	125	125	125	63	-	125	125	· -	125	-		125	-	125	125		63	63		125	
Arlet	63	125	63	500		_ 125	125	125	125	94	-	125	125	31	125	63	125	125	31	125	125	63	63	63		125	
Burgundy	63	-	-	31	500		-	-	-	31	16	-	-	53	-	63	31	16	31	-	-	63	-	63		120	
Chantecler	-	125	63	125		500				63	-	125	125	-	125	-	_	125	-	125	125		63	63		125	
Charden	-	125	63	125		250	500	250	125	63	-	125	125	-	125	_	_	125	_	125	125	_	63	63	_	125	
Cloden	-	125	63	125		250					-	125	125	-	125	-	-	125	_	125	125	_	63	63	_	125	
Delcorf		125	63	125		125	125					125	125	-	125	-	-	125	_	125	125	_	63	63	_	125	
Deirouval	250	63	31	94	31	63	63	63	250	500	1	63	63	31	63	63	31	63	31	63	63	63	31	31	_	63	
Earlidel	-	63	125	-	16	-	-	-	-	_	500] -	-	55	-	_	-	125	-	_	-	63	63	31	125		188
Elan	-	125	63	125		125	125	125	125	63	-	500	125	-	250	_	-	125	-	125	250		63	63	-	125	
Elstar	-	125	63	125		125	125	125	125		-	125	500	- 1	125	_	-	125	_	125	125	_	63	63	_	125	
Empress	63	-	-	31	53	-	-	-	-	31	\$ 5	-		523] -	63	31	47	31	-	_	63	-	47	_		
Faistaff		125	63	125	-	125	125	125	125		-	250	125	_	500	1 -	-	125		125	250		63	63	_	125	
Feleac	125	-	-	63	63	-	•	-	-	63	-	-	-	63	_	500	63	-	63	-	-	125	-		_	-	
Fiesta	63	-	-	125	31	-	-	-	-	31	-	-	-	31	-	63	500	_	31	-	_	63	_		_	_	
Fushuai	-	125	63	125	16	125	125	125	125		125	125	125	55	125	-	_	500	_	125	125		63	94		125	
Generos	63	-	-	31	31	-	-	-	-	31	-	-	-	31	-	63	31		500	۱ -	-	63	_	-	_	-	
Goldsmith	•	125	63	125	-	125	125	125	125	63	-	125	125	-	125		-	125	-	500	125	_	63	63	_	125	
Greensleaves	-	125	63	125	-	125	125	125	125	63	-	250	125	-	250	-	_	125	-	125	500	l -	63	63	_	125	_
Himekami	125	125	63	63	63	-	-	-		63	63	-	-	63	-	125	63	-	63		-	500	125	-	125	125	188
Hokuto	-	188	125	63	-	63	63	63	63	31	63	63	63	-	63	-	-	63	_	63	63	125	500	31	125		188
Haneycrisp	-	63	31	63	63	63	63	63	63	31	31	63	63	43	63	-	-	94	-	63	63	_	31	500		63	-
Hongbaoshi	-	125	125	-	-	-	-	-	-	-	125	-	-	-		-	-	-	-	-		125	125	-	500	125	250
Huaguan	-	250	125	125	-	125	125	125	125	63	63	125	125	-	125	-	-	125	-	125	125	125	188	63	125	500	188
Huashuai	-	188	188	-	-	•	-	-	-	-	188	-	-	-	-	-	-	-	-	-	-	188	188	-	250	188	625
Jinghuang Jubile	-	125	125	-	•		-		•	-	125		-	-	-	-	-	-	-	-	-	125	125		250	125	250
Jupiter	-	125	63	125	-	125	125	125	125	63	-	125	125	-	125	-	-	125	-	125	125	-	63	63	-	125	_
Karmijn	- 425	63	125	-	-	-	-	-	-	-	125	-	-	-	-	-	125	-	-	-	-	63	63	-	125	63	188
Kent	125 125	-	-	63	63	•	-	-	-	63	-	-	-	63	-	125	188	-	63	-	-	125	-	-	-	-	-
Kogetsu	125	125	63	63	63		-	-		63	-	-	-	63	-	125	186	-	63	-	-	125	-	-	-	-	-
Korona	123	125	ĐΦ	188	63	125	125	125	125	125	-	125	125	63	125	125	63	125	63	125	125	125	63	63	-	125	-
Luxiangziao	-	125	94	63	47	63	-	~		-	31	•	-	43	-	-	-	31	-	-	-	-	-	31	-	-	-
Michinoku	31				:		63	63	63	31	63	63	63	-	63	-	-	63	-	63	63	63	94	31	125	125	125
Pink Lady	31	109	78	94	8	94	94	94	94	63	47	94	94	21	94	-	-	109	-	94	94	16	63	63	31	109	47
Predgomoe	-	125	63	125	-	125	125	125	125	63	-	125	125	-	125	-	-	125	-	125	125	-	63	63	-	125	-
•	-	63	125	-	-		-		-	-	125	-	-	-	-	-	-	-	-	-	-	63	63		125	63	188
Qinguan Rubinovoe Duki	125	188	125	125	-	125	125	125	125	63	63	125	125	-	125	-	-	125	-	125	125	63	125	63	125	188	125
Sansa	250	78	63	63	63		-			63	-	•	-	63	-	125	63	-	63	-	-	125	-		-	-	-
Scarlet	250	63	125	94	31	63	63	63	63	156	31	63	63	31	63	63	63	63	31	63	63	78	47	31	31	78	47
Senshu	290	188	125 94	31	31	-	-	-	-	125	125	-	-	31	-	63	31	•	31	-	-	125	63	-	125	63	188
Shamrock	_	125	63	63 125	31	63	63	63	63	31	63	63	63	-	63	-	-	63	-	63	63	125	188	31	125	188	188
Skifskoe		125	63	188	31	125	125	125	125	63	63	125	125	86	125	-		188	-		125	•	63	125	-	125	-
Summerdel		63	125	100	•	125	125	125	125	63	405	125	125	-	125	-	63	125	-	125	125	-	63	63	-	125	-
Sundowner	-	125	63	125	:	125	125	125	- 105	-	125	-	-	-	-	-	-	-	-	-	-	63	63	-	125	63	188
Suntan	_	-	٠	120	•	123	120	125	125	63	-	125	125	-	125	-		125	-	125	125	-	63	63	-	125	-
Vista Bella	-	_	-	-	12	•	-	-	-	-	47	-	-	-	-	-	125	-	-	-	-	-	-	-	-	-	-
Yanshanhong	-	125	125	-		-	-	-	_	_	47 125	-	-	291	-	-	-	47	-	:	-	- 125	- 125	23	- 250	125	250
Mean x	37	90	64	76	17	64	64	64	63	E#	20			25	٠.											.20	
Mean *	47	100	74	86	27	74	•	74		55 65	39	64	59	25	64	25	27	67	13	59	64	56	62	36	46	90	59
	.,			~	4 r	. 7	74	7-4	73	00	49	74	69	36	74	35	37	77 .	23	69	74	66	72	46	56	100	72

