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Abstract. A number of works have investigated using tamper-proof
hardware tokens as tools to achieve a variety of cryptographic tasks.
In particular, Goldreich and Ostrovsky considered the problem of soft-
ware protection via oblivious RAM. Goldwasser, Kalai, and Rothblum
introduced the concept of one-time programs: in a one-time program, an
honest sender sends a set of simple hardware tokens to a (potentially
malicious) receiver. The hardware tokens allow the receiver to execute a
secret program specified by the sender’s tokens exactly once (or, more
generally, up to a fixed t times). A recent line of work initiated by Katz
examined the problem of achieving UC-secure computation using hard-
ware tokens.

Motivated by the goal of unifying and strengthening these previous
notions, we consider the general question of basing secure computation
on hardware tokens. We show that the following tasks, which cannot be
realized in the “plain” model, become feasible if the parties are allowed
to generate and exchange tamper-proof hardware tokens.

– Unconditional and non-interactive secure computation. We
show that by exchanging simple stateful hardware tokens, any func-
tionality can be realized with unconditional security against mali-
cious parties. In the case of two-party functionalities f(x, y) which
take their inputs from a sender and a receiver and deliver their out-
put to the receiver, our protocol is non-interactive and only requires
a unidirectional communication of simple stateful tokens from the
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sender to the receiver. This strengthens previous feasibility results
for one-time programs both by providing unconditional security and
by offering general protection against malicious senders. As is typ-
ically the case for unconditionally secure protocols, our protocol is
in fact UC-secure. This improves over previous works on UC-secure
computation based on hardware tokens, which provided computa-
tional security under cryptographic assumptions.

– Interactive secure computation from stateless tokens

based on one-way functions. We show that stateless hardware
tokens are sufficient to base general secure (in fact, UC-secure) com-
putation on the existence of one-way functions.

– Obfuscation from stateless tokens. We consider the problem
of realizing non-interactive secure computation from stateless tokens
for functionalities which allow the receiver to provide an arbitrary
number of inputs (these are the only functionalities one can hope
to realize non-interactively with stateless tokens). By building on
recent techniques for resettably secure computation, we obtain a
general positive result under standard cryptographic assumptions.
This gives the first general feasibility result for program obfuscation
using stateless tokens, while strengthening the standard notion of
obfuscation by providing security against a malicious sender.

1 Introduction

A number of works (e.g. [1,2,3,4,5,6,7,8,9,10,11,12,13]) have investigated using
tamper-proof hardware tokens1 as tools to achieve a variety of cryptographic
goals. There has been a surge of research activity on this front of late. In particu-
lar, the recent work of Katz [9] examined the problem of achieving UC-secure [14]
two party computation using tamper-proof hardware tokens. A number of follow-
up papers [10,11,12] have further investigated this problem. In another separate
(but related) work, Goldwasser et al. [13] introduced the concept of one-time
programs : in a one-time program, a (semi-honest) sender sends a set of very
simple hardware tokens to a (potentially malicious) receiver. The hardware to-
kens allow the receiver to execute a program specified by the sender’s tokens
exactly once (or, more generally, up to a fixed t times). This question is related
to the more general goal of software protection using hardware tokens, which was
first addressed by Goldreich and Ostrovsky [1] using the framework of oblivious
RAM.

The present work is motivated by the observation that several of these pre-
vious goals and concepts can be presented in a unified way as instances of one
general goal: realizing secure computation using tamper-proof hardware tokens.
The lines of work mentioned above differ in the types of functionalities being

1 Informally, a tamper-proof hardware token provides the holder of the token with
black-box access to the functionality of the token. We will often omit the words
“tamper-proof” when referring to hardware tokens, but all of the hardware tokens
referred to in this paper are assumed to be tamper-proof.
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considered (e.g., non-reactive vs. reactive), the type of interaction between the
parties (interactive vs. non-interactive protocols), the type of hardware tokens
(stateful vs. stateless, simple vs. complex), and the precise security model (stan-
dalone vs. UC, semi-honest vs. malicious parties). This unified point of view also
gives rise to strictly stronger notions than those previously considered, which in
turn give rise to new feasibility questions in this area.

The introduction of tamper-proof hardware tokens to the model of secure com-
putation, as formalized in [9], invalidates many of the fundamental impossibility
results in cryptography. Taking a step back to look at this general model from a
foundational perspective, we find that a number of natural feasibility questions
regarding secure computation with hardware tokens remain open. In this work
we address several of these questions, focusing on goals that are impossible to
realize in the plain model without tamper-proof hardware tokens:

– Is it possible to achieve unconditional security for secure computa-
tion with hardware tokens? We note that this problem is open even for
stand-alone security, let alone UC security, and impossible in the plain model
[15]. While in the semi-honest model this question is easy to settle by relying
on unconditional protocols based on oblivious transfer (OT) [16,17,18,19],
this question is more challenging when both parties as well as the tokens
they generate can be malicious. (See Sections 1.2 and 3.1 for relevant discus-
sion.) In the case of stateless tokens, which may be much easier to implement,
security against unbounded adversaries cannot be generally achieved, since
an unbounded adversary can “learn” the entire description of the token. A
natural question in this case is whether stateless tokens can be used
to realize (UC) secure computation based on the assumption that
one-way functions exist.
Previous positive results for secure two-party computation with hardware
tokens relied either on specific number theoretic assumptions [9] or the ex-
istence of oblivious transfer protocols in the plain model [10,11], or alterna-
tively offered weaker notions of security [20].
A related question is: is it possible to obtain unconditionally secure
one-time programs for all polynomial-time computable functions?
The previous work of [13] required the existence one-way functions in order
to construct one-time programs.

