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In this article, the authors review novel techniques in the emerging field of spatiotemporal four-
dimensional �4D� positron emission tomography �PET� image reconstruction. The conventional
approach to dynamic PET imaging, involving independent reconstruction of individual PET frames,
can suffer from limited temporal resolution, high noise �especially when higher frame sampling is
introduced to better capture fast dynamics�, as well as complex reconstructed image noise distri-
butions that can be very difficult and time consuming to model in kinetic parameter estimation
tasks. Various approaches that seek to address some or all of these limitations are described,
including techniques that utilize �a� iterative temporal smoothing, �b� advanced temporal basis
functions, �c� principal components transformation of the dynamic data, �d� wavelet-based tech-
niques, as well as �e� direct kinetic parameter estimation methods. Future opportunities and chal-
lenges with regards to the adoption of 4D and higher dimensional image reconstruction techniques
are also outlined. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3160108�
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I. INTRODUCTION

Modern molecular imaging techniques are expected and be-
ing seen to result in a revolutionary paradigm shift in health-
care and clinical practice. Among the unique features of pos-
itron emission tomography �PET� is that it is a quantitative
imaging modality by nature.1 Another important aspect of
PET is its inherent ability to perform dynamic imaging tak-
ing advantage of the high sensitivity achieved by stationary
multiring systems.2,3 This is a very notable capability allow-
ing measurements of change in the biodistribution of radiop-
harmaceuticals within the organ�s� of interest over time.
This, in turn, offers very useful information about the under-
lying physiological or metabolic processes, as commonly ex-
tracted using various kinetic modeling techniques.4 By com-
parison, SPECT imaging typically requires camera rotations
to achieve complete angle tomography, thus limiting how
fast each frame may be acquired. It is worth noting though
that alternative approaches to dynamic SPECT have been
proposed, allowing slow camera rotations �e.g., even a single
rotation for the entire study�; i.e., yet they typically require
making certain assumptions about the functional behavior of
the tracer.3 In the context of dynamic PET imaging �similarly
applicable to stationary SPECT or conventional SPECT in
which complete tomographic data are available for each
frame�, we next outline the three standard steps commonly
performed.

I.A. Dynamic PET acquisition, reconstruction, and
kinetic parameter estimation

Dynamic PET acquisition can be performed using two

general approaches depending on whether the scanner has
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the list-mode acquisition capability; i.e., the ability to store
time of detection along with the spatial coordinates �and en-
ergy� for the detected events.5 If such ability does not exist,
the standard approach is to prespecify, prior to data acquisi-
tion, the framing sequence of interest and to bin the detected
events in the corresponding sinograms to each frame. By
contrast, the list-mode acquisition capability allows the
added flexibility of specifying the framing sequence postac-
quisition.

Following dynamic framing of the acquired data as out-
lined above, the common approach to dynamic PET image
reconstruction consists of independently reconstructing to-
mographic data within each dynamic frame. Following this
step, one arrives at a set of dynamic images intended to
specify the variation in activity over time throughout the
reconstructed field of view. This is still the de facto standard
approach applied in routine clinical studies in many institu-
tions.

Following the reconstruction step, the underlying func-
tional parameters of interest �e.g., binding potential, maxi-
mum binding potential Bmax, dissociation constant of binding
Kd, etc.� can be obtained using a number of tracer kinetic
modeling techniques.4 Most commonly, compartmental mod-
eling techniques are utilized and are applied to time activity
curves �TACs� extracted for either �i� particular regions of
interest �ROIs� or �ii� at the voxel level, the latter resulting in
parametric images.

I.B. Issues with conventional dynamic imaging

The aforementioned standard approach to dynamic PET

imaging suffers from three main issues:
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�i� The independent reconstruction of each of the �typi-
cally� many frames of the data can result in very noisy
images.

�ii� Conventional dynamic PET reconstruction incorpo-
rates only the data from within each frame �and not
any other� to arrive at the image for that frame, impos-
ing a limitation on the temporal resolution of the scan-
ner and its ability to capture the dynamics. While in-
creasingly higher temporal framing may be utilized,
this will, in turn, result in even higher noise levels
�these two issues may thus be expressed in terms of a
noise vs. temporal resolution trade-off�.

�iii� Accurate application of tracer kinetic modeling re-
quires knowledge and modeling of the noise distribu-
tion present in the reconstructed dynamic images �how
noisy individual voxels are and how they correlate
with other voxels�, which can be extremely difficult
and time consuming to perform.6,7 As a result, very
commonly, the presence of space-variant noise vari-
ance and intervoxel correlations are simply ignored in
kinetic parameter estimation.

In this review, we refer to the field encompassing tech-
niques that attempt to address one or more of the aforemen-
tioned three issues as spatiotemporal four-dimensional �4D�
PET image reconstruction. A wide range of methods have
been proposed in literature to this end,8–10 and they all agree
in that they do not independently reconstruct individual dy-
namic frames, and these methods aim to outperform conven-
tional dynamic PET �e.g., in terms of precision �noise� vs
accuracy �bias� trade-offs�.

We have identified and elaborated upon five categories of
strategies that can be classified as 4D PET image reconstruc-
tion: These are techniques that utilize �a� iterative temporal
smoothing, �b� advanced temporal basis functions, �c� prin-
cipal components transformation of the dynamic data, �d�
wavelet-based techniques, and �e� direct kinetic parameter
estimation methods. Each of these categories is presented in
Secs. II–VI, respectively. For further clarity, a more concise
summary of these techniques, along with their advantages,
drawbacks/limitations, as well as outstanding issues to inves-
tigate, has been presented in Table I. A number of future
opportunities and challenges in the field of multidimensional
�4D and higher� image reconstruction have been outlined in
Sec. VII, followed by concluding remarks in Sec. VIII. Be-
fore moving on to the review section, we wish to make the
following two observations.

I.B.1. Relation with motion-compensation
techniques

We wish to note that dynamic imaging and motion-
compensated imaging methods overlap in the sense that they
both deal with varying activity distributions over time. Yet
one must note that the underlying bases of the two are dif-
ferent and need to be distinguished from one another; for the
latter, for instance, some types of motion �and thus certain

changes in voxel intensity� are physically/anatomically im-
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possible. As such, this review focuses on dynamic imaging,
while techniques to model and incorporate motion have been
reviewed elsewhere �e.g., Rahmim et al.52�. On a related
note, we believe that techniques, which attempt to apply gen-
eral 4D PET image reconstruction methods to motion com-
pensation �e.g., Grotus et al.53 and Verhaeghe et al.54�, re-
main to be further validated to ensure that the estimated
motion vector fields are physically allowed.

