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Abstract

We have developed a coupled-rearrangement-channel method allowing the rigorous non-

adiabatic treatment of the multi-channel scattering problem for four particles. We present the

study of the binding, resonant and collisional properties of the H̄ −Ps system with the total

angular momentum J = 0+ (singlet positronic configuration). The binding energy, the life-

times of the resonant states and the collisional cross sections are calculated and discussed.

We present the preliminary cross sections for the elastic and inelastic H̄ − Ps scattering,

notably for the excitation of Ps and for the rearrangement reaction producing the H̄+ ions.

Keywords Antihydrogen · Positronium · Collisions

1 Introduction

The experiment aiming to study the Gravitational Behavior of Antihydrogen at Rest

(GBAR) involves the step whereby the antihydrogen atoms collide with positronium atoms

to form the positronium hydride molecular ions H̄+ suitable for sympathetic cooling [1–4].

In view of that we have undertaken the investigation of the H̄P s system with a method capa-

ble to describe the multichannel aspects of the H̄ − Ps scattering, including the elastic and

inelastic processes, particularly the rearrangement reaction leading to the H̄+ production.

The H̄P s system has been studied before, both in works concentrating on its ground state

[5–8] and in works treating the scattering [9–12]. In the present work we use the description

that is suitable to study both these aspects. We study the system in terms of several sets of

Jacobi coordinates that are natural for its sub-cluster structure; this facilitates analysis of
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the binding energy, formation and decay of resonances and the treatment of multichannel

scattering.

To describe the structure of the the H̄ − Ps system we apply the variational approach

based on the Gaussian Expansion Method (GEM) [13, 14]. The variational manifold explic-

itly contains contributions from various rearrangement channels expressed in terms of the

appropriate Jacobi coordinates. At the same time, the use of Jacobi coordinates allows an

efficient and rigorous treatment of the scattering cross sections.

The binding energy is calculated and discussed in terms of the contributions from various

rearrangement channels. Channel analysis helps to converge the binding energy and throws

light on the structure and collisional properties of the system. The structure of the system

is presented in terms of the correlation functions that portray the spatial distribution of the

particles. This helps to understand the structure and dynamics of the system, in particular

the change of the H̄+ upon binding of an electron, and the coexistence of the atomic and

molecular features of H̄P s.

The resonant states and their life-times are calculated variationally using GEM in con-

junction with the Complex Coordinate Method (CCM). The energies and widths of the

resonances are analysed with respect to the channel composition of the resonant wave

functions.

Based on the variational description of the four-body system, we apply the Coupled

Rearrangement Channels Method (CRCM) to calculate the cross sections for H̄ − Ps col-

lisions. The outer part of the total H̄P s wave function is made to satisfy the appropriate

scattering boundary conditions for the collisional fragments. This is facilitated by the use

of Jacobi coordinates in the description of the multi-channel structure of the wave function,

that expressly contains various rearrangement channels. The scattering matrix S and the

cross sections are obtained from the coupled, non-local integro-differential equations that

explicitly couple the collisional channels of interest.

2 General outline of themethod

The scattering cross sections were calculated using the Coupled Rearrangement Channel

Method [15, 16]. In this method one constructs the total scattering wave function � in terms

of the inner part (that describes the internal, highly correlated part of the 4-body system)

and the outer part (that describes the asymptotic motion of the various possible scattering

fragments), see (1).

The inner part is expanded in terms of the square-integrable, 4-body basis functions �v

which are taken to be the eigenfunctions of the matrix eigenvalue problem for the total

Hamiltonian of the system. Their construction is described in the next section. The impor-

tant aspect of our approach is the use of several Jacobi sets of coordinates in the expansion

of one and the same total wave function, and each function �v contains contributions from

several functional manifolds expressed in different sets of Jacobi coordinates (correspond-

ing to different arrangement channels, see Fig. 1). The manifolds corresponding to various

sets of coordinates are different from each other, even if the basis functions that span these

manifolds are similar (they are all gaussians). In other words, various sets of Jacobi coor-

dinates describe different parts of the configuration space of the system. Consequently, the

problem of linear dependencies is alleviated and we do not suffer from the overcompletness.

