

FOUR-DIMENSIONAL GUIDANCE ALGORITHMS FOR AIRCRAFT IN AN AIR TRAFFIC CONTROL ENVIRONMENT

Thomas Pecsvaradi
Ames Research Center
Moffett Field, Calif. 94035
national aeronautics and space administration - washington, d. C. - march 1975

[^0]
TABLE OF CONTENTS

Page
SYMBOLS iv
SUMMARY 1
INTRODUCTION. 1
PROBLEM DESCRIPTION AND BASIC APPROACH. 2
GROUND TRACK SYNTHESIS. 10
Ordinary waypoint. 12
Final heading waypoint 12
Ground track computation 18
Minimum turning radius 25
ALTITUDE PROFILE. 26
SPEED PROFILE 29
Admissible speed ranges. 29
Attainable arrival times 33
Desired speed profile. 37
Iterative procedure to find $\hat{\rho}$. 39
4-D GUIDANCE COMMANDS 40
Guidance vectors 41
Compensation for finite roll and pitch rates 43
Roll-rate compensation 44
Pitch-rate compensation. 46
CAPTURE MODE 47
Ground track computation 48
Iterative procedure 50
Altitude profile 51
Speed profile. 53
4-D commands 56
ON-LINE 4-D GUIDANCE. 57
AN ILLUSTRATIVE EXAMPLE 60
CONCLUSIONS 67
APPENDIX 68
REFERENCES 133

a	rate of speed change
$a_{\text {min }}$	minimum admissible rate of speed change (maximum deceleration)
$a_{\text {max }}$	maximum admissible rate of speed change (maximum acceleration)
a_{k}	rate of speed change during kth guidance interval
C_{i}	distance between points $P_{i}\left(Q_{i}\right)$ and $W P_{i}$ where $W P_{i}$ is an ordinary waypoint and $\mathcal{P}_{i}\left(\mathcal{Q}_{i}\right)$ is the beginning (end) of the turn associated with W_{i}
c	fraction of zero-flap stall speed indicating minimum admissible cruising airspeed in terminal area
$\overline{\mathrm{c}}$	fraction of zero-flap stall speed indicating maximum admissible cruising airspeed in terminal area
c_{1}	ground speed for any given airspeed when aircraft heading is parallel to wind heading
c_{2}	ground speed for any given airspeed when aircraft heading is perpendicular to wind heading
CWP	index of capture waypoint ($1 \leq$ CWP \leq NWP)
DB	length of straight-line segment in capture ground track
D_{i}	length of straight-1ine segment from point Q_{i-1} to point P_{i}
ENRTIM_{i}	flight time from point Q_{i} to point $Q_{N W P}$ along 4-D flight path
f_{k}	k th guidance vector
g	acceleration due to gravity
GAMB	constant flight-path angle of capture flight path
$\mathrm{GAM}_{\mathrm{i}}$	constant flight-path angle from point Q_{i-1} to point Q_{i} along ground track
$\mathrm{INDEX}_{\mathrm{i}}$	waypoint type indicator, INDEX $_{i}=0 \Rightarrow W P_{i}$ is ordinary waypoint; INDEX $_{i}=1 \Rightarrow W P_{i}$ is final heading waypoint

MAXSEG	maximum number of nondegenerate guidance vectors needed to generate the 4-D flight path from first to last waypoint
NCI	number of nondegenerate guidance vectors needed to generate the 4-D capture flight path
NCI_{i}	$1+$ number of nondegenerate guidance vectors needed to generate the 4-D flight path from $W P_{1}=Q_{1}$ to Q_{i}
0	center of circular turn
PA(PB)	beginning of first (second) turn of capture flight; (PA is initial aircraft position)
P_{i}	beginning of turn associated with $\mathrm{WP}_{\mathbf{i}}$
QA(QB)	end of first (second) turn of capture flight path
Q_{i}	end of turn associated with WP_{i}
r	generic term for turning radius
$\mathrm{RA}(\mathrm{RB})$	turning radius of first (second) turn of capture flight path
R_{i}	turning radius of turn associated with WP_{i}
$\mathrm{RMIN}_{\mathrm{i}}$	minimum turning radius of turn associated with WP_{i}
SAB	distance required to change ground speed from VQA to VPB at maximum (or minimum) rate
$\begin{aligned} & S 11_{i}(\rho), S 12_{i}(\rho), \\ & S 22_{i}(\rho) \end{aligned}$	straight-line distances flown during the three subsegments of the speed profile from point Q_{i-1} to point P_{i} corresponding to a speed level
t	generic term for time
TABS	current value of absolute time
TCAP	flight time along 4-D capture flight path
$\operatorname{TMIN}_{\mathbf{i}}\left(\mathrm{TMAX}_{\mathbf{i}}\right)$	minimum (maximum) attainable flight time from point Q_{i} to point $\mathrm{Q}_{\mathrm{NW}} \mathrm{a}$ ang 3-D flight path
T1,T2, T3, T4	time duration of the four guidance intervals for the 4-D capture flight path
$\begin{aligned} & \mathrm{T11} 1_{i}(\rho), \mathrm{T} 12_{i}(\rho), \\ & \mathrm{T} 22_{i}(\rho), \mathrm{T} 23_{i}(\rho) \end{aligned}$	time duration of the four guidance intervals from point Q_{i-1} to point Q_{i} along the 4-D flight path corresponding to a speed level ρ

$\mathrm{T}_{\mathrm{i}}(\rho)$	flight time from point Q_{i-1} to point Q_{i} along the 4-D flight path corresponding to a speed level ρ
T (ρ)	total flight time from point $Q_{\text {CWP }}$ to point $Q_{N W P}$ along the 4-D flight path corresponding to a speed level
u	inverse of turning radius, ($=1 / \mathrm{r}$)
u_{k}	inverse of turning radius during kth guidance interval
v	generic term for speed
$\dot{\mathrm{v}}$	time derivative of speed
$\underline{\text { v }}$	minimum admissible cruising airspeed in terminal area
$\overline{\mathrm{v}}$	maximum admissible cruising airspeed in terminal area
VA (VB)	constant airspeed during first (second) turn of capture flight path
$V A_{i}, V A_{i}(\rho)$	constant airspeed during turn associated with WP_{i}
$V_{\text {final }}$	desired airspeed at last waypoint
$\mathrm{V}_{\text {AC }}$	initial airspeed of aircraft
$V G_{i}$	ground speed at W_{i} from which a ground speed VGMAX ${ }_{\mathbf{i}+1}$ at point P_{i+1} can be achieved by flying from $W P_{i}$ directly to \mathbb{P}_{i+1} and using a deceleration $a_{\min }$
VGMAX_{i}	maximum possible ground speed of aircraft at $W^{\text {a }}$
$\mathrm{vmin}_{i}\left(\mathrm{vmax} \mathrm{m}_{\mathrm{i}}\right)$	airspeed at Q_{i} from which an airspeed $\operatorname{VMIN}_{i+1}\left(\operatorname{VMAX}_{i+1}\right)$ at point P_{i+1} can be achjeved by flying from Q_{i} directly to \dot{P}_{i+1} and using a deceleration $a_{m i n}$
$\mathrm{v}_{\text {min }}\left(\mathrm{v}_{\max }\right)$	generic term for minimum (maximum) admissible speed
$\mathrm{VMIN}_{i}\left(\mathrm{VMAX}_{i}\right)$	minimum (maximum) admissible airspeed at WP_{i}
$\mathrm{VPB}(\mathrm{VQA})$	ground speed at beginning (end) of second (first) turn of capture flight path
$\mathrm{VP}_{i}(\rho),\left(\mathrm{VQ}_{\mathrm{i}}(\rho)\right)$	ground speed at beginning (end) of turn associated with $W P_{i}$ corresponding to a speed level
$\mathrm{V}_{\mathrm{p}}(\delta)$	flap placard speed with flaps set at δ°
- $\mathrm{V}_{\mathrm{S}}(\delta)$	stall speed with flaps set at δ°

