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Abstract

Ensemble Kalman filtering was developed as a way to assimilate observed data to track the

current state in a computational model. In this article it is shown that the ensemble approach makes

possible an additional benefit: the timing of observations, whether they occur at the assimilation

time or at some earlier or later time, can be effectively accounted for at low computational expense.

In the case of linear dynamics, the technique is equivalent to instantaneously assimilating data as

they are measured. The results of numerical tests of the technique on a simple model problem are

shown.
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I. INTRODUCTION.

Assimilation of observational data is a key component of numerical weather and ocean

prediction (Daley, 1991; Kalnay, 2002). The extended Kalman filter provides a fundamental

approach to assimilation in the nonlinear dynamical setting. A full extended Kalman filter

has always been considered computationally unfeasible for numerical weather forecasting

due the large number of model variables. The method of ensemble Kalman filters (EnKF1,

e.g., Evensen, 1994; Evensen and van Leewen, 1996; Houtekamer and Mitchell, 1998, 2001;

Hamill and Snyder, 2000; Bishop et al., 2001; Anderson and Anderson, 1999; Anderson,

2001; Whitaker and Hamill, 2002; Keppene and Rienecker, 2003; Ott et al., 2002; Tippett et

al., 2003) have been developed as a means of attacking this problem. In the ensemble based

schemes, an ensemble of initial conditions is evolved by the model and used to estimate the

background covariance matrix, a key part of the extended Kalman filter computation.

In this article we introduce a practical way of unifying the extended Kalman filter and

the four-dimensional variational approach, in what we call a Four-Dimensional Ensemble

Kalman Filter (4DEnKF). Instead of treating observations as if they occur only at assimila-

tion times, we can take exact observation times into account in a natural way, even if they are

different from the assimilation times. (Although the simplest approach would be to perform

data assimilation at each observation time, in an operational setting, frequent switching

between assimilation and model evolution may be costly and detrimental to the accuracy of

the numerical time integration.) The potential that such schemes can be constructed, based

on the ensemble Kalman smoother of Evensen and van Leeuwen (2000), was pointed out by

Evensen (2003). In our algorithm we use linear combinations of the ensemble trajectories to

quantify how well a prospective model state at the assimilation time fits an observation from

a different time. This extension of the EnKF to 4DEnKF can be considered analogous to the

extension of the three-dimensional variational technique (3D-Var) to the four dimensional

variational technique (4D-Var, e.g. Talagrand, 1981; Lorenc, 1986). The idea is to infer the

linearized model dynamics from the ensemble instead of the tangent-linear map, as done in

conventional 4D-Var schemes. Furthermore, in the case of linear dynamics, our technique is

1 Following the naming convention of Evensen (2003), we use EnKF to refer to all ensemble based Kalman

filter schemes, but we note that some other papers use EnKF to refer to the smaller group of stochastic

schemes that involve perturbing the observations
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equivalent to instantaneous assimilation of measured data.

II. BACKGROUND.

We first describe a version of the ensemble square root Kalman filter approach in the

case where the observations are synchronous with the analysis. Consider the continuous

dynamical system defined by variables x = (x1, . . . , xM ) satisfying

ẋm = Gm(x1, . . . , xM) for m = 1, . . . , M. (1)

The goal is to track the evolution, under this dynamical system, of an M-dimensional

Gaussian distribution centered at x(t) (called the most probable state) and with covariance

matrix P (t).

To use the ensemble Kalman filter (EnKF) approach k +1 trajectories of (1) are followed

in parallel from initial conditions xa(1), . . . , xa(k+1) over a time interval [ta, tb]. Since the

system is typically high-dimensional, we will assume that k + 1 ≤ M . The k + 1 initial

conditions are chosen so that their sample mean and sample covariance are x(ta) and P (ta),

respectively. After running the system over the time interval, we denote the trajectory

points at the end of the interval by xb(1), . . . , xb(k+1), and compute a new sample mean xb

and sample covariance P b from these k + 1 vectors. If we define the vectors

δxb(i) = xb(i) − xb

and the matrix

Xb =
1√
k
[δxb(1)| · · · |δxb(k+1)],

then

xb =
1

k + 1

k+1
∑

i=1

xb(i)

P b = Xb(Xb)T (2)

Since the sum of the columns of Xb is zero, the maximum possible rank of P b is k.