– Is it possible to realize non-interactive secure two-party computa-
tion with simple hardware tokens? Again, this problem is open2 even
for stand-alone security, and impossible in the plain model. Constructions of
oblivious RAM [1] and one-time programs [13] provide partial solutions to

2 All the previous questions were open even without any restriction on the size of the
tokens. In the current and the following questions we restrict the tokens to be simple
in the sense that the size of each token can only depend on the security parameter.
This rules out a trivial solution of building a token which realizes a party in a secure
two-party computation protocol.
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this problem; however, in these models the sender is semi-honest.3 Thus, in
the context of one-time programs we ask: is it possible to achieve one-
time programs tolerating a malicious sender? We note that [13] make
partial progress towards this question by constructing one-time zero knowl-
edge proofs, where the prover can be malicious. However, in the setting of
hardware tokens, the GMW paradigm [21] of using zero knowledge proofs to
compile semi-honest protocols into protocols tolerating malicious behavior
does not apply, since one would potentially need to prove statements about
hardware tokens (as opposed to ordinary NP statements).

– Which notions of program obfuscation can be realized using simple
hardware tokens? Again, this problem can be captured in an elegant way
within the framework of secure two-party computation, except that here we
need to consider reactive functionalities which may take a single input from
the “sender” and a sequence of (possibly adaptively chosen) inputs from the
“receiver”. Obfuscation can be viewed as a non-interactive secure realization
of such functionalities. While this general goal is in some sense realized by the
construction of oblivious RAM [1] (which employs stateful tokens), several
natural questions remain: Is it possible to achieve obfuscation using
only stateless tokens? Is it possible to offer a general protection
against a malicious sender using stateless or even stateful tokens?
To illustrate the motivation for the latter question, consider the goal of
obfuscating a poker-playing program. The receiver of the obfuscated program
would like to be assured that the sender did not violate the rules of the game
(and in particular cannot bias the choice of the cards).

– What are the simplest kinds of tamper-proof hardware tokens
needed to realize the above goals? For example, Goldwasser et al. [13] in-
troduce a very simple kind of stateful token that they call an OTM (one-time
memory) token.4 An OTM token stores two strings s0 and s1, takes a single
bit b as input, and then outputs sb and stops working (or self-destructs).
Note that an OTM token essentially implements the one-out-of-two string
OT functionality; a subtle distinction between OTM and traditional OT is
discussed in Section 3.1. An even simpler type of token is a bit-OTM token,
where the strings s0 and s1 are restricted to be single bits. Is it possible
to realize unconditional, non-interactive, or UC-secure two-party
computation using only bit-OTM tokens? We note that previous works
on secure two-party computation with hardware tokens [9,10,11,20] all make
use of more complicated hardware tokens.

3 In these models, the sender is allowed to arbitrarily specify the functionality of the
oblivious RAM or the one-time program, and the receiver knows nothing about this
functionality except an upper bound on its circuit size or running time. (Thus, the
issue of dishonest senders does not arise in these models.) In the present work, by
a one-time program tolerating a malicious sender, we mean that the receiver knows
some partial specification of the functionality – modeled in the usual paradigm of
secure two-party computation.

4 The use of OTM tokens in [13] is motivated in part by the goal of achieving leakage
resilience, a feature that our constructions using such tokens inherit as well.



312 V. Goyal et al.

1.1 Our Results

We show that the following tasks, which cannot be realized in the “plain”
model, become feasible if the parties are allowed to generate and exchange simple
tamper-proof hardware tokens.

– Unconditional non-interactive secure computation. We show that by
exchanging stateful hardware tokens, any functionality can be realized with
unconditional security against malicious parties. In the case of two-party
functionalities f(x, y) which take their inputs from a sender and a receiver
and deliver their output to the receiver, our protocol is non-interactive and
only requires a unidirectional communication of tokens from the sender to
the receiver (in case an output has to be given to both parties, adding a reply
from the receiver to the sender is sufficient). This result strengthens previous
feasibility results for one-time programs by providing unconditional security,
by offering general protection against malicious senders, and by using only
bit-OTM tokens.

As is typically the case for unconditionally secure protocols, our protocol
is in fact UC-secure. This improves over previous works on UC-secure com-
putation based on hardware tokens, which provided computational security
under cryptographic assumptions.

See Sections 3.1 and 3.2 for details of this result and a high level overview
of techniques.

– Interactive secure computation from stateless tokens based on one-
way functions. We show that stateless hardware tokens are sufficient to
base general secure (in fact, UC-secure) computation on the existence of one-
way functions. One cannot hope for security against unbounded adversaries
with stateless tokens since an unbounded adversary could query the token
multiple times to “learn” the functionality it contains. See Section 4 for
details.