I.B.2. List-mode vs histogram-mode 4D PET image
reconstruction

It is worth emphasizing that list-mode acquisition is dis-
tinct from list-mode reconstruction; the former �increasingly
employed in current PET scanners� is only a prerequisite for
the latter. The initial and primary motivation behind list-
mode image reconstruction was to provide a fast and accu-
rate technique given the fact that increasingly less counts per
histogram bin are being produced by PET scanners: This can
be due to increasing lines of response for modern PET scan-
ners, time-of-flight PET, or dynamic PET with increasingly
short frames, any or a combination of which can result in
counts per histogram bin to approach the order of unity and
even �much� less.2,55–60 As a result, it may be more efficient
to process individual events, as opposed to histogram bins.
Furthermore, in the context of motion compensation, direct
list-mode image reconstruction can be more feasible and
advantageous.61

In dynamic PET, list-mode reconstruction may introduce
an additional benefit. As 4D image reconstruction techniques
move beyond independent frame reconstruction of data, hav-
ing access to time of acquisition information for events can
be valuable. The basic idea, put simply, is that an event de-
tected toward the end of a particular frame has more infor-
mation to convey about subsequent frames than an event
detected earlier, whereas this information is not available in
histogram-mode acquisition �see Sec. III B�.

II. ITERATIVE TEMPORAL SMOOTHING

II.A. A common approach

A common approach in this direction has been to impose
temporal voxel smoothing within the reconstruction task.
This has been implemented via:

�i� Interiteration temporal smoothing11 in which high-
frequency noise filtering is performed after every itera-
tion of the reconstruction algorithm, with the assump-
tion of similarity between nearby frames.

�ii� Maximum a posteriori probability �MAP� image re-
construction: In the standard framework, MAP-based
methods seek to minimize variations between spatial
neighboring voxels. This is also referred to as the
Bayesian method �originally derived from a simple ap-
plication of Bayes’ rule to image reconstruction�. It is

also, sometimes, referred to as penalized likelihood
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image reconstruction. This approach can be extended
to a 4D MAP algorithm �e.g., see Ref. 12� in which

TABLE I. Outlined strategies for spatiotemporal 4D PET image reconstructio
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Application of these approaches to dynamic PET �or
SPECT� imaging has been shown to improve the noise per-
formance of the reconstruction algorithms; nevertheless, they
are ad hoc in the sense that they assume a priori that voxels
in neighboring temporal frames have close values, and as
such are bound to perform poorly for frames with fast dy-
namics. It must be noted that the application of such methods
in the context of motion compensation, as reviewed in Ref.
52, is better conditioned since one can incorporate the ex-
tracted motion information within the 4D smoothing
task62–64 and not simply assume that each voxel has nearly
constant values in nearby frames. In the rest of this paper, we
describe techniques that attempt to more accurately model
the underlying dynamic mechanism within the 4D image re-

TABLE I.

Category Technique Specific approach K
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II.B. Model-based temporal smoothing

Instead of encouraging temporally adjacent voxels to have
similar values, it makes more sense to encourage them to
have intensity values along a kinetic fitted curve, as first
investigated by Kadrmas and Gullberg13 within the MAP
framework. Thus, this approach effectively performs tempo-
ral smoothing of the intermediate images based on a para-
metric kinetic model. The extreme special case of this
method, investigated by Reader et al.,14 would simply re-
place the intermediate image estimates by the corresponding
intensities found by fitting at each iteration. An example re-
sult from this kind of algorithm is shown in Fig. 1. In gen-
eral, while this overall approach appears more promising that
the previous one �Sec. II A�, it is not known to be convergent
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kinetic model applied to intermediate image intensities that
have not yet converged does not necessarily perform well,
and thus does not necessarily result in improved algorithmic
performance. It remains to investigate how early in the itera-
tive reconstruction, and how strongly, this model-based tem-
poral smoothing can be applied while warranting real or ef-
fective convergence in the overall algorithm.

III. USE OF SMOOTH TEMPORAL BASIS
FUNCTIONS

As mentioned in Sec. I A above, conventional dynamic
PET imaging methods specify framing sequences within
which the data are independently reconstructed. This can be
thought of as using the simplest possible temporal basis
function, namely, the rectangular pulse, in the reconstruction
task such that the data acquired in a particular frame do not
contribute at all to other temporal frames. That is, recon-
struction of independent time frames ignores temporal corre-
lations.

An alternative approach would then aim at using other
smooth temporal basis functions in order to improve the
quality of images by better relating the data measured in
different �especially adjacent� frames. The use of temporally
extensive basis functions allows each time point in the time-
series reconstruction to draw from more, if not all, of the
acquired data.9 Let us consider N temporal basis functions
where Bk�t� is used to denote the kth basis function �k
=1, . . . ,N�. Then, the dynamic image set can be represented
as

� j�t� = �
k=1

N

wjkBk�t� , �1�

where � j�t� represents the image intensity at location j at
time t, and wjk is the coefficient of the kth basis function at
location j. In this context, the reconstruction task becomes to
estimate the coefficients of the basis functions.

Various related approaches have been studied in literature,

FIG. 1. Impact of 4D PET reconstruction for one 5 min frame of a 60 min
�11C�-flumazenil study acquired on the brain dedicated high resolution re-
search tomograph. Shown is a sagittal slice reconstructed using an EM al-
gorithm based only on the line-integral model �left�; the same slice recon-
structed with list-mode EM including a resolution model with the line-
integral model �middle�; and the same slice reconstructed using a 4D
method �right�—which is able to benefit from all 60 min of data without
compromising temporal resolution �although this is, of course, dependent on
the type of temporal basis functions chosen or estimated�. Reprinted with
permission from Ref. 9.
which we classify below in terms of how the basis functions
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are defined: Namely, whether they are �i� model based, �ii�
interpolating, or �iii� data driven, as we discuss next.

