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ABSTRACT 

Four identical, uniformly separated particles interconnected by ideal 

anharmonic springs are constrained to move on a fixed, frictionless circular 

track. The Lagrangian for the system is written and then transformed by 

matrix operations suggested by the symmetry of the arrangement of springs 

and particles. The equations of motion derived from the transformed 

Lagrangian yield four natural frequencies of motion. 

INTRODUCTION 

In this paper, we shall consider an idealized mechanical system of four identical 

particles constrained to move on a fixed, horizontal circular track. Each particle is 

connected to its two neighbors by identical massless springs whose motions are also 

confined to the circle of the track. All motions of the particles and springs are taken 

to proceed without friction so that no energy imparted to the system will be dissipated 

as heat. The equilibrium positions of the particles are equally spaced on the circle. 

In the past, we have exploited the geometries of coupled systems such as that just 

described to separate their equations of motion either completely or to a significant 

extent. After the separated equations of motion were written in terms of symmetry 

coordinates, it was then not a difficult matter to obtain the natural frequencies of 

vibration corresponding to the various symmetry coordinates (Boyd and 

Raychowdhury, 2001 c; Boyd, Hudepohl, and Raychowdhury, 2001 a; Boyd, Hudepohl, 

and Raychowdhury, 2001 b ). In each case, the coupling between neighboring particles 

was provided by harmonic springs. 

More recently, we have used matrix and Lagrangian techniques to discover natural 

frequencies for the transverse vibrations of a linear array of three Hooke's Law springs 

and two masses with the two endpoints of the array fixed in space. The transverse 

vibrations are anharmonic with restoring forces on the masses proportional to the 

cubes of their displacements away from equilibrium (Boyd, Hudepohl, and 

Raychowdhury, 2002b ). 

It has been our ambition for quite some time to apply the techniques which have 

been successful for coupled harmonic oscillators to systems of coupl~d anharmonic 

oscillators. The linearity of the harmonic equations of motion accounts for the relative 

ease with which we have been able to separate those equations. The nonlinearity of the 

equations of the anharmonic oscillators challenge the essentially linear techniques 

which we have been using. This paper represents our first attack upon a fairly 

complicated anharmonic system. 

Harmonic springs provide tensions which are proportional to the amount by which 

they are stretched or compressed away from their natural lengths. Thus the equations 
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of motion for harmonic systems are linear. The elastic potential energy of an 

harmonic spring is proportional to the square of the change in its length by either 

stretch or compression. 

The coupling in the system under study is provided by anharmonic springs. The 

tensions in such springs are proportional to the cubes of their changes in length, and 

the elastic potential energy stored in each of these springs is proportional to the fourth 

power of its change in length. 

We have been able to combine the matrix and Lagrangian techniques which were 

successful for the simple system of two coupled transverse anharmonic oscillators with 

a transformation suggested by the symmetry operations used in the investigation of the 

larger systems of harmonically coupled oscillators. The result is that we have obtained 

natural frequencies of vibration for the four particles on a circle as first described in 

the case that the springs are anharmonic. We shall describe that work in this paper. 

Our emphasis will be upon the use rather than the development of the transformation 

matrices which simplify our computations. The group representation theory 

underlying the construction of transformation matrices can be found in numerous 

places (Duffey, 1973; Hammermesh, 1962; Nussbaum, 1968). It was the proper 

formulation of the potential energy matrices that enabled us to complete our 

calculations. 

LAGRANGIAN FOR FOUR PARTICLES COUPLED WITH 

ANHARMONIC SPRINGS 

We represent in Figure 1, the system of four particles and springs constrained to 

move on their fixed circle. Thus the vibrations of the system will be longitudinal. We 

denote the mass of each particle by m and an anharmonic force constant for each 

spring by /J. The spring constant will be defined by the way in which we write the 

elastic potential energies for the springs. The counter-clockwise displacement of the 

particles from their equilibrium positions are denoted by x 1, x 2 , x 3 , and x4• The 

corresponding velocities of the particles are denoted by x1, x2 , x3 , and x4 and the 

total kinetic energy of the vibrating masses as they move 1s 

KE = ( '½)( xf + Xi + xj + x: ). 
This total kinetic energy may be written in matrix notation as 

KE= ('ii)XIXT 

where I represents the 4-by-4 identity matrix, X = ( x1 x2 x3.x4 ) represents the row 

velocity matrix, and X T represents the transpose of the row velocity matrix. 

The anharmonic springs provide forces proportional to Jx
1 

- x
1
J
3 

on thej-th and 

/-th particles to which they are attached. These forces tend to restore the particles to 

their equilibrium positions. We take the elastic potential energy stored in the spring 

connecting the )-th and /-th particles to be (/3 / 4) (x J - x1 )4 where /J is a positive 

number. The total elastic potential energy for the system becomes 

ANHA~ 

m 

/J 
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FIGURE 1. The Four Particles on Their Circle. 

PE= (¼)[(x1 -xi)
4 

+(x2 -x3 }4(x3 -x4 )4 +(x
4 
-x/] 

The potential energy involves the raising of four binomials to the fourth power. 