The outer part is given in terms of the (a priori unknown) channel functions χc(Rc) of the

relative motion between various scattering fragments. The channel functions are coupled to

each other by being matched to the inner part and becoming part of the total wave function

�. It is the asymptotic behavior of the channel functions that give the information about the
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Fig. 1 Rearrangement channels for H̄P s. We see the various arrangements of Jacobi coordinates, and the

angular momenta for the wave functions in these coordinates. For the symmetrization purposes, we also

include rearrangement channels with the positrons exchanged

scattering cross sections. To this end, the total scattering wave function for H̄P s is written

as

� =
∑

v

bv�v +
∑

c∈H

φ(2)
c (rc)φ

(2)
c (qc)Y

(c)(R̂c)
χc(Rc)

Rc

+
∑

c∈K

φ(3)
c (rc, qc)Y

(c)(R̂c)
χc(Rc)

Rc

. (1)

In the above, all 3 sums are over 4-body basis functions, but these functions are differently

constructed. The first sum contains the variational solutions of the 4-body problem, obtained

in the basis that contains functions from as many Jacobi arrangement channels as needed

for the good description of the binding energy. In the present calculation we have used 7

Jacobi arrangement channels (out of 15 possible for the system) in the single calculation

that couples all of them.

The remaining summations are over 4-body functions that describe the asymptotic char-

acter of those open scattering channels that one wishes to consider and couple. Here,

function φ
(n)
c describes the n-body fragment of the scattering channel c; rc, qc and Rc are

the 3 Jacobi coordinates in that channel.

The second sum is over channels that asymptotically contain two 2-body fragments.

In the present case, these fragments are H̄ and Ps and are described by functions

φ
(2)
c (rc), φ

(2)
c (qc), respectively. The relative motion of the centers of mass of these frag-

ments is described by the function χc in terms of the third Jacobi coordinate Rc that connects

the mass centers. The three Jacobi coordinates for the channel functions in this group look

graphically like the letter H (see Fig. 1), we abbreviate the summation as c ∈ H .

The third sum is over channels that asymptotically contain a three-body fragment (H̄+

or Ps+). The wave functions for these fragments (φ
(3)
c (rc, qc)) are obtained by separate 3-

body calculations. The motion of the 4th particle is described by the function χc in terms

of the third Jacobi coordinate Rc that connects the lone particle to the CM of the 3-body

fragment. The three Jacobi coordinates for the functions in this group look graphically like

the letter K (see Fig. 1), we abbreviate the summation as c ∈ K .

As will be seen in the following, expansion coefficients bv and functions χc in (1) are

determined simultaneously via the self-consistent, integro-differential procedure.

We first describe the variational procedure that generates the expansion functions �v for

the inner part of the scattering wave function.
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3 Binding energy and structure of H̄Ps

To obtain the inner part of the total wave function, we solve the Schrödinger equation

for H̄P s by means of the variational approach, using the Gaussian Expansion Method in

Jacobi coordinates [13, 14]. The expansion functions �v are taken to be the solutions of the

eigenvalue problem with respect to the total Hamiltonian H projected onto the subspace P

spanned by the Gaussian basis. The variational expansion is given by

� =
∑

c

∑

i,j,k

cc
i,j,k[ϕ

c
i (r

c
1)ϕ

c
j (r

c
2)ϕ

c
k(r

c
3)]

symm/asym
J,M (2)

where ϕc
i (r

c
μ) are the basis functions for the Jacobi coordinate rc

μ, μ = 1, 2, 3, in the channel

c. The Schrödinger equation takes form

HP �v = Ev�v (3)

and is solved as the matrix eigenvalue problem.

The basis functions ϕc
i in (2) are either primitive Gaussians or the atomic orbitals formed

out of these Gaussians (these two sets are connected via an unitary transformation). The

sum over channels c ≡ C; l1, l2, l3 runs over the various Jacobi sets of coordinates (we call

them rearrangement channels and number them with C, see Fig. 1) and various associated

triple configurations of the angular momenta lc1, l
c
2, l

c
3 compatible with the coupling to the

total angular momentum J .

The bracket around the triple products in (2) means that they are coupled to the total

angular momenta J,M and appropriately symmetrized. In the present paper we consider

the J = 0+ symmetry, i.e. the states with the total (orbital) angular momentum 0 and

(natural) parity +1, with the positrons in the singlet (spin 0) configuration. The spin is not

treated explicitly, rather we symmetrize the spacial wave functions to be space symmetric

with respect to the permutation of the spacial coordinates of the two positrons. The lat-

ter symmetrization is achieved by “doubling” the Jacobi rearrangement channels, i.e. by

including their companions obtained by permutation P of the two positrons (except for

those arrangements that contain the e+
1 − e+

2 coordinate and need not be symmetrized, since

ϕ(rc

e+
1 ,e+

2

)
P

−→ (−1)lcϕ(rc

e+
2 ,e+

1

)).

