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Abstract—Electrical capacitance tomography (ECT) is a relatively
mature non-invasive imaging technique that attempts to map dielectric
permittivity of materials. ECT has become a promising monitoring
technique in industrial process tomography especially in fast flow
visualization. One of the most challenging tasks in further development
of ECT for real applications are the computational aspects of the
ECT imaging. Recently, 3D ECT has gained interest because of
its potential to generate volumetric images. Computational time of
image reconstruction in 3D ECT makes it more difficult for real time
applications. In this paper, we present a robust and computationally
efficient 4D image reconstruction algorithm applied to real ECT data.
The method takes advantage of temporal correlation between 3D
ECT frames to reconstruct movies 4D of dielectric maps. Image
reconstruction results are presented for the proposed algorithms for
experimental ECT data of a rapidly moving object.
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1. INTRODUCTION

Electrical capacitance tomography (ECT) is a relatively mature
imaging method in industrial process tomography [22, 23]. The aim of
ECT is to image materials with a contrast in dielectric permittivity by
measuring capacitance from a set of electrodes. Applications of ECT
include the monitoring of oil-gas flows in pipelines, gas-solids flows in
pneumatic conveying and imaging flames in combustion, gravitational
flows in silo [10].

There has been a great deal of progress in image reconstruction
methods, especially applied to 2D ECT; however, 3D ECT presents
especially challenging numerical issues [8, 15, 17, 18, 20, 21]. 3D ECT
is valuable for imaging the volumetric distribution of electrical
permittivity. 3D ECT image reconstruction presents a similar inverse
problem to electrical impedance tomography (EIT) which has been
extensively studied, so ECT will naturally benefit from progress in
EIT image reconstruction. Similar to EIT, Microwave tomography [17],
ECT has potential to generate images with high temporal resolution
and relatively poor spatial resolution. The spatial resolution is limited
as a result of the inherent ill-posedness of the inverse problem and
the existence of modeling and measurement errors and limited number
of independent measurements. Various new and emerging imaging
techniques, such as microwave imaging, acoustic imaging, optical
imaging [2, 3, 5, 6, 14, 25] all lead to similar ill-posed inverse problems.

Some of early work in 3D ECT was shown [21] in which two and
three-phase flow could be visualized using volumetric ECT. A Kalman
filter based temporal image reconstruction has been presented in [16]
using 2D ECT experimental data. Dynamic regularization method
has been introduced earlier in [12, 13]. ECT image reconstruction is
ill-conditioned, and is typically solved by adding a priori information
using a regularized matrix R, which represents underlying image
probability distribution. Conventional single-step ECT reconstruction
algorithms reconstruct each image from a single frame of data. This has
two main disadvantages: first, since ECT data acquisition is typically
more rapid than the underlying changes in the medium, successive data
frames are correlated. Reconstruction of each data frame individually
ignores this potentially useful source of information. Secondly, ECT
data acquisition is inherently sequential, and the measurements which
form a data frame are not all taken at the same instant. Failure to
account for this fact may bias reconstructed images. The 4D algorithm
creates movie images of electrical permittivity directly from multi-
frame ECT data, so it is not a post processing 4D image reconstruction.
Higher temporal resolution makes the ECT a good candidate for
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4D imaging technique which is capable of monitoring on fast-varying
industrial process applications.

2. EXPERIMENTAL SETUP

A typical three-dimensional capacitance sensor comprises an array of
conducting plate electrodes, which are mounted on the outside of a non-
conducting pipe, and surrounded by an electrical shield. For a metal
wall pipe/vessel, the sensing electrodes must be mounted internally,
with an insulation layer between the electrodes and the metal wall and
using the metal wall as the electrical shield. Other components in the
sensor include radial and axial guard electrodes, which are arranged
differently to reduce the external coupling between the electrodes and
to achieve improved quality of measurements and hence images. As
usually the electrodes do not make physical contact with the materials
to be measured, ECT provides a non-intrusive and non-invasive means,
avoiding the risk of contamination.

