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Four-Dimensional Compact Manifolds with

Nonnegative Biorthogonal Curvature

Ezio Costa & Ernani Ribeiro Jr.

Abstract. The goal of this article is to study the pinching problem

proposed by S.-T. Yau in 1990 replacing sectional curvature by a

weaker condition on biorthogonal curvature. Moreover, we classify

four-dimensional compact oriented Riemannian manifolds with non-

negative biorthogonal curvature. In particular, we obtain a partial an-

swer to the Yau conjecture on pinching theorem for four-dimensional

compact manifolds.

1. Introduction

In the last century, very much attention has been given to four-dimensional com-

pact Riemannian manifolds with positive scalar curvature. A classical problem

in geometry is to classify such manifolds in the category of either topology, dif-

feomorphism, or isometry. This subject have been studied extensively because of

their connections with general relativity and quantum theory. For comprehensive

references on such a theory, we indicate, for instance, [1; 3; 5; 7; 12; 15; 17; 20],

and [22]. Arguably, classifying four-dimensional compact Riemannian manifolds

or understanding their geometry is definitely an important issue.

In 1990, S.-T. Yau collected some important open problems. Here, we call

attention to the paragraph where he wrote:

“The famous pinching problem says that on a compact simply connected manifold if

Kmin > 1
4
Kmax > 0, then the manifold is homeomorphic to a sphere. If we replace

Kmax by normalized scalar curvature, can we deduce similar pinching results?" (See

[24], problem 12, page 369; see also [27].)

In other words, Yau’s conjecture on pinching theorem can be rewritten as fol-

lows (see [13]).

Conjecture 1 (Yau, 1990). Let (Mn, g) be a compact simply connected Rie-

mannian manifold. Denote by s0 the normalized scalar curvature of Mn. If

Kmin > n−1
n+2

s0, then Mn is diffeomorphic to a standard sphere S
n.

A classical example obtained in [13] shows that n−1
n+2

is the best possible pinching

for this conjecture (see Example 3.1 in [13]). We also notice that if s is the scalar

curvature of a Riemannian manifold Mn, then the normalized scalar curvature of

Mn is given by s0 = s
n(n−1)

.
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From this point on, M4 will denote a compact oriented four-dimensional man-

ifold, and M the set of Riemannian metrics g on M4 with scalar curvature s and

sectional curvature K . Before we state our first theorem, we introduce some def-

initions. First, let us recall that for each plane P ⊂ TpM at a point p ∈ M4, we

define the biorthogonal (sectional) curvature of P by the following average of

the sectional curvatures:

K⊥(P ) =
K(P ) + K(P ⊥)

2
, (1.1)

where P ⊥ is the orthogonal plane to P .

The sum of two sectional curvatures on two orthogonal planes appeared pre-

viously in works of Seaman [21] and Noronha [18]. It should be remarked that

a compact manifold M4 is Einstein if and only if K⊥ = K . Moreover, M4 is lo-

cally conformally flat if and only if K⊥ = s/12. We also notice that S1 × S
3 with

its canonical metric shows that positive biorthogonal curvature does not imply

positive Ricci curvature. Indeed, the positivity of the biorthogonal curvature is

an intermediate condition between positive sectional curvature and positive scalar

curvature.

Next, we recall that the biorthogonal curvature of a Riemannian manifold M4

is called weakly 1/4-pinched if there exists a positive function f ∈ C∞(M) satis-

fying a suitable pinching condition involving the biorthogonal curvature. Seaman

[21] showed that this pinching condition implies nonnegative isotropic curvature,

whereas the first author observed in [6] that if K⊥
1 is the minimum of the biorthog-

onal curvature in each point, then 12K⊥
1 is a modified scalar curvature with the

corresponding modified Yamabe invariant Y⊥
1 (M). In particular, Costa used the

notion of biorthogonal curvature to show a relationship between these invariants

and Hopf’s conjecture. We recall that Hopf’s conjecture asks if S2 × S
2 admits

a metric with positive sectional curvature. Costa was able to show Hopf’s con-

jecture, provided that Y⊥
1 (S2 × S

2) ≤ 0; see [6]. However, Bettiol proved that

Y⊥
1 (S2 ×S

2) > 0, which implies that S2 ×S
2 admits metrics of positive biorthogo-

nal curvature; for more details, see Theorem 1 in [4]. In particular, Bettiol showed

that the connected sum CP
2 # CP

2
admits metrics with positive biorthogonal cur-

vature.