There are alltogether 15 Jacobi rearrangement channels for the H̄P s system. Our stud-

ies of the convergence of binding energy revealed that the most important ones are channels

13,1,10 and 15 illustrated on Fig. 1. The channel numbers C = 13, 1, 10, 15 conform to the

previous literature [13]. Thus we use 7 arrangements: arrangements 13, 1,10; their compan-

ions obtained by permutation of the two positrons; and arrangement 15 (which contains the

e+
1 − e+

2 coordinate and does not need symmetrization).

Our calculations show that the most important contribution to the binding energy comes

from the molecular H̄ − Ps channel (C = 13). Next in importance is the atomic channel

with the electron orbiting the H̄+ atomic ion core (C = 1). Next comes the positronium

ion channel, Ps+ + p̄ (C = 10). After that comes the repulsion (or total break up) channel

where the CM of two mutually repelling positive particles is connected to the CM of two

mutually repelling negative particles (C = 15).

The convergence of the binding energy is shown in Table 1 and illustrated on Fig. 2. The

achieved accuracy is on the order of few micro-Hartrees.
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Table 1 Binding energy of the ground state of H̄P s against the number of basis functions Ntot and against

the number of channels ntot
ch

Ntot ntot
ch c.f. Fig. 2 E C-lλL

3375 1 a −0.774 542 9 13 − 000

6750 2 b −0.782 620 1 +1 − 000

10125 3 c −0.784 774 6 +10 − 000

13500 4 d −0.786 843 6 +15 − 000

14500 5 e −0.787 886 1 +13 − 110

15500 6 f −0.788 472 8 +13 − 011

16500 7 −0.788 555 4 +13 − 101

17500 8 −0.788 577 7 +1 − 110

18500 9 −0.788 594 7 +1 − 101

19500 10 g −0.788 726 1 +10 − 110

20500 11 −0.788 734 1 +10 − 011

21500 12 −0.788 764 3 +10 − 101

22500 13 h −0.788 823 2 +15 − 011

28132 24 i −0.788 850 9 +13/1/10/15 − (220, 022, 202)

32740 33 j −0.788 865 8 +13/1/10/15 − (211, 112, 121)

35827 42 k −0.788 866 5 +13/1/10/15 − (330, 033, 303)

41658 59 l −0.788 867 4 +13/1/10/15 − (123, 132, 213, 231, 312, 321)

45431 70 m −0.788 867 5 +13/1/10/15 − (440, 044, 404)

Ref. [8] Bubin and Varga −0.788 870 7

Last column shows which channels are included. The notation + 13/1/10/15-(220,022,202) means that we

added the essential combinations with lλL = 220, 022, 202 for channels 13, 1, 10 and 15. The adopted proton

mass is mp = 1836.152 672 47

4 Calculations of the scattering length and the scattering cross
sections for antihydrogen - positronium collisions

The outer part of the total wave function � describes the asymptotic behavior of the sys-

tem (cf. (1)). It is a sum over channel functions that satisfy the correct scattering boundary

conditions. The sum runs over open physical channels c, i.e. over various possible fragmen-

tations of the system and the angular momenta of the relative motion of the fragments. We

include both the so called H channels (fragmentation into two two-body fragments) and K

channels (fragmentation into a three-body fragment and a single particle). Hence φ
(2)
c , φ

(3)
c

in (1) are the wave functions of isolated 2 and 3 body fragments in channel c; rc and qc are

the internal coordinates of these fragments.

The relative motion of the fragments in various scattering channels is given by the func-

tions χc(Rc), with Rc being the Jacobi coordinate for this motion. If these fragments are

neutral (e.g. the atomic fragments) the wave functions of relative motion satisfy

lim
Rc→∞

χc(Rc) = u
(−)
l (kcRc)δcci

−

√

υci

υc

Sc,ci
u

(+)
l (kcRc) , (4)
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Fig. 2 Convergence of the binding energy as a function of the number of channels c = (C; lλL) included in

the calculation. The channels corresponding to each point and the concomitant size of the Gaussian basis are

specified in Table 1. Our experience shows that it is more important to increase the number of channels than

to merely increase the number of the Gaussian functions spanning each channel

with u
(±)
l (kcRc) = Rch

(±)
l (kcRc) being the Ricatti-Hankel functions [17], υci

, υc being the

velocities of the fragments in the initial and final channel, respectively, and Sc,ci
being the

elements of the scattering S-matrix.