– Obfuscation from stateless tokens. We consider the problem of real-
izing non-interactive secure computation from stateless tokens for reactive
functionalities which take a single input from the sender and an arbitrary
sequence of inputs from the receiver (these are the only functionalities one
can hope to realize non-interactively with stateless tokens). By building on
recent techniques for resettably secure computation [22], we obtain a gen-
eral positive result under standard cryptographic assumptions. This gives the
first general feasibility result for program obfuscation using stateless tokens,
while strengthening the standard notion of obfuscation by providing security
against a malicious sender. We also propose constructions of non-interactive
secure computation for general reactive functionalities with stateful tokens.
See the full version for details.

In all of the above results, the size of each hardware token is either constant or
polynomial in the security parameter, and its code is independent of the inputs
of the parties. Thus, the tokens could theoretically be “mass-produced” before
being used in any particular protocol with any particular inputs.
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We stress that in contrast to some previous results along this line (most no-
tably, [1,13,20]), our focus is almost entirely on feasibility questions, while only
briefly discussing more refined efficiency considerations. However, in most cases
our stronger feasibility results can be realized while also meeting the main effi-
ciency goals pursued in previous works.

The first two results above are obtained by utilizing previous protocols for
secure computation based on OT [18,19], and thus a main ingredient in our
constructions is showing how to securely implement OT using hardware tokens.
Note that in the case of non-interactive secure computation, additional tools are
needed since the protocols of [18,19] are (necessarily) interactive.

1.2 Related Work

The use of tamper-proof hardware tokens for cryptographic purposes was first
explored by Goldreich and Ostrovsky [1] in the context of software protection
(one-time programs [13] is a relaxation of this goal, generally called program
obfuscation [23]), and by Chaum, Pederson, Brands, and Cramer [2,3,4] in the
context of e-cash. Ishai, Sahai, and Wagner [5] and Ishai, Prabhakaran, Sahai
and Wagner [24] consider the question of how to construct tamper-proof hard-
ware tokens when the hardware itself does not guarantee complete protection
against tampering. Gennaro, Lysyanskaya, Malkin, Micali, and Rabin [6] con-
sider a similar question, when the underlying hardware guarantees that part of
the hardware is tamper-proof but readable, while the other part of the hardware
is unreadable but susceptible to tampering. Moran and Naor [8] considered a
relaxation of tamper-proof hardware called “tamper-evident seals,” and given
number of constructions of graphic tasks based on this relaxed notion. Hofheinz,
Müller-Quade, and Unruh [25] consider a model similar to [9] in the context of
UC-secure protocols where tamper-proof hardware tokens (signature cards) are
issued by a trusted central authority.

The model that we primarily build on here is due to Katz [9], who considers
a setting in which users can create and exchange tamper-proof hardware tokens
where malicious users have full control over the functionality realized by each
token they create. The main result of [9] is a general protocol for UC-secure two-
party computation using stateful tokens, under the DDH assumption. Chandran,
Goyal, Sahai [10] implement UC-secure two-party computation using stateless
tokens, under the assumption that oblivious transfer protocols exist in the plain
model. Aside from just considering stateless tokens, [10] also introduce a variant
of the model of [9] that allows for the adversary to pass along tokens, and in
general allows the adversary not to know the code of the tokens he produces. We
do not consider this model here. Moran and Segev [11] also implement UC-secure
two-party computation under the same assumption as [10], but using stateful to-
kens, and only requiring tokens to be passed in one direction. Damg̊ard, Nielsen,
and Wichs [12] show how to relax the “isolation” requirement of tamper-proof
hardware tokens, and consider a model in which tokens can communicate a fixed
number of bits back to its creator. Hazay and Lindell [20] propose construc-
tions of practical protocols for various problems of interest using trusted stateful
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tokens. Very recently and independently of our work, practical oblivious transfer
protocols using stateless tokens and relying only on one-way functions were sug-
gested by Kolesnikov [26]. In contrast to the corresponding feasibility result from
our work, these protocols either provide a weaker security guarantee or assume
that tokens are well-formed, but on the other hand they offer better practical
efficiency.

Goldwasser, Kalai, and Rothblum [13] introduced the notion of one-time pro-
grams, and showed how to realize it under the assumption that one-way functions
exist, as we have already discussed. They also construct one-time zero-knowledge
proofs under the same assumption. Their results focus mainly on achieving effi-
ciency in terms of the number of tokens needed, and a non-adaptive use of the
tokens by the receiver.

Finally, in a seemingly unrelated work which is motivated by quantum physics,
Buhrman, Christandl, Unger, Wehner and Winter [27] consider the application
of non-local boxes to cryptography. Using non-local boxes, Buhrman et al. show
an unconditional construction for oblivious transfer in the interactive setting. A
non-local box implements a trusted functionality taking input and giving out-
put to both the parties (as opposed to OTM tokens which could be prepared
maliciously). However, the key problem faced by Buhrman et al. is similar to a
problem we face as well: delayed invocation of the non-local box by a malicious
party. Indeed, one can give a simple interactive protocol (omitted here) for build-
ing a trusted non-local-box using OTM tokens. This provides an alternative to
the interactive variant of our construction of unconditional secure computation
from hardware tokens described in Section 3.1.

