FOUR CLASSES OF SEPARABLE METRIC INFINITE-DIMENSIONAL MANIFOLDS¹

BY T. A. CHAPMAN

Communicated by R. D. Anderson, October 6, 1969

1. Introduction. The purpose of this note is to announce some new embedding, homeomorphism, and characterization theorems regarding certain infinite-dimensional manifolds. We list these theorems below along with some of the principal known results in this area. It is expected that these new results will constitute a portion of the author's dissertation and their proofs will appear in a longer paper that is in preparation.

2. Definitions and notation. Each infinite-dimensional separable Fréchet space (and therefore each infinite-dimensional separable Banach space) is homeomorphic to s, the countable infinite product of open intervals (-1, 1) (see [3]). A Fréchet manifold (or F-manifold) is a separable metric manifold modeled on s. A Hilbert cube manifold (or Q-manifold) is a separable metric manifold modeled on the Hilbert cube I^{∞} , which we represent as the countable infinite product of closed intervals [-1, 1].

Let σ be the set consisting of all points in *s* having at most finitely many nonzero coordinates and define a σ -manifold to be a separable metric manifold modeled on σ . Let Σ be the set consisting of all points in *s* having at most finitely many coordinates not in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and define a Σ -manifold to be a separable metric manifold modeled on Σ .

A subset K of a space X is a Z-set in X if K is closed and if for every nonnull homotopically trivial open set U in X, $U \setminus K$ is nonnull and homotopically trivial.

A subset M of a metric space X is said to have the (finite-dimensional) compact absorption property (or (f-d) cap) in X provided that

(1) $M = \bigcup_{n=1}^{\infty} M_n$, where M_n is a (finite-dimensional) compact Z-set in X, and

AMS Subject Classifications. Primary 5755; Secondary 5705, 5701.

Key Words and Phrases. Fréchet manifolds, Hilbert cube manifolds, Property Z, (finite-dimensional) compact absorption property, infinite deficiency.

¹ This article was presented to the Society January 24, 1970.

The research was conducted while the author held a NASA traineeship.

(2) for each (finite-dimensional) compact set K in X, each integer m>0, and each $\epsilon>0$, there is an integer n>0 and an embedding $h: K \rightarrow M_n$ such that $h \mid K \cap M_m = \text{id}$ and $d(h, \text{id}) < \epsilon$.

An (f-d) cap-set for X is a set which has the (f-d) cap in X. We adopt the convention that the symbol (f-d) cap implies two alternative conditions, one for f-d cap and the other for cap. In [2] it is shown that σ is an f-d cap-set for s and Σ is a cap-set for s.

Let X be a space and let \mathfrak{U} be an open cover of X. A function $f: X \to X$ is said to be *limited by* \mathfrak{U} provided that for each $x \in X$, x and f(x) are both contained in some member of \mathfrak{U} . By $St^n(\mathfrak{U})$ we will mean the *n*th star of the cover \mathfrak{U} .

As in [6], a subset K of a space X is said to be strongly negligible provided that given any open cover \mathfrak{U} of X, there is a homeomorphism of X onto $X \setminus K$ which is limited by \mathfrak{U} .

A subset K of I^{∞} is said to have infinite deficiency (or *infinite* codimension) if for each of infinitely many different coordinate directions, K projects onto a single interior point of (-1, 1).

3. Principal results on F, Q, Σ , and σ -manifolds. The theorems are those of the author unless other authorship is denoted.

I. CHARACTERIZATION OF MANIFOLDS BY HOMOTOPY TYPE.

THEOREM 1 (HENDERSON [8]). If X and Y are F-manifolds of the same homotopy type, then they are homeomorphic.

THEOREM 2. If X and Y are both σ -manifolds or both Σ -manifolds and are of the same homotopy type, then they are homeomorphic.

II. OPEN EMBEDDING THEOREMS.

THEOREM 3 (HENDERSON [8]). If X is an F-manifold, then X can be embedded as an open subset of s.

THEOREM 4. If X is a σ (or Σ)-manifold, then X can be embedded as an open subset of σ (or Σ).

III. PRODUCT THEOREMS.

THEOREM 5 (WEST [9]). If K is any countable locally-finite simplicial complex, then $|K| \times s$ is an F-manifold and $|K| \times I^{\infty}$ is a Q-manifold.

THEOREM 6. If K is any countable locally-finite simplicial complex, then $|K| \times \sigma$ is a σ -manifold and $|K| \times \Sigma$ is a Σ -manifold.

THEOREM 7. If X is a σ -manifold and Y is a Σ -manifold of the same homotopy type, then $X \times I^{\infty}$ and Y are homeomorphic.

IV. FACTOR THEOREMS.

THEOREM 8 (HENDERSON [8]). If X is an F-manifold, then there is a countable locally-finite simplicial complex K such that X and $|K| \times s$ are homeomorphic.

THEOREM 9. If X is a σ (or Σ)-manifold, then there is a countable locally-finite simplicial complex K such that X is homeomorphic to $|K| \times \sigma$ (or $|K| \times \Sigma$).

THEOREM 10 (ANDERSON AND SCHORI [5]). If X is an F-manifold, then X, $X \times s$, and $X \times I^{\infty}$ are all homeomorphic.