At this point, data assimilation is done using observations assumed to have been taken at

time tb. The goal is to use the observations to replace the dynamics-generated pair xb, P b at

time tb with a revised pair xa, P a that are used as x(t′a) and P (t′a) on the next time interval

[t′a, t
′

b], where t′a ≡ tb.
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Assume (as will hold in the typical case) that the rank of P b is k. Then the column

space S of P b is k-dimensional, and equals the row space, since P b is a symmetric matrix.

The orthonormal eigenvectors u(1), . . . , u(k) of P b that correspond to nonzero eigenvalues

span this space. Since the variation of the ensemble members occurs in the directions

spanning the vector space S, we look there for corrections to xb in the data analysis step.

Set Q = [u(1)| · · · |u(k)], the M × k matrix whose columns form a basis of S. To restrict P b

to the subspace S, define P̂ b = QT P bQ.

The details of the data analysis step varies among the different EnKF schemes. We

illustrate our technique for the ensemble square root Kalman filter (Tippett et al., 2003,

and references therein), although our technique can be applied to any EnKF scheme. The

analysis step uses observations (y1, . . . , yℓ) measured at assimilation time tb that we assume

for simplicity are linearly related to the dynamical state x by y = Hx, where H is known

as the observation operator. Denote by R the error covariance matrix of the observations.

Define Ĥ = HQ to restrict the action of H to the subspace S. The formula for the solution

to recursive weighted least squares with current solution xb and error covariance matrix P̂ b

is

P̂ a = P̂ b(I + ĤT R−1ĤP̂ b)−1

∆x̂ = P̂ aĤTR−1(y − Hxb)

xa = xb + Q∆x̂ (3)

The corrected most likely solution is xa, with error covariance matrix P a = QP̂ aQT .

To finish the step and prepare for a new step on the next time interval, we must produce

a new ensemble of k + 1 initial conditions xa(1), . . . , xa(k+1) that have the analysis mean xa

and analysis covariance matrix P a. This can be done in many ways. One of them is finding

a matrix of form

Xa =
1√
k
[δxa(1)| · · · |δxa(k+1)]

that satisfies

P a = Xa(Xa)T . (4)

Defining the vectors

xa(i) = xa + δxa(i)
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yields an ensemble with mean xa and covariance matrix P a. It can be shown (e.g. Tippett

et al., 2003) that a good (although not unique) choice is Xa = XbY where

Y = {I + (X̂b)T (P̂ b)−1(P̂ a − P̂ b)(P̂ b)−1X̂b}1/2, (5)

where X̂b = QT Xb, and the symmetric matrix square root is chosen to be positive.

III. THE 4DENKF METHOD.

The description above assumes that the data to be assimilated was observed at the

assimilation time tb. The 4DEnKF method adapts EnKF to handle observations that have

occurred at non-assimilation times. The key idea is that since the analysis takes place in

the space S spanned by the ensemble perturbations, we ask which linear combination of the

ensemble trajectories best fits the observations at the appropriate times. In this way we

avoid the need to linearize the original equations of motion, as is necessary in 4D-Var.

Notice that Eqs. (3,4,5) result in analysis vectors xa(1), . . . , xa(k+1) that lie in the space

spanned by the background ensemble xb(1), . . . , xb(k+1). In order to do the analysis, we need

only consider model states of the form

xb =

k+1
∑

i=1

wix
b(i), (6)

and the goal of the analysis is to find the appropriate set of weights w
a(j)
1 , . . . , w

a(j)
k+1 for each

analysis vector xa(j).

Now let y = h(x) be a particular observation made at time tc 6= tb. We associate to the

state (6) at time tb a state

xc =

k+1
∑

i=1

wix
c(i), (7)

where xc(i) is the state of the ith ensemble solution at time tc. We assign the observation

h(xc) at time tc to the state xb given by (6). Eqn. (7) has been used (Bishop et al., 2001;

Majumdar et al., 2002) to predict the forecast effects of changes in the analysis error. Here

we use this approximation to propagate the dynamical information within the time window

of an analysis procedure designed for real-time numerical weather prediction.