$v_{\text {w }}$	magnitude of wind
$W^{\text {P }}$	waypoint i
x, y, z	generic terms for Cartesian coordinates of aircraft
$\dot{x}, \dot{y}, \dot{z}$	time derivatives of x, y, z
$\mathrm{X}_{\mathrm{AC}}, \mathrm{Y}_{\mathrm{AC}}, \mathrm{Z}_{\text {AC }}$	Cartesian coordinates of initial position of aircraft
X0, Y0	Cartesian coordinates of center of turn
$X P_{i}, Y P_{i}, Z P_{i}$	Cartesian coordinates of beginning of turn associated with W_{i}
$X Q_{i}, \mathrm{YQ}_{\mathrm{i}}, \mathrm{ZQ}_{\mathrm{i}}$	Cartesian coordinates of end of turn associated with WP_{i}
XPA, YPA, ZPA	Cartesian coordinates of beginning of first turn in capture flight path (same as $X_{A C}, Y_{A C}, Z_{A C}$)
XQA, YQA, ZQA	Cartesian coordinates of end of first turn in capture flight path
$\mathrm{XPB}, \mathrm{YPB}, \mathrm{ZPB}$	Cartesian coordinates of beginning of second turn in capture flight path
$X Q B, Y Q B, Z Q B$	Cartesian coordinates of end of second turn in capture flight path (same as $\mathrm{XQ}_{\mathrm{CWP}}, \mathrm{YQ}_{\mathrm{CWP}}, \mathrm{ZQ}_{\mathrm{CWP}}$)
$\mathrm{XWP}_{i}, \mathrm{YWP}_{i}, \mathrm{ZWP}_{i}$	Cartesian coordinates of WP_{i}
z_{r}	reference altitude used to compute lead time for finite pitch-rate compensation
$\ddot{z}_{\text {max }}$	maximum admissible vertical acceleration
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	angles used to compute a turn by subroutine NEWPSI
γ	generic term for flight-path angle
$\dot{\gamma}_{\text {max }}$	maximum admissible pitch rate
$\gamma_{\text {min }}\left(\gamma_{\max }\right)$	minimum (maximum) admissible flight-path angle
${ }^{\gamma} \mathrm{k}$	flight-path angle during kth guidance interval
δ	flap setting
$\triangle \mathrm{DA}(\triangle \mathrm{DB})$	arclength of first (second) turn in capture flight path
ΔD_{i}	arclength of turn associated with WP_{i}

Δt_{k}	time duration of kth guidance interval
$\triangle T O A$	desired change in time of arrival
$\triangle \Psi A(\triangle \Psi B)$	angular extent of first (second) turn in capture flight path
$\Delta \psi_{i}$	angular extent of turn associated with $\mathrm{WP}_{\mathbf{i}}$
ε	arbitrarily small positive number used to stop an iterative procedure or to determine the nondegenerate guidance vectors
ϕ	generic term for bank angle
${ }^{\text {max }}$	maximum admissible bank angle
$\dot{\phi}$	time derivative of ϕ
$\dot{\phi}_{\text {max }}$	maximum admissible roll rate
ψ	generic term for heading
$\dot{\psi}$	time derivative of ψ
ψ_{i}	heading of straight line from point Q_{i-1} to point P_{i}
$\psi_{\text {final }}$	desired heading at final waypoint
ψ_{w}	wind direction
$\psi_{\text {AC }}$	initial heading of aircraft
$\Psi A(\Psi B)$	heading at beginning of first (second) turn of capture flight path
$\Psi \mathrm{C}$	heading at end of second turn of capture flight path
ψ_{r}	reference heading used to compute lead time for finite roll-rate compensation
ρ	fraction indicating speed profile deviation from maximum admissible speed profile
${ }^{\tau}{ }_{\phi}$	lead time for finite roll-rate compensation
${ }^{\tau}{ }_{\gamma}$	lead time for finite pitch-rate compensation

AIR TRAFFIC CONTROL ENVIRONMENT

Thomas Pecsvaradi

Ames Research Center

SUMMARY

This report describes the detailed theoretical development of three guidance algorithms that form a part of an experimental 4-D guidance system. The algorithms generate the ground track, altitude profile, and speed profile required to implement the $4-D$ guidance concept.

The ground track algorithm computes a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained to have a radius at least as large as the minimum turning radius of the aircraft. The altitude profile algorithm generates an altitude profile along the previously computed ground track. The altitude profile consists of a sequence of piecewise constant flight-path angle segments, each segment lying within specified upper and lower bounds. Finally, to determine the motion of the aircraft as a function of time along the 3-D flight path, the speed profile algorithm generates a feasible speed profile subject to constraints on the rate of speed change, permissible speed ranges, and the effects of wind. The various flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft, so that a 4-D flight-path can be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually. The system has a number of unique features that aid in achieving precise arrival times: the ability to capture any one of the waypoints along the flight path, the ease with which the tracking mode (both automatic and manual) can be engaged and disengaged, and the provision for manual path stretching as part of the overall 4-D guidance scheme.

The three guidance algorithms have been implemented in the form of a set of computer programs and these programs have been tested extensively in a static environment on the IBM 360/70 computer at Ames Research Center.

INTRODUCTION

Accurate terminal area guidance and control can be achieved with a system concept referred to as 4-D guidance. During the last several years at Ames Research Center, effort has been devoted to the design, development, and implementation of an experimental 4-D guidance system. The system uses a
technique to guide and control an aircraft not only in the three spatial dimensions, but in time as well. The aim of the technique is to provide a flexible guidance scheme that can be used to predict and control accurately the motion of an aircraft as a function of time. It must be emphasized that the technique by itself is not sufficient to solve the complete multi-aircraft terminal area guidance problem, for which many aircraft must be scheduled and sequenced into common paths while minimum separation standards are assured. The problem of aircraft scheduling has been discussed by McLean and Tobias (ref. 1), who developed an interactive real time system for scheduling and monitoring many aircraft in the terminal area. An overall terminal area guidance system that uses both the 4-D algorithms presented here and the scheduling algorithms described in reference 1 appears to have a great potential for increasing terminal area effectiveness.

Research in 4-D guidance is currently under way by the Department of Transportation, universities, and NASA. However, publications on alternate approaches are not generally available. One possible alternate approach that has been published is path stretching in a defined terminal area corridor (ref. 2).

This report describes the detailed theoretical development and computer implementation of those algorithms that generate the 4-D reference flight path. Specifically, three main guidance algorithms are developed: the first generates the ground track of the reference flight path, the second calculates the altitude profile, and the third computes the desired speed profile. A feasible method of combining the three algorithms into an on-line 4-D guidance system is also described. Certain general aspects of some of these algorithms are extensions of earlier work done at Ames; the particular techniques used to generate the ground track and speed profile, however, represent new contributions. The design of the algorithms is modular so that many of the subalgorithms can be used independently or can be replaced with a minimum effect on the overall system.

The algorithms are implemented in the form of a set of computer programs. These programs were written in FORTRAN IV and were tested on the IBM 360/70 at Ames. Detailed programming descriptions of all subroutines, including flow charts and source listings, are given in the appendix.

PROBLEM DESCRIPTION AND BASIC APPROACH

The fundamental problem facing controllers and pilots in the terminal area is the safe and efficient guidance and control of aircraft from various points in the terminal area to the runway. (The problem of safe and efficient guidance of departing aircraft is just as important; however, since the basic guidance tasks in the two cases are quite similar, it is sufficient to consider the guidance tasks associated with approaching aircraft in developing a theoretical framework.) This task consists of two separate subtasks:
(i) selecting a $3-D$ flight path the aircraft is to follow and a time schedule to be maintained along the flight path, and (ii) controlling the aircraft along
the 4-D flight profile determined in (i). In the current air traffic control (ATC) system, subtask (i) is generally considered to be the responsibility of the controllers. Selecting terminal area flight paths is made considerably simpler by the existence of Standard Terminal Arrival Routes (STARS) and Standard Instrument Departure (SID) routes. Portions of these routes, combined with certain less well-defined paths determined at the time of flight and transmitted to the pilot in the form of a series of verbal instructions (vectoring), comprise the majority of terminal area flight paths. Thus, selecting three-dimensional terminal area flight paths is reasonably straightforward. The determination, in advance, of a desired time schedule along such paths, on the other hand, is much more difficult since it requires knowledge of the ground speed of the aircraft as a function of time, which, in turn, must be integrated to give position information. Clearly, accomplishing such a task manually is very difficult, especially in a multi-aircraft environment.