To fix notation, we now consider for each point p ∈ M4 the following func-

tions:

K⊥
1 (p) = min{K⊥(P );P is a 2-plane in TpM}, (1.2)

K⊥
3 (p) = max{K⊥(P );P is a 2-plane in TpM}, (1.3)

and

K⊥
2 (p) =

s(p)

4
− K⊥

1 (p) − K⊥
3 (p). (1.4)

These functions appeared previously in [6]. In the next section, we will collect

some their properties. It is perhaps worth mentioning that the canonical metrics
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of the manifolds S4, CP2, and S
1 × S

3 have K⊥
1 = s/12, K⊥

1 = s/24, and K⊥
1 =

s/12, respectively.

Our aim is to investigate the pinching problem on four-dimensional compact

manifolds replacing sectional curvature by biorthogonal curvature conditions. To

do this, we start by replacing the assumption K > s/24 of the sectional curva-

ture in Conjecture 1 by a weaker condition on biorthogonal curvature. With this

setting, we now announce our first result.

Theorem 1. Let (M4, g) be a compact oriented Riemannian manifold with posi-

tive scalar curvature s satisfying K⊥
1 ≥ s/24. Then one of the following assertions

holds:

(1) (M4, g) is diffeomorphic to a connected sum S
4 ♯ (R × S

3)/G1 ♯ · · · ♯ (R ×
S

3)/Gn, where each Gi is a discrete subgroup of the isometry group of R×
S3;

(2) or (M4, g) is isometric to a complex projective space CP
2 with the Fubini–

Study metric.

It is worth pointing out that Theorem 1 remains true if the assumption K⊥
1 ≥

s/24 is replaced by K⊥
3 ≤ s/6; this comment will be clarified in the next section.

As an application of Theorem 1, we deduce the following result under the finite

fundamental group hypothesis.

Corollary 1. Let (M4, g) be a compact oriented Riemannian manifold satis-

fying K⊥
1 ≥ s/24. We assume that M4 has a finite fundamental group. Then we

have:

(1) Either M4 is diffeomorphic to a sphere S
4,

(2) or (M4, g) is isometric to a complex projective space CP
2 with the Fubini–

Study metric.

Now recall that the space of harmonic 2-forms H 2(M4,R) can be split as

H 2(M4,R) = H+(M4,R) ⊕ H−(M4,R),

where H±(M4,R) is the space of positive and negative harmonic 2-forms, re-

spectively. Moreover, the second Betti number b2 of M4 is b2 = b+ + b−, where

b± = dimH±(M4,R). We recall that M4 is called positive definite (resp. nega-

tive definite) if b− = 0 (resp. b+ = 0). Otherwise, M4 will be called indefinite.

According to Donaldson [10] and Freedman [11], if M4 is simply connected and

definite, then M4 is homeomorphic to sphere S
4, provided that b2 = 0 or M4 is

homeomorphic to the connected sum of complex projective spaces CP2 ♯ · · ·♯CP2

(b2 times).

In fact, an elegant argument of Seaman [22] shows that a compact oriented

Riemannian manifold M4 with positive sectional curvature admitting a harmonic

2-form of constant length must be definite. Later, this result was improved by

Noronha [18]; for more details, see Theorems 3.5 and 3.6 therein. More precisely,

Noronha proved the following result.
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Theorem 2 (Noronha [18]). Let (M4, g) be a compact oriented Riemannian man-

ifold with positive scalar curvature. Then the following assertions hold:

(1) If (M4, g) admits a nontrivial harmonic 2-form of constant length and K⊥ >

0, then M4 is definite.