 $^{^{}z}$ Coefficients of coancestry values \times 1000; self-pollinated = 500; parent-offspring = 250; full sibs = 250; half sibs = 125; first cousins = 63. No coancestry of known parents indicated with dashes.

between many modern cultivars and 'Golden Delicious', 'Red Delicious', 'Jonathan', 'McIntosh', and 'Cox's Orange Pippin' indicate that further use of the five founding clones or their descendants will increase the risk of inbreeding in future generations.

Coefficients of coancestry among all 77 cultivars are shown in Tables 3, 4, and 5. The mean coancestry within cultivars in the mainstream (Table 3) and Vf-carrier (Table 4) groups was similar (0.051 and 0.050, respectively). Mean coancestry coefficients ranged from 0.006 to 0.090 in the first group and from 0.017 to 0.088 in the second group. The mean coancestry (Table 5) between the mainstream and the Vf-carrier group was more than half (0.032)

of that found for each group and ranged from 0.009 to 0.092. Mean coancestry of the 77 selected apple cultivars was comparable with coancestry in plums (0.069 to 0.080) (Byrne, 1989) but was low compared with average coancestry reported in peaches (0.023 to 0.208, 0.034 to 0.330) (Scorza et al., 1985)...

Coancestry between mainstream cultivars (Table 3) was generally higher than coancestry between Vf-carrier cultivars (Table 4). About 25% of parental combinations in the first group had coefficients of coancestry \geq 0.125 (selfings excluded) against 8% in the second group. About 5% of parental combinations between both groups (Table 5) showed coefficients of coancestry >0.125. These results indicate that pedigrees should be carefully examined before

^xMean coefficient of coancestry excluding selfing.

wMean coefficient of coancestry including selfing.