Tracking a predetermined four-dimensional flight profile is, of course, the responsibility of the pilot. This task can be carried out either manually or automatically, using the autopilot/autothrottle of the aircraft. One of the major shortcomings of current autopilots is, however, their limited capability of tracking complex, four-dimensional flight profiles. Although most autopilots can perform such single functions as altitude hold, heading hold, flight-path-angle hold, etc., they are not designed to perform a sequence of such operations automatically. Similar comments apply to the autothrottle. This report describes the development of a guidance technique that is sufficiently flexible to permit manual or automatic tracking of complex fourdimensional fiight paths.

Most flight paths of aircraft can be modeled as sequences of straightline flights and coordinated turns, executed while flying at piecewise constant flight-path angles. Speed changes occur at relatively few points along the flight path and are usually accomplished at a nearly linear rate. The principal control signals used to maneuver aircraft along such typical flight paths are bank angle, flight-path angle, and acceleration of the aircraft. It is assumed throughout the report that the flight-path angle is small, the centrifugal force due to the turn is balanced by the horizontal component of the lift, and the weight of the aircraft is balanced by the vertical component of the lift. It is further assumed that the speed of the aircraft is directly controllable by an acceleration input. Under these assumptions, no sideslip occurs and the point-mass equations of motion of an aircraft can be written as

$$
\begin{align*}
\dot{x} & =v \cos \psi \tag{1}\\
\dot{y} & =v \sin \psi \tag{2}\\
\dot{z} & =v Y \tag{3}\\
\dot{\psi} & =\frac{g}{v} \tan \phi \tag{4}\\
\dot{v} & =a \tag{5}
\end{align*}
$$

where x, y, and z are the Cartesian coordinates of the aircraft position in the usual z-downward-positive coordinat'e system, ψ is the heading angle measured clockwise from the positive x-axis, v is the speed, ϕ is the bank angle, γ is the flight-path angle, a is the acceleration of the aircraft, and g is the acceleration due to gravity. Positive ϕ, by convention, means right wing down, which corresponds to a right turn; similarly, positive γ means ascending flight. The quantities x, y, z, ψ, v are considered to be the state of the aircraft, while ϕ, γ, and a are the controls.

In order to assure passenger comfort and to remain within the safe operational characteristics of the aircraft, it is necessary to impose constraints on the control variables. Accordingly, ϕ, γ, and a are assumed to satisfy the following constraints:

$$
\begin{gather*}
|\phi(t)| \leqslant \phi_{\max } \tag{6}\\
\gamma_{\min } \leqslant \gamma(t) \leqslant \gamma_{\max } \tag{7}\\
a_{\min } \leqslant a(t) \leqslant a_{\max } \tag{8}
\end{gather*}
$$

These bounds, of course, depend a great deal on the type of aircraft considered. For a typical jet transport aircraft, extreme values of these bounds may be $\phi_{\max }=30^{\circ}, \gamma_{\min }=-3^{\circ}, \gamma_{\max }=8^{\circ}, a_{\min }=-0.6 \mathrm{~m} / \mathrm{sec}^{2}$, $a_{\max }=0.6 \mathrm{~m} / \mathrm{sec}^{2}$; for STOL aircraft, $\gamma_{\min }$ may be as low as -8°.

In addition, bounds must be placed on the admissible speeds of the aircraft. The upper bound is generally dictated by either Federal Aviation Regulations or by structural considerations, while the lower bound depends basically on the stall characteristics of the airplane. A more detailed discussion of the speed constraints is given under Speed Profile. For the present general discussion, it is simply assumed that the speed of the aircraft satisfies constraints of the form

$$
\begin{equation*}
v_{\min } \leq v(t) \leq v_{\max } \tag{9}
\end{equation*}
$$

It is convenient at this point to introduce a change of variables in equation (4). When the ground track of an aircraft is considered, the instantaneous radius of curvature, r, of the flight path is defined by (see ref. 3)

$$
\begin{equation*}
r=\frac{v}{\dot{\psi}}=\frac{v^{2}}{g \tan \phi} \tag{10}
\end{equation*}
$$

Thus, the radius of curvature is closely related to the bank angle. For purposes of analysis, it is convenient to consider r, rather than ϕ, as the principal control variable used for horizontal maneuvers. Actually, to avoid infinite values during the control process, a more appropriate control variable, u, is defined as follows

$$
\begin{equation*}
u=\frac{1}{r}=\frac{g \tan \phi}{v^{2}} \tag{11}
\end{equation*}
$$

In terms of the control variable u, equation (4) can be rewritten as

$$
\dot{\psi}=v u
$$

Since ϕ and v are constrained by inequalities (6) and (9), respectively, the admissible values of u are bounded from above and below. Thus, given any instantaneous speed, say $v(t)$, along the flight path, the instantaneous value of $u(t)$ must satisfy the inequality

$$
\begin{equation*}
|u(t)| \leq \frac{g \tan \phi_{\max }}{v^{2}(t)} \tag{12}
\end{equation*}
$$

It can now be seen why u is a particularly convenient control variable for accurate aircraft guidance: a constant nonzero u yields a ground track with constant radius of turn, that is, a circular flight segment. Furthermore, if $u \equiv 0$, then the ground track of the resulting flight is a straight line. Hence, if piecewise constant values are used for u, simple yet realistic ground tracks can be generated. Piecewise constant values of u can be obtained by appropriately varying $\phi(t)$ according to equation (11).

While inequalities (6) through (8) constrain the admissible magnitudes of the control variables ϕ, γ, and a, the rates at which these variables are allowed to change are not limited. It is recognized that, in reality, these controls can change only at finite rates. It is felt, however, that the assumption of infinite control rates is not at all unreasonable for a guidance technique whose purpose is to generate four-dimensional terminal-area flight paths for periods of time that can be several orders of magnitude greater than the time constants of the controls. Furthermore, the inclusion of rate constraints on the controls would result in a much more complicated problem and would make the implementation of the results much more difficult. In view of these remarks, the control rates are assumed to be unlimited. Under FourDimensional Guidance Commands, a simple but effective way of accounting for finite roll and pitch rates is described.

Before stating the precise problem to which this report is addressed, it is instructive to look at the states and controls that correspond to typical terminal area flight path. Figure 1 shows the ground track of an aircraft from an arbitrary point A to the touchdown point K. The ground track consists of a series of connected straight lines and circular arcs. The altitude, speed, and heading profiles corresponding to this ground track are shown in figure 2; figure 3 illustrates the controls required for the flight path depicted in figures 1 and 2. At point A, the aircraft is flying straight and level but begins to decelerate to a lower speed. This lower speed is achieved at point B, so that the flight from B to C is straight and level at constant speed. At point C, the aircraft begins to descend to a lower altitude at some constant, negative flight-path angle. While continuing the descent, at D it begins a left turn, capturing the new required heading at point E. From E to F, the flight is straight at constant speed but is still descending. At

Figure 1.- Ground track of aircraft in terminal area.

Figure 2.- Altitude, speed, and heading of aircraft in terminal area.

Figure 3.- Control signals for flight profile of figures 1 and 2.
F, the required altitude is achieved, so the aircraft levels off, maintaining a straight and level flight at constant speed between F and G. At point G, the aircraft begins to decelerate to the final approach speed, while at point H it begins a right turn, all at level flight. At point I, the runway centerline is intercepted and the final approach speed is achieved simultaneously. At this point, the aircraft begins its straight-in approach. At point J, transitioning occurs from level flight to capture the glide slope, and the approach is continued until touchdown at point K.

In the current ATC system, the above guidance process is basically a manual one: the controller transmits the commands to the pilot via radiotelephone, and the pilot then executes these commands by appropriately maneuvering the aircraft. Two major limiting factors in such a manual guidance-control loop are the great deal of communications required and the lack of accuracy with which arrival times to the runway can be predicted. However, both limitations can be reduced substantially by use of airborne digital computers, sophisticated cockpit displays, and a digital data-link between ground and aircraft. These considerations are incorporated in the development of the guidance scheme presented here.