(2) If (M4, g) admits a nontrivial parallel 2-form and K⊥ ≥ 0, then M4 is bi-

holomorphic to CP
2, or its universal covering M̃ is isometric to M2

1 × M2
2 ,

where each M2
i is diffeomorphic to sphere S

2.

We now recall that a Riemannian manifold (M4, g) is called geometrically formal

if the wedge product of two harmonic forms is again harmonic; for more details,

we refer the reader to [2]. This concept appeared recently in a work of Kotschick

[14], where he showed that for this class of metrics, harmonic forms have constant

length (see also Theorems B and C in [2]). In particular, Kotschick proved that if

M4 is formal and has a finite fundamental group, then M4 has second Betti num-

ber b2 ≤ 2. We call attention to the following result of Kotschick (see Corollary 3

in [14]).

Theorem 3 (Kotschick [14]). Let M4 be a compact simply connected manifold.

If M4 is formal and admits a metric (possibly nonformal) with nonnegative scalar

curvature, then one of the following assertions occurs:

(1) M4 is homeomorphic to a sphere S
4;

(2) M4 is diffeomorphic to a complex projective space CP
2;

(3) or M4 is diffeomorphic to a product of two spheres S2 × S2.

More recently, Bär [2] was able to prove the following classification under non-

negative sectional curvature assumption.

Theorem 4 (Bär [2]). Let (M4, g) be a compact oriented geometrically formal

Riemannian manifold.

(1) If M4 is simply connected and (M4, g) has nonnegative sectional curvature,

then:

(a) M4 is homeomorphic to a sphere S
4;

(b) M4 is diffeomorphic to a complex projective space CP
2;

(c) or (M4, g) = M2
1 × M2

2 , where each M2
i is diffeomorphic to a sphere S

2

and has nonnegative sectional curvature.

(2) If (M4, g) has positive sectional curvature. Then:

(a) Either M4 is homeomorphic to a sphere S
4;

(b) or M4 is diffeomorphic to a complex projective space CP
2.

As it was previously mentioned, we are interested in classifying four-dimensional

manifolds under biorthogonal curvature hypotheses. To this end, we notice that

from Micallef and Moore work [16] nonnegative sectional curvature implies

K⊥
3 ≤ s/4, and nonnegative isotropic curvature implies K⊥

3 ≤ s/4. For more de-

tails, see the next section. Based on these observations and inspired by the ideas
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of Seaman [22], Noronha [18], Kotschick [14], and Bär [2], we now announce our

second theorem.

Theorem 5. Let (M4, g) be a compact oriented Riemannian manifold with posi-

tive scalar curvature. Then we have the following assertions:

(1) If (M4, g) admits a nontrivial harmonic 2-form of constant length and K⊥
3 <

s
4

, then M4 is definite.

(2) If (M4, g) admits a nontrivial parallel 2-form and K⊥
3 ≤ s

4
, then M4 is bi-

holomorphic to a complex projective space CP
2 with the Fubini–Study met-

ric, or its universal covering M̃ is isometric to M2
1 × M2

2 , where each M2
i is

homeomorphic to a sphere S
2.

We point out that Theorem 5 can be seen as an improvement to Theorems 2 and 4.

In particular, we obtain the following characterization under an integral condition

involving the biorthogonal curvature.

Corollary 2. Let (M4, g) be a compact oriented simply connected Riemannian

manifold with positive scalar curvature s and satisfying
∫

M

(s − 4K⊥
3 ) dVg ≥ 0.

If all harmonic forms of (M4, g) have constant length, then one of the following

assertions holds:

(1) M4 is homeomorphic to S4;

(2) M4 is diffeomorphic to CP
2;

(3) or M4 is isometric to M2
1 × M2

2 , where each M2
i is diffeomorphic to a

sphere S
2.