Clone	Jinghuang	Jubile	Jupiter	Karmijn	Kent	Kogetsu	Korona	Luxiangziao	Michinoku	Pink Lady	Predgomoe	Qinguan	Rubinovoe Duki	Sansa	Scarlet	Senshu	Shamrock	Skifskoe	Summerdel	Sundowner	Suntan	Vista Bella	Yanshanhong	Mean *	Mean [₩]
Akane	-	-	-	125	125	125	-	-	31	-	-	-	125	250	250	-		-	-		-	-		37	47
Akita Gold	125	125	63	-	-	125	-	125	109	125	63	188	-	78	63	188	125	125	63	125	-	-	125	90	100
Aori	-	63	-	-	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	58	68
Ariel	-	125	-	63	63	188	-	63	94	125	-	125	63	94	31	63	125	188	-	125	-	-	-	74	84
Burgundy	-	-	-	63	63	63	47	-	8		-		63	31	31	•	31		-		-	12	-	17	27
Chantecler	-	125	-	-	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	63	73
Charden	-	125	-	•	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	63	73
Claden	-	125	-	•	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	63	73
Delcorf	-	125	-	-	-	125	-	63	94	125	-	125	-	63		63	125	125	-	125	-	-	-	62	72
Delrouval	-	63	-	63	63	125	-	31	63	63	-	63	63	156	125	31	63	63	-	63	-	-	-	54	64
Earlidel	125	-	125	-	-	-	31	63	47	-	125	63	-	31	125	63	63	-	125	-	-	47	125	41	51
Elan	-	125	-	-	-	125	-	63	94	125	-	125	-	63	•	63	125	125	-	125	-	-	-	63	73
Elstar	-	125	-	-	-	125	-	63	94	125	-	125	-	63	•	63	125	125	-	125	-		-	58	68
Empress	-	-	-	63	63	63	47	-	23	-	-	-	63	31	31	-	94	-	-	-	-	291	-	25	36
Falstaff	-	125	-	-	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	63	73
Feleac	-	-	-	125	125	125	-	-	-	-	-	-	125	63	63	-	-	•	-	-	-	-	-	25	35
Fiesta	-	-	125	188	188	63	-	-	•	-	-	-	63	63	31	-	-	63	-	-	125	•	-	27	37
Fushuai	-	125	-	-	-	125	31	63	109	125	•	125	-	63	-	63	188	125	-	125	-	47	-	66	76
Generos	-	-	-	63	63	63	-	-			-	-	63	31	31	-	-	-	-	-	-	-	-	13	23
Goldsmith	-	125	-	-	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	58	68
Greensleeves	-	125	-	-	-	125	-	63	94	125	•	125	-	63	-	63	125	125	-	125	-	-	-	63	73
Himekami	125	-	63	125	125	125	-	63	16	-	63	63	125	78	125	125	-	-	63	-	-	-	125	57	6 7
Hakuto	125	63	63	-	-	63	-	94	63	63	63	125	-	47	63	188	63	63	63	63	-	-	125	63	73
Honeycrisp	-	63	-	-	-	63	31	31	63	63	-	63	-	31	-	31	125	63	-	63	-	23	-	36	46
Hongbaoshi	250	-	125	-	-	-	-	125	31	•	125	125	-	31	125	125	-	-	125	-	-	-	250	49	59
Huaguan	125	125	63	-	-	125	-	125	109	125	63	188	-	7B	63	168	125	125	63	125	-	-	125	90	100
Huashuai	250	-	188	-	-	-	-	125	47	-	168	125	-	47	188	188	-	-	188	-	-	-	250	63	76
Jinghuang	500	-	125	-	-	-	-	125	31	-	125	250	-	31	125	125	•	-	125	•	-	-	250	51	61
Jubile	-	500	L	-	-	125	-	63	94	125	-	125	-	63	-	63	125	125	-	125	-	-	-	58	68
Jupiter	125	-	500	125	125	-	-	63	31	-	125	63	-	63	125	63	-	-	125	-	125	-	125	44	54
Karmijn	-	-	125	500	250	125	-	-	-	-	-	-	125	94	63	-	•	-	-	-	125	-	-	36	46
Kent	-	-	125	250	500	125		-	-	-	-	-	125	94	63	-	-	-	-	-	125	-	-	36	46
Kogetsu	-	125	-	125	125	500	-	63	94	125	-	125	125	125	63	63	125	125	-	125	-	-	-	83	93
Korona	-	-	-	-	-	-	500		16	-	-	-	-	-	-	-	63	-	-	-	-	23	-	6	16
Luxiangziao	125	63	63	-	-	63	•	500	63	63	63	125	-	47	63	94	63	63	63	63	-	-	125	55	65
Michinoku	31	94	31			94	16	63	531	94	31	109		70	47	63	125	94	31	94	-	12	31	57	68
Pink Lady		125		-		125	-	63	94	500	<u>L</u> -	125	-	63		63	125	125	-	250	-	-	-	61	71
Predigornoe	125		125	_			-	63	31	-	500	63	-	31	125	63	-	-	125	-	-	-	125	34	44
Qinguan	250	125	63	-	-	125	-	125	109	125	63	500	-	78	63	125	125	125	63	125	-	-	125	86	96
Rubinovoe Duki		-	-	125	125	125	-	-	-	-	-	-	500	63	63	-	-	-	-	-	-	-	-	25	35
Şansa	31	63	63	94	94	125	-	47	70	63	31	78	63	500	156	47	63	63	31	63	31	-	31	63	73
Scarlet	125	-	125	63	63	63	-	63	47	-	125	63	63	156	500	63	-	-	125	-	-	-	125	55	65
Senshu	125	63	63		-	63	-	94	63	63	63	125		47	63	500	63	63	63	63	-	-	125	62	72
Shamrock	-	125	-		-	125	63	63	125	125	-	125		63	-	63	500	125		125	-	47	-	67	77
Skifskoe	_	125	-	-		125	-	63	94	125	-	125		63	-	63	125	500	<u> </u>	125	-	-	-	61	71
Şummerdel	125	-	125			-	-	63	31	-	125	63	-	31	125	63	-	-	500			-	125	34	44
Sundowner	-	125	_	_		125	-	63	94	250	-	125	-	63	-	63	125	125	-	500	<u>l -</u>	_	-	61	71
Suntan	_	_	125	125	125	-	-	-	-	-	-	-	-	31	-	-	-	-	-		500	1 -		11	21
Vista Bella	_					-	23	-	12	_		-	-		-	-	47	-	-	-	-	535	-	10	21
Yanshanhong	250		125			-	_	125	31	_	125	125	-	31	125	125	-	-	125	-	-	-	500	49	59
											_ •													_	
Mean x	49	58	42	36	36	84	6	55	58	62	31	86	25	63	52	62	68	62	31	62	11	10	46	51	
Mean "	59	68	52	46	46	94	16	65	68	72	41	96	35	73	62	72	78	72	41	72	21	21	56		61