2 Preliminaries

In this section we briefly discuss some of the underlying definitions and concepts.
The reader is referred to the full version for the details.

We use the UC-framework of Canetti [28] to capture the general notion of se-
cure computation of (possibly reactive) functionalities. Our main focus is on the
two-party case. We will usually refer to one party as a “sender” and to another as
a “receiver”. A non-reactive functionality may receive an input from each party
and deliver output to each party (or only to the receiver). A reactive function-
ality may have several rounds of inputs and outputs, possibly maintaining state
information between rounds.

Our model for tamper-proof hardware is similar to that of Katz [9]. As we
consider both stateful and stateless tokens, we define different ideal functionali-
ties for the two. By Fsingle

wrap we denote an ideal functionality that allows a sender
to generate a “one-time token” which can be invoked by its designated receiver.
A one-time token is a stateful token which takes an input from the receiver and
returns a function which is specified in advance by the sender. (Note that if the
sender is malicious, this function can be arbitrary.) After being invoked by the
receiver, such a token “self-destructs”. Thus, the only state these tokens keep is
a flag which indicates whether the token has been run or not. Simple tokens of
this type were used in [13].
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We also define an ideal functionality Fstateless
wrap for stateless tokens. Here the

token computes some (deterministic) function specified by the sender, and the
receiver can query the token an unbounded number of times. Note that this
makes stateless tokens useless if the receiver has enough resources to “learn” the
token’s description (either because the token is too small or the receiver is too
powerful). 5

By a non-interactive protocol we refer to a protocol in which the communi-
cation only involves a single batch of tokens, possibly along with an additional
message, communicated from a sender to a receiver.

3 Unconditional Non-interactive Secure Computation
Using Stateful Tokens

In this section we establish the feasibility of unconditionally non-interactive se-
cure computation based on stateful hardware tokens. As is typically the case for
unconditionally secure protocols, our protocols are in fact UC secure.

This section is organized as follows. In Subsection 3.1 we present an interactive
protocol for arbitrary functionalities, which requires the parties to engage in
multiple rounds of interaction. This gives an unconditional version of previous
protocols for UC-secure computation based on hardware tokens [9,10,11], which
all relied on computational assumptions.6 This subsection also introduces some
useful building blocks that are used for the non-interactive solution in the next
subsection.

In Subsection 3.2 we consider the case of secure evaluation of two-party func-
tionalities which deliver output to only one of the parties (the “receiver”). We
strengthen the previous result in two ways. First, we show that in this case inter-
action can be completely eliminated: it suffices for the sender to non-interactively
send tokens to the receiver, without any additional communication. Second, we
show that even very simple, constant-size stateful tokens are sufficient for this
purpose. This strengthens previous feasibility results for one-time programs [13]
by providing unconditional security (in fact, UC-security), by offering general
protection against malicious senders, and by using constant-size tokens.

3.1 The Interactive Setting

Unconditionally secure two-party computation is impossible to realize for most
nontrivial functionalities, even with semi-honest parties [29,30]. However, if the
parties are given oracle access to a simple ideal functionality such as Oblivious

5 While the formal definition of this functionality forces a malicious sender to also use
only stateless tokens, this requirement can be relaxed without affecting the security
of our protocols. See Section 4 for details.

6 The work of [11] realizes an unconditionally UC-secure commitment from stateful to-
kens. This does not directly yield protocols for secure computation without additional
computational assumptions.
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Transfer (OT) [16,17], then it becomes possible not only to obtain uncondition-
ally secure computation with semi-honest parties [31,32,33], but also uncondi-
tional UC-security against malicious parties [18,19]. This serves as a natural
starting point for our construction.

In the OT-hybrid model, the two parties are given access to the following
ideal OT functionality: the input of P1 (the “sender”) consists of a pair of k-bit
strings (s0, s1), the input of P2 (the “receiver”) is a choice bit c, and the receiver’s
output is the chosen string sc. The natural way to implement a single OT call
using stateful hardware tokens is by having the sender send to the receiver a
token which, on input c, outputs sc and erases s1−c from its internal state.
The use of such hardware tokens was first suggested in the context of one-time
programs [13]. Following the terminology of [13], we refer to such tokens as OTM
(one-time-memory) tokens.

An appealing feature of OTM tokens is their simplicity, which can also lead
to better resistance against side-channel attacks (see [13] for discussion). This
simplicity feature served as the main motivation for using OTM tokens as a
basis for one-time programs. Another appealing feature, which is particularly
important in our context, is that the OTM functionality does not leave room for
bad sender strategies: whatever badly formed token a malicious sender may send
is equivalent from the point of view of an honest receiver to having the sender
send a well-formed OTM token picked from some probability distribution. (This
is not the case for tokens implementing more complex functionalities, such as
2-out-of-3 OT or the extended OTM functionality discussed below, for which
badly formed tokens may not correspond to any distribution over well-formed
tokens.)