The point of view adopted in this research was that the fundamental problem of aircraft guidance is to generate a time sequence of guidance commands corresponding to a desired four-dimensional flight path. That is, if a set of realistic guidance commands could be identified for any terminal area flight path, then the commands could be either coupled to the autopilot/ autothrottle of the aircraft for automatic tracking, or they could be presented on appropriate displays to the pilot for manual tracking. Since the problems associated with tracking a sequence of guidance commands have been treated elsewhere (see, e.g., refs. 4 and 5), they are not discussed here.

The first question to be resolved is: what is a minimum set of simple inputs from which realistic guidance commands could be synthesized by an efficient algorithm? To answer this question it is necessary to determine those attributes of a 4-D flight path which are essential to describe it uniquely. Consider the three spatial dimensions, that is, the 3-D path. As far as the horizontal projection of typical flight paths is concerned, aircraft generally navigate from point to point (referred to as waypoints) in straight-line segments (fig. 1). At or near these waypoints, coordinated turns are executed to capture the new heading of the next straight flight segment. Thus, the ground track of an arbitrary flight path could be simply characterized by the x, y coordinates of these waypoints in some coordinate system. Since aircraft cannot change heading instantaneously, feasible turning radii should be specified for the turns at the waypoints. A sequence of x, y coordinates and turning radii alone, however, does not yield a unique ground track and therefore additional logic is required. As shown in the next section, two simple classes of waypoints can be defined so that a unique ground track is obtained by specifying the following four input quantities for each waypoint: x, y coordinates, turning radius, and a binary variable that denotes the class to which the waypoint belongs.

As discussed previously, the motion of aircraft in the vertical dimension can be considered a sequence of constant altitude and constant flight-pathangle segments (fig, 2). Therefore, arbitrary altitude profiles can be uniquely determined by specifying the altitudes of those points along the flight path at which the flight-path angle changes from one constant value to another. To synthesize altitude profiles, it is assumed that the flight-path angle can change from one constant value to another instantaneously. A simple method of accounting for finite pitch rates is discussed under FourDimensional Guidance Commands.

Having specified a complete 3-D flight path in the manner described above, it now remains to characterize the motion of an aircraft as a function of time along the prespecified $3-D$ path. This is equivalent to characterizing the velocity profile along the flight path. Due to operational constraints, aircraft performance limitations, and the desire to control accurately the arrival times of aircraft, the problem of specifying feasible velocity profiles is difficult. It is further complicated when velocity profiles are to be specified in the presence of wind. It is shown, however, under Speed Profile, that judicious approximations can be made and realistic speed profiles can be synthesized from a small number of input parameters.

The flow of computation in the 4-D flight-path synthesis is sequential and is illustrated by the block diagram in fig. 4. The first step is to generate the ground track from the given inputs. The ground track is then used together with additional input parameters to compute a feasible altitude profile. At this point, a 3-D path and the corresponding 3-D guidance commands are determined. The last step is to generate a feasible speed profile that satisfies the arrival time requirements. A detailed description of the ground track synthesis is given in the following section, the altitude profile generation is described under Altitude Profile, and the speed profile generating algorithm is discussed under Speed Profile.

GROUND TRACK SYNTHESIS

The ground track of a typical terminal area flight path consists of an alternating sequence of straight lines and circular arcs. The transitions from one straight-line flight to another with different heading occur at or near points called waypoints. For example, a typical flight segment might be a straight flight toward a VOR station along an inbound VOR radial, followed by a straight flight on a different outbound radial. The transition from one heading and the capture of the new heading occurs near the VOR station. In this example, the VOR station can be considered a waypoint. Note, in this case (as in many situations), there is no compelling reason for the aircraft to fly directly over the waypoint. Since area navigation procedures make it possible to offset VOR stations in a nearly arbitrary fashion, this type of waypoint could be defined abundantly in the terminal area.

A different situation exists when an aircraft, after a period of straight flight, is required to fly over a waypoint and capture a new heading

Figure 4.- Four-Dimensional Guidance command synthesis.
simultaneously. Such a waypoint might be the outer marker or the approach gate. It may also be any waypoint at which two or more flight paths merge and continue along a common path.

It is observed that the ground tracks corresponding to many terminal area flight paths, and indeed most of the enroute flight paths as well, can be characterized by these two types of waypoints. Consequently, the following waypoint definitions are made.

Ordinary Waypoint

Figure 5 (a) is a graphical illustration of an ordinary waypoint where the ground track of a flight-path segment corresponds to a straight-turn-straight sequence from point $W P_{1}$, via point $W P_{2}$ to point $W P_{3}$. The aircraft at point $W P_{1}$ is flying at a heading ψ_{2} directly toward point $W P_{2}$. Prior to reaching $W P_{2}$, at point P_{2}, a circular turn of radius R_{2} is begun and is continued until, at point Q_{2}, the new desired heading, ψ_{3}, is achieved. If such a ground track between points $W P_{1}$ and $W P_{3}$ is to be obtained by specifying the x, y coordinates of $W P_{2}$ and the desired turning radius, then $W P_{2}$ is defined as an ordinary waypoint. (This definition does not imply that points W_{1} and/or WP_{3} are ordinary waypoints.) Clearly, any straight-turnstraight sequence can be specified by an ordinary waypoint as long as the angular extent of the turn is less than 180°. Stated in a different form, if the intersection of two straight directed line segments is considered to be an ordinary waypoint, then the ground track of the resulting straight-turnstraight sequence is uniquely determined (assuming, of course, that the desired turn radius, R_{2}, is also specified).

Final Heading Waypoint

A final heading waypoint is one over which the aircraft just completes a turn and captures the desired heading of the next straight-line segment. This situation is illustrated in figure $5(\mathrm{~b})$, which shows an aircraft at point $W P_{1}$ flying toward point P_{2} at a heading ψ_{2}. At P_{2}, the appropriate turn of radius R_{2} is begun and is continued until, precisely at point $W P_{2}$, the new desired heading ψ_{3} is achieved. If the ground track between points W_{1} and $W P_{2}$ is generated in this nanner, then $W P_{2}$ is defined as a final heading waypoint. (This does not imply that point $W \mathrm{P}_{1}{ }^{2}$ is a final heading waypoint.) The essential quantities to be specified for a final heading waypoint are the x, y coordinates of $W P_{2}$, the heading ψ_{3} from $W P_{2}$ to the next point, say $W P_{3}$, and the radius of turn, R_{2}, at $W P_{2}$. It follows from the above definition that, if the ground track of a straight-turn-straight sequence is specified by a final heading waypoint, then the initial heading, ψ_{2}, and the point P_{2} where the aircraft initiates the turn must be computed from geometric considerations. Note that it is possible to generate a turn greater than 180° by using a final heading waypoint.

It is clear from the above definitions that any ground track consisting of a sequence of straingt-line segments and circular arcs can be uniquely

generated by merely specifying the appropriate sequence of waypoint parameters. What is required is an algorithm to calculate those parameters of the ground track that are not specified explicitly. Thus, for an ordinary waypoint, such as $W P_{2}$ in figure $5(a)$, only the x, y coordinates of the points $W P_{1}, W P_{2}$, and $W P_{3}^{2}$, along with the turn radius R_{2}, would be specified explicitly; all ${ }^{\prime}$ other parameters shown in figure $5(a)$ need to be computed. For a final heading waypoint, such as WP_{2} in figure $5(\mathrm{~b})$, only the x, y coordinates of points $W P_{1}$ and $W P_{2}$, along with the turn radius R_{2} and the desired waypoint heading ψ_{3}, would be specified explicitly; the other parameters shown in figure $5(b)$ must be computed.

It is convenient to partition the algorithm into two parts, one for each of the two types of waypoints. Before the overall algorithm is presented, the two separate subalgorithms are described in detail.