selecting parents. With increasing demands for disease-resistant cultivars, future apple cultivars will not solely derive from intermating individuals within the mainstream group. However, with the high coefficients of coancestry between many individuals from the mainstream and *Vf*-carrier groups (Table 5), the latter group provides only a short-term solution. In addition, report of a new race of apple scab virulent to all *Vf* gene cultivars and selections tested (Parisi et al., 1993) reinforces the need for other sources of scab resistance. It is essential in future to introduce new germplasm into breeding programs and combine resistances to several diseases and pests.

Inbreeding coefficients. Among cultivars sampled, 6% showed an inbreeding coefficient >0. Inbreeding coefficients ranged from 0 for most cultivars to 0.297 for 'Dayton'. The inbreeding coefficients of 'Tydeman's Late Orange', 'Sinta', 'Enterprise', 'Howgate Wonder', 'Mellow', and 'Webster' were all 0.250. For the 77

modern cultivars studied, four of the 50 mainstream cultivars and nine of the 27 Vf-carrier cultivars were inbred (Table 2). Mean inbreeding coefficients were 0.01 for cultivars in the mainstream group and 0.04 for cultivars in the Vf-carrier group. Overall, the inbreeding level in apple is low compared with other fruit crops such as peach (0.26 to 0.35) (Scorza et al., 1988), blueberry (0.13) (Hancock and Siefker, 1982), and raspberry (0.12) (Dale et al., 1993). Mean inbreeding coefficients in apple are similar to those reported in plums (0.02 to 0.05) (Byrne, 1989). However mean coefficients of coancestry of the 77 apple cultivars sampled were 2 to 5 times their mean inbreeding coefficients. Consequently, even if inbreeding in apple is not a problem in this generation, the coancestry level of many future potential parents indicates that problems may arise in the next generation.

Little is known about the effects of inbreeding in apple. It has increased the juvenile period of progenies related to 'Cox's Orange