III.A. Model-based basis functions

It makes sense to consider basis functions extended tem-
porally in accordance with some physiologically meaningful
dynamic models describing how activity distribution varies
over time. Meikle et al.15 used the approach of spectral
analysis in which the basis functions were modeled as expo-
nential functions of varying widths convolved with the arte-
rial input function q�t�, as initially proposed in Ref. 5,

Bk�t� = q�t� � exp�− �kt� . �2�

In this technique, the � values were fixed and chosen to
cover the spectrum of the expected kinetic behavior �for the
particular biological imaging task�. The authors then used the
expectation-maximization �EM� technique to estimate the w
coefficients �Eq. �1�� of the basis functions from the data.
This overall approach is somewhat specific to the imaging
task of interest �range of � values need to be determined in
advance�; however, it can be applied to a wide range of ra-
diotracers since spectral analysis has the advantage of not
preselecting a particular compartment model for the ra-
diotracer kinetics.65

In the context of planar gamma camera imaging �no re-
construction involved�, Nijran and Barber66 proposed to gen-
erate a large range of model-based theoretical curves from a
particular tracer kinetic model and then use principal com-
ponent analysis �PCA� as applied to the covariance matrix
between the generated curves to generate the most significant
principal components, best representative of the data. This is
because PCA is designed to generate vectors with maximized
variations between them, such that only a small number of
these principal components suffice for an adequate descrip-
tion of time variations at any voxel �also achieving noise
reduction�. A relevant extension of this approach to 4D PET,
not explored in literature to our knowledge, would be to use
such generated principal components as temporal basis func-
tions in the reconstruction tasks as applied to dynamic PET
data. The aforementioned model-based techniques have the
advantage of utilizing physiologically indicative basis func-
tions. At the same time, they are limited in that they require
in advance knowledge on the range of modeling parameters
to be used in the generation of the basis function. Section IV
discusses an alternative 4D approach also making use of the
principle component technique, but this time to transform the
dynamic data itself prior to reconstruction.

III.B. Interpolating basis functions

In cases where the particular kinetic model is not known
in advance, or is not accurately characterized, it is more de-
sirable to consider temporal basis functions that are model
independent. Interpolating basis functions fit this criterion.
The original motivation for their increasing use in the recon-
struction tasks16–18,67 can be seen by the following simple
observation: The assumption that activity is constant within

each dynamic frame, as used in conventional reconstruction
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techniques �see Sec. I A�, is essentially equivalent to per-
forming nearest-neighbor interpolation when considering a
detected event; i.e., using a very simple rectangular pulse
temporal basis function so that each event only contributes to
the dynamic frame in which it is detected.

Alternatively, one may consider utilizing interpolating ba-
sis functions to better sample the temporal variation in activ-
ity in each voxel. In fact, such an approach is commonly
employed in the spatial domain: �i� In image representation,
where relatively smooth basis functions are used to more
accurately represent spatial activity distribution compared to
using voxels �e.g., spherically symmetric “blob” basis
functions68,69 or “natural pixels”70–72 were considered�, and
�ii� in forward-/back-projection operations where more ad-
vanced interpolation techniques are utilized to improve im-
ages obtained compared to merely using nearest-neighbor
interpolations.

A similar logic applies to the temporal domain where it
makes very good sense to consider more sophisticated tem-

FIG. 2. B-spline basis functio
poral basis functions so as to move beyond the commonly
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used nearest-neighbor temporal interpolation scheme. In this
regard, of very considerable potential and use have been the
B-spline basis functions.73–75 These functions are very easily
obtained by convolutions of the rectangular pulse function,
as depicted in Fig. 2. Thus the zeroth-order B-spline function
is the rectangular function itself, corresponding to the
nearest-neighbor interpolation, while the first-order function
is the triangular function that is used for linear interpolation,
and increasing orders correspond to higher degrees of inter-
polation.

B-spline basis functions have been shown to have very
favorable properties including being compact �thus efficient
to implement� while minimizing errors �i.e., they fast ap-
proach the ideal interpolating function with few increasing
orders�. In fact, nowadays it is the third-order cubic B-spline
function that is most commonly used to sample the spatial or
temporal domain as it has very favorable efficiency/accuracy
properties. This is in contrast to the ideal sinc function inter-
polator, which is exact but does not have finite support and

increasing orders �n=0–3�.
ns of
thus cannot be sampled efficiently.
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In this context, a number of different reconstruction algo-
rithms that aim to estimate the w coefficients in Eq. �1� have
been proposed by a number of researchers and directly ap-
plied to list-mode16,17 or histogrammed data.18 They have
been shown to result in kinetic parameter estimates with im-
proved precision vs accuracy trade-offs compared to conven-
tional dynamic PET image reconstruction. Furthermore,
these reconstruction algorithms were designed and shown to
be convergent.

It is worth noting that �as also mentioned in Sec. I B 2�
application of list-mode 4D image reconstruction is expected
to be in advantage over the histogram-mode counterpart.
This is because it can be presumed that compared to events
measured at the beginning of a frame m, the data measured
toward the end of that particular frame contain more infor-
mation about the basis function coefficient for the next frame
�m+1�, and that by performing histogramming, this addi-
tional information is lost. By contrast, direct list-mode recon-
struction maintains this information in the reconstruction
task. Nonetheless, conclusive databased evidence of the list-
mode 4D reconstruction technique outperforming the
histogram-mode method remains to be demonstrated.

It must be noted that in the aforementioned works, the
authors considered the use of nonuniform basis functions
since early changes in concentration are typically much
greater than those observed later in the study, and thus it
makes sense to sample the temporal domain nonuniformly.
This problem may also be thought of as finding the basis
functions whose span covers the true TACs �a general prob-
lem for TAC estimation, regardless of the issue of image
reconstruction�, while suggesting the use of adaptive basis
function sampling techniques.18 Robust optimization of such
nonuniform sampling remains to be fully studied, especially
using analytic methods.

III.C. Data-driven temporal basis functions

In the aforementioned general approach, the shapes of the
temporal basis functions are determined a priori independent
of the particular study �though the nonuniform sampling
scheme, if performed at all, is often dependent on the study�.
An alternative is to instead use methods that determine the
shapes of the basis functions in a data-driven sense. Below
we describe two such approaches used in literature for the
task addressed in this paper.

III.C.1. Basis functions derived by analytic
decomposition of dynamic images

Matthews et al.19 used singular value decomposition
�SVD�, as applied to dynamic PET images initially obtained
using conventional reconstruction, in order to arrive at a set
of useful temporal basis functions to be used in subsequent
4D image reconstruction �the EM formalism was used in this
work to estimate the w coefficients in Eq. �1��. The SVD
technique has the advantage that in practice many of the
singular values are insignificant when compared to the other
dominant singular values, thus requiring only a subset to be

used in the estimation task. Overall, this technique does not
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assume a kinetic model at all and based its results on a set of
dynamic images initially obtained via standard reconstruc-
tion. A complication with this technique is that the resulting
basis functions may contain negative values.