In order to state the next result, we adopt the following notation. For an oriented

manifold M4, we consider �2 be the bundle of 2-forms α ∈ M4 and let ∗ : �2 →
�2 be the Hodge star operator. Thus, there is a invariant decomposition �2 =
�+ ⊕ �−, where �± = {α ∈ �2; ∗α = ±α}, depending only on the orientation

and the conformal class of the metric. Therefore, the Weyl curvature tensor W is

an endomorphism of �2 such that W = W+ ⊕W−, where W± : �± −→ �± are

called of the self-dual and anti-self-dual parts of W . Half conformally flat metrics

are also known as self-dual or anti-self-dual if W− or W+ = 0, respectively. These

metrics are, in a certain sense, analogous to anti-self-dual connections in Yang–

Mills theory.

The formal divergence δ for any (0,4)-tensor T is given by

δT (X1,X2,X3) = − traceg{(Y,Z) �→ ∇Y T (Z,X1,X2,X3)},

where g is the metric of M4. We say that the Weyl tensor of M4 is harmonic when

δW = 0.

One fundamental inequality in Riemannian geometry is Kato’s inequality.

Namely, let s ∈ Ŵ(E), where E → M is a vector bundle over M ; then |∇|s|| ≤
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|∇s| away from the zero locus of s. In a famous article, LeBrun and Gursky

proved a refined Kato’s inequality. More precisely, they showed that if W+ is

harmonic, then away from the zero locus of W+, we have

|d|W+|| ≤
√

3

5
|∇W+|. (1.5)

Moreover, (1.5) holds in the distributional sense on M4; for more details, see

Lemma 2.1 in [12].

On the basis of these observations and inspired by ideas developed in [26], we

use improved Kato’s inequality jointly with a classical theorem due to Hitchin [3]

to prove the following result.

Theorem 6. Let (M4, g) be a compact oriented Riemannian manifold with har-

monic Weyl tensor and positive scalar curvature. We assume that g is analytic

and

K⊥
1 ≥

s2

8(3s + 5λ1)
,

where λ1 stands for the first eigenvalue of the Laplacian with respect to g. Then

one of the following assertions holds:

(1) M4 is diffeomorphic to a connected sum S
4 ♯(R×S

3)/G1 ♯ · · ·♯(R×S
3)/Gn,

where each Gi is a discrete subgroup of the isometry group of R× S
3. In this

case, g is locally conformally flat;

(2) or M4 is isometric to a complex projective space CP
2 with the Fubini–Study

metric.

As an immediate consequence, we obtain the following corollary.

Corollary 3. Let (M4, g) be a compact oriented Riemannian manifold with

harmonic Weyl tensor and analytic metric g. We assume that Ric ≥ ρ > 0 and

K⊥
1 ≥ 3s2

8(9s2+20ρ)
. Then we have:

(1) Either M4 is isometric to S
4 with its canonical metric,

(2) or M4 is isometric to CP
2 with the Fubini–Study metric.

We already know that a compact manifold M4 is Einstein if and only if K⊥ = K .

Moreover, by Theorem 5.26 in [3] Einstein metrics are analytic. It should be em-

phasized that there are regularity results which could be used to show that the

harmonic self-dual Weyl tensor implies that the metric is analytic choosing ap-

propriate coordinates (e.g., harmonic one); for more details, see [9]. Finally, we

deduce the following corollary, which was first obtained by Yang [26].

Corollary 4. Let (M4, g) be a compact oriented Einstein manifold satisfying

Ric = ρ > 0. Suppose that

K ≥
2ρ2

12ρ + 5λ1
.
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Then either M4 is isometric to S
4 with its canonical metric, or M4 is isometric to

CP
2 with Fubini–Study metric.

2. Preliminaries

Throughout this section, we collect a couple of formulae that will be useful in the

proofs of our results. As it was previously commented, the Weyl tensor W is an

endomorphism of �2 such that W = W+ ⊕ W−, where W± : �± −→ �± are

called the self-dual and anti-self-dual parts of W , respectively. Furthermore, if R

denotes the curvature of M4, then we get a matrix

R=

⎛
⎝W+ + s

12
Id B

B∗ W− + s
12

Id

⎞
⎠ , (2.1)

where B : �− → �+ stands for the Ricci traceless operator of M4 given by B =
Ric − s

4
g. For more details in this subject, we recommend the famous “Besse’s

book” [3].