Given the above, it is tempting to hope that our goal can be achieved by
simply taking any unconditionally secure protocol in the OT-hybrid model, and
using OTM tokens to implement OT calls. However, as observed in [13], there
is a subtle but important distinction between the OT-hybrid model and the
OTM-hybrid model: while in the former model the sender knows the point in
the protocol in which the receiver has already made its choice and received its
output, in the latter model invoking the token is entirely at the discretion of the
receiver. This may give rise to attacks in which the receiver adaptively invokes
the OTM tokens “out of order,” and such attacks may have a devastating effect
on the security of protocols even in the case of unconditional security. A more
detailed discussion of such attacks and simple solution ideas (that do not work)
is included in the full version.

Extending the OTM functionality. To solve the above problem, we will
realize an extended OTM functionality which takes from the sender a pair of
strings (s0, s1) along with an auxiliary string r, takes from the receiver a choice
bit c, and delivers to the receiver both sc and r. We denote this functionality
by ExtOTM. What makes the ExtOTM functionality nontrivial to realize using
hardware tokens is the need to protect the receiver from a malicious sender who
may try to make the received r depend on the choice bit c while at the same
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time protecting the sender from a malicious receiver who may try to postpone
its choice c until after it learns r.

Using the ExtOTM functionality, it is easy to realize a UC-style version of
the OT functionality which not only delivers the chosen string to the receiver
(as in the OTM functionality) but also delivers an acknowledgement to the
sender. This flavor of the OT functionality, which we denote by FOT, can be
realized by having the sender invoke ExtOTM with (s0, s1) and a randomly
chosen r, and having the receiver send r to the sender. In contrast to OTM,
the FOTfunctionality allows the sender to force any subset of the OT calls to
be completed before proceeding with the protocol. This suffices for instantiating
the OT calls in the unconditionally secure protocols from [18,19]. We refer the
reader to the full version of this paper for a UC-style definition of the OTM,
ExtOTM, and FOTfunctionalities.

Realizing ExtOTM using general7 stateful tokens. As discussed above,
we cannot directly use a stateful token for realizing the ExtOTM functionality,
because this allows the sender to correlate the delivered r with the choice bit
c. On the other hand, we cannot allow the sender to directly reveal r to the
receiver, because this will allow the receiver to postpone its choice until after
it learns r. In the following we sketch our protocol for realizing ExtOTM using
stateful tokens. This protocol is non-interactive (i.e., it only involves tokens sent
from the sender to the receiver) and will also be used as a building block towards
the stronger results in the next subsection. We refer the reader to the full version
of this paper for a formal description of the protocol and its proof of security.
Below we include a detailed overview.

As mentioned above, at a high level, the challenge we face is to prevent un-
wanted correlations in an information-theoretic way for both malicious senders
and malicious receivers. This is a more complex situation than a typical similar
situation where only one side needs to be protected against (c.f. [34,35]). To
accomplish this goal, we make use of secret-sharing techniques combined with
additional token-based “verification” techniques to enforce honest behavior.

Our ExtOTM protocol ΠExtOTM starts by having the sender break its aux-
iliary string r into 2k additive shares ri, and pick 2k pairs of random strings
(qi

0, q
i
1). (Each of the strings qi

b and ri is k-bit long, where k is a statistical
security parameter.) It then generates 2k OTM tokens, where the i-th token
contains the pair (qi

0 ◦ ri, qi
1 ◦ ri) (where ‘◦’ is the concatenation operator). Note

that a malicious sender may generate badly formed OTM tokens which correlate
ri with the i-th choice of the receiver; we will later implement a token-based
verification strategy that convinces an honest receiver that the sender did not
cheat (too much) in this step.

Now the receiver breaks its choice bit c into 2k additive shares ci, and invokes
the 2k OTM tokens with these choice bits. Let (q̂i, r̂i) be the pair of k-bit strings
obtained by the receiver from the i-th token. Note that if the sender is honest, the

7 Here, we make use of general tokens. Later in this section, we will show how to achieve
the ExtOTM functionality (and in fact every poly-time functionality) using only very
simple tokens – just bit OTM tokens.
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receiver can already learn r. We would like to allow the receiver to learn its chosen
string sc while convincing it that the sender did not correlate all of the auxiliary
strings r̂i with the corresponding choice bits ci. (The latter guarantee is required
to assure an honest receiver that r̂ =

∑
r̂i is independent of c as required.)

This is done as follows. The sender prepares an additional single-use hardware
token which takes from the receiver its 2k received strings q̂i, checks that for
each q̂i there is a valid selection ĉi such that q̂i = qi

ĉi
(otherwise the token returns

⊥), and finally outputs the chosen string sĉ1⊕...⊕ĉ2k . (All tokens in the protocol
can be sent to the receiver at one shot.) Note that the additive sharing of r
in the first 2k tokens protects an honest sender from a malicious receiver who
tries to learn sĉ where ĉ is significantly correlated with r, as it guarantees that
the receiver effectively commits to c before obtaining any information about
r. The receiver is protected against a malicious sender because even a badly
formed token corresponds to some (possibly randomized) ideal-model strategy
of choosing (s0, s1).