Clone	Baujade	Britegold	Dayton	Delorina	Enterprise	Florina	Freedom	Goldrush	Jolana	Jonafree	Liberty 7	McShay	Moira	Novamac	Pionier	Priam	Prima	Priscilla	Redfree	Retina ^y	Rewena y	Selena	Sir Prize	Trent	Vanda ^y	Voinea	William's Pride	Mea <u>n</u> ^x	Mean "
Baujade Britegold Dayton Delorina Enterprise Florina Freedom Goldrush Jolana y Jonafree Liberty y McShay Mora Novamac Pronier Priam Prima Priscilla Redfree Retina y Rewena y Selena Sir Prize Trent Vanda y Voinea William's Pride Mean x	500 5 8 8 17 33 55 - 25 - 17 10 6 83 33 35 10 10 18 80 10 18 12 17	5 5000 70 366 72 77 17 16 42 16 66 66 64 35 55 88 35 20 20 59 20 66 88 27 47 47 41	8 70 648 23 63 47 43 12 23 43 23 63 63 94 145 139 98 31 170 31 170 31 123 116 68	8 36 250 63 250 18 35 - 60 - 31 41 21 41 20 40 21 10 10 33 41 - 10 27 35	625	17 72 47 250 125 500 35 70 - 119 - 63 82 43 82 43 82 80 43 20 20 66 62 - 20 55 61	33 27 43 18 66 66 35 500 80 16 53 66 67 70 86 51 37 43 43 43 51 133 70 84 39 49	555 17 12 355 70 80 531 - 188 - 555 18 10 49 109 82 86 10 10 10 41 12 11 18 41 22 41 41 28	16 23 -63 -63 -6500 - 500 - 31 8 - 23 -63 250 8 16 28	25 42 43 60 41 119 53 18-8 - 533 - 41 68 37 68 145 59 42 29 100 68 - 29 48 52	- 16 23 - 3 - 63 - 63 - 500 63 - 70 8 - 16 31 8 23 - 63 - 16 8 - 16 8 - 16 8 - 16 8 - 16 8 8 - 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	152 35 63 70 143 27 20 66 66 145 31 35 47	10 66 94 41 145 82 70 18 63 68 63 145 500 102 55 39 370 39 195 74	531 64 55 98 82 86 23 23 96 23 180 35 49 109	18 43 139 41 35 82 43 49 8 68 8 8 68 8 70 64 102 258 27 70 49 23 23 23 145 70 49 62	33 51 63 94 63 70 109 - 55 102 55 102 55 55 39 39 39 39 39 39 39 39 40 63 63 70 70 70 70 70 70 70 70 70 70 70 70 70	35 55 246 20 39 86 82 16 59 16 78 98 258 85 516 47 289 141 78 8 258 85	17 88 39 40 143 80 51 56 31 42 31 143 82 27 55 55 50 20 20 20 43 66 82 27 31	6 35 98 21 27 43 27 10 8 37 8 27 55 56 66 49 55 56 66 20 23 23 23 23 25 49 23 25 49 27 27 27 27 27 27 27 27 27 27 27 27 27	10 20 31 10 20 20 43 10 - 29 - 23 23 23 23 23 23 23 23 23 23 23 23 23	39 39 23 23	18 59 170 10 66 20 51 41 23 23 66 67 96 145 39 43 49 23 23 53 70 70 70 70 12 145 68	80 20 31 33 36 66 66 133 221 100 - 66 39 23 70 623 39 70 625 70 47	10 66 94 41 145 82 70 18 63 63 145 180 70 102 55 39 39 70 39 74	8 12 - 31 - 8 - 250 - 16 31 35 4 - 12 - 12 - 15 500 4 8	18 27 123 10 35 20 43 41 8 29 8 35 39 49 129 39 23 23 23 245 70 39 4 4 5 5 70 4 4 4 4 4 4 4 4 5 5 7 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8 7 8	12 47 116 27 47 55 39 28 16 48 16 47 74 109 62 70 85 31 78 23 23 68 47 74 85 55 31 85 85 85 85 85 85 85 85 85 85 85 85 85	17 41 68 35 70 61 49 47 28 52 21 66 72 72 62 65 88 51 32 4 60 72 19 49 48	36 60 92 53 79 68 67 77 40 85 91 80 84 107 69 54 42 42 83 83 89 1 37 67 67
Mean "	36	60	92	53	93	61 79	49 68	47 67	28 47	52 72	21 40	66 85	72 91	72 91	62 80	65 84	88 107	51 69	36 54	24 4 2	2 4 42	64 83	60 83	72 91	19 37	49 67	48 67	50	70

²Coefficients of coancestry values × 1000. Self-pollinated = 500; parent-offspring = 250; full sibs = 250; half sibs = 125; first cousins =63. No coancestry of known parents indicated with dashes.

Pippin' and has reduced their vigor and survival rate (Brown, 1973). It can be a useful strategy for the production of commercial cultivars, especially if the relationship between inbreeding coefficients and traits of interest is known. However inbreeding also increases uniformity within progenies which may jeopardize future improvement (Lesley, 1957). The role of inbreeding in apple breeding needs to be studied both for short-term commercial cultivar production and for long-term population improvement.

Status effective number. The status effective numbers were 8.2 for the 50 mainstream cultivars (Table 3), 7.1 for the 27 Vf-carrier cultivars (Table 4), and 10.2 for the 77 cultivars of both groups analyzed together (Table 5). This means that genetic diversity in each of these three groups is reduced to the equivalent of 8, 7, and 10 panmictic-mated, unrelated, and noninbred genotypes, respectively. Such small status effective numbers indicate that breeders are working with a very narrow genetic base.

The status effective number is a useful quantitative measure of the current state of genetic diversity in a breeding population and extends information given by inbreeding and coancestry coefficients (Lindgren et al., 1995). It can be calculated easily for any population from a coancestry matrix and will assist breeders in assessing the germplasm they are using. For example, status effective numbers, calculated from published results, were 2.6 to 4.4 in peach (Scorza et al., 1985) and 6.3 to 7.2 in plums (Byrne, 1989).

Despite the availability of large numbers of modern cultivars and breeding selections from apple breeding programs, worldwide, the actual size of the genetic resources currently used by breeders is small and, in the course of future genetic improvement, may become exhausted. This loss of genetic diversity will result in a preponderance of genes from the main founding clones, while genes from other germplasm will disappear. There is a great need to broaden the genetic base for breeding new apple cultivars. Modified backcross mating design has been used by many breeders to minimize loss of genetic diversity, particularly for the development of scab-resistant apple cultivars carrying the *Vf* gene (Williams et al., 1967, 1975, 1984). However, the genetic base from which these recurrent parents are chosen is still narrow.

One strategy followed in New Zealand since 1989 (Noiton and Shelbourne, 1992) is to use recurrent selection for combining ability to develop an apple breeding population. Such strategy is used by most forest tree breeding programs. The apple breeding population was established from open-pollinated seeds of 500 cultivars collected from clonal repositories throughout the world. This strategy will increase and maintain a high level of diversity for the sustainable improvement of a large number of useful traits.