It is natural to impose positivity constraints in PET imag-
ing given the known problems of negative artifacts in PET.
Iterative reconstruction methods often use a positivity con-
straint and thus are automatically tuned to be non-negative.
Given the count-limited nature of the acquired data in dy-
namic imaging, there are advantages in considering basis
functions which are nonorthogonal and which overlap in
spacetime.9 It should be noted that the positivity constraint in
static PET imaging is a much more difficult constraint in
dynamic PET imaging characterized by the acquisition of
low count studies. This is particularly true when basis func-
tions that have negative values are used, excluding the case
of nonoverlapping rectangular basis functions. The mixture
models proposed by O’Sullivan76 stand for time course data
at the voxel level presented in the form of a convex linear
combination of a number of principal time activity curves,
referred to as sub-TACs, each characterized by its individual
spatial distribution. The main difficulty is that positivity con-
straints on the sub-TACs are not enough to guarantee a sen-
sible physiological interpretation of the sub-TACs.77 Other
approaches to circumvent this limitation, including postpro-
cessing iterative techniques that allow to adjust negative val-
ues by cancellation with positive values in a surrounding
local neighborhood, have been developed.78

Alternatively, a data-driven PCA approach �unlike model-
based approach as discussed in Sec. III A� could also be
utilized; i.e., PCA basis functions may be extracted from a
preliminary reconstruction of the dynamic data and utilized
in a new 4D image reconstruction. The performance of such
a PCA approach could be improved by performing kinetic
prenormalization to create clearer margins and improved
contrast between different regions in the resulting images
by reducing the pixel values for regions having the
same kinetic behavior as shown in dynamic brain PET
images.79 An example is shown in Fig. 3 which illustrates
the first principal component �PC1� image using
�11C�-5-hydroxy-L-tryptophan �HTP� in a healthy volunteer,
compared to images obtained using reconstructions of a
static image of a predefined frame, sum images for various
combinations of dynamic frames and parametric images ob-
tained using Patlak linear model. The results show an im-
proved image quality and better discrimination between ar-
eas with different levels of tracer utilization while retaining a
low noise level compared to images generated using other
techniques.80,81

III.C.2. Adaptive, inter-reconstruction estimation of
basis functions

An alternative approach has been to perform 4D recon-
struction whereby the temporal basis functions themselves
are also estimated as part of the reconstruction process,20

thus allowing the adaptive redefinitions of the basis functions

throughout the reconstruction task.
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This was implemented using an approach in which one
first fixes the temporal basis functions �treating them as
known�, estimates the corresponding w coefficients �see Eq.
�1��, and then alternates to an estimation algorithm in which
the w coefficients are held as fixed and known, while the
distributions of the temporal basis functions �at various tem-
poral sampling points� are determined. It must be noted that
here when temporal basis functions are being estimated
�jointly with basis function coefficients�, there still needs to
be a model for those basis functions—typically as linear
combinations of simpler basis functions such as nonoverlap-
ping rectangular functions.

A simultaneous updating procedure, not requiring to pre-
specify the number of iterations inside each of the above two
steps before switching to the other, was also outlined in Ref.
21 nearly halving the computation time. However, this ap-
proach is not convergent and may have some stability issues.

Overall, this technique, though potentially very promis-
ing, is not convergent globally. Furthermore it remains to be
studied whether the proposed data-driven determination of
the basis functions outperforms the previous reconstruction
algorithms outlined in Sec. III B.

IV. PRINCIPAL COMPONENT TRANSFORMATION
OF THE DYNAMIC DATA

An alternative approach consists of performing principal
component transformation, or analysis �PCA�, on the dy-
namic data along the temporal direction. This is also some-
times referred to as the Karhunen–Loève �KL� transform.
The term KL, however, is best applied to cases when the true

FIG. 3. Representative slice of a dynamic human brain PET study using
reconstruction modes. The PC1 is compared to reference Patlak linear model
�frames 16–21�, image from frame 21 only, and finally same image from fr
ensemble covariance �and not the estimated sample covari-
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ance as is done in PCA� is known. Thus, in the experimental
task of PET imaging where the object distribution is not
known a priori, it makes sense to use the term PCA. PCA is
a popular technique for many years in various fields, particu-
larly in geosciences and remote sensing, used to decorrelate
multispectral images as used in compression, denoising, and
deblurring. It is also one of the most commonly used multi-
variate analysis tools in brain PET imaging80–84 and has been
used by a few investigators for the analysis of oncological
PET data.85

In the context of dynamic imaging, the general idea is that
application of PCA to a time series of images allows their
decomposition into a number of factor images which are
uncorrelated �i.e., with maximized variations between them�.
Since in practice only few of the factor images are sufficient
to adequately describe the underlying dynamics, removal of
the negligible factors renders a natural noise reduction tech-
nique. Such a denoising approach has been applied in the
past to conventional dynamic nuclear medicine imaging
�e.g., model-based approach described in Ref. 66, as re-
viewed in Sec. III.A.1, and model-independent dynamic si-
nogram noise reduction work of Kao et al.86�. It must be
noted that in the context of TAC extraction and noise reduc-
tion, factor analysis techniques other than PCA have also
been explored; e.g., see the works by El Fakhri et al.87 and
Su et al.88 for brief reviews and some novel techniques.

In the context of 4D image reconstruction, Wernick et
al.22 made the observation that dynamic image sets in their
standard forms are correlated in the temporal direction and
thus require 4D reconstruction algorithms that model and
incorporate such temporal correlations �various approaches

P in a human volunteer showing results obtained using PCA and other
ed on input data from 20 to 60 min, sum images �frames 3–21�, sum images
16. Reprinted with permission from Ref. 80.
HT
appli
to this were discussed in previous sections�. By contrast, the
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authors proposed to first transform the standard dynamic
datasets using PCA and showed that, with some simplifying
assumptions, the resulting dynamic datasets become nearly
uncorrelated and thus can be reconstructed independently,
resulting in fast yet accurate reconstructions. Furthermore,
computational gains could be made by discarding high-order
principal components to avoid reconstructing them.

The aforementioned derivations were only made for a
weighted least-squares likelihood function �thus a Gaussian
likelihood model for the measured data� and not for the Pois-
son statistic of noncorrected PET data. Furthermore, while a
general advantage of the PCA approach is that the dimen-
sionality of any dataset can be potentially reduced, the selec-
tion of the number of principle components to utilize can be
very case specific and will have to be determined and opti-
mized for each particular task of interest.