Finally, we need to provide to the receiver the above-mentioned guarantee
that a malicious sender cannot correlate the receiver’s auxiliary output r̂ =

∑
r̂i

with the choice bit c. To explain this part, it is convenient to assume that both
the sender and the badly formed tokens are deterministic. (The general case is
handled by a standard averaging argument.) In such a case, we call each of the
first 2k tokens well-formed if the honest receiver obtains the same ri regardless
of its choice ci, and we call it badly formed otherwise. By the additive sharing
of c, the only way for a malicious sender to correlate the receiver’s auxiliary
output with c is to make all of the first 2k tokens badly formed. To prevent this
from happening, we require the sender to send a final token which proves that it
knows all of the 2k auxiliary strings r̂i obtained by the receiver. This suffices to
convince the receiver that not all of the first 2k tokens are badly formed. Note,
however, that we cannot ask the sender to send these 2k strings ri in the clear,
since this would (again) allow a malicious receiver to postpone its choice c until
after it learns r.

Instead, the sender generates and sends a token which first verifies that the
receiver knows r (by comparing the receiver’s input to the k-bit string r) and
only then outputs all 2k shares ri. The verification step prevents correlation
attacks by a malicious receiver. The final issue to worry about is that the string
r received by the token (which may be correlated with the receiver’s choices ci)
does not reveal to the sender enough information to pass the test even if all of its
first 2k tokens are badly formed. This follows by a simple information-theoretic
argument: in order to pass the test, the token must correctly guess all 2k bits
ci, but this cannot be done (except with 2−Ω(k) probability) even when given
arbitrary k bits of information about the ci.

The above protocol shows the following (see full version for proof):

Claim. Protocol ΠExtOTM realizes ExtOTM with statistical UC-security in the
Fsingle

wrap -hybrid model.

We are now ready to prove the main feasibility result of this subsection.
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Theorem 1 (Interactive unconditionally secure computation using
stateful tokens). Let f be a (possibly reactive) polynomial-time computable
functionality. Then there exists an efficient, statistically UC-secure interactive
protocol which realizes f in the Fsingle

wrap -hybrid model.

Proof. We compose three reductions. The protocols of [18,19] realize uncondi-
tionally secure two-party (and multi-party) computation of general functionali-
ties using FOT. A trivial reduction described above reduces FOT to ExtOTM.
Finally, the above Claim reduces ExtOTM to Fsingle

wrap .

3.2 The Non-interactive Setting

In this subsection we restrict the attention to the case of securely evaluating
two-party functionalities f(x, y) which take an input x from the sender and an
input y from the receiver, and deliver f(x, y) to the receiver. We refer to such
functionalities as being sender-oblivious. Note that here we consider only non-
reactive sender-oblivious functionalities, which interact with the sender and the
receiver in a single round. The reactive case will be discussed in the full version.

Unlike the case of general functionalities, here one can hope to obtain non-
interactive protocols in which the sender unidirectionally send tokens (possibly
along with additional messages8) to the receiver.

For sender-oblivious functionalities, the main result of this subsection
strengthens the results of Section 3.1 in two ways. First, it shows that a non-
interactive protocol can indeed realize such functionalities using stateful tokens.
Second, it pushes the simplicity of the tokens to an extreme, relying only on
OTM tokens which contain pairs of bits.

Below we provide only a high-level description of the construction and the
underlying ideas. We refer the reader to the full version for the full description
of the protocols and their analysis.

One-time programs. Our starting point is the concept of a one-time pro-
gram (OTP) [13]. A one-time program can be viewed in our framework as a
non-interactive protocol for f(x, y) which uses only OTM tokens, and whose se-
curity only needs to hold for the case of a semi-honest sender (and a malicious
receiver).9 The main result of [13] establishes the feasibility of computationally-
secure OTPs for any polynomial-time computable f , based on the existence
of one-way functions. The construction is based on Yao’s garbled circuit tech-
nique [37]. Our initial observation is that if f is restricted to the complexity
class NC1, one can replace Yao’s construction by an efficient perfectly secure
variant (cf. [38]). This yields perfectly secure OTPs for NC1. Alternatively, we

8 Since our main focus is on establishing feasibility results, the distinction between the
“hardware” part and the “software” part is not important for our purposes.

9 The original notion of OTP from [13] is syntactically different in that it views f as a
function of the receiver’s input, where a description of f is given to the sender. This
can be captured in our framework by letting f(x, y) be a universal functionality.
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also present a general construction of a OTP from any “decomposable random-
ized encoding” of f . This can be used to derive perfectly secure OTPs for larger
classes of functions (including NL) based on randomized encoding techniques
from [39,38]. See the full version for further details.

A next natural step is to construct unconditionally secure OTPs for any
polynomial-time computable function f . In the full version of this paper, we
describe a direct and self-contained construction which uses the perfect OTPs
for NC1 described above to build a statistically secure construction for any f .
However, this result will be subsumed by our main result, which can be proved
(in a less self-contained way) without relying on the latter construction.