In this paper, a 32-eletrodes ECT sensor has been introduced
with 4 planes and 8 electrodes on each plane. The first and fourth
plane consists of 58mm of width and 70mm of height copper plates.
The planes in the middle consist of 58 mm of width and 30 mm of
height copper plates. This approach improves an uniformity effective
field of imaging for the whole volume of the sensor. A copper shield
with a 15mm distance from electrode array has been used for the
screening purpose, a 32-channel ECT system called ET3 [9], has been
applied. The numerical sensor simulation and the on-line 3D image
reconstruction has been carried out using Matlab code, Visualization
ToolKit (VTK) scientific visualization library (www.vtk.org) and Intel
Xeon quad core based workstation with 16GB of RAM. The electrode
arrangement used in this study is 32 electrodes 3D ECT system that
has been depicted in Figure 1.

3. FORWARD MODELLING

The forward problem is the simulation of measurement data for given
value of excitation and material (permittivity) distribution and the
inverse problem is the imaging result for a given set of measurement
data. The inverse problem is formulated in terms of a minimization of
errors based on the forward problem. Finite element method is well
suited for the forward problem in 3D ECT, the application of boundary
element method [24] could be potentially interesting, especially for
shape reconstruction problem.
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(a)

(b)

Figure 1. 32 electrodes array for 3D ECT system, (a) 4 planes with
8 electrodes in each plane, (b) PCB layout with dimensions used for
sensor fabrication.

We use low frequency approximation to the Maxwell’s equations.
In a simplified mathematical model, the electrostatic approximation
∇×E = 0 is taken, effectively ignoring the effect of wave propagation.
Let’s take E = −∇u and assume no internal charges. Then the
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following equation holds.

∇ · (ε∇u) = 0 in Ω (1)

where u is the electric potential, ε is dielectric permittivity and Ω is the
region containing the field. The potential on each electrode is known
as

u = Vk on electrode ek (2)

where ek is the k-th electrode held at the potential Vk. Using finite
element discretization of the Equation (1) using first order with the
boundary condition (2) linear system of equations is obtained as

K(ε)U = B (3)

where the matrix K is the discrete representation of the operator∇·ε∇
nd the vector B is the boundary condition term and U is the vector
of electric potential solution. The total charge on the k-th electrode is
given by

Qk =
∫

Ek

ε
∂u

∂ân
dx2 (4)

where ân is the inward normal on the k-th electrode, the surface
integral of the Equation (3) is done over the surface of electrode (Ek)
and the capacitance is calculated by C = Q/V . The Jacobian matrix S
is calculated using an efficient method [15]. Each raw of the Jacobian
matrix is the sensitivity of one measurement as a result of small change
in each voxel in the imaging area. Another word, an element of the
Jacobian matrix in the derivative of the measured capacitance at the
boundary divided to the derivative of permittivity of a voxel [7]. An
efficient formulation to calculate the Jacobian matrix uses the results
of the forward problems and mutual energy concept to calculate the
Jacobian matrix [4, 15]. The solution of the forward problem and
the Jacobian matrix is used to solve the inverse problem, which is
the estimation of the permittivity distribution given the measured
capacitance data.

4. 4D INVERSION

Instead of calculating an image based on the sequence of past frames,
we propose a temporal image reconstruction algorithm which uses a set
of data frames nearby in time [1]. The data frame sequence is treated as
a single inverse problem, with regularization prior to account for both
spatial and temporal correlations between image elements. Figure 2
shows an schematic diagram for 4D imaging.
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Figure 2. 4D ECT image reconstructions, each of the image slices in
this demonstration is a 3D image frame, together with time we create
a movie (4D).

Given a vertically concatenated sequence of capacitance measure-
ments (normalized capacitance data) frames C̃=[C−d, . . . ,C0, . . . ,Cd]
and the corresponding relative permittivity images ε̃=[ε−d,...,ε0,...,εd],
the direct temporal forward model C = Sε + n is rewritten as




C−d
...

C0
...

Cd




=




S · · · 0
. . .

... S
...