First, consider an ordinary waypoint. Referring to figure 5 (a), assume that the x, y coordinates of the points $W P_{1}, W P_{2}, W P_{3}$ are given by $\left(\mathrm{XWP}_{1}, \mathrm{YWP}_{1}\right),\left(\mathrm{XWP}_{2}, \mathrm{YWP}_{2}\right)$, and $\left(\mathrm{XWP}_{3}, \mathrm{YWP}_{3}\right)$, respectively. Then the headings ψ_{2} and ψ_{3} are given by

$$
\begin{array}{ll}
\psi_{2}=\tan ^{-1}\left(\frac{\mathrm{YWP}_{2}-\mathrm{YWP}_{1}}{\mathrm{XWP}_{2}-\mathrm{XWP}_{1}}\right), & -\pi<\psi_{2} \leq \pi \\
\psi_{3}=\tan ^{-1}\left(\frac{\mathrm{YWP}_{3}-\mathrm{YWP}_{2}}{\mathrm{XWP}_{3}-\mathrm{XWP}_{2}}\right), & -\pi<\psi_{3} \leq \pi \tag{14}
\end{array}
$$

If ψ_{2} and ψ_{3} are known, the direction and angular extent of the turn $\Delta \psi_{2}$ can be expressed as

$$
\Delta \psi_{2}= \begin{cases}\psi_{3}-\psi_{2}+2 \pi, & \text { if SIGN }>0 \tag{15}\\ \psi_{3}-\psi_{2}-2 \pi, & \text { and } \psi_{3}<\psi_{2} \\ \psi_{3}-\psi_{2}, & \text { otherwise }\end{cases}
$$

where SIGN is given by

$$
\begin{equation*}
\operatorname{SIGN}=\operatorname{SGN}\left[\left(\mathrm{YWP}_{3}-\mathrm{YWP}_{2}\right) \cos \psi_{2}-\left(\mathrm{XWP}_{3}-X W P_{2}\right) \sin \psi_{2}\right] \tag{16}
\end{equation*}
$$

and the function $\operatorname{SGN}(\cdot)$ is defined as

$$
\operatorname{SGN}(\cdot)=\left\{\begin{array}{ccc}
1, & \text { if } & (\cdot)>0 \tag{17}\\
0, & \text { if } & (\cdot)=0 \\
-1, & \text { if } & (\cdot)<0
\end{array}\right\}
$$

By convention, the direction of the turn is to the right if $\Delta \psi_{2}$ is positive and to the left if negative. Since $-\pi<\psi_{2}, \psi_{3} \leq \pi, \Delta \psi_{2}$ as given by equation (15) lies within the range $-\pi<\Delta \psi_{2}<\pi$.

Once $\Delta \psi_{2}$ is calculated, the expression for C_{2} (see fig. $5(a)$) is obtained in terms of $\Delta \psi_{2}$ and the radius R_{2} :

$$
\begin{equation*}
C_{2}=R_{2} \cdot \tan \left(\frac{\left|\Delta \psi_{2}\right|}{2}\right) \tag{18}
\end{equation*}
$$

The lengths of the two straight segments, D_{2} and D_{3}, are then given by

$$
\begin{align*}
& D_{2}=\left[\left(X W P_{2}-X W P_{1}\right)^{2}+\left(\mathrm{YWP}_{2}-Y W P_{1}\right)^{2}\right]^{1 / 2}-C_{2} \tag{19}\\
& D_{3}=\left[\left(X W P_{3}-X W P_{2}\right)^{2}+\left(Y W P_{3}-Y W P_{2}\right)^{2}\right]^{1 / 2}-C_{2} \tag{20}
\end{align*}
$$

It is now a simple matter to determine $\left(X P_{2}, Y P_{2}\right)$ and $\left(X Q Q_{2}, Y Q_{2}\right)$, the x, y coordinates of the beginning and end of the turn, respectively:

$$
\left.\begin{array}{l}
X P_{2}=X W P_{2}-C_{2} \cdot \cos \psi_{2} \\
\mathrm{YP}_{2}=X W P_{2}-C_{2} \cdot \sin \psi_{2} \tag{22}
\end{array}\right\}
$$

It is important to recognize that, since the locations of points $W P_{1}$, W_{2}, W_{3} may be completely arbitrary, it is possible to specify them in such a way that D_{2} or D_{3} or both (as given by eqs. (19) and (20)), are negative. Negative D_{2} and/or D_{3} implies that $W P_{1}$ and/or $W P_{3}$ is too close to the waypoint WP_{2} for the given turning radius. The implications of this situation, and possible remedies for it, are discussed later in this section.

The above computational procedure is well suited for computer implementation as a separate subroutine. Accordingly, a subroutine called ROUND has been written and is described in more detail in the appendix.

Consider a final heading waypoint such as shown in figure 5 (b). It is assumed that the following quantities are specified: ($X_{W P}, Y W P_{1}$) and $\left(X W P_{2}, Y W P_{2}\right)$, the x, y coordinates of the points $W P_{1}$ and $W_{2} ; \psi_{3}$, the desired heading at WP_{2}; and R_{2}, the radius of turn. The parameters to be determined are the heading ψ_{2} and length D_{2} of the straight flight segment, the x, y coordinates $\left(\mathrm{XP}_{2}, \mathrm{YP}_{2}\right)$ of point P_{2}, and the direction and magnitude of turn $\Delta \psi_{2}$.

Before proceeding with the solution, it is informative to consider this problem from a different point of view. Consider an aircraft located at point WP_{2} with a heading ψ_{3}^{\prime} (see fig. 6) given by

$$
\begin{equation*}
\psi_{3}^{\prime}=\operatorname{MOD}_{\pi}\left(\psi_{3}+\pi\right) \tag{23}
\end{equation*}
$$

(for an arbitrary angle ψ expressed as the sum $\psi=\psi_{m}+n \cdot \pi$ such that $-\pi<\psi_{m} \leq \pi$ and n is an integer, $\left.\mathrm{MOD}_{\pi}(\psi)=\psi_{m}\right)$. Assume that the aircraft is to $f 1 y$ directly to point $W P$ in such a manner that the path length of the corresponding ground track is minimized subject to the minimum turning radius constraint R_{2}. The resulting ground track is seen to be precisely the solution to the original problem, except that the aircraft will actually fly it in the reverse direction, that is, from $W P_{1}$ to $W P_{2}$. This type of minimum pathlength guidance problem was first proposed in reference 6 , where the appropriate switching functions for the control law were calculated. A modified solution to the problem is given here, one particularly suitable for computer implementation.

Define ψ_{2}^{\prime} and $\Delta \psi_{2}^{\prime}$ as

$$
\begin{align*}
\psi_{2}^{\prime} & =M O D_{\pi}\left(\psi_{2}+\pi\right) \tag{24}\\
\Delta \psi_{2}^{\prime} & =-\Delta \psi_{2} \tag{25}
\end{align*}
$$

and let ($X O, Y O$) denote the x, y coordinates of the center of the turn, point 0 . Using certain geometrical arguments, the expressions for (XO, YO) are

$$
\begin{align*}
& \mathrm{X} 0=\mathrm{XWP}_{2}-\mathrm{R}_{2} \cdot \mathrm{SIGN} \cdot \sin \psi_{3}^{\prime} \tag{26}\\
& \mathrm{Y} 0=\mathrm{YWP}_{2}+\mathrm{R}_{2} \cdot \mathrm{SIGN} \cdot \cos \psi_{3}^{\prime} \tag{27}
\end{align*}
$$

where SIGN is defined as

$$
\begin{equation*}
\operatorname{SIGN}=\operatorname{SGN}\left[\left(\mathrm{YWP}_{1}-\mathrm{YWP}_{2}\right) \cos \psi_{3}^{\prime}-\left(X W P_{1}-X W P_{2}\right) \sin \psi_{3}^{\prime}\right] \tag{28}
\end{equation*}
$$

The length, D_{2}, of the straight-1ine segment is then

$$
\begin{equation*}
D_{2}=\left[\left(X W P_{1}-X O\right)^{2}+\left(\mathrm{YWP}_{1}-Y O\right)^{2}-R_{2}^{2}\right]^{1 / 2} \tag{29}
\end{equation*}
$$

and the expressions for angles α_{1}, α_{2}, and α_{3} (see fig. 6) are

$$
\begin{align*}
& \alpha_{1}=\operatorname{MOD}_{\pi}\left(\psi_{3}^{\prime}-\operatorname{SIGN} \cdot \frac{\pi}{2}\right) \tag{30}\\
& \alpha_{2}=\tan ^{-1}\left(\frac{\mathrm{YWP}_{1}-\mathrm{YO}}{\mathrm{XWP}_{1}-\mathrm{XO}}\right) \tag{31}\\
& \alpha_{3}=\tan ^{-1}\left(\frac{\mathrm{D}_{2}}{\mathrm{R}_{2}}\right) \tag{32}
\end{align*}
$$

Figure 6.- Inverse final heading waypoint problem.