Let

Eb = [xb(1)| · · · |xb(k+1)]
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and

Ec = [xc(1)| · · · |xc(k+1)]

be the matrices whose columns are the ensemble members at the times tb and tc, respectively.

Then (6) and (7) say that Ebw = xb and Ecw = xc, respectively, where w = [w1, . . . , wk+1]
T .

The orthogonal projection to the column span of Eb is given by the matrix Eb(E
T
b Eb)

−1ET
b ,

meaning that the coefficients w in (6) can be defined by w = (ET
b Eb)

−1ET
b xb. The lin-

ear combination (7) is xc = Ecw = Ec(E
T
b Eb)

−1ET
b xb. Therefore the observation h(xc),

expressed as a function of the background state xb at the time of assimilation, is

h(Ecw) = h(Ec(E
T
b Eb)

−1ET
b xb). (8)

The latter expression can be used as the observation operator in any ensemble Kalman filter.

For example, a set of observations denoted by the matrix H and time-stamped at tc can be

represented at time tb by the matrix HEc(E
T
b Eb)

−1ET
b . Therefore the innovation y − Hxc

learned from the observations is treated instead as y−HEc(E
T
b Eb)

−1ET
b xb in the assimilation

step. This technique is equivalent to the computation of the forcing of the observational

increments at the correct time in 4D-Var; however, it propagates the increments forward or

backward in time without the need for the tangent-linear model or adjoint.

Multiple observations are handled in the same manner. Assume the observation matrix

is

H =











h1

...

hℓ











,

where the observation row vectors h1, . . . , hℓ correspond to times tc1 , . . . , tcl
, respectively.

Then the observation matrix H in (3) is replaced with the matrix










h1Ec1

...

hℓEcl











(ET
b Eb)

−1ET
b . (9)

In addition, it should be noted that the tci
can be smaller or larger than tb, allowing for

observations to be used at their correct observational time even if it is after the nominal

analysis time.

In the case of linear system dynamics, the 4DEnKF technique is equivalent to assimilating

data at the time it is observed. As a simple example, assume an observation at time tc < tb
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is assimilated at time tc. Let the linear dynamics of the system on the time interval [tc, tb]

be denoted by the invertible M ×M matrix A. The corrected covariance matrix P d at time

tc is P d = P c(I + HTR−1HP c)−1 and the new mean is xd = xc + P dHT R−1(y − Hxc).

Advancing both through linear dynamics on the time interval [tc, tb] results in covariance

AP dAT = AP c(I + HT R−1HP c)−1AT

and

Axd = Axc + AP dHTR−1(y − Hxc). (10)

On the other hand, using 4DEnKF, the covariance matrix advances without analysis to

AP cAT and xc to Axc at analysis time tb. For vectors xb in the span of the columns of Eb,

the matrix Eb(E
T
b Eb)

−1ET
b acts as the identity. Under the linear dynamics, AEc = Eb, so

that the revised observation matrix is HEc(E
T
b Eb)

−1ET
b = HA−1. The assimilation formulas

then give the new analysis covariance matrix

P a = AP cAT (I + (A−1)T HTR−1HA−1AP cAT )−1

= AP c(I + HT R−1HP c)−1AT = AP dAT

and

xa = Axc + P a(A−1)T HT R−1(y − Hxc),

which agrees with (10).

IV. EXPERIMENTS WITH LORENZ MODEL.

To illustrate this implementation of four-dimensional assimilation of observations, we use

the Lorenz model (Lorenz, 1996)

ẋm = (xm+1 − xm−2)xm−1 − xm + F (11)

for m = 1, . . . , M and with periodic boundary conditions x1 = xM+1. When the forcing

parameter is set to F = 8 and M = 40, the attractor of this system has information

dimension approximately 27.1 (Lorenz and Emanuel, 1998). A long integration of the model

creates a long background trajectory x∗, to be considered as the true trajectory. Noisy

observations are produced at each time interval ∆t by adding uncorrelated Gaussian noise
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with variance 1 to the true state at each location. By comparison, the average root mean

square deviation from the mean is approximately 3.61 for the true trajectory. Fig. 1 shows

a sample trajectory.