We conclude this section by noting that even though the
aforementioned approach is originally designed for imaging
of motion-free objects, it has been shown to work very well
in reconstructing cardiac image sequences as well,23 and this
is hypothesized22 to be the case because the principal com-
ponent model is able to capture the motion information in the
form of motion-induced temporal fluctuations of the signal.

V. WAVELET-BASED TECHNIQUES

Wavelets are powerful mathematical tools for analysis of
finite, nonperiodic, and/or nonstationary signals. Wavelet
transforms �WTs� differ from traditional Fourier transforms
by their inherent ability of localizing information in the time-
frequency domain. The wavelets are scaled and translated
copies �known as “daughter wavelets”� of a finite-length or
fast-decaying oscillating waveform �known as the “mother
wavelet”�. As an example, the first known and also the sim-
plest possible wavelet is the Haar wavelet with its mother
wavelet function ��t� described as

��t� = � 1, 0 � t � 1/2
− 1, 1/2 � t � 1

0, otherwise.
� �3�

Figure 4 shows the mother wavelet of Haar wavelet with
some of its daughter wavelets.

Wavelets and multiscale methods have been widely ap-
plied in PET imaging. They have been applied in PET image

FIG. 4. Haar wavelet: Mother w
analysis tasks such as segmenting image structures in clinical
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oncology.89 In quantitative analysis, multiscale denoising has
been applied to postprocess dynamic PET images at the
voxel or ROI level. Before their specific application in emis-
sion tomographic reconstruction, wavelets were incorporated
in solving linear inverse problems, for example, with
wavelet-vaguelette90 and vaguelette-wavelet91 decomposi-
tions, followed by thresholding. Kolaczyk92 applied the
aforementioned wavelet-vaguelette decomposition as well as
wavelet shrinkage �WS� �Ref. 93� in tomographic image re-
construction of individual frames in the context of the ana-
lytic FBP algorithm. Multiscale analysis and regularization
was also applied in statistical restoration and reconstruction
�also single frame�.94–97 WS was used as an interiteration
filter in the OSEM reconstruction process to achieve simul-
taneous edge preservation and noise reduction.98 As we re-
view next, wavelets have also been applied to spatiotemporal
reconstruction of dynamic PET images.

V.A. Wavelet postprocessing in dynamic PET

In the context of dynamic imaging, the one-dimensional
wavelet transform has been applied in designing a time-
varying filter to improve the signal-to-noise ratio �SNR� in
PET kinetic curves.24 A two-dimensional wavelet denoising
algorithm was applied by Lin and co-workers25,26 to each
short-axis image plane �of each individual image� indepen-
dently in order to remove noise in the spatial domain, fol-
lowed by application of one-dimensional wavelet denoising
to the TAC for each ROI so as to also remove noise in the
temporal domain.

Turkheimer and co-workers27,28 and Cselényi et al.,29 fol-
lowed by Arhjoul and Bentourkia,30 performed kinetic mod-
eling in the wavelet domain. They applied the dyadic wavelet
transform �e.g., using James–Stein or Battle–Lemarie filters�
to each dynamic frame to produce the correspondent wavelet
transform. Kinetic modeling was then applied to wavelet co-
efficients of the dynamic frames. The motivating idea behind
this approach is that wavelet coefficients are �i� sparse, i.e.,
information is compressed in fewer coefficients of greater
magnitude �resulting in effective thresholding to achieve
shrinkage and noise reduction, prior to performing the in-
verse wavelet transform�, and �ii� whitening or decorrelation
effect between the wavelet coefficient, suggesting more fea-

t and some daughter wavelets.
sible kinetic modeling in the wavelet domain. Arhjoul and
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Bentourkia used a similar approach to perform kinetic mod-
eling in the projection space32 �method of “parametric sino-
grams”�, which is reviewed in Sec. VI A.

V.B. Wavelet-based reconstruction

Although noticeable research has been performed in using
tailored temporal basis functions for representing the time
activity curves in dynamic PET reconstruction �see Sec. III�,
Verhaeghe et al.31 pioneered the research in using temporal
wavelet basis functions. The L1-norm of the spatiotemporal
wavelet coefficients of images served as the regularization
term in the cost function to be minimized. Wavelets that were
separable in space and time were utilized, with so-called
B-spline wavelets in the spatial domain and E-spline wave-
lets in the temporal domain. The introduction of exponential-
spline �E-spline� wavelets in the temporal domain was based
on the concept that the activity distribution in the body is
ruled by a system of differential equations involving com-
partmental models.

In a couple of dynamic PET simulations, one with a slice
of the NCAT cardiac model and the second with a slice of the
Zubal brain model, the regional SNRs from reconstructed
noisy images were shown to be higher when temporal
E-spline wavelets were applied compared to the case when
temporal B-spline wavelets are used. The TACs extracted
from a pixel in the left ventricle with wavelet regularization
were shown to be closer to the true TAC. The spatiotemporal
regularization reconstructed images were also shown to be
less noisy than those with no regularization or with temporal

FIG. 5. Reconstructed brain phantom slices. Middle row are temporal slices.
Time and space locations are indicated by the white bars. Upper and lower
spatial slices correspond with the upper �early time� and lower �late time�
bars in the temporal slice, respectively. Results in the third column give a
good compromise between spatial and temporal regularization. Reprinted
with permission from Ref. 31.
regularization only �Fig. 5�.
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We end this section by noting that the difference between
the postprocessing and reconstruction-based techniques,
wherein wavelet transform and shrinkage for localized de-
noising of time activity is applied following or during the
reconstruction task, poses a familiar duality in imaging. It
remains to be investigated whether the reconstruction-based
approach is able to outperform its counterpart. Parallels for
such needed comparison already exist in literature. For in-
stance, in terms of noise reduction for static PET imaging,
comparisons of postsmoothed maximum-likelihood �ML� re-
constructed images with those obtained by MAP reconstruc-
tion in which smoothing is imposed within the reconstruction
task have shown that �when requiring uniform spatial reso-
lution� the results are actually not inferior,99,100 with a theo-
retical argument given in Stayman and Fessler.100 On the
other hand, for the case when anatomical knowledge is avail-
able, the postprocessing technique has been demonstrated by
theory and simulations to be inferior, unless noise correla-
tions between neighboring voxels are taken into account
�e.g., by applying a prewhitening filter�.101 In a very different
context of motion compensation, reconstruction-based meth-
ods have been theoretically analyzed and compared to pos-
treconstruction techniques and shown to be better suited to
produce images of higher quality �similar bias, improved
noise�.102 As mentioned above, such dual comparisons are
still needed for the wavelet approach to dynamic PET image
reconstruction.