If the fragments are charged (as in partitioning into a 3-body system and a lone particle),

the function of the relative motion satisfies

lim
Rc→∞

χc(Rc) = −

√

υci

υc

Sc,ci
u

(C+)
l (kcRc), (5)

where u
(C+)
l (kcRc) is the outgoing spherical Coulomb function [18].

Actually, the S-matrix elements in the above equations depend not only on the initial and

final angular momenta given by ci and c, but also on the total angular momentum of the

system J , its parity, and the intermediate couplings of the angular momenta of the collision

fragments. More about this is coming later in the text.

It is important to emphasize that functions χc(Rc) are not requested to vanish in the inner

region (except for Rc = 0). In that way they can contribute to the description of the inner

region spanned by functions �v , and at the same time facilitate a smooth transition between

the inner and outer regions.

Solving the Schrödinger equation (3) with � expressed as in (1) becomes equivalent to

the determination of expansion coefficients bv and the channel functions χc. The strategy

has been discussed in ref. [19] for the case of H̄H . The solution of the eigenvalue prob-

lem is converted into the solution of the system of non-local, coupled integro-differential

equations. We show the general form of these equations in the Appendix, postponing the

derivations and description of numerical procedures to the more comprehensive publication.

The objective is then to solve these equations as to simultaneously and self-consistently

determine the outer part (χc and thereby Sc,c′ ) and the inner part (bv). The asymptotic

functions χc are determined by numerical integration using the Compact Finite Difference

Method (CFDM) that takes into account the boundary conditions.

The expansion coefficients bv can be expressed in terms of channel functions χc [19].

This suggests the use of iterative procedure. However, the attempts to solve the problem
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Table 2 Notation for scattering channels

Channel state Fragments Description

α1 H̄ (1s) + Ps(1s) elastic scattering

α2 H̄ (1s) + Ps(2s) excitation of Ps(2s)

α3 H̄ (1s) + Ps(2p) excitation of Ps(2p)

α4 H̄ (1s) + Ps(3s) excitation of Ps(3s)

α5 H̄ (1s) + Ps(3p) excitation of Ps(3p)

α6 H̄ (1s) + Ps(3d) excitation of Ps(3d)

α7 H̄+ + e production of H̄+

iteratively did not succeed, we were not able to achieve convergence. Instead, we have

solved the problem by casting the numerical integration into algebraic equations which were

solved as the matrix problem, determining the values of the functions χc on the grid, in form

of one vector for all functions χc. Subsequently, the scattering matrix elements Sc,ci
, and

the cross sections are determined, i.e. χc −→ Sc,ci
−→ σc,ci

.

To construct the cross sections we need a more subtle notation for the channel angular

momenta. We replace the symbol c by a pair α, λ where α defines the angular momenta of

the collisional fragments l and L (see Table 2 and Fig. 1), and λ is the angular momentum of

their relative motion. We also need to take into account that the three angular momenta that

characterize the channels c can be coupled in different ways. We adopt the coupling scheme

where the momenta of the scattering fragments (l and L) in the channel state α are added

first and the result (�) is added to the momentum of the relative motion of the fragments λ,

to give the total angular momentum J .

The cross sections, for scattering from the initial state αi in the partial wave λi into a

final state state α in a partial wave λf , are given by

σ
λf ,λi
α,αi

(J,�i,�f ; E) =
π

k2
αi

(2λi + 1)|δα,αi
− S

λf ,λi
α,αi

(J,�i, �f ;E)|2. (6)

The above partial cross sections need to be calculated for each λi = 0, 1, 2..., for the asso-

ciated values of |λi − �i | ≤ J ≤ (λi + �i) and for the allowed values of λf , compatible

with J and �f . The above partial cross sections can be summed up to give the cross section

for scattering from the initial state αi to a final state α

σα,αi
(E) =

∑

J

∑

�i ,�f

∑

λi ,λf

σ
λf ,λi
α,αi

(J,�i,�f ; E). (7)

Finally, the state to state cross sections can be summed up over the final states to give the

total cross section

σtot,αi
(E) =

∑

α

σα,αi
(E) θ(E − Eα) (8)

where θ is the Heaviside step function and Eα is the collision energy threshold above which

the reaction to state α becomes open.