Once α_{1}, α_{2}, and α_{3} are known, the direction and angular extent of the turn $\Delta \psi_{2}^{\prime}$ can be expressed as

$$
\Delta \psi_{2}^{\prime}= \begin{cases}\alpha_{2}-\alpha_{1}-\operatorname{SIGN} \cdot \alpha_{3}+2 \pi, & \text { if SIGN }>0 \text { and } \alpha_{2}<\alpha_{1} \tag{33}\\ \alpha_{2}-\alpha_{1}-\operatorname{SIGN} \cdot \alpha_{3}-2 \pi, & \text { if SIGN }<0 \text { and } \alpha_{2}>\alpha_{1} \\ \alpha_{2}-\alpha_{1}-\operatorname{SIGN} \cdot \alpha_{3} & \text { otherwise }\end{cases}
$$

where the expression for SIGN is given by equation (28). The heading, ψ_{2}^{\prime}, of the straight-line segment and the x, y coordinates $\left(X_{2}, Y_{2}\right)$ of point P_{2} are obtained in a straightforward fashion:

$$
\left.\begin{array}{rl}
\psi_{2}^{\prime} & =\mathrm{MOD}_{\pi}\left(\psi_{3}^{\prime}+\Delta \psi_{2}^{\prime}\right) \\
\mathrm{XP}_{2} & =\mathrm{XO}+\mathrm{R}_{2} \cdot \operatorname{SIGN} \cdot \sin \psi_{2}^{\prime} \tag{35}\\
\mathrm{YP}_{2} & =\mathrm{YO}-\mathrm{R}_{2} \cdot \operatorname{SIGN} \cdot \cos \psi_{2}^{\prime}
\end{array}\right\}
$$

The desired parameters of the original final heading waypoint problem are now easily derived. In fact, the solution to the modified problem yields the length of the straight flight segment and the x, y coordinates of the beginning of the turn, point P_{2}. The heading ψ_{2} is obtained from ψ_{2}^{\prime} by

$$
\begin{equation*}
\psi_{2}=M O D_{\pi}\left(\psi_{2}^{\prime}+\pi\right) \tag{36}
\end{equation*}
$$

and the direction and magnitude of the turn $\Delta \psi_{2}$ are given by equation (25), that is,

$$
\begin{equation*}
\Delta \psi_{2}=-\Delta \psi_{2}^{\prime} \tag{37}
\end{equation*}
$$

As in the case of ordinary waypoint, it is possible to specify a final heading waypoint in such a way that the radicand in equation (29) is negative. This condition implies that, for the given waypoint location, desired final heading, and minimum turning radius, point $W P_{1}$ is too close to waypoint $W P_{2}$. Action to correct this condition is discussed later.

A subroutine called NEWPSI has been written to compute the various parameters associated with a final heading waypoint problem. This subroutine is described in more detail in the appendix.

Ground Track Computation

Using the definitions of ordinary and final heading waypoints, along with the computational subalgorithms described previously, an algorithm is now described that generates a complete two-dimensional ground track from a sequence of specified waypoints. A crucial idea in the algorithm is that it generates the ground track by processing the waypoints in reverse order,
beginning with the last waypoint and proceeding sequentially until the first waypoint is processed. This procedure makes it possible to generate the required headings at final heading waypoints automatically, thereby eliminating the need to specify these headings explicitly as separate input data. The only exception to this is the last waypoint (always assumed to be a final heading waypoint), which requires that the value of the desired final heading, denoted by $\psi_{\text {final }}$, be specified explicitly. This assumption is consistent with usual terminal area operational procedures. Placing the last waypoint on the extension of the runway centerline, declaring it to be a final heading waypoint, and specifying the runway heading as the desired heading assures that the aircraft is guided to the localizer and is properly aligned with the runway at some point prior to landing. Such a final waypoint could be the approach gate, the outer marker, or any other point on the runway centerline beyond which 4-D control of the aircraft is either inappropriate or not desirable. For example, based on the nominal landing speed of the aircraft, the last waypoint may be 1 minute of flight from touchdown.

Consider a sequence of NWP waypoints, denoted by $W P_{i}, i=1,2, \ldots$, NWP, and let the following parameters be given for each waypoint:

$\mathrm{XWP}_{i}, \mathrm{YWP}_{i}$	x, y coordinates
R_{i}	turning radius
INDEX $_{i}$	type of waypoint

The x, y coordinates are given in a runway-centered coordinate system, in which the x-axis coincides with the runway centerline and is positive in the direction of landing, the y-axis is perpendicular to the runway and positive to the right, and the origin is at the touchdown point. What might be a sequence of five waypoints for the ground track of an arriving aircraft is shown in figure 7. The dashed lines represent the idealized ground track the aircraft would follow if it could change heading instantaneously at the waypoints.

The turning radius $\mathrm{R}_{\mathbf{i}}$ may or may not be explicitly specified as an input. If it is not specified, then the minimum turning radius is computed based on the maximum admissible bank angle and maximum possible ground speed at waypoint i, and R_{i} is set equal to this minimum turning radius. If R_{i} is specified as an input, then the minimum turning radius is computed as described above and is compared with R_{i} : if R_{i} is greater than or equal to the minimum feasible turning radius, then processing continues; otherwise, an error message is generated and processing stops. For the remainder of this section, R_{i} is assumed to be greater than or equal to the respective minimum feasible turning radius for all $\mathrm{i}=2,3, \ldots, \mathrm{NWP}$. (The computation of the minimum turning radius is discussed at the end of this section.

The input parameter INDEX $_{i}$ is a binary variable whose value is 0 or 1 . $\operatorname{INDEX}_{i}=0$ implies that waypoint i is an ordinary waypoint, while $\operatorname{INDEX}_{i}=1$ means that waypoint i is a final heading waypoint. As mentioned earlier, the last waypoint is always a final heading waypoint, that is,

Figure 7.- A typical sequence of waypoints.

INDEX $_{\text {NWP }}=1$. The first waypoint is also treated as a final heading waypoint, although as will be shown, this is not necessary and is merely a convention. A11 other waypoints may be chosen as ordinary or final heading type, so that $\left\{\right.$ INDEX $\left._{i}\right\}, i=2,3, \ldots, N W P-1$, is a completely arbitrary sequence of $0^{\prime} s$ and 1's.

Assume that the algorithm has processed waypoints NWP, NWP-1, \ldots, i + 1 , and is currently to process waypoint i. At this stage of the algorithm, the following quantities are available for all $\mathbf{j}=\mathbf{i}+1$, $\mathbf{i}+2, \ldots$, NWP:
$\psi_{j} \quad$ heading of straight flight segment from $W P_{j-1}$ to point P_{j}
$\left(X P_{j}, Y_{j}\right) \quad x, y$ coordinates of P_{j}, the point where the turn associated with waypoint j begins
$\Delta \psi_{j} \quad$ angular extent of turn associated with waypoint j
$\left(X Q_{j}, Y_{j}\right) \cdot x, y \underset{\text { with waypoint }}{\text { coordinates }} \underset{j}{ }$ ends Q_{j}, the point where the turn associated
Now assume that waypoint i is an ordinary waypoint, that is, $\operatorname{INDEX}_{i}=0$ (see fig. 8). Then, from figure $5(\mathrm{a})$, point WP_{1} is replaced by $W P_{i-1}$, W_{2} by WP_{i}, and WP_{3} by $\mathrm{P}_{\mathrm{i}+1}$, and the subroutine ROUND is called to compute the above parameters for waypoint i. The expressions for these parameters are essentially the same as equations (13) through (22), but are repeated below for completeness:

$$
\begin{align*}
& \psi_{i}=\tan ^{-1}\left(\frac{X W P_{i}-Y W P_{i-1}}{X W P_{i}-X W P_{i-1}}\right),-\pi<\psi_{i} \leq \pi \tag{38}\\
& \operatorname{SIGN}=\operatorname{SGN}\left[\left(\mathrm{YP}_{\mathrm{i}+1}-\mathrm{YWP}_{\mathbf{i}}\right) \cos \psi_{\mathrm{i}}-\left(X P_{\mathrm{i}+1}-X W P_{i}\right) \sin \psi_{i}\right] \tag{39}\\
& \Delta \psi_{i}= \begin{cases}\psi_{i+1}-\psi_{i}+2 \pi, & \text { if SIGN }>0 \text { and } \psi_{i+1}<\psi_{i} \\
\psi_{i+1}-\psi_{i}-2 \pi, & \text { if SIGN }<0 \text { and } \psi_{i+1}>\psi_{i} \\
\psi_{i+1}-\psi_{i}, & \text { otherwise }\end{cases} \tag{40}\\
& C_{i}=R_{i} \cdot \tan \left(\frac{\left|\Delta \psi_{i}\right|}{2}\right) \tag{41}\\
& \left.\begin{array}{l}
X P_{i}=X W P_{i}-C_{i} \cos \psi_{i} \\
Y P_{i}=X W P_{i}-C_{i} \sin \psi_{i}
\end{array}\right\} \tag{42}\\
& \left.\begin{array}{l}
X Q_{i}=X W P_{i}+C_{i} \cos \psi_{i} \\
Y Q_{i}=X W P_{i}+C_{i} \sin \psi_{i}
\end{array}\right\} \tag{43}
\end{align*}
$$

Figure 8.- Ground track synthesis with ordinary waypoint.

If waypoint i is a final heading waypoint, then $\operatorname{INDEX}_{i}=1$ (fig. 9). In this case, from figure $5(b)$, point $W P_{1}$ is replaced by $W P_{i-1}, W P_{2}$ by $W P_{i}$, P_{2} by P_{i}, and the subroutine NEWPSI is called to generate the following ground track parameters:

$$
\begin{align*}
& \psi_{i+1}^{\prime}=M O D_{\pi}\left(\psi_{i+1}+\pi\right) \tag{44}\\
& \operatorname{SIGN}=\operatorname{SGN}\left[\left(\mathrm{YWP}_{\mathrm{i}-1}-\mathrm{YWP}_{\mathrm{i}}\right) \cos \psi_{\mathbf{i}+1}^{!}-\left(X W P_{i-1}-X W P_{i}\right) \sin \psi_{i+1}^{\prime}\right] \tag{45}\\
& X O=X W P_{i}-R_{i} \cdot \operatorname{SIGN} \cdot \sin \psi_{i+1}^{\prime} \\
& \left.Y O=Y W P_{i}+R_{\mathbf{i}} \cdot \operatorname{SIGN} \cdot \cos \psi_{\mathbf{i}+1}^{\prime}\right\} \tag{46}\\
& D_{i}=\left[\left(X W P_{i-1}-X O\right)^{2}+\left(Y W P_{i-1}-Y O\right)^{2}-R_{i}{ }^{2}\right]^{1 / 2} \tag{47}\\
& \alpha_{1}=\operatorname{MOD}_{\pi}\left(\psi_{i+1}^{\prime}-\operatorname{SIGN} \cdot \frac{\pi}{2}\right) \tag{48}\\
& \alpha_{2}=\tan ^{-1}\left(\frac{\mathrm{YWP}_{\mathrm{i}-1}-\mathrm{YO}}{\mathrm{XWP}_{\mathrm{i}-1}-\mathrm{XO}}\right), \quad-\pi<\alpha_{2} \leq \pi \tag{49}\\
& \alpha_{3}=\tan ^{-1}\left(\frac{D_{i}}{R_{i}}\right) \tag{50}\\
& \Delta \psi_{i}^{\prime}= \begin{cases}\alpha_{2}-\alpha_{1}-\operatorname{SIGN} \cdot \alpha_{3}+2 \pi, & \text { if SIGN }>0 \text { and } \alpha_{2}<\alpha_{1} \\
\alpha_{2}-\alpha_{1}-\operatorname{SIGN} \cdot \alpha_{3}-2 \pi, & \text { if SIGN }<0 \text { and } \alpha_{2}>\alpha_{1} \\
\alpha_{2}-\alpha_{1}-\operatorname{SIGN} \cdot \alpha_{3}, & \text { otherwise }\end{cases} \tag{51}\\
& \Delta \psi_{i}=-\Delta \psi_{i}^{\prime} \tag{52}\\
& \psi_{i}^{\prime}=\operatorname{MOD} \pi\left(\psi_{i+1}^{\prime}+\Delta \psi_{i}^{\prime}\right) \tag{53}\\
& \psi_{i}=\operatorname{MOD}_{\pi}\left(\psi_{i}^{\prime}+\pi\right) \tag{54}\\
& \left.\begin{array}{l}
X P_{i}=X O+R_{i} \cdot \operatorname{SIGN} \cdot \sin \psi_{i}^{\prime} \\
Y P_{i}=Y O-R_{i} \cdot \operatorname{SIGN} \cdot \cos \psi_{i}^{\prime}
\end{array}\right\} \tag{55}\\
& \left.\begin{array}{l}
X Q_{i}=X W P_{i} \\
Y Q_{i}=Y W P_{i}
\end{array}\right\} \tag{56}
\end{align*}
$$

ORIGINAL PAGEI IS OF POOR QUALITY

Figure 9.- Ground track synthesis with final heading waypoint.

In order to describe the two-dimensional ground track completely, it remains to determine the length of the straight flight segments and the arclength of the turns. Let D_{i} denote the length of straight flight from point Q_{i-1} to point P_{i}, and let ΔD_{i} represent the arclength of the turn $\Delta \psi_{i}$, $i=2,3, \ldots, N W P$. Then the expressions for D_{i} and ΔD_{i} are

$$
\begin{align*}
D_{i} & =\left[\left(X P_{i}-X Q_{i-1}\right)^{2}+\left(Y P_{i}-X Q_{i-1}\right)^{2}\right]^{1 / 2} \tag{57}\\
\Delta D_{i} & =R_{i} \cdot\left|\Delta \psi_{i}\right| \tag{58}
\end{align*}
$$

Minimum Turning Radius

In order to compute the minimum turning radius at each waypoint, it is necessary to know the maximum ground speed of the aircraft at the waypoint and the maximum permissible bank angle. The speed profile of the aircraft, however, is not known when the ground track is generated. Consequently, the maximum ground speed must be approximated to compute the minimum turning radius. In order to assure that at no waypoint will the guidance commands require the aircraft to violate the maximum bank-angle constraint, the maximum ground speed at each waypoint is taken to be the scalar sum of the maximum possible airspeed at the waypoints and the wind magnitude. The maximum possible airspeed, in turn, is a function of the maximum permissible airspeed at the last waypoint and the distance along the flight path to the last waypoint.

Let \bar{v} denote the maximum admissible airspeed in the terminal area, v_{w} the magnitude of the wind, and VGMAX i the maximum possible ground speed of the aircraft at waypoint i. Since the airspeed to be achieved at the last waypoint is specified as $v_{\text {final }}, V_{G M A X}^{N W P}=v_{f i n a l}+v_{W}$. For $i<N W P$, VGMAX $_{i}$ is approximated by the following (see sketch (a)).

$$
\operatorname{VGMAX}_{i}= \begin{cases}\operatorname{VGMAX}_{i+1}, & \text { if } \operatorname{VGMAX}_{i+1}=\bar{v}+v_{w} \tag{59}\\ \bar{v}+v_{w}, & \text { if } V G_{i} \geq \bar{v}+v_{w} \\ V_{i}, & \text { otherwise }\end{cases}
$$

where the expression for $V G_{i}$ is

$$
\begin{equation*}
V G_{i}=\left\{\operatorname{VGMAX}_{i+1}^{2}-2 \cdot a_{\min }\left[\left(X P_{i+1}-X W P_{i}\right)^{2}+\left(Y P_{i+1}-Y W P_{i}\right)^{2}\right]^{1 / 2}\right\}^{1 / 2} \tag{60}
\end{equation*}
$$

The physical interpretation of VG_{i} is as follows: if the aircraft were to fly directly from waypoint i to point p_{i+1} and apply the maximum deceleration $a_{m i n}$, then it could just achieve a ground speed change from $V G_{i}$ at point $W_{W} P_{i}$ to $V G M A X_{i+1}$, at point P_{i+1}. Note how equations (59) and (60) reflect the assumption that the upper envelope of the admissible speeds

Sketch (a).
decreases monotonically as the aircraft approaches the last waypoint. Specifically, if for some value of i, say $i=j, \operatorname{VGMAX}_{j}=\bar{v}+v_{w}$, then $\operatorname{VGMAX}_{i-1}=\operatorname{VGMAX}_{i}=\bar{v}+v_{w}$ for all $i \leq j$.