Handling malicious senders. As in Section 3.1, the main ingredient in our
solution is an interactive secure protocol Π for f . The high level idea of our con-
struction is obtain a non-interactive protocol for f which emulates Π by having
the sender generate and send a one-time token which computes the sender’s
next message function for each round of Π (a similar idea was used in [13] to
construct one time proofs). Using the above procedure, we transform Π into a
non-interactive protocol Π ′ which uses very complex one-time tokens (for imple-
menting the next message functions of Π). The next idea is that we can break
each such complex token into simple OTM tokens by using a one-time program
realization of each complex token. More details are provided in the full version.

From the plain model to the OT-hybrid model. So far we assumed the
protocol Π to be secure in the plain model. This rules out unconditional security
as well as UC-security, which are our main goals in this section. A natural ap-
proach for obtaining unconditional UC-security is to extend the above compiler
to protocols in the OT-hybrid model. This introduces a subtle difficulty which
was already encountered in Section 3.1: the sender cannot directly implement
the OT calls by using OTM tokens. To solve this problem, we build on the
(non-interactive) ExtOTM protocol from Section 3.1. See full version for details.

From string-OTM to bit-OTMs. As a final optimization, in the full version
we show how to use an unconditionally UC-secure non-interactive implementa-
tion of a string-OTM token using bit-OTM tokens.

This yields the following main result of this section:

Theorem 2 (Non-interactive unconditionally secure computation us-
ing bit-OTM tokens). Let f(x, y) be a non-reactive, sender-oblivious,
polynomial-time computable two-party functionality. Then there exists an efficient,
statistically UC-secure non-interactive protocol which realizes f in the Fsingle

wrap -
hybrid model in which the sender only sends bit-OTM tokens to the receiver.

4 Two-Party Computation with Stateless Tokens

In this section, we again address the question of achieving interactive two-party
computation protocols, but asking the following questions: (1) Can we rely on
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stateless tokens while only assuming that one-way functions exist? (2) Can the
above be achieved without requiring that the complexity or number of the tokens
grows with the complexity of the function being computed, as was the case in
the previous section? We show how to positively answer both questions: We use
stateless tokens, whose complexity is polynomial in the security parameter, to
implement the OT functionality. Since (as discussed earlier) secure protocols for
any two-party task exist given OT, this suffices to achieve the claimed result.

Before turning to our protocols, we make a few observations about stateless
tokens to set the stage. First, we observe that with stateless tokens, it is always
possible to have protocols where tokens are exchanged only at the start of the
protocol. This is simply because each party can create a “universal” token that
takes as input a pair (c, x), where c is a (symmetric authenticated/CCA-secure)
encryption10 of a machine M , and outputs M(x). Then, later in the protocol,
instead of sending a new token T , a party only has to send the encryption of the
code of the token, and the other party can make use of that encrypted code and
the universal token to emulate having the token T . The proof of security and
correctness of this construction is straightforward.

Dealing with dishonestly created stateful tokens. The above discussion,
however, assumes that dishonest players also only create stateless tokens. If that
is not the case, then re-using a dishonestly created token may cause problems
with security. If we allow dishonest players to create stateful tokens, then a
simple solution is to repeat the above construction and send separate universal
tokens for each future use of any token by the other player, where honest players
are instructed to only use each token once. Since this forces all tokens to be used
in a stateless manner, this simple fix is easily shown to be correct and secure;
however, it may lead to a large number of tokens being exchanged. To deal
with this, as was discussed in the previous section, we observe that by Beaver’s
OT extension result [36] (which requires only one-way functions), it suffices to
implement O(k) OTs, where k is the security parameter, in order to implement
any polynomial number of OTs. Thus, it suffices to exchange only a polynomial
number of tokens even in the setting where dishonest players may create stateful
tokens.

Convention for intuitive protocol descriptions. In light of the previous
discussions, in our protocol descriptions, in order to be as intuitive as possible, we
describe tokens as being created at various points during the protocol. However,
as noted above, our protocols can be immediately transformed into ones where
a bounded number of tokens (or in the model where statelessness is guaranteed,
only one token each) are exchanged in an initial setup phase.

4.1 Protocol Intuition

We now discuss the intuition behind our protocol for realizing OT using stateless
tokens; due to the complexity of the protocol, we do not present the intuition
10 An “encrypt-then-MAC” scheme would suffice here.



322 V. Goyal et al.

for the entire protocol all at once, but rather build up intuition for the different
components of the protocol and why they are needed, one component at a time.
For this intuition, we will assume that the sender holds two random strings s0
and s1, and the receiver holds a choice bit b. Note that OT of random strings is
equivalent to OT for chosen strings [41].