Literature Cited

Alspach, P.A. 1976. Computation of inbreeding coefficients from stored pedigree data using Malecot's method. MS thesis, Univ. of York, England.

Brooks, R.M. and H.P. Olmo. 1972. Register of new fruit and nut varieties. 2nd ed. Univ. of California Press, Berkeley.

Brooks, R.M. and H.P. Olmo. 1975. Register of new fruit and nut varieties list 30. HortScience 10:471–478

Brooks, R.M. and H.P. Olmo. 1978. Register of new fruit and nut varieties list 31. HortScience 13:522–532.

Brooks, R.M. and H.P. Olmo. 1984. Register of new fruit and nut varieties list 34. HortScience 19:359–363.

Brooks, R.M. and H.P. Olmo. 1991. Register of new fruit and nut varieties

^yCultivars with incomplete parentage.

^xMean coefficient of coancestry excluding selfing.

^wMean coefficient of coancestry including selfing.

Clone	Baujade	Britegold	Dayton	Delorina	Enterprise	Florina	Freedom	Goldrush	Jolana ^y	Jonafree	Liberty ^y	McShay	Moira	Novemac	Pionier	Priam	Prima	Priscilla	Redfree	, Retina ^y	Rewena ^y	Selena	Sir Prize	Trent	Vande ^y	Voinea	William's Pride	Mean
Akane	-	31	31	63	-	125	-	16		78	-	-	63	31	63	125	-	-	31	-	-	•	-	63	-	•	39	28
Akita Gold	47	31	-	31	63	63	63	148	-	55	-	63	-	-	31	63	63	94	-	-	-	31	188	-	-	31	16	40
Aori	23	63	•	39	78	78	31	86	•	39	-	78	-	-	16	31	31	141	-	-	-	16	94		-	16	8	32
Arlett	47	16	16	47	31	94	63	148	-	86	-	31	31	16	63	125	63	31	16	-	-	31	188	31	-	31	35	46
Burgundy	4	31	59	35	39	70	78	12	16	51	63	39	78	66	51	78	39	23	35	20	20	27	16	78	8	20	43	41
Chantecler	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Charden	47	-	-	16	31	31	63	141	-	47	•	31	-	-	31	63	63	31	-	-	-	31	188	•	-	31	16	32
Cloden	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Delcorf	47	-	-	16	31	31	63	141	-	47	-	31	-	•	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Delrouval	23	16	16	39	16	78	31	78	-	63	-	16	31	16	47	94	31	16	16	-	-	16	94	31	-	16	27	30
Earlidel	-	78	23	31	125	63	16	16	31	16	31	125	63	70	8	-	16	156	8	-	-	23	-	63	16	8	27	37
Elan	47		-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Elstar	47	-	-	16	31	31	63	141	-	4 7	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Empress	-	49	68	31	86	63	21	8	43	39	43	86	117	119	49	63	35	43	33	-	-	51		117	21	18	82	48
Falstaff	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	:	-	31	16	32
Feleac	-	31	31	63	-	125	-	16	-	78	-	-	63	31	63	125	-	-	31	-	-	-	-	63	-	-	39	28
Fiesta	-	16	16	31	-	63	-	8	-	39	-	-	31	16	31	63	-	-	16	63	63	-	-	31	-	-	20	19
Fushuai	47	16	23	16	94	31	78	141	31	47	31	94	63	70	39	63	78	63	8	-	-	55	188	63	16	39	43	53
Generos	-	16	16	31	-	63	-	8	-	39	-	-	31	16	31	63	-	-	16	-	-	-		31	-	125		19
Goldsmith	172		-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	36
Greensleeves	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Himekami	_	63	31	78	31	156		23	-	86	-	31	63	31	63	125	-	63	31	-	-	-	-	63	-	-	39	36
Hokuto	23	31		23	47	47	31	78	-	31	-	47	-	-	16	31	31	78	-	-	-	16	94	-	-	16	8	2 4
Honeycrisp	23	16	23	8	78	16	94	70	31	23	125	78	63	70	23	31	47	47	8	-	-	39	94	63	16	23	23	42
Hongbaoshi	_	63		31	63	63	-	16	-	16	-	63	-	-	-	-	-	125	-	-	-	-	-	-	-	-	-	16
Huaguan	47	31	_	31	63	63	63	148	-	55	-	63	-	-	31	63	63	94	-	-	-	31	188	-	-	31	16	40
Huashuai	-	94	_	47	94	94	-	23	-	23	-	94	-	-	-	-	-	166	-	-	-	-	-	-	-	-	-	24
Jinghuan	-	63	-	31	63	63	-	16	-	16	-	63	-	-	-	-	-	125	-	-	-	-	-	-	-	-	-	16
Jubilee	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Jupiter	-	63		31	63	63		16	-	16	-	63	-	-	-	-	-	125	-	63	63	-	-	-	-	-	-	21
Karmijn	-	31	31	63	-	125	-	16	-	78	-	-	63	31	63	125	-	-	31	63	63	-	-	63	-	-	39	33
Kent		31	31	63		125	-	16	-	78	-	-	63	31	63	125	-	-	31	63	63	-	-	63	-	-	39	33
Kogetsu	47	31	31	78	31	156	63	156	-	125		31	63	31	94	188	63	31	31	•	-	31	188	63	-	31	55	60
Korona	4	23	55	4	70	В	31	4	31	12	31	70	78	86	23	16	47	39	23	16	16	39	16	78	16	23	31	33
Luxiangziao	23	31	-	23	47	47	31	78	-	31	-	47	-	-	16	31	31	78	-	-	-	16	94	-	-	16	8	24
Michinoku	35	23	12	20	70	39	55	109	16	39	16	70	31	35	27	47	55	70	4	-	-	35		31	8	27	20	38
Pink Lady	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	-	-	31	16	32
Predgomae	-	63		31	63	63	-	16	-	16	•	63	-	-	-	-	-	125		-	-	-	-	•	-	-	-	16
Qinguan	47	31	-	31	63	63	63	148	-	55	-	63	-	-	31	63	63	94	-	•	-	31	188		-	31	16	40
Rubinovoe Duki.	-	31	31	63		125	i -	16	-	78	-	-	63	31	63	125		-	31	-	-	-	•	63	-	-	39	28
Şansa	23	31	16	47	31	94	31	82	-	66	-	31	31	16	47	94	31	47	16	16	16	16	94	31	-	16	27	35
Scarlet	-	78	16	63	63	125	i -	23	-	55	-	63	31	16	31	63	-	125	16	-	-	-	-	31	-	-	20	30
Senshu	23		-	23	47	47	31	78	-	31	-	47	-	-	16	31	31	78	-	-	-	16		-	-	16	8	24
Shamrock	47	31	47	16	156	31	94	141	63	47	63	156	125	141	47	63	94	94	16	-	-	78			31	47	47	73
Skifskoe	47	_		16	31	31	63	141	-	47	-	31	-	-	31	63	63		-	-	-	31	188	i -	-	31	16	
Summerdel	_	63	-	31	63	63	-	16	-	16	-	63	-	-	-	-	-	125	j -	-	-	-	-	-	-	-	-	16
Sundowner	47	-	-	16	31	31	63	141	-	47	-	31	-	-	31	63	63	31	-	-	-	31	188	٠.	-	31	16	
Şuntan	_	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	63	63	-	-	-	-	-	-	5
Vista Bella	-	35	59	-	47	-	12	-	23	-	23	47	47	66	20	-	39		20	-	-	55	i -	47	12	20	93	-
Yanshanhong	-	63		31	63	63	-	16	-	16	-	63	•	-	-	-	-	125	j -	-	-	•	-	-	-	-	-	16
Mean	25	29	14	31	45	61	36	76	6	45	9	45	26	21	31	58	35	57	9	7	7	21	92	26	3	20	23	32