VI. DIRECT KINETIC PARAMETER ESTIMATION

An alternative approach to conventional dynamic PET im-
aging has been to directly estimate kinetic parameters from
the measured data instead of generating reconstructed PET
images from which the kinetic parameters are estimated, as
depicted in Fig. 6. Broadly, there have been two general
approaches in this context: The first one designed to improve
speed and the second one to improve accuracy, as we de-
scribe next.

VI.A. Generation and reconstruction of parametric
sinograms

The technique consists of creating a parametric sinogram
from multiple dynamic sinograms by performing some math-
ematical manipulation �given a particular kinetic model� in
the projection space instead of the usual image space; this is

FIG. 6. Direct kinetic parameter estimation does not perform reconstruction
of the individual frames and instead estimates the parametric image collec-
tively and directly from the data.
then followed by a single reconstruction into the parametric
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image. This method has the benefit of not performing recon-
structions for each individual sinogram, thus reducing the
computational burden by roughly one order of magnitude
and has been investigated for different parameter estimation
tasks by a number of investigators.33–37 A more sophisticated
approach32 has been to estimate the parametric sinogram by
first transforming the dynamic sinograms into the wavelet
domain, followed by noise reduction and kinetic modeling,
and finally synthesize back to the projection domain. This
approach is motivated by the favorable properties of wave-
lets transforms �namely, sparseness and decorrelation effects
�Sec. V A��.

A limitation of the method of parametric sinograms is that
the kinetic models need to be expressed linearly in terms of
the image-space activity such that they can be forward pro-
jected onto the data space. Examples of this include the Pat-
lak formulation for irreversible binding, as opposed to a Lo-
gan type formulation for reversible binding which is
nonlinear.103 The latter, however, has been linearly
reformulated104 and has been used to directly generate para-
metric sinograms.38 An additional issue is that while EM-
type reconstruction algorithms assume that the data are Pois-
son distributed, the data in the parametric sinograms are not
necessarily so �e.g., when one extracts the Patlak slope from
dynamic sinograms, the slope of a fit to Poisson-distributed
data is not Poisson-distributed itself�. Reconstruction algo-
rithms modeling this issue remain to be formulated and in-
vestigated.

VI.B. Direct parametric estimation from noncombined
dynamic data

With regard to the three limitations of conventional dy-
namic PET imaging outlined in Sec. I B, while many tech-
niques discussed so far in this review attempt to address the
first two by improving noise vs temporal resolution perfor-
mance, none address the third issue; i.e., the reconstructed
images still contain very complex noise distributions that
need to be modeled for accurate tracer kinetic modeling. For
the sake of simplicity, kinetic modeling is typically per-
formed with the assumption of uniform and uncorrelated
noise across the image, thus neglecting the complexity of the
noise variance and intervoxel correlations. A number of tech-
niques have been proposed in order to obtain estimated pa-
rameters with reduced variance, including the use of ROI-
based methods �requiring to assume voxels within each
region having the same mean�, as well as simple spatial regu-
larization �assuming that neighboring voxels exhibit similar
kinetic parameters�,105 ridge regression �application of vari-
able penalty based on the deviation of fitted points from the
regression line�,106 the wavelet transform,28 or Markov ran-
dom fields.39 At the same time, it is plausible that accurately
modeling the actual noise distribution in the images within
the kinetic parameter estimation task can produce substantial
improvements. While methodology has been developed in
literature to estimate the noise distribution in the recon-

structed images, including for the now common statistical,
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iterative image reconstruction techniques,6,7 such accurate
noise modeling remains to be studied for parameter estima-
tion tasks.

At the same time, a more natural solution to this compli-
cation is to perform estimations of kinetic parameters di-
rectly from the dynamic data, having the advantage that the
measured data are well known to follow the simple indepen-
dently distributed Poisson distribution. This approach was
originally and independently developed by Snyder5 and Car-
son and Lange40 in the very context of the EM algorithm
modeling the Poisson noise distribution of the data. It sought
to estimate kinetic parameters by maximizing the Poisson
log likelihood of obtaining the measured dynamic data. The
former was designed for a multicompartment model in which
each mode had an exponential rate, with the amplitude and
rate of each mode estimated by the EM algorithm, applicable
to both histogram-mode and list-mode data, and was tested
by a single simulation of a two-compartment model. The
latter was instead formulated for histogram-mode data only,
but for a very general kinetic model. The technique was
tested for a simple single-tissue H2O �Ref. 56� compartmen-
tal model.

In recent years, this problem has been revisited and more
thoroughly developed and implemented by a number of dif-
ferent groups, as we review next. Just as there are two gen-
eral categories of kinetic modeling techniques, namely, ROI
based and voxel based,4 we divide the direct estimation tech-
niques in literature into these two general categories. For a
more thorough comparison of direct parameter estimation
techniques, Ref. 10 may also be consulted.

VI.B.1. ROI-based techniques

A number of techniques have been proposed that aim to
directly estimate the kinetic parameters at the ROI level from
the PET �or SPECT� dynamic data. Vanzi et al.41 investi-
gated a method to extract renal kinetic parameters for a
simple model with one uptake constant for each kidney.
Huesman et al.42 and Zeng et al.43 developed methods to
extract kinetic parameters in myocardial imaging using one-
compartment and two-compartment methods, respectively.
These two contributions were also designed to better address
the existing problem in standard reconstructions for dynamic
SPECT imaging, in which the rotation of the detectors, while
the distribution of the radiopharmaceutical changes over
time, results in inconsistent projections.

The aforementioned methods first extracted the boundary
information for the ROIs from standard reconstructions, fol-
lowed by the application of direct ROI parameter estimation
from the data. Alternatively, Chiao et al.44 developed tech-
niques that jointly estimate, within a single reconstruction
task applied to cardiac dynamic emission tomography, both
the kinetic parameter estimates as well as the boundary in-
formation. An approach was also developed by the same
authors45 to use boundary side information �obtainable from
high resolution MRI and CT images� within a similar direct

reconstruction scheme. This has the limitation that it will
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only be applicable when there is a one-to-one correspon-
dence between the anatomical region and the functional re-
gion.