The Basic Idea. Note that, since stateless tokens can be re-used by malicious
players, if we naively tried to create a token that output sb on input the receiver’s
choice bit b, the receiver could re-use it to discover both s0 and s1. A simple
idea to prevent this reuse would be the following protocol, which is our starting
point:

1. Receiver sends a commitment c = com(b; r) to its choice bit b.
2. Sender sends a token, that on input (b, r), checks if this is a valid decommit-

ment of c, and if so, outputs sb.
3. Receiver feeds (b, r) to the token it received, and obtains w = sb

Handling a Malicious Receiver. Similar to the problem discussed in the
previous section, there is a problem that the receiver may choose not to use
the token sent by the sender until the end of the protocol (or even later!). In
our context, this can be dealt with easily. We can have the sender commit to a
random string π at the start of the protocol, and require that the sender’s token
must, in addition to outputting sb, also output a valid decommitment to π. We
then add a last step where the receiver must report π to the sender. Only upon
receipt of the correct π value does the sender consider the protocol complete.

Proving Knowledge. While this protocol seems intuitive, we note that it is
actually insecure for a fairly subtle reason. A dishonest sender could send a token
that on input (b, r), simply outputs (b, r) (as a string). This means that at the
end of the protocol, the dishonest sender can output a specific commitment c,
such that the receiver’s output is a decommitment of c showing that it was a
commitment to the receiver’s choice bit b. It is easy to see that this is impossible
in the ideal world, where the sender can only call an ideal OT functionality.

To address the issue above, we need a way to prevent the sender from creating
a token that can adaptively decide what string it will output. Thinking about it
in a different way, we want the sender to “prove knowledge” of two strings before
he sends his token. We can accomplish this by adding the following preamble to
the protocol above:

1. Receiver chooses a pseudo-random function (PRF) fγ : {0, 1}5k → {0, 1}k,
and then sends a token that on input x ∈ {0, 1}5k, outputs fγ(x).

2. Sender picks two strings x0, x1 ∈ {0, 1}5k at random, and feeds them (one-
at-a-time) to the token it received, and obtains y0 and y1. The sender sends
(y0, y1) to the receiver.

3. Sender and receiver execute the original protocol above with x0 and x1 in
place of s0 and s1. The receiver checks to see if the string w that it obtains
from the sender’s token satisfies fγ(w) = yb, and aborts if not.
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The crucial feature of the protocol above is that a dishonest sender is effectively
committed to two values x0 and x1 after the second step (and in fact the simu-
lator can use the PRF token to extract these values), such that later on it must
output xb on input b, or abort.

Note that a dishonest receiver may learn k bits of useful information about
x0 and x1 each from its token, but this can be easily eliminated later using the
Leftover Hash Lemma (or any strong extractor).

Preventing correlated aborts. A final significant subtle obstacle remains,
however. A dishonest sender can still send a token that causes an abort to be
correlated with the receiver’s input, e.g. it could choose whether or not to abort
based on the inputs chosen by the receiver (see full version for a discussion of
why this is a problem).

To prevent a dishonest sender from correlating the probability of abort with
the receiver’s choice, the input b of the receiver is additively shared into bits
b1, . . . , bk such that b1 +b2 + · · ·+bk = b. The sender, on the other hand, chooses
strings z1, . . . , zk and r uniformly at random from {0, 1}5k. Then the sender and
receiver invoke k parallel copies of the above protocol (which we call the Quasi-
OT protocol), where for the ith execution, the sender’s inputs are (zi, zi + r),
and the receiver’s input is bi. Note that at the end of the protocol, the receiver
either holds

∑
zi if b = 0, or r +

∑
zi if b = 1.

Intuitively speaking, this reduction (variants of which were previously used
by, e.g. [34,35]) forces the dishonest sender to make one of two bad choices: If
each token that it sends aborts too often, then with overwhelming probability
at least one token will abort and therefore the entire protocol will abort. On
the other hand, if few of the sender’s tokens abort, then the simulator will be
able to perfectly simulate the probability of abort, since the bits bi are (k −
1)-wise independent (and therefore all but one of the Quasi-OT protocols can
be perfectly simulated from the receiver’s perspective). We make the receiver
commit to its bits bi using a statistically hiding commitment scheme (which can
be constructed from one-way functions [42]) to make this probabilistic argument
go through.

This completes the intuition behind our protocol. The result of this section is
summarized by the following theorem, whose proof appears in full version.

Theorem 3 (Interactive UC-secure computation using stateless to-
kens). Let f be a (possibly reactive) polynomial-time computable functionality.
Then, assuming one-way functions exist, there exists a computationally UC-
secure interactive protocol which realizes f in the Fstateless

wrap -hybrid model. Fur-
thermore, the protocol only makes a black-box use of the one-way function.

Oblivious Reactive Functionalities in the Non-Interactive Setting. In the full
version, we generalize our study of non-interactive secure computation to the
case of reactive functionalities. Roughly speaking, reactive functionalities are
the ones for which in the ideal world, the parties might invoke the ideal trusted
party multiple times and this trusted party might possibly keep state between
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different invocations. For the interactive setting (i.e. when the parties are allowed
multiple rounds of interaction in the Fwrap-hybrid models) there are standard
techniques using which, given protocol for non-reactive functionality, protocol
for securely realizing reactive functionality can be constructed. However, these
techniques fail in the non-interactive setting. In the full version, we study what
class of reactive functionalities can be securely realized in the non-interactive
setting for the case of stateless as well as stateful hardware token.

Acknowledgements. We thank Jürg Wullschleger for pointing out the relevance
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discussions.
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