 2 Coefficients of coancestry values \times 1000; self-pollinated = 500; parent-offspring = 250; full sibs = 250; half sibs = 125; first cousins = 63. No coancestry of known parents indicated with dashes.

^yCultivars with incomplete parentage.

list 35. HortScience 26:951-978.

Brooks, R.M. and H.P. Olmo. 1994. Register of new fruit and nut varieties list 35. HortScience 29:942–969.

Brown, A.G. 1973. The effect of inbreeding on vigour and length of juvenile period in apples. Proc. Eucarpia fruit section Symp. V. Top fruit breeding. Canterbury, England, 11–14 Sept. 1973. p. 30–39.

Brown, S.K. 1992. Genetics of apple. Plant Breeding Rev. 9:333–366. Byrne, D.H. 1989. Inbreeding, coancestry, and founding clones of Japanese-type plums of California and the southeastern United States. J.

Amer. Soc. Hort. Sci. 114:699–705. de Coster, J. 1986. New apple cultivars. Compact Fruit Trees 19:144–158. Cripps, J.E.L., L.A. Richards, and A.M. Mairata. 1993. 'Pink Lady' apple. HortScience 28:1057.

Crosby, J.A., J. Janick, P.C. Pecknold, S.S. Korban, P.A. O'Connor, S.M.

Ries, J. Goffreda, and A. Voordeckers. 1992. Breeding apples for scab resistance: 1945–1990. Fruit Var. J. 46:145–166.

Cruden, D. 1949. The computation of inbreeding coefficients. J. Hered. 40:248–251.

Dale, A., P.P. Moore, R.J. McNicol, T.M. Sjulin, and L.A. Burmistrov. 1993. Genetic diversity of red raspberry varieties throughout the world. J. Amer. Soc. Hort. Sci. 118:119–129.

Davis, M.B., D.S. Blair, and L.P.S. Spangelo. 1954. Apple breeding at the Central Experimental Farm, Ottawa, Canada, 1920–1951. Proc. Amer. Soc. Hort. Sci. 63:243–250.