We now consider w±
1 ≤ w±

2 ≤ w±
3 be the eigenvalues of the tensors W±, re-

spectively. In [6], the first author proved some formulae involving the biorthogo-

nal curvatures and the eigenvalues of W± that will be important in the proofs of

our results. Here we present their proofs for the sake of completeness.

First, we consider a point p ∈ M4 and X,Y ∈ TpM orthonormal. Therefore,

the unitary 2-form α = X ∧ Y can be uniquely written as α = α+ + α−, where

α± ∈ �± with |α+|2 = 1
2

and |α−|2 = 1
2

. Moreover, under these notations, the

sectional curvature K(α) is given by

K(α) =
s

12
+ 〈α+,W+(α+)〉 + 〈α−,W−(α−)〉 + 2〈α+,Bα−〉. (2.2)

In particular, we have

K(α⊥) =
s

12
+ 〈α+,W+(α+)〉 + 〈α−,W−(α−)〉 − 2〈α+,Bα−〉, (2.3)

where α⊥ = α+ − α−. Combining (2.2) with (2.3), we arrive at

K(α) + K(α⊥)

2
=

s

12
+ 〈α+,W+(α+)〉 + 〈α−,W−(α−)〉. (2.4)

Hence, we can use (1.2) to obtain

K⊥
1 =

s

12
+ min

{
〈α+,W+(α+)〉; |α+|2 =

1

2

}

+ min

{
〈α−,W−(α−)〉; |α−|2 =

1

2

}
.

However, by Proposition 2.1 of [19] there exists an orthonormal basis of �2 given

by

{X1 ∧ Y1,X2 ∧ Y2,X3 ∧ Y3},
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where Xi, Yi ∈ TpM for all i = 1,2,3. In particular, we invoke Proposition 2.5

also in [19] to get

K⊥
1 −

s

12
=

w+
1 + w−

1

2
. (2.5)

Arguing in the same way, we obtain

K⊥
3 −

s

12
=

w+
3 + w−

3

2
. (2.6)

Finally, from (1.4) we have

K⊥
2 −

s

12
=

w+
2 + w−

2

2
. (2.7)

From the results of Micallef and Moore M4 has nonnegative isotropic curva-

ture if and only if w±
3 ≤ s/6; for more details, see [16]. For that reason, nonneg-

ative sectional curvature implies K⊥
3 ≤ s/4, and nonnegative isotropic curvature

implies K⊥
3 ≤ s/4. Moreover, we notice that K ≥ s/24 implies that K⊥

1 ≥ s/24,

as well as K⊥
1 ≥ s/24 implies that K⊥

3 ≤ s/6.

3. Proof of the Results

3.1. Proof of Theorem 1

Let (M4, g) be a compact oriented Riemannian manifold with positive scalar cur-

vature s. Since K⊥
1 ≥ s

24
implies K⊥

3 ≤ s
6

, it is enough to assume that K⊥
3 ≤ s/6.

Now, from (2.6) we arrive at

w+
3 + w−

3 = 2K⊥
3 −

s

6
.

From this, we may use that w±
1 ≤ w±

2 ≤ w±
3 and w±

1 +w±
2 +w±

3 = 0 jointly with

our assumption to conclude that w+
3 ≤ s/6. Similarly, we conclude that w−

3 ≤
s/6, which implies that M4 has nonnegative isotropic curvature. Assume that M4

admits a metric with positive isotropic curvature; then M4 is diffeomorphic to a

connected sum

S
4 ♯ (R× S

3)/G1 ♯ · · · ♯ (R× S
3)/Gn,

where each Gi is a discrete subgroup of the isometry group of R× S3.