In the present work we consider the scattering of H̄ (1s) and Ps(1s) below the H̄ (n = 2)

threshold and for this case the notation in (6) – (8) becomes significantly simpler, because
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Fig. 3 The energy spectrum of the H̄P s system of the J = 0+ symmetry with positrons in the singlet

(spin 0) configuration. There are two energy scales: the total 4-body energy, and the energy relative to the

lowest threshold. The orange dots indicate the resonances. There exists only one bound state, just below the

threshold for the dissociation into antihydrogen and positronium atoms in their ground states. The various

branches of the continuous spectrum are indicated by blue lines, originating at the thresholds. We see the

thresholds for positronium excitation, which accumulate at the 3-body fragmentation threshold

�i = li = Li = 0, J = λi and �f = Lf . Therefore, for this case the equation (7)

becomes

σα,αi
(E) =

∑

J

λf =J+Lf
∑

λf =|J−Lf |

σ
λf ,λi
α,αi

(J ;E). (9)

In the above equation, J is equivalent to the relative angular momentum in the H̄ (1s) +

Ps(1s) scattering (J = λi) and thus σ
λf ,λi
α,αi

(J = λi; E) can be regarded as a partial cross

section for scattering from the initial state αi = α1 in J -wave to the final state α in λf -wave.

In the following we present the cross sections for the s-wave scattering between H̄ (1s)

and Ps(1s), thus setting αi = α1 (see Table 2) and λi = 0. This situation conforms entirely

to the J = 0 symmetry (the wave functions possess the J = 0+, singlet positronic configu-

ration symmetry). The excitation of the positronium states Ps (nf , Lf ) is possible but only

in the final partial waves with the angular momenta satisfying λf = Lf .

The considered range of collisional energies exceeds the threshold for H̄+ formation.

This means that we need to solve the coupled channel problem for all seven opened chan-

nels, and determine the 7 × 7 scattering matrix S. The energy spectrum of H̄P s showing

the scattering channels is shown on Fig. 3. The channel labeling for the included cou-

pled channels is given in Table 2. (Please note that the number of open scattering channels

only accidentally coincides (and should not be confused) with the 7 arrangement channels

included in the calculation of the inner part of the wave function.)

The results for the s-wave elastic scattering from the one channel calculation are

presented in Fig. 4.
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Fig. 4 Elastic cross section σ
0,0
1,1 (E). Black: CRC, one channel. Red: PM/ERT. The vertical dotted lines indi-

cate the thresholds for Ps(2) and Ps(3) excitations. The bars along the upper edge indicate the eigenvalues

of the 4-body eigenvalue problem for the inner part

The one channel calculation is exact below the first excitation threshold for Ps(n = 2).

The construction of the inner part of the scattering wave function is similar to that for the

bound state calculation (shown in Table 1). The latter was constructed using 41 648 four-

body basis functions from 16 channels in 7 sets of Jacobi coordinates, including angular

momentum configurations with lcμ ≤ 2. In the scattering calculations we use the similar size

expansion (44 496 basis functions) to describe the closed part of the wave function (the first

summation in (1)). However the number of channels is reduced, so that the closed part can

be considered to be a restriction of the one used in the calculation of the binding energy of

H̄P s. On the other hand we have extended the size of the manifolds along the coordinates

describing the relative motion of the scattering fragments, especially by additional long-

range functions along the H̄+−e coordinate as to describe the expected oscillation structure

of the resonant states.

The basis functions for the 2-body (atomic) and 3-body (ionic) fragments (appearing

in the second and third summation in (1)) are obtained by separate 2 and 3 body calcula-

tions. These functions are compact but of good quality. Thus for instance the fragment of

antihydrogen ion H̄+ is expanded in 736 basis functions, resulting in the binding energy -

0.527 442 a.u. (and thus differing from the best available reference value only by 4 micro

Hartrees).

Suma sumarum, at the present stage of calculations, our scattering expansions are less

elaborate than the one for the bound state. This is why the accuracy of the binding energy of

H̄P s is on the order of 5 ppm (parts per million) whereas the non-unitarity of the scattering

matrix for the here reported scattering calculations is on the order of 5% (at worst). 1 Still,

the quality of the 4-body inner part is such that already the one channel calculation is able

to discern the resonant features both below and above the first excitation threshold, and at

the same time give the very competitive scattering length.