. . .
0 · · · S







ε−d
...
ε0
...
εd




+




n−d
...

n0
...

nd




(5)

and also as
C̃ = S̃ε̃ + ñ (6)

where ñ = [n−d; . . . ; n0; . . . ; nd] is the noise in the measured data. We
assume S to be constant, although this formulation could be modified
to account for a time variation in S. Based on this approximation
S̃ = I⊗S, where the identity I has size 2d+1, and ⊗ is the Kronecker
product.

The correlation of corresponding elements between adjacent
frames (delay t = 1) can be evaluated by an inter-frame correlation
γ, which has value between 0 (independent) and 1 (fully dependent).
As the frames become separated in time, the inter-frame correlation
decreases; for an inter-frame separation t, the inter-frame correlation is
γt. Frames with large time lag, |t| > d, can be considered independent.
Image reconstruction is then defined in terms of minimizing the
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augmented expression:
∥∥∥∥∥∥∥∥∥∥∥∥
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...
ε0
...
εd
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2

R̃

(7)
and the inversion can be written as

B̃ = R̃−1S̃T(S̃R̃
−1

S̃T + λ2W̃−1)−1 (8)

where W̃ = I⊗W and W is regularization matrix for the measurement
noise (in context of Tikhonov regularization, W = σ2

n

∑−1
n , where σn

is the average measurement noise), W̃ is diagonal since measurement
noise is uncorrelated between frames. This paper uses model, W = I.
Here λ is the regularization parameter. R̃ = Γ−1 ⊗ R, R is the
regularization matrix (R = σε

∑−1
ε where σε is a priori amplitude of

permittivity changes and R̃ includes the temporal and spatial changes
of permttivity) that represents the spatial correlations between image
voxels (The regularization matrix R may be understood to model the
“unlikelihood” of image element configurations) and Γ is the temporal
weight matrix of an image sequence ε̃ and is defined to have the form
as

Γ =




1 γ · · · γ2d−1 γ2d

γ 1 · · · γ2d−2 γ2d−1

...
...

. . .
...

...
γ2d−1 γ2d−2 · · · 1 γ
γ2d γ2d−1 · · · γ 1




(9)

From (8) and (9),

B̃ =
[
Γ⊗ (

PST
)] · [Γ⊗ (

SPST
)

+ λ2 (I⊗V)
]−1

(10)

where P = R−1 and V = W−1. In practice, P and V are modeled
directly from the system covariances, rather than the inverse of R and
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W. 4D image can be reconstructed as



ε̃−d
...
ε̃0
...
ε̃d




= B̃C̃ (11)

Although this estimate is an augmented image sequence, we are
typically only interested in the current image ε̃0. It is calculated by
ε̃0 = B̃0C̃ where B̃0 is the rows nMd+1 . . .nM× (d+1) of B̃, where
nM is number of measurements, in this paper for 32 electrodes ECT
system nM = 496. It can be seen that the inversion formulation of
the 4D ECT has the size of the number of measurement rather than
number of voxels.

This will directly generate a 4D (movie) of the ECT image. If one
wants to update the Jacobian and dynamically select the regularization
parameters, then the calculation of B̃ needs be done in each iteration of
the 4D algorithm (each time that we have a new ECT data set). If we
select a sigle set of regularization parameter and accept linear inverse
problem the calculation of B̃ can be done offline so the 4D algorithm
becomes very fast.

If a priori knowledge of temporal change in permittivity is
available (this could be developed by a physical model, i.e., fluid
dynamic model for flow visualization), then we can select an optimal
value for temporal correlation parameter. The γ is a parameter of the
system; it depends on the data acquisition frame rate, the speed of
underlying permittivity changes and the noise level in measurement
system. A method to estimate the value of γ from measurement
sequence will be resented here. By taking covariance on both sides
of (6), we have the estimated covariance matrix of the data as

∑̂
C̃

= S̃
∑

ε̃
S̃t +

∑
ñ

(12)

the optimal γ is chosen so that the error between the true data
covariance matrix