VI.B.2. Voxel-based techniques

Kinetic parameter estimation at the voxel level �i.e., gen-
eration of parametric images� was achieved directly from
dynamic PET data by Kamasak et al.39 The method was
implemented for a specific compartmental model: The re-
versible two-tissue compartmental model with four kinetic
parameters �k1 ,k2 ,k3 ,k4�, resulting in a direct parametric it-
erative coordinate descent �PICD� algorithm. Comparison of
results obtained using this method with standard techniques
is shown in Fig. 7 for a simulated study and exhibited clear
improvements, as also quantitatively demonstrated to result
in low root-mean-squared errors for all the four kinetic pa-
rameters. In an application of this technique to real data, a
method for the evaluation of the exactness of the fit and
estimation of error in the kinetic parameters was
investigated.107

Furthermore, in a work by Yan et al.,46 applied to the
simpler one-tissue model, a novel EM algorithm directly es-

FIG. 7. Parametric images of k1, k2, k3, and k4 in �a� the original simulation an
weighted least-squares �PWLS� fitting, �c� PWLS with spatial regularization
permission from Ref. 39.
timating each of k1 and k2 was proposed. The approach has
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the advantage of being closed form �and not requiring
gradient-search like optimization, as above� and being appli-
cable directly to list-mode data.

The majority of direct parametric reconstruction methods
in the past have utilized nonlinear kinetic models to estimate
individual kinetic parameters. In contrast to such nonlinear
models, a number of graphical modeling methods have been
developed that yield simple linear/visual techniques for
estimation/evaluation of kinetic properties of various PET
tracers and more robust parametric estimates �e.g., see Ref.
103 for a review�. The Patlak linear model for irreversible
tracer binding was recently included in a direct parametric
estimation task by Wang et al.47 wherein the authors ex-
panded the objective function for the reconstruction task to
directly relate the Patlak parameters across the image to the
measured data and used a preconditioned conjugate gradient
algorithm to find the optimum solution.

Within a similar Patlak estimation task, Tsoumpas et al.48

and Tang et al.49 alternatively extended the system matrix
formulation and derived a direct 4D EM parametric recon-
struction algorithm, having the advantages of being accurate
in formulation and having a closed-form expression. This

onstructed using standard dynamic reconstruction followed by �b� pixelwise
finally �d� the proposed direct PICD algorithm. Adapted and reprinted with
d rec
, and
was effectively achieved by utilizing a different hidden
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complete-data formulation within the EM method: Instead of
the standard, physically intuitive voxel contributions to each
detector bin, the contributions of each of the Patlak elements
to each bin were utilized as the complete data.49 Further-
more, even in the context of reversible tracer binding,
wherein a recently published graphical analysis technique
exhibits linear properties,104 Rahmim et al.38 proposed a
closed-form direct 4D parametric image estimation tech-
nique.

Wang and Qi50 proposed a more generalized formulation
applicable to any model in which the parametric image can
be linearly related to the measured data �e.g., B-spline, spec-
tral basis, and Patlak models�, resulting in a close-formed
EM reconstruction algorithm, with a further extension to al-
low a nested EM algorithm �with rapid subiterative updates�
resulting in further acceleration.

One may note that while multiframe PET reconstruction
methods using temporal basis functions are linear inverse
problems, the tasks of direct parametric estimation when in-
volving nonlinear kinetic models are nonlinear estimation
problems, posing an extra layer of difficulty. In an important
work by the same authors51 allowing direct reconstruction of
general �including nonlinear� kinetic models, the method of
paraboloidal surrogate functions108 was utilized �which ap-
proximates the Poisson log-likelihood function by local pa-
rabolas, thus considerably simplifying the optimization task�
to derive a feasible direct estimation technique. The method
was shown to effectively reduce into two steps at each itera-
tion, one providing temporary intermediate image estimates,
and the other a weighted image-based kinetic parameter op-
timization tasks. The developed algorithm has the great ad-
vantage that it is applicable to nonlinear kinetic models, is
fairly straightforward to implement, and that the second part
resembles the least-squares optimization task as utilized by a
wide variety of standard kinetic modeling tasks, except that
the weights are now accurately determined and not chosen
on an approximate or ad hoc basis. It should be noted that
convergence issues with this algorithm remain to be studied.

Note that the methods discussed in Sec. III.A.1 can also
be considered as direct estimation tasks since the smooth
temporal basis functions were based on underlying biological
models, and the extracted coefficients conveyed how much
each biological factor contributed to the data. This was also
the case for the SVD and PCA methods discussed in Sec.
III C 1, which, as argued by the authors, would distinguish
the separate biological contributions to the collected data.
Nevertheless, since these methods all involved the use of
smooth temporal basis functions, they were discussed in Sec.
III.

Some limitations with regard to the direct parameter esti-
mation technique are that the overall kinetic model has to be
known in advance prior to reconstruction and also to apply
well to all areas in the image, as assumed by the parametric
image-to-data projection framework. The use of graphical
models103 in which a very fixed compartment model does not

have to be assumed, and instead the estimated collective pa-
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rameters can take on different meanings depending on the
model assumed postreconstruction, allows an added flexibil-
ity and is a move in this direction.

Additionally, in the context of direct parameter estima-
tion, while it is possible to use reference region techniques to
avoid blood sampling, such an approach would ordinarily
require an initial reconstruction of the dynamic images to
extract the reference region, followed by direct parameter
estimation reconstruction. Alternative techniques that esti-
mate the plasma input function itself within the 4D recon-
struction method have also been investigated.39,109,110 The
stability of the estimates remains to be demonstrated, espe-
cially as increasingly unknown sets of kinetic parameters in-
cluding the plasma function are estimated with these tech-
niques.

VII. FUTURE OPPORTUNITIES AND CHALLENGES

With the widespread availability of multimodality imag-
ing platforms �PET/CT and PET/MR in the near future�, it is
expected that in the future, we would be able to navigate
numerous dimensions through the human body �e.g., 4D ana-
tomical imaging modality as well as its associated contrast
agent dynamics, cardiac and/or respiratory gated functional
PET imaging, and enabled simultaneous acquisition using a
second PET probe targeting another biological function, e.g.,
tumor hypoxia in addition to glucose metabolism�.111 Thus,
multiparametric molecular imaging will likely be the spot-
light of medical practice where early and accurate diagnoses
and individualized therapy planning will be made by appro-
priate imaging probes.