1 Note added in proof: In the next generation of calculations, with more experience we have been able to

reduce this non-unitarity to 2.6 % at worst, without extending the computational effort.
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Fig. 5 Elastic cross section, close-up through the resonance region. Black: CRC. Red: PM/ERT. The sim-

ple PM/ERT method gives remarkably good overall elastic cross section, even above the threshold for Ps

excitation, but fails to reproduce the resonant features

Table 3 Scattering length and elastic scattering at E = 0

Scattering length a [a0] σ
0,0
11 (E = 0) [a2

0 ] source

4.488 a0 253.11 a2
0 This work simple Projection Method (PM/ERT)

4.410 a0 244.39 a2
0 Blackwood et al. [10] coupled pseudostates / R-matrix

4.340 a0 236.69 a2
0 Ivanov et al. [6] Stochastic Variational Method (SVM )

4.331 a0 235.71 a2
0 Woods et al. [12] complex Kohn variational method

4.291 a0 231.38 a2
0 This work GEM/CRC calculation

We mention in passing that the good quality of the inner part of the scattering wave

function means that it alone can be used to get the first estimation of the elastic cross

section. This is shown on Fig. 4 and in Table 3 which include the results for the elastic

cross section obtained by the simple Projection Method combined with the Effective Range

Theory (PM/ERT) [20]. The importance of the good description of the inner part (reflected

e.g. in the resulting binding energy) on the scattering length has been noted before, e.g. in

ref. [10].

To judge the accuracy of the obtained cross sections at low energies we report the

scattering length a, related to the low energy limit of the elastic scattering according to

σ
0,0
11 (E → 0) = 4πa2. Comparison of our scattering length to other calculations is given in

Table 3.

Since the scattering length obtained from a variational calculation is tacitly assumed to

be an upper bound for this quantity, our result is seen to be highly accurate. The accuracy

of the cross sections at higher energies is estimated from the residual non-unitarity of the

scattering matrix S(E).

On Fig. 6 we illustrate the importance of channel coupling and the influence of inelastic

scattering on the elastic one. Even though the elastic scattering dominates, the inelastic one

has a substantial effect. We see that the pure one-channel elastic scattering (black broken
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Fig. 6 Elastic and inelastic scattering above the lowest excitation threshold and across the resonant region.

Red line: ERT. Broken line: CRC, elastic scattering σ
0,0
11 , one channel calculation. Green line: CRC, elastic

scattering σ
0,0
11 in the presence of inelastic scattering, 2 channel calculation. Orange line: CRC, cross section

for inelastic (excitation) scattering σ
0,0
21 in the presence of elastic scattering, 2 channels calculation

line) is reduced in magnitude and its resonant features are remodulated in the presence of

inelastic scattering (two-channel calculation, green line).

On Fig. 7 we show the cumulative scattering cross sections resulting from the 3-channels

calculation, i.e. the sum of σ
0,0
11 , σ

0,0
21 and σ

1,0
31 . The sum of these 3 cross sections does not

correspond to the pure partial wave scattering. Rather, we include those partial waves that

are compatible with the total angular momentum J = 0 for the entire system, since at the

moment we consider collisions of H̄ (1s) with Ps(1s) with λi = 0 for the initial relative

motion (low energy collisions). Hence, the outcoming products H̄ (1s) and Ps(2p) are kept

in the λf = 1 partial wave as to ensure conservation of the total angular momentum.

The three different shades of Fig. 7 show the separate contributions and the cumulative

effect of the presented cross sections. Each of them is obtained from the common coupled 3-

channels calculation. We notice that σ
0,0
21 , σ

1,0
31 start to contribute above the lowest inelastic

channel (that of Ps(n = 2) excitation) and that the behavior of the cross sections across the

thresholds for Ps(n = 2) and Ps(n = 3) excitations is markedly affected by the nearby

resonances.

To analyse the resonant structure of the cross section we have located the resonances

through an independent calculation, using the complex coordinate method and solving the

complex eigenvalue problem. As seen from the upper panel of Fig. 7 the complex eigenval-

ues that determine the positions and the life-times of the resonances correspond very well

to the resonant features seen in scattering cross sections obtained by the CRC method.

The results of the 7-channels calculation, coupling the H̄+ + e channel and all open

channels below, is presented on Fig. 8. In the energy interval shown in Fig. 8 the S-matrix
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Fig. 7 Scattering cross section in the energy region between the first and second excitation thresholds, 3-

channels calculation. The contributions from various channels are indicated using different colors. Grey

shade: elastic scattering. Blue shade: excitation of the Ps(2s). Orange shade: excitation of the Ps(2p).