Figure 2 shows that if we use 4DEnKF, assimilations can be skipped with little loss of

accuracy in tracking the system state. The system is advanced in steps of size ∆t = 0.05,

but instead of assimilating the observations at each step, assimilation is done only every s

steps. For this simulation, 40 ensemble members were used, although the results are little

changed when as few as 20 ensemble members were used. The resulting root mean square

error (RMSE) is plotted as circles in Figure 2 as a function of s. For s ≤ 6, it appears that

little accuracy is lost.

The RMSE of two other methods are shown in Figure 2 for comparison. The asterisks

plotted in Figure 2 are the RMSE found by using EnKF (eqns. (3) - (5)), allowing s steps

of length ∆t to elapse between assimilations. Only those observations occurring at the

assimilation time were used for assimilation. The triangles refer to time-interpolation of

the data since the last assimilation. In this alternative, linear interpolation of individual

observations as a function of the ensemble background state evolved by the model is used

to create an improved observation y∆(tb) at the assimilation time, by adding H(xb)−H(xc)

to the observation. For the Lorenz example, where the observations are noisy states, this

amounts to replacing the observation at time tc with y∆(tb) ≡ y(tc)+xb−xc for assimilation

at time tb, which is carried out by EnKF. The idea behind this technique is widely used in

operational 3D-Var systems to assimilate asynchronous observations (e.g., Huang et al., 2002;

Benjamin et al., 2003). Our implementation provides somewhat optimistic results for this

technique, since our background error covariance matrix is not static (independent of time)

and homogeneous (independent of location) as it is assumed in a 3D-Var. As Figure 2 shows,

for the last two methods, the accuracy of the assimilated system state becomes considerably

worse compared to 4DEnKF as the steps per assimilation s increases.

Variance inflation was used in all experiments described above, meaning that the analysis

covariance matrix was artificially inflated by adding sǫλI to P̂ a for small ǫ, where s is the

number of time steps per assimilation and λ is the average of the eigenvalues of P̂ a. In

Figure 2, ǫ = 0.005 per time step was used for all methods. With ∆t = 0.05, this amounts

to additive variance inflation of 0.1 per unit time. Variance inflation helps to compensate

for underestimation of the uncertainty in the background state due to nonlinearity, limited
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ensemble size, and model error. (Conventionally, variance inflation is done by enlarging P̂ b,

rather than P̂ a, in order to reflect errors that develop during model evolution that are not

captured by the ensemble. We enlarge P̂ a purely as a matter of convenience, because it does

not require us to adjust the ensemble both before and after the data assimilation step. The

two approaches yield very similar results.) Figure 3 shows the effect of variance inflation on

the RMSE of the 4DEnKF method.

Although the examples shown in this article describe assimilation using global states, we

have achieved similar results by applying this modification to the Local Ensemble Kalman

Filter (LEnKF), as developed in (Ott et al., 2002). In the local approach, based on the

hypothesis that assimilation can be done on moderate-size spatial domains and reassembled,

the same treatment of the asynchronous local observations can be exploited.

The computational savings possible with the 4DEnKF technique arise from the ability

to improve the use of asynchronous observations without more frequent assimilations. The

extra computational cost of 4DEnKF is dominated by inverting the (k +1)× (k +1) matrix

ET
b Eb in (8), which is comparatively small if the ensemble size k + 1 is small compared to

the number of state variables M . Moreover, applying this technique in conjunction with

local domains as in LEnKF allows k to be greatly reduced in comparison with M . For very

high-dimensional systems, we expect best results to be obtained when a combination of the

two ideas is used, in what could be called 4DLEnKF.
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FIG. 1: Typical solution of the Lorenz model (solid line) with noisy observations (squares) and

analysis state from 4DEnKF (circles). Only the first component x1 is shown. Observations are

generated at each ∆t = 0.05 time units. Assimilation is done every four ∆t steps using (3) with

H replaced by (9).
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FIG. 2: Root mean square error of proposed 4DEnKF method (circles) compared to standard

EnKF (asterisks) and EnKF with time interpolation (triangles). Variance inflation is set at 0.005

per time step. Symbols showing RMSE = 1 actually represent values ≥ 1. RMSE is averaged over

several runs of 40,000 steps.
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FIG. 3: Effect of variance inflation on 4DEnKF. The RMSE of the method is shown for ǫ = 0.005

(circles), 0.01 (asterisks), and 0.015 (triangles) per time step.
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