Our task is to discover a matrix formulation for the total elastic potential energy of the 

system which will accomplish the binomial algebra. To continue the notation adopted 

for expressing the kinetic energy, we let X = ( x
1
x

2
x

3
x

4
) represent the row 

displacement matrix and X T the transpose of X. We then choose the following four 
potential energy matrices: 

1 -1 0 0 0 0 0 0 

-1 1 0 0 0 1 -1 0 
V12 = 

0 0 0 0 
V23 = 

0 -1 1 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 -1 

0 0 0 0 0 0 0 ·O 
V34 = 

0 0 1 -1 
, and V41 = 

0 0 0 0 

0 0 -1 1 -1 0 0 1 

Straightforward computation will justify the statement that 
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The Lagrangian function for the system of particles and springs is given by 

L = KE - PE and we may write that 

L = ( o/2)X1X T - ( ¾) [ ( XV12 X T )2 + ( XV23 X T )2 + ( XV34 X T )2 + ( XV41 X T )2] . ( 1) 

A TRANSFORMATION OF THE LAGRANGIAN 

We seek to simplify the Lagrangian of our system by means of a transformation 

based upon the geometry of the circular arrangement of springs and masses. The rigid 

eometrical symmetries of the springs and masses on their circle are four reflections 

and counterclockwise, plane rotations of 90°, 180°, 270°, and 360° about the center 

of the circle. Taken together, these eight symmetry operations comprise the 

nonabelian group C4v in which the rotation through 360° serves as the identity 

element. Familiarity with the matrix group representations of C4 v suggested to us 

that the orthogonal matrix 

1 1 1 1 

1 -1 1 -1 
S= /2 

1 -1 -1 1 

1 1 -1 -1 

might provide us with a transformation which would simplify the Lagrangian of 

equation I · and, hence, the equations of motion which follow from the Lagrangian. 

The orthogonal transformation with S together with the choice of the potential 

energy matrices Vj 2 , V23 , V34 , and V41 does lead to our goal of simplifying the 

equations of motion of the system. 

Let us transform the coordinate and velocity vectors by 

SX = S(x1X2X3X4) = (z1z2z3z4) = Z,XT s-I = z T , 

sx = s(x1x2x3x4 ) = (z1z2i3z4) = z, 
andXTs- 1 = zT. 

We shall refer to the coordinates z J, J = l, 2, 3, 4, as symmetry coordinates. Their 

corresponding velocities are i J . 

We must also transform the potential energy matrices in a m~nner c nsi t n with 

the transformations of coordinates and velocities. Those transformations may be 

accomplished by the following computations: 

Svi2S- 1, SV23S-1 SV34S- 1, and ~1S- 1 _ 

ANHARl\ 

The Lagrangian as given by 

symmetry coordinates and their , 

L = ( o/z)xs-1 s1s-1 sx: 

-( ¾)(xs-1sv12s-1sJ 

+(xs-1sv34s-1sxr)2-+ 

We note that we have resorted 

perform the matrix manipulatiom 

EQUATIONS OF MO' 

Equations of motion in terms oftl 

are given by 

Thus, we may write 

d 

dt 

mi2 + p( 

mi3 + p 

mi4 -

Although equations 3 .1, 3 .2, 3 

that, if we set as initial conditions 

j = k , the equation governine 

symmetry coordinate. Thus the \I 

may be stimulated and sustaine 

suppressed as time progresses. 

Such would not be the case 

equation 2 in the coordinates X: 
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The Lagrangian as given by equation 1 may now be rewritten in terms of the 

symmetry coordinates and their velocities as 

r = ( o/z)xs-1 s1s-1 sxr 

-( ¼) (xs- 1Sf7i2s-1sxr)2 + (xs- 1sv23s-1sxr)2 

+(xs-1SV34S-1sxr)2 + (xs-1SV41s-1sxr)2 
(2) 

We note that we have resorted to the computer algebra system Mathematica to 

perform the matrix manipulations leading to this expression for Lin terms of Zj and 

EQUATIONS OF MOTION AND NATURAL FREQUENCIES 

Equations of motion in terms of the new symmetry coordinates and their accelerations 

are given by 

d ( ar J ( ar J _ 0 
dt azj azj 

Thus, we may write 

mz1 = 0, 

mz2 + p( 4z~ + 6z2z} + 6z2zi) = 0, 

mz3 + p( 6z?z3 + 2z1) = 0, and 

mz4 + p( 6z?z4 + 2zJ) = 0. 

(3) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Although equations 3 .1, 3 .2, 3 .3, and 3 .4 are not completely separated, we observe 

that, if we set as initial conditions that all z 
1 

= 0, and z j = 0 at t = 0 except for 

j = k , the equation governing the variation in time of z k involves n<;> other 

symmetry coordinate. Thus the vibrations associated with each of z1, z2 , and z4 

may be stimulated and sustained while the other symmetry coordina es remain 

suppressed as time progresses. 