THEOREM 11 (ANDERSON AND SCHORI [5]). If X is a Q-manifold, then X and $X \times I^{\infty}$ are homeomorphic.

THEOREM 12. If X is a σ -manifold and I^n is any n-cell, then X, $X \times \sigma$, and $X \times I^n$ are all homeomorphic.

THEOREM 13. If X is any Σ -manifold, then X, $X \times \Sigma$, and $X \times I^{\infty}$ are all homeomorphic.

V. Relationships between F, Q, Σ , and σ -manifolds.

THEOREM 14. If X is a σ (or Σ -manifold), then X can be embedded as an f-d cap (or cap)-set for an F-manifold and also for a Q-manifold.

THEOREM 15 (ANDERSON [2]). If X is I^{∞} or s and M, N are (f-d) cap-sets for X, then there is a homeomorphism of X onto itself taking M onto N.

THEOREM 16. If X is an F or Q-manifold and M is an f-d cap (or cap)-set for X, then M is a σ (or Σ)-manifold.

THEOREM 17. If X is an F or Q-manifold, M and N are (f-d) cap-sets for X, and U is an open cover of X, then there is a homeomorphism of X onto itself which takes M onto N and is limited by U.

THEOREM 18 (ANDERSON [2]). If M is an (f-d) cap-set for I^{∞} , then $I^{\infty} \setminus M$ is homeomorphic to s.

THEOREM 19. If X is any Q-manifold and M is an (f-d) cap-set for X, then X \ M is an F-manifold which is of the same homotopy type as X.

VI. Subsets and supersets of F, Q, Σ , and σ -manifolds.

THEOREM 20 (ANDERSON, HENDERSON AND WEST [6]). A necessary and sufficient condition that a closed subset K of an F-manifold be a Z-set is that K be strongly negligible. THEOREM 21. A necessary and sufficient condition that a closed subset K of a σ or Σ -manifold be a Z-set is that K be strongly negligible.

THEOREM 22. Let M be an (f-d) cap-set for an F or Q-manifold X and let K be a Z-set in X. Then $M \setminus K$ is an (f-d) cap-set for X.

THEOREM 23. Let M be an (f-d) cap-set for an F or Q-manifold X and let K be a countable union of (finite-dimensional) compact Z-sets in X. Then $M \cup K$ is an (f-d) cap-set for X.

VII. HOMEOMORPHISM EXTENSION THEOREMS.

THEOREM 24 (ANDERSON AND MCCHAREN [4]). Let X be an F-manifold, let K_1 , K_2 be Z-sets in X, let \mathfrak{U} be an open cover of X, and let h be a homeomorphism of K_1 onto K_2 such that there is a homotopy $H: K_1 \times I \to X$ for which $H_0 = \mathrm{id}$, $H_1 = h$, and $H(\{x\} \times I)$ is contained in some member of \mathfrak{U} , for each $x \in K_1$. Then h can be extended to a manifold homeomorphism which is limited by $\mathrm{St}^4(\mathfrak{U})$.

THEOREM 25. Let X be a σ or Σ -manifold, let K_1 , K_2 be Z-sets in X, let \mathfrak{U} be an open cover of X, and let h be a homeomorphism of K_1 onto K_2 such that there is a homotopy $H: K_1 \times I \to X$ for which $H_0 = \mathrm{id}$, $H_1 = h$, and $H(\{x\} \times I)$ is contained in some member of \mathfrak{U} , for each $x \in K_1$. Then h can be extended to a manifold homeomorphism which is limited by $\mathrm{St}^{28}(\mathfrak{U})$.

VIII. Complete extensions of Σ and σ -manifolds.

THEOREM 26. Let X be a σ (or Σ)-manifold and let Y be a complete separable metric space containing X. Then there is an F-manifold Z such that $X \subset Z \subset Y$ and X is an f-d cap (or cap)-set for Z.

IX. INFINITE DEFICIENCY.

THEOREM 27 (ANDERSON [1]). Let X be I^{∞} or s and let K be a closed subset of X. A necessary and sufficient condition that K be a Z-set in X is that there exists a homeomorphism of X onto itself taking K onto a set having infinite deficiency.

THEOREM 28 (CHAPMAN [7]). Let X be an F-manifold and let K be a closed subset of X. A necessary and sufficient condition that K be a Z-set in X is that there exists a homeomorphism h of X onto $X \times s$ such that $\pi_{\bullet} \circ h(K)$ has infinite deficiency.

THEOREM 29. Let X be a Q-manifold and let K be a closed subset of X. A necessary and sufficient condition that K be a Z-set in X is that there exists a homeomorphism h of X onto $X \times I^{\infty}$ such that $\pi_{I^{\infty}} \circ h(K)$ has infinite deficiency.

References

1. R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383. MR 35 #4893.

2. ——, On dense sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (to appear).

3. R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 37 #5847.

4. R. D. Anderson and John D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. (to appear).

5. R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330.

6. R. D. Anderson, David W. Henderson and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143-150.

7. T. A. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. (to appear).

8. David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759-762.

9. James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc.

LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803