On the other hand, we assume that M4 does not admit a metric with positive

isotropic curvature. Hence, if M4 is irreducible, we can apply Theorem 1.1 of [23]

to deduce that (M4, g) either is locally symmetric or is Kähler. We now suppose

that M4 is irreducible and locally symmetric, which implies that (M4, g) is an

Einstein manifold. Therefore, we may use Theorem 4.4 of [17] to conclude that

(M4, g) is isometric to a complex projective space CP
2. In the Kähler case, it is

known that w+
3 = s

6
. For this, we invoke (2.6) to obtain

w−
3 ≤ −

s

6
+ 2K⊥

3 −
s

6
≤ 0,
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which implies that w−
3 = 0 in M4. From this it follows that W− = 0. Now, we

apply Theorem 1.1 in [7] to conclude that (M4, g) is locally symmetric, and then

(M4, g) is isometric to a complex projective space CP
2.

Finally, we consider (M4, g) locally reducible. Since K⊥
3 ≤ s

6
, it is not difficult

to check that this case can not occur; for more details, see Theorem 3.1 in [17].

So, we conclude the proof of the theorem. �

3.2. Proof of Theorem 5

The first part of the proof will follow from Theorem 3.6 in Noronha [18]. First

of all, we consider (M4, g) be a compact oriented Riemannian manifold with

positive scalar curvature s. Moreover, let α+ ∈ �+ (resp. α− ∈ �−) be a posi-

tive (resp. negative) nondegenerate differentiable 2-form. From this we have two

Weitzenböch formulae given by

〈	α±, α±〉 =
1

2
	|α±|2 + |∇α±|2 +

〈(
s

3
− 2W±

)
α±, α±

〉
. (3.1)

We now denote w±
3 be the largest eigenvalues of W±, respectively. Under these

conditions, we have

〈W±(α±), α±〉 ≤ w±
3 〈α±, α±〉.

It then follows from (3.1) that

〈	α±, α±〉 ≥
1

2
	|α±|2 + |∇α±|2 +

(
s

3
− 2w±

3

)
|α±|2. (3.2)

Now we are ready to prove Theorem 5.

Proof of Theorem 5. First, we assume that M4 has a nondegenerate harmonic 2-

form α with constant length. Suppose that M4 is not definite. This means that

b± > 0, which gives the following possibilities:

(1) α is a negative 2-form.

(2) α is a positive 2-form.

(3) α = α+ + α−, where α± are nondegenerate positive and negative 2-forms,

respectively.

We suppose that the first case occurs (the second case has a similar argument).

Thus, we may use (3.2) for α = α− to deduce

0 ≥ |∇α|2 +
(

s

3
− 2w−

3

)
|α|2.

From this it follows that w−
3 ≥ s

6
in M4. Next, from (2.6) we have

w−
3 + w+

3 = 2K⊥
3 −

s

6
<

s

3

and then w+
3 + w−

3 < s
3

, which implies w+
3 < s

6
.
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On the other hand, insofar as b+ > 0, there exists a harmonic nondegenerate

positive 2-form γ . Furthermore, (3.2) with respect to γ ensures

0 ≥
1

2
	|γ |2 + |∇γ |2 +

(
s

3
− 2w+

3

)
|γ |2.

We integrate the last expression and use the Stokes theorem to obtain

0 ≥
∫

M

|∇γ |2 dVg +
∫

M

(
s

3
− 2w+

3

)
|γ |2 dVg > 0,

which is a contradiction. This proves the first possibility.

We now treat the third case. To this end, we use that α = α+ + α− jointly with

(3.2) to infer

0 ≥ |∇α+|2 + |∇α−|2 +
(

s

3
− 2w+

3

)
|α+|2

+
(

s

3
− 2w−

3

)
|α−|2.

After a straightforward computation we get

0 ≥ |∇α+|2 + |∇α−|2 + (s − 4K⊥
3 )|α+|2

+
(

2w−
3 −

s

3

)
(|α+|2 − |α−|2). (3.3)

Next, if there exists a point p ∈ M4 such that |α+|2 = |α−|2, then we use (3.3)

to deduce

0 ≥ |∇α+|2 + |∇α−|2 + (s − 4K⊥
3 )|α+| > 0,

which is again a contradiction. Therefore, without loss of generality we can as-

sume that |α+|2 > |α−|2. From this it follows that w−
3 ≤ s/6 in M4.