Such would not be the case if we had expanded the original Lagrangian of 

equation 2 in the coordinates x1, x2 , x3 , x4 and velocities x1 x2 
x

3 
x

4 
. In that 
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expansion, the appearance of terms of the form 4x 
1
xj with j -:t:. I contribute a 

coupling in the equations of motion which make it impossible for one coordinate to 

change without affecting other coordinates. 

Returning to equation 3 .2, we choose initial conditions 

z3 = z4 = 0 and z3 = z4 = 0. For equation 3.3, we take z2 = 0 and z2 = 0 . 

For equation 3.4, we take z2 = 0 and z2 as well. Thus we are led to the next four 

equations of motion from which we can compute the frequencies of the system 

vibrating in natural or symmetrical modes: 

mz1 == 0 

mz2 + 4/lzi = 0 

mz3 + 2/lzl + 0, and 

mz4 + 2flzl = 0. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The symmetry coordinate z1 corresponds to a rotation at constant angular velocity 

with frequency / 1 = 0 since there is no vibration. Solutions in closed form for 

z2 ,z3 , and z4 may be written with the Jacobi cosine and sine amplitude functions 

(Dixon, 1984). These functions are denoted by en( t, a) and sn( t, a) , respectively. 

They are doubly periodic, analytic functions of the complex variable t. The parameter 

a is known as the modulus of its function. When the independent variable tis taken 

to be real valued (as is time in our problem) the functions have only a single period 

and resemble the trigonometric functions. These functions appear in the exact 

solutions of the equations of motion for the simple pendulum with large displacements 

and for a uniform sphere of specific gravity 0.5 bobbing in water (Boyd, 1991 ). Those 

readers who wish to investigate those elliptic functions will be interested to know that 

the functions have been written into the Mathematica software(Wolfram, 1999). 

We shall simply discover the periods of vibration corresponding to equations 4 by 

integration. Let us turn to equation 4.3 and suppose that at t = 0, z3 = A3 > 0 and 

z3 = 0. Equation 4.3 may be rewritten as 

dz3 . dz3 2/J 3 
--=z3--=--Z3. 

dt dz3 m 

The first integration 

lZ3 2/J fZ3 3 
udu = - - v dv 

0 m A3 

ANHARM 

yields 

It follows that 

or 

dz3 

dt 

dt = 

where the negative square root is t2 

period of motion after t = 0, Z3 d 

Let us denote the period of 

Integrating the last equation from ( 

the right-hand side yields 

fA3 dz3 

7;=4J {ft~-= 
. o V~ ~Aj- zj 

1 
Thus the frequency /2 = - dep 

~ 
known to be the case for the elliJ 

which has been evaluated by Math 

where /4i is the amplitude of the · 

A similar pair of integrations tl 

that 
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yields 

zJ = _ 2/J (ij _ AjJ = }!_(Ai -zt). 
2 m 4 4 2m 

It follows that 

or 

dt = - dz3 

If ~r-A_j ___ Z_j 

where the negative square root is taken since, as time increases during the first quarter 

period of motion after t = 0, Z3 decreases from A 3 to O. 

Let us denote the period of vibration for symmetry coordinate z
3 

by 1j. 

~ 
Integrating the last equation from Oto _J_ on the left-hand side and from A

3 
to O on 

4 
the right-hand side yields 

1':i = 4 f' If dz

3 

= 4/f- f h = +Jf-(5.24412). 
0 j] J Aj - Zj O A3 I - u 3 

m 

I 
Thus the frequency /2 = - depends upon the amplitude A3 of the motion as is 

Tj 

known to be the case for the elliptic functions. The integral is an elliptic integral 

which has been evaluated by Mathematica. Inspection of equation 4.4 indicates that 

~ =4 /m f
1 

du =-
1 

/m(5.24412) 
Vfl Jo A4 ~ A4 Vfl 

I 
where Aq. is the amplitude of the variation in z

4
. Then /4 = - . 

¼ 

A similar pair of integrations that begin with equation 4.2 leads to the conclusion 
that 



198 VIRGINIA JOURNAL OF SCIENCE 

Ti= 4 /m f1 

du = /m (5.24412) 

VTi Jo A
2
~1-u 4 VTi 

1 
and Ji=-. 

Ti 

CONCLUSION 

Since the elliptic functions govern the motions of the system or' anharmonic 

oscillators, the natural frequencies will always depend on the amplitudes of the 

corresponding vibrations. As previously noted, the Jacobi elliptic functions can be 

handled in closed form with Mathematica. In addition, Mathematica permits us to 

experiment with various matrix forms to develop useful transformations of 

coordinates. We have taken advantage of this computational power to give exact 

solutions of equations of motion for a simpler, anharmonic system than that 

considered in this work (Boyd, Hudepohl, and Raychowdhury 2002a). 

We hope to look at other systems, but so far each problem that we have considered 

has required a solution tailored to the particular problem. It seems clear that no 

computational program for natural anharmonic frequencies will ever match in 

elegance and simplicity the symmetry-based calculations for natural harmonic 

frequencies . 
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