In this context, novel parameter estimation techniques
making a more “collective” use of the data, as opposed to
independent analyses of different portions of the data, will be
of much potential. CT- or MR-assisted PET image recon-
struction, in which the high resolution anatomical informa-
tion is utilized to better address the count-rate and resolution
limitations of PET imaging, is one such example. Another
example is the collective incorporation of the dynamic PET
acquisition data within image reconstruction tasks, giving
rise to 4D imaging techniques as reviewed in this work.
Within this latter area, many novel techniques have already
been proposed, and shown to outperform the conventional
independent frame reconstruction. At the same time, thor-
ough comparisons between these techniques are still to be
performed, and criteria are to be developed for their use in
different protocols. Validation and optimization work in this
area, though computationally challenging particularly as
there is a need for elaborate Monte Carlo studies of dynamic
PET imaging, will still be required. In particular, for various
techniques reviewed in this work, there remain important
outstanding issues to investigate, as Table I touches upon.

The techniques reviewed in this work can also be used for
the extension of 4D PET imaging to 5D and higher dimen-
sion PET imaging, by including additional dimensions, for
instance, coming from gating �cardiac or respiratory or
both112�. In the present applications, concurrent dynamic and

gated imaging is rarely performed since standard indepen-
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dent reconstruction of the individual dynamic, gated PET
data result in considerably noisy images. However, this could
be of interest in a number of areas. For instance, in dynamic
cardiac imaging, 13N-labeled ammonia �13NH3� can be used
for the measurement of myocardial blood flow which makes
it possible to measure blood flow at the level of microcircu-
lation. Addition of cardiac gating to dynamic imaging has the
advantage of reducing cardiac motion artifacts.

Verhaeghe et al.54 took an interesting step in this direction
by using B-spline temporal basis functions �see Sec. III B� to
represent both the temporal and gate dimensions. As shown
in Fig. 8, standard reconstructions result in noisy images,
which upon postsmoothing result in loss of spatial resolution
and thus relevant details. By contrast, advanced 5D imaging
using temporal basis functions results in improved noise
properties while maintaining sharply defined images.

It must however be noted that, as mentioned in Sec. I B 1,
dynamic imaging and motion-compensated imaging �e.g., in
cardiac� involve different fundamentals. Therefore, even
though a number of techniques discussed in this work have
also been used in the past for motion-compensated image
reconstruction �e.g., temporal smoothing, use of temporal ba-
sis functions, PCA�, they remain to be validated to provide
evidence whether they result in physically allowed estimated
motion vectors. Alternatively, they are best treated distinctly
and with more direct consideration of motion itself.52

There is clear evidence that dynamic PET imaging will
find an increasingly important role in various clinical do-
mains including oncology, cardiology, neurology, and psy-
chiatry. Nowadays, a plethora of novel tracers are used rou-
tinely for assessing tumor metabolism and other biological
and physiological parameters associated with many
diseases113,114 that have clearly demonstrated the enormous
potential of PET as an emerging modality in the field of

FIG. 8. �a� Short axis view of a simulated cardiac phantom and the resulting
images obtained via standard reconstruction �b� without and �c� with
postsmoothing, and using �d� first-order and �e� third-order �i.e., cubic�
B-spline temporal basis functions in the temporal and gate dimensions.
Adapted and reprinted with permission from Ref. 54.
molecular imaging. The application and full exploitation of

Medical Physics, Vol. 36, No. 8, August 2009
dynamic imaging taking advantage of 4D reconstruction
strategies is well established in research environments and is
still limited in clinical settings to institutions with advanced
physics and technical support.20,115–117 As the above men-
tioned challenges are met, and experience is gained, imple-
mentation of validated techniques in commercial software
packages will be useful to attract the interest of the clinical
community and increase the popularity of this approach. It is
expected that with the availability of advanced mathematical
models and their algorithmic implementations as well as
computing power in the near future, more complex and am-
bitious algorithms will become clinically feasible. Given that
the role of any imaging technique is established with respect
to benefits conveyed to patients, what remains to be studied
and validated is whether application of 4D image reconstruc-
tion techniques to clinical dynamic imaging will result in
significant improvements in clinical imaging tasks including
clinical diagnosis, assessment of response to treatment, and
delivery of personalized treatments and targeted therapies.

Finally, we would like to note that in the works reviewed
here, when scatter and random estimations have been per-
formed, they have been done in the context of conventional
independent frame reconstruction: i.e., it is always possible
to use 4D reconstruction techniques while employing scatter
and random corrections as estimated independently for each
dynamic frame. Nevertheless, some of the very same moti-
vations for 4D PET image reconstruction are applicable to
scatter and random estimations �particularly to scatter esti-
mation as it is typically estimated based on preliminary im-
age estimates�: It may be beneficial to incorporate informa-
tion from data in other frames in this estimation task. In fact,
such an approach is further motivated by noting that scatter
and random contributions, due to their broad distributions,
are less sensitive to variations in image intensities across the
frames.118 It remains to be demonstrated whether such an
approach to 4D PET image reconstruction would result in
significant improvements in dynamic PET imaging tasks.

VIII. SUMMARY

Molecular imaging using PET is now playing a pivotal
role both in a clinical setting and experimental preclinical
studies. The important role of multidimensional and multi-
parametric imaging is growing steadily and gaining accep-
tance. As diagnostic techniques transition from the systems
to the molecular level, the role of multiparametric imaging
becomes ever more important.

The present work has attempted to summarize important
themes in the emerging field of 4D PET image reconstruc-
tion, the objective is to address existing issues with conven-
tional dynamic PET imaging. The issues arising from con-
ventional independent frame reconstruction were outlined,
namely, having limited temporal resolution, high noise �es-
pecially when higher frame sampling is introduced to capture
fast dynamics�, as well as the considerable complexity of
modeling the generated noise in the images in the kinetic

modeling step.
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A wide range of techniques designed to address some or
all of these issues is discussed, including techniques that uti-
lize �a� iterative temporal smoothing, �b� smooth temporal
basis functions, �c� principal components transformation of
the dynamic data, �d� wavelet-based techniques, as well as
�e� direct kinetic parameter estimation methods. A number of
related advantages, drawbacks/limitations, as well as issues
to further investigate with each technique were also outlined.
Differences between the list-mode and histogram-mode re-
construction techniques were additionally discussed. A num-
ber of future opportunities and challenges in the area of 4D
and higher dimensional PET image reconstruction were also
indicated.
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