The red line indicates the elastic scattering obtained with the PM/ERT. The upper panel shows the complex

eigenvalues corresponding to the resonances of H̄P s, as they appear from the separate 4-body, complex-

coordinate calculation

satisfies the unitarity condition with the accuracy of 5% at worst. We notice that, once the

H̄+ production sets in, it becomes the strongest inelastic process with the cross section on

the order of 1 a.u. .

5 Summary

We have presented the first round of the 4-body, Coupled Rearrangement Channels calcu-

lations for the H̄P s system. The simultaneous use of several sets of Jacobi coordinates in

the same calculation allows the systematic analysis of the binding, structure and scattering

properties of the system. It also alleviates the problem of linear dependencies (at the present

level of the description we have not noticed it at all). Using the 7 most essential rearrange-

ment channels we have achieved the binding energy of the ground state Eb = 0.788 867 5

a.u. which indicates the accuracy on the order of micro-Hartrees.

We have then used the 4-body solutions of the eigenvalue problem for H̄P s as the basis

for the expansion of the inner part of the total scattering wave function. The asymptotic

behavior of that wave function, rendering the scattering matrix elements, was determined

through solving the coupled, integro-differential equations. We have solved these equations

including all open scattering channels for energies above the threshold for the rearrangement

reaction H̄+ + e. We have calculated the s-wave cross sections for the elastic scattering, the
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Fig. 8 Scattering cross section in the energy region above the threshold for H̄+ production, 7-channels

calculation. The vertical lines show the series of H(1) + Ps(n) excitation thresholds, starting from H(1) +

Ps(3) and converging to H(1) + e+ + e three body fragmentation threshold. Red line: elastic scattering

σ
0,0
11 . Green, solid line: Ps(2s) excitation σ

0,0
21 ; broken line: Ps(2p) excitation σ

1,0
,1 . Mangenta, solid line:

Ps(3s) excitation σ
0,0
41 ; broken line: Ps(3p) excitation σ

1,0
51 ; dotted line: Ps(3d) excitation σ

2,0
61 . Blue line:

H̄+ production σ
0,0
71 . Black line: sum of the cross sections mentioned above

inelastic scattering ending with excitation of the positronium, and the rearrangement reac-

tion ending with the H̄+ ion. We have seen that, notwithstanding some resonant features,

above the threshold for the H̄+ production this reaction is the strongest inelastic process,

with the cross section on the order of 1 a.u. The resonant features, attributed to the presence

of charged fragments in the H̄+ + e channel, are seen already in the purely elastic scatter-

ing, but, as seen from our coupled-channel procedure, are then substantially modulated by

the presence of inelastic processes.

The accuracy of our cross-section calculations can be inferred from the residual non-

unitarity of the S-matrix. In the presented energy range of the scattering calculations, the

unitarity of the S-matrix has been satisfied to within 5% (at worst).

For the low energy scattering, the indication of the accuracy may be obtained from the

consideration of the low energy limit of the elastic scattering, which becomes σ
0,0
11 (E =

0) = 231.38 a2
0 . The corresponding scattering length is a = 4.291 a0 which is currently the

lowest informal upper bound for this quantity.
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Appendix

We display below the generic form of the coupled integro-differential equations for channel

functions, to show the appearance of the non-local potentials and coupling of the rear-

rangement channels arising from the permutation of the two positrons. For simplicity and
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brevity we show the case of the elastic H̄ − Ps scattering. The case involving inelastic and

rearrangement channels is a non straightforward generalization of the equations below.

The channel functions are solutions of the following equations:
(

d2

dR2
α

−
J (J + 1)

R2
α

− 2μαṼ
(α)
int (Rα) + k2

α

)

χ
(JM)
J (Rα)

+η

(

μα

μᾱ

)∫

RαRᾱdRᾱW
(αᾱ)
N (Rα, Rᾱ)

(

d2

dR2
ᾱ

−
J (J + 1)

R2
ᾱ

+ k2
ᾱ

)

χ
(JM)
J (Rᾱ)

+η (−2μα)

∫

RαRᾱdRᾱW
(αᾱ)
V (Rα, Rᾱ)χ

(JM)
J (Rᾱ)

+
∑

γ=α,ᾱ

ηγ (−2μα)