Dayton, D.F., J.B. Mowry, E.B. Williams, J. Janick, F.H. Emerson, L.F. Hough, and C.H. Bailey. 1977. Co-op 19, 20, 21, and 22: Four scabresistant apple selections released for advanced testing. Purdue Univ. Agr. Expt. Sta. Bul. 755.

- Fischer, C. and M. Fischer. 1993a. Summer apple variety 'Retina'. Erwerbsobstbau 35:79.
- Fischer, C. and M. Fischer. 1993b. Winter apple variety 'Rewena'. Erwerbsobstbau 35:80.
- Gradziel, T.M., W. Beres, and K. Pelletreau. 1993. Inbreeding in California canning clingstone peach cultivars. Fruit Var. J. 47:160–168.
- Hancock, J.F. and J.H. Siefker. 1982. Levels of inbreeding in highbush blueberry cultivars. HortScience 17:363–366.
- Korban, S.S., P.A. O'Connor, S.M. Ries, J.A. Janick, J.A. Crosby, and P.C. Pecknold. 1990. Co-op 27, 28, 29, 30, and 31: Five disease-resistant apple selections released for advanced testing. Ill. Agr. Expt. Sta. Bul. 780
- Lantz, H.L. 1936. Apple breeding: An example of parental prepotency in two progenies of the Delicious apple. Proc. Amer. Soc. Hort. Sci. 33:10–12.
- Le Lezec, M. and J. Babin. 1992. Pommier. Variétés incrites en 1992. Catalogue officiel des espèces et variétés fruitières. Arboricult. Fruitière 453:18–20.
- Lesley, J.W. 1957. A genetic study of inbreeding and of crossing inbred lines of peaches. Proc. Amer. Soc. Hort. Sci. 70:93–103.
- Lindgren, D., L.D. Gea, and P.A. Jefferson. 1995. Status number—A measure of genetic diversity. Evolution of breeding strategies for conifers from the Pacific North West. Proc. joint meeting IUFRO working parties \$2.02.05;06.12 and .14. Limoges, France, 28 July–4 Aug. 1995.
- Malécot, G. 1948. Les mathématiques de l'hérédité. Masson & Cie, Paris. Noiton, D. and C.G.A. Shelbourne. 1992. Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219.
- Parisi, L., Y. Lespinasse, J. Guillaumes, and J. Krüger. 1993. A new race of Venturia inaequalis virulent to apples with resistance due to the *Vf* gene. Phytopathology 83:533–537.
- Percival, D.C. and T.A. Proctor. 1994. 'Golden Delicious' progeny: 21st century apples. Fruit Var. J. 48:58–62.
- Roach, F.A. 1985. History and evolution of fruit crops. HortScience

- 23:51-55.
- Sadamori, S., Y. Yoshida, S. Tsuchiya, T. Haniuda, H. Murakami, H. Suzuki, and S. Ishizuka. 1973. New apple variety 'Akane'. Bul. Hort. Res. Sta., Japan, Ser. C No 8.
- Sansavini, S. 1993. Il miglioramento genetico del melo per la resistenza alle avversita biotiche. Riv. Frutticult. 5:61–73.
- Scorza, R., S.A. Mehlenbacher, and G.W. Lightner. 1985. Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J. Amer. Soc. Hort. Sci. 110:547–552.
- Scorza, R., W.B. Sherman, and G.W. Lightner. 1988. Inbreeding and coancestry of low chill short fruit development period freestone peaches and nectarines produced by the University of Florida breeding program. Fruit Var. J. 42:79–85.
- Smith, M.W.G. 1971. The national apple register of the United Kingdom. Min. of Agr., Fisheries, and Food, London.
- Tamba, J., S. Tanno, and H. Sato. 1992. New apple cultivar 'Akita Gold'. J. Jpn. Soc. Hort. Sci. 61(Suppl.2):110–111.
- Wang, Y.L. 1990. Apple breeding in China. Plant Breeding Abstr. 60:1315–1318.
- Way, R.D., H.S. Aldwinckle, R.C. Lamb, A. Rejman, S. Sansavini, T. Shen, R. Watkins,
- M.N. Westwood, and Y. Yoshida. 1990. Apples. Acta Hort. 290. 1–62. Williams, E.B., J. Janick, and F.H. Emerson. 1967. Five scab-resistant apple selections released for grower testing. Purdue Univ. Agr. Expt Sta. Bul. 271.
- Williams, E.B., J. Janick, and F.H. Emerson. 1975. Co-op 12–18: Seven scab-resistant apple selections released for advance testing. Purdue Univ. Agr. Expt Sta. Bul. 69.
- Williams, E.B., J. Janick, F.H. Emerson, S.S. Korban, and D.F. Dayton. 1984. Co-op 23, 24, 25, and 26: Four scab-resistant apple selections released for advanced testing. Purdue Univ. Agr. Expt Sta. Bul. 456.
- Yamada, M., C. Suzuki, and M. Ishiyama. 1980. New apple variety 'Tsugaru'. Bul. Aomori Apple Expt. Sta. 18:1–10.