On the other hand, on integrating (3.2) for α− we obtain

0 ≥
∫

M

|∇α−|2 dVg +
∫

M

(
s

3
− 2w−

3

)
|α−|2 dVg ≥ 0, (3.4)

which implies that ∇α− = 0, and then |α−| is constant. By using once more (3.4)

we conclude that w−
3 = s/6 and whereas w+

3 + w−
3 < s/3, we infer w+

3 < s/6.

Finally, we take the integral in (3.2) to get

0 ≥
∫

M

|∇α+|2 dVg +
∫

M

(
s

3
− 2w+

3

)
|α+|2 dVg > 0,

which is once more a contradiction. So, we have proved the first assertion of the

theorem.

Continuing, we suppose that (M4, g) admits a nontrivial parallel 2-form. Un-

der this condition, it is well known that M4 is Kähler, in particular, w+
3 = s

6
. Since

K⊥
3 ≤ s

4
, we conclude that w−

3 ≤ s/6 and then, from Micallef–Moore work, M4

has a nonnegative isotropic curvature (see [16]). Next, if M4 is locally irreducible,

then we use Theorem 1.2 of Seshadri [23] to conclude that M4 is biholomorphic

to CP
2 or isometric to a compact Hermitian symmetric space. In the last case, M4
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is Einstein, and then it is isometric to CP
2. To finish, it suffices to argue as in the

proof of Theorem 1 to deduce that M4 cannot be locally reducible. �

3.3. Proof of Corollary 2

Proof. We assume that M4 is simply connected and that their harmonic forms

have constant length. We now assume the unpublished theorem (at present) of

Kotschick (see Theorem 3) to deduce that M4 is either homeomorphic to a sphere

S
4, diffeomorphic to a complex projective space CP

2, or diffeomorphic to the

product of two spheres S2 ×S
2. In the last case, we have the second Betti number

b±
2 = 1. Therefore, we consider two harmonic forms with constant length α± ∈

H±(M,R), and without loss of generality, we may assume that the length is equal

to one. Whence, on integrating (3.1) we obtain

0 ≥
∫

M

|∇α+|2 dVg +
∫

M

|∇α−|2 dVg +
∫

M

(s − 4K⊥
3 ) dVg ≥ 0.

From this it follows that α± are parallel, and by using once more (3.1) for α±

we infer w± = s/6 and K⊥
3 = s/4. Finally, we invoke Theorem 5 to conclude the

proof of the corollary. �

3.4. Proof of Theorem 6

Proof. Since δW = 0, we have the following Weitzenböck formulae (cf. Sec-

tion 16.73 in [3]):

1

2
	|W±|2 + |∇W±|2 +

s

2
|W±|2 − 18 detW± = 0. (3.5)

Moreover, by use of Lagrange multipliers we infer

detW± ≤
√

6

18
|W±|3. (3.6)

However, our hypothesis implies that |W±|2 are analytic. So far, the set

� = {p ∈ M; |W+|(p) = 0 or |W−|(p) = 0}

is finite, provided that W± �≡ 0. Suppose by contradiction that (M4, g) is not half

conformally flat. For this, there is a constant t > 0 such that
∫

M

(|W+| − t |W−|) dVg = 0.

Choosing W− in (3.5) and multiplying by t2 and adding the result to (3.5) with

respect to W+, we deduce

0 ≥ (|∇W+|2 + t2|∇W−|2) +
s

2
(|W+|2 + t2|W−|2)

− 18(detW+ + t2 detW−). (3.7)
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Applying refined Kato’s inequality (1.5) jointly with (3.6) in the previous inequal-

ity, we get

0 ≥
5

3

∫

M

(|d|W+||2 + t2|d|W−||2) dVg +
∫

M

s

2
(|W+|2 + t2|W−|2) dVg

−
√

6

∫

M

(|W+|3 + t2|W−|3) dVg. (3.8)

On the other hand, we notice that

(|d|W+||2 + t2|d|W−||2) =
1

2
(|d(|W+| − t |W−|)|2 + |d(|W+| + t |W−|)|2)

≥
1

2
|d(|W+| − t |W−|)|2.