∫

RαRγ dRγ W
(αγ )
VV (Rα, Rγ )χ

(JM)
J (Rγ ) = 0, (10)

where k2
α = 2μα

(

E − ǫH(1s) − ǫPs(1s)

)

, α specifies a coordinate set (see Fig. 1) and ᾱ

specifies a coordinate set generated by permutation of two positrons; η = 1 is used for the

space-symmetric and η = −1 for the space-antisymmetric case, respectivly. In the follow-

ing formulation, we use η = 1. In the above we have introduced the following non-local

potentials:

W
(αᾱ)
N (Rα, Rᾱ) = Jαᾱ

〈

φH(1s)(rα)φPs(1s)(qα)
[

[

Y0(r̂α) ⊗ Y0(q̂α)
]

0
⊗ YJ (R̂α)

]

JM

∣

∣

∣

×1

∣

∣

∣
φH(1s)(rᾱ)φPs(1s)(qᾱ)

[

[

Y0(r̂ᾱ) ⊗ Y0(q̂ᾱ)
]

0
⊗ YJ (R̂ᾱ)

]

JM

〉

qα ,R̂ᾱ ,R̂α

,

(11)

W
(αᾱ)
V (Rα, Rᾱ) = Jαᾱ

〈

φH(1s)(rα)φPs(1s)(qα)
[

[

Y0(r̂α) ⊗ Y0(q̂α)
]

0
⊗ YJ (R̂α)

]

JM

∣

∣

∣

×V
(ᾱ)
int

∣

∣

∣
φH(1s)(rᾱ)φPs(1s)(qᾱ)

[

[

Y0(r̂ᾱ) ⊗ Y0(q̂ᾱ)
]

0
⊗ YJ (R̂ᾱ)

]

JM

〉

qα ,R̂ᾱ ,R̂α

,

(12)

where Jαγ is the Jacobian of the coordinate transformation from the set {rα, qα, Rα} to the

set {qα, Rγ , Rα}, defined through the relationship drαdqαdR̂α = Jαγ dqαdRγ dR̂α .

Furthermore,

W
(αγ )
VV (Rα, Rγ ) =

∑

υ

Vαυ(Rα)
1

E − Eυ

Vγ υ(Rγ ) (13)

where Vαυ(Rα) is defined as

Vαυ(Rα) =
〈

φH(1s)(rα)φPs(1s)(qα)
[

[

Y0(r̂α) ⊗ Y0(q̂α)
]

0
⊗ YJ (R̂α)

]

JM

∣

∣

∣
(H − E)

∣

∣

∣
�υJM

〉

rα ,qα ,R̂α

.

(14)

There is also a local potential

Ṽ
(α)
int (Rα) =

〈

φH(1s)(rα)φPs(1s)(qα)
[

[

Y0(r̂α) ⊗ Y0(q̂α)
]

0
⊗ YJ (R̂α)

]

JM

∣

∣

∣

× V
(α)
int

∣

∣

∣
φH(1s)(rα)φPs(1s)(qα)

[

[

Y0(r̂α) ⊗ Y0(q̂α)
]

0
⊗ YJ (R̂α)

]

JM

〉

rα ,qα ,R̂α

(15)
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with the interaction V
(α)
int defined by the relations

H = T (Rα) + V
(α)
int + hH + hPs, (16)

= T (Rᾱ) + V
(ᾱ)
int + hH + hPs, (17)

where T (Rα) is the operator for the kinetic energy of relative motion along Rα , hH̄ the

Hamiltonian for H̄ , hPs the Hamiltonian for Ps, so that Vint is the Coulomb interaction

between H̄ and Ps.

The appearance of non-local potentials in the master equation (10) is of uttermost impor-

tance, since e.g. for the elastic scattering the local potential Ṽ
(α)
int (Rα) (15) describing the

effective H̄ − Ps interaction vanishes, due to the particular symmetry of Ps, whose center

of mass coincides with its geometrical center.

The above master equation (10) is solved using the compact finite difference method

(CFDM) [19, 21]. The solution χ
(JM)
J is calculated as a vector on the grid

v = {χ
(JM)
J (r1), χ

(JM)
J (r2), · · · χ

(JM)
J (rk), · · · χ

(JM)
J (rN )} (18)

where r1, r2, · · · , rN are the non-uniformly distributed grid points extending from the short

range to the long range that in our calculations was typically outstretched to more than 100

a.u..
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