∑
C̃ and the estimated one

∑̂
C̃ is minimized as

γ = arg min
γ

∥∥∥
∑

C̃
−

∑
ñ
−S̃

∑
ε̃
S̃t

∥∥∥
2

F
(13)

where subscript F is a matrix norm (Euclidean norm). Since
∑

ε̃ =
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Γ⊗∑
ε and S̃ = I ⊗ S, (13) becomes

γ = arg min
γ

∥∥∥
∑

C̃
−

∑
ñ
−Γ⊗

(
S

∑
ε
St

)∥∥∥
2

F
(14)

By taking covariance on both sides of C = Sε + n, we have
∑

C
= S

∑
ε
St +

∑
n

(15)

so that S
∑

ε St =
∑

C −
∑

n; we also have
∑

ñ = I ⊗ ∑
n and∑

C̃ = ΓC ⊗
∑

C , where ΓC ∈ R(2d+1)×(2d+1) is the correlation matrix
of C̃. Thus the optimal γ is calculated by

γ = arg min
γ

∥∥∥ΓC ⊗
∑

C
−I ⊗

∑
n
−Γ⊗

(∑
C
−

∑
n

)∥∥∥
2

F
(16)

ΓC and
∑

C can be calculated directly from the data.
∑

n can be
measured by calibration of ECT system. For computational efficiency,
(16) can be simplified as

γ = arg min
γ

∥∥∥∥ΓC

∥∥∥
∑

C

∥∥∥
2

F
− I

∥∥∥
∑

n

∥∥∥
2

F
− Γ

∥∥∥
∑

C
−

∑
n

∥∥∥
2

F
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2

F

(17)

where ΓC , ‖∑C‖2
F , ‖∑n‖2

F and ‖∑C −
∑

n‖2
F may be precalculated.

Since Γ is relatively small (R(2d+1)×(2d+1)) this optimization can be
performed directly by bisection search between limits. Assuming
linear image reconstruction of Equation (15) enabled us to develop an
estimation of temporal parameter in Equation (17) that only depends
on covariance related to the measurement. An estimation method that
takes into account nonlinearly between data and image (dynamical
image here) is beyond scope of this paper.

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of proposed method compared to
traditional single step Gauss-Newton (but uncorrelated, here we call it
3D), synthetic data was generated using the same mesh. Spherical
inclusion with permittivity 1.6 and radius 2.5 cm was centred in 7
different places starting from the corner (1 cm from the electrodes) to
the centre of the imaging area with the 2 cm steps. The synthetically
data was generated using a same mesh and up to 6% noise was added
to the measure data. The percentage of random Gaussian noise was
selected with respect to the average value of all measured capacitances.
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This figure shows superiority of the temporal image reconstruction
with the high noise data. We repeated the same test with 0% and
2%, 3% and 6% added noise and Figure 3 shows the norm of the error
between reconstructions in all three noise levels. Assuming εtru is true
permittivity and εrec is reconstructed permittivity, the image error is
defined as ‖εtrue−εrec‖

‖εtrue‖ . Temporal method works similar to the linear
(temporally uncorrelated method) for noise free data and outperforms
the linear uncorrelated algorithm (3D) in higher noise levels, suggesting
a better noise performance. In all simulated and experimental results
we select tw = 0.8 and λ2 = 10−4. These are seleced imperically in this
study based on the fact that they produce satisfactory results. In real
life applications (say for multi-phase flow application) these parameters
has to be selected based on the physical reality of the experimental
condition.

The proposed algorithm has been tested against several
experimental example of moving 3D objects (4D). Figure 4 shows
the reconstructed images for different moving objects in a tank.
The movie includes several frames; here we only show few frames
of the movie. The results presented in Figure 4 are among the
first experimental results from proposed algorithm. In all cases 4D
algorithms successfully reconstructed the movement of 3D object.
The algorithm were also applied to two more experimental examples,
similar results were observed in capturing dynamic of a moving 3D
object (i.e., plastic rod) — see Figure 4. We have attached to this
paper the movies related to each of these 4 experiments.