Moreover, from the Poincaré inequality we have

1

2

∫

M

|d(|W+| − t |W−|)|2 dVg ≥
λ1

2

∫

M

(|W+| − t |W−|)2 dVg,

so that, from the two preceding inequalities we obtain
∫

M

(|d|W+||2 + t2|d|W−||2) dVg ≥
λ1

2

∫

M

(|W+| − t |W−|)2 dVg. (3.9)

Therefore, comparing (3.9) with (3.8), we obtain

0 ≥
5

6
λ1

∫

M

(|W+|2 − 2t |W+||W−| + t2|W−|2) dVg

+
∫

M

s

2
(|W+|2 + t2|W−|2) dVg −

√
6

∫

M

(|W+|3 + t2|W−|3) dVg,

which can be written as

0 ≥
∫

M

{
|W−|2

(
5

6
λ1 +

s

2
−

√
6|W−|

)
t2 −

(
5

3
λ1|W+||W−|

)
t

+ |W+|2
(

5

6
λ1 +

s

2
−

√
6|W+|

)}
dVg. (3.10)

For simplicity, we can write the integrand of (3.10) as

P(t) = |W−|2
(
a −

√
6|W−|

)
t2 −

5

3
λ1|W+||W−|t + |W+|2

(
a −

√
6|W+|

)
,

(3.11)

where a = 5
6
λ1 + s

2
. We notice that (3.11) is a quadratic function of t and its

discriminant 	 is given by

	 =
25

9
λ2

1|W
+|2|W−|2 − 4|W+|2|W−|2

(
a −

√
6|W+|

)(
a −

√
6|W−|

)
. (3.12)

On the other hand, we recall that |W±| ≤ 6(w±
1 )2, and then we use (2.5) to deduce

|W+| + |W−| ≤
√

6

(
s

6
− 2K⊥

1

)
.
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A straightforward computation shows that our assumption on biorthogonal curva-

ture implies
√

6

(
s

6
− 2K⊥

1

)
≤

4a2 − (25/9)λ2
1

4
√

6a
.

Whence,

|W+| + |W−| ≤
4a2 − (25/9)λ2

1

4
√

6a
. (3.13)

Therefore, we combine (3.13) with (3.12) to conclude that 	 is less than or equal

to zero. Hence, we use once more (3.10) to deduce |W+||W−| = 0 in M4. But

since � is finite, we arrive at a contradiction.

Therefore, we conclude that W+ = 0 or W− = 0. Finally, we define the fol-

lowing sets:

A =
{
p ∈ M4;Ric(p) �=

s(p)

4
g

}

and

B = {p ∈ M4; |W+|(p) = |W−|(p)},
where (Ric − s

4
g) stands for the traceless Ricci tensor of (M4, g). If A is empty,

then we conclude that M4 is an Einstein manifold. In this case, we invoke

Hitchin’s theorem [3] to conclude that M4 is either isometric to S
4 with its canon-

ical metric or isometric to CP
2 with Fubini–Study metric. Otherwise, if A is not

empty, then there exist a point p ∈ M4 and an open set U such that p ∈ U ⊂ A.

So, we use Corollary 1 of [8] to conclude that U ⊂ A ⊂ B . So far, since the

function f = |W+|2 − |W−|2 is analytic, we conclude that f is identically zero.

For this, |W+|2 = |W−|2, and then M4 is locally conformally flat. This implies

that M4 has positive isotropic curvature, and then we use once more the Chen–

Tang–Zhu theorem [5] to conclude that M4 is diffeomorphic to a connected sum

S
4 ♯ (R × S

3)/G1 ♯ · · · ♯ (R × S
3)/Gn, where each Gi is a discrete subgroup of

the isometry group of R× S
3. This finishes the proof of the theorem. �

3.5. Proof of the Corollary 3

Proof. Since Ric ≥ ρ > 0 implies λ1 ≥ 4ρ
3

, we combine Theorem 6 with Tani’s

theorem in [25] and then get the promised result. �
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