During the first two experiments we were using a cylindrical
object with 150 mm of diameter and a concentrically drilled hole with
50 mm of diameter and a rod of the same diameter respectively. The
cylinder and the rod both had been made from Ertalon with relative
permittivity of about 3.2. Firstly the rod was being put with a constant
velocity of about 2 cm/s near the wall of pipe. The rod was being pulled
out from the bigger cylinder as the next experiment. The velocity of
rod movement has been well-matched to the measurement abilities of
used ET3 system which is now able to measure data in 32 channel
mode with up to 15 frames per second [9]. It can be observed that
4D algorithm allows for on-line visualization of such objects in the
whole volume of the sensor. In the next two experiments we moved
two balls inside a pipe. The first ball was about 70 mm in diameter
and the second one was bout 100 mm in diameter both filled with
plastic granulate (relative permittivity of 2.6). We let these balls move
freely through the pipe with constant velocity acquiring measurement
data simultaneously. The results we have got using 4D algorithm
are promising even though the velocity of balls was too high. It
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(a) (b)

(c) (d)

Figure 3. The error between simulated and real images using 3D
(square) and 4D (triangle) methods (a): Noise free, (b): 2 percent
noise, (c): 3 percent noise, (d): 6 percent noise.
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Rod put in
(Movie1.avi)

Rod pulled out
(Movie2.avi)

Small ball
(Movie3.avi)

Large ball
(Movie4.avi)

Figure 4. 4D ECT visualisation of moving objects: for each case the
image is a snap shot of 4D movie reconstruction for frames 45, 55, 135,
185 out of 200 frames in each case.
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can be easily observed that some axial resolution limitations of a 3D
capacitance sensor in the lower and upper part of the imaging volume
exist which is obvious because of sensor coverage. The central area of
the sensor volume characterizes relatively low sensitivity. Nevertheless
the ball movement in that area has been visualized with acceptable
quality regardless of poor sensitivity. The main bottleneck in these
experiments we had to face with was the ET3 capacitance system which
is now relatively slow in 32 channel mode. With faster and less noisy
ECT system the quality of 4D images for on-line visualization would
be improved. In order to implement a temporal solver in an ECT
system for real-time imaging, a delay must be introduced between
the measurements and reconstruction to allow acquisition of d “future
frames”. This corresponds to the linear phase filters used in digital
signal processing applications. For fast ECT systems, with frame rates
of for example 15 frames/sec, a choice of d = 3, introduces a delay
200 ms.

6. CONCLUSION

A direct temporal image reconstruction has been applied to the ECT
that simultaneously reconstructs 4D dielectric permittivity imaging
using multi-frame ECT data. Including a temporal correlation term
and reconstruction of the 4D ECT images simultaneously improves
the noise fidelity of the image reconstruction. We anticipate that
the 4D algorithm could potentially improve the spatial resolution
of ECT imaging. Study of improvement in image resolution using
the 4D method is under way. The efficient implementation of
the 4D algorithm is a promising aspect of the method presented
here and with further work we are hoping to achieve a fully real
time 4D reconstruction in ECT, which will pave the way for many
more industrial applications for the ECT. Selection of the temporal
hyperparameter depends on the data acquisition frame rate, the
speed of underlying permittivity changes and the system noise level.
Selection of spatial hyperparameter depends on the noise level in
ECT system and a priori knowledge of the spatial distribution of the
permittivity map. Our proposed future study is to use the 4D ECT for
multi-phase flow visualization. A computational fluid dynamic (CFD)
model will be used together with the ECT measurement data. The
CFD model will provide physically meaningful information regarding
the spatial distribution and dynamical changes of the flow. Combining
this physical model within 4D ECT image reconstruction will enable
us to select better functions and optimal parameters for temporal and
spatial regularization. A similar work in context of the Kalman filter
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has been studied earlier [11] and proved to be very promising. Better
noise immunity achieved in proposed 4D algorithm is an opportunity
to develop ECT sensor with larger number of electrodes, this in turn
can improve the spatial resolution of the imaging technique.
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