Once VGMAX $_{i}$ is known, the minimum turning radius, RMIN $_{i}$, at waypoint i can be computed from

$$
\begin{equation*}
\operatorname{RMIN}_{i}=\frac{\text { VGMAX }_{i}^{2}}{g \cdot \tan \phi_{\max }} \tag{61}
\end{equation*}
$$

ALTITUDE PROFILE

Except for the very last phase of flight, namely flaring and decrabbing, the motion of an aircraft in the vertical plane consists of constant flight-path-angle segments connected by some sort of smooth transitioning between adjacent flight-path angles. To generate an altitude profile, it is assumed that transitioning from one flight-path angle to another is instantaneous. Whatever inaccuracy results from this assumption is minimized by introducing appropriate lead times in the actual control law. This method of compensating for finite pitch rate is discussed under Four-Dimensional Guidance Commands.

The basic assumption in generating an altitude profile is that the flightpath angle between adjacent waypoints remains constant. Thus, in order to generate the constant flight-path-angle segments, the desired waypoint altitudes and the horizontal distance between each pair of adjacent waypoints must be known.

In using waypoint altitudes to generate a sequence of constant flight path angles, the following ambiguity must be resolved: ordinary waypoints do
not lie on the actual flight path generated by the techniques described previously; consequently, the meaning of waypoint altitude for ordinary waypoints must be defined. Therefore, it is assumed, somewhat arbitrarily, that the waypoint altitude should be achieved precisely at the end of the turn associated with the waypoint in question. Note that this is entirely consistent with the definition of final heading waypoints. Thus, if $Z W P_{i}, i=1,2$, \ldots, NWP, are the desired waypoint altitudes, then $Z W P_{i}$ is actually the altitude of the aircraft at the point when the turn associated with $W P_{i}$ is completed. Since the end of a turn at $W P_{i}$ is denoted by point Q_{i}, the altitude, $Z Q_{i}$, at point Q_{i} is therefore given by

$$
\begin{equation*}
Z Q_{i}=Z W P_{i}, \quad i=1,2, \ldots, N W P \tag{62}
\end{equation*}
$$

The horizontal distance between points Q_{i-1} and Q_{i} has already been computed and is simply the sum of the straight fiight distance D_{i} and the arclength of the turn at $W P_{i}$, that is, ΔD_{i}. If the constant flight-path angle between points Q_{i-1} and Q_{i} is denoted by $G A M_{i}$, then the expression for $\mathrm{GAM}_{\mathrm{i}}$ is (fig. 10)

$$
\begin{equation*}
\mathrm{GAM}_{i}=\tan ^{-1}\left(\frac{Z Q_{i-1}-Z Q_{i}}{D_{i}+\Delta D_{i}}\right), \quad i=2,3, \ldots, N W P \tag{63}
\end{equation*}
$$

Note that since the vertical axis is positive downward by convention, $\mathrm{GAM}_{\mathrm{i}}>0$ implies ascending flight, while $\mathrm{GAM}_{\mathrm{i}}<0$ implies descending flight.

For sufficiently small values of its argument, the function $\tan ^{-1}(\cdot)$ can be approximated to a high degree of accuracy by its argument. Since the argument of $\tan ^{-1}(\cdot)$ in equation (63) is generally quite small, and since evaluating $\tan ^{-1}(\cdot)$ requires a relatively long execution time, for the computer implementation of the guidance scheme, the value of GAM_{i} is computed from the approximate expression

$$
\begin{equation*}
\mathrm{GAM}_{i}=\frac{Z Q_{i-1}-Z Q_{i}}{D_{i}+\Delta D_{i}} \tag{64}
\end{equation*}
$$

Computing the sequence of flight-path angles according to equation (64) is straightforward. It is conceivable that $\mathrm{GAM}_{\mathrm{i}}$ (as given by eq. (64)) may be either infeasible from an aircraft performance point of view or undesirable due to other operational constraints. Therefore, $\mathrm{GAM}_{\mathrm{i}}$ must be checked. whether it satisfies the constraints

$$
\begin{equation*}
\gamma_{\min } \leq \mathrm{GAM}_{\mathrm{i}} \leq \gamma_{\max }, \quad \mathrm{i}=2,3, \ldots, \mathrm{NWP} \tag{65}
\end{equation*}
$$

where $\gamma_{\text {min }}$ and $\gamma_{\max }$ are input parameters. If GAM_{i} satisfies inequalities (65), then computation continues; otherwise, a message is generated stating that $G A M_{i}$ lies outside the admissable range and computation stops.

Figure 10.- Altitude profile synthesis.
ORTGINAL PAGE LS
OF POOR QUALITY

For a complete altitude profile, it remains merely to determine what the altitude should be at the beginning of each turn, that is, at the points P_{i}. Let $Z P_{i}$ denote the altitude at point P_{i}, then $Z P_{i}$ is given by

$$
\begin{equation*}
Z P_{i}=Z Q_{i-1}-D_{i} \cdot G A M_{i} \tag{66}
\end{equation*}
$$

A typical altitude profile between two arbitrary points Q_{i-1} and Q_{i} is shown in figure 10.

SPEED PROFILE

The primary objective of the 4-D guidance system described here is to guide the aircraft accurately not only in the three spatial dimensions, but also to control its motion as a function of time along the desired flight path, thereby controlling the time of its arrival at the end of the flight path. Thus, after the desired 3-D flight path is computed, it is necessary to determine a time schedule the aircraft is to maintain along the flight path. This, in turn, requires the determination of an appropriate speed profile.

Clearly, if the speed profile of the aircraft were specified rigidly, then so would its motion as a function of time along the flight path, in which case control of its arrival time would not be possible. While the admissible speed is not entirely arbitrary, at almost every point during the flight there exists a definite range of speeds within which the aircraft may operate.

Admissible Speed Ranges

As mentioned briefly under Problem Description and Basic Approach, the maximum admissible speed of an aircraft is dictated by either Federal Aviation Regulations or by structural constraints. FAR 91.70a limits all aircraft to an indicated airspeed of 250 knots below $3048 \mathrm{~m}(10,000 \mathrm{ft}$) mean sea level. Since most terminal area operations take place below 3048 m , the 250 -knot speed may be considered an absolute upper bound. When the aircraft descends to lower altitudes and approaches the runway, the speed is reduced and flaps are deployed to maintain sufficient stall margin. Since at any flap setting it is unsafe to fly at speeds greater than the flap placard speed, the upper bound on the admissible speeds must be reduced so that it is consistent with the flap placard speed.

The lower bound on the admissible speeds is basically a function of the stall speed of the aircraft at any given flap setting. The generally accepted lower bound on terminal area speeds is 30 percent above stall speed, which itself is a function of the flap setting. This lower bound is often increased to account for wind and gust effects.

In addition to the above considerations concerning the minimum and maximum admissible speeds, it is generally required that, for any flap setting,
the aircraft be capable of flying at a maximum speed 80 percent above the stall speed (for the given flap setting) without the need for configuration change (ref. 7). Thus, if the flap setting of an aircraft is denoted by δ and the stall speed at that flap setting is represented by $V_{S}(\delta)$, then the speed range available to the aircraft at any flap setting without configuration change is given by

$$
\begin{equation*}
1.3 \mathrm{~V}_{\mathrm{s}}(\delta) \leq \mathrm{v} \leq 1.8 \mathrm{~V}_{\mathrm{s}}(\delta) \tag{67}
\end{equation*}
$$

From the point of view of pilot workload, it is clearly desirable to have a speed profile that requires a minimum number of configuration changes. Furthermore, operational and economic considerations dictate that aircraft land as quickly as possible with a minimum of delay. This, in turn, means that aircraft should maintain as high a speed as is consistent with the current air traffic situation for as long as possible. The question therefore arises: what is the simplest way to specify the admissible speed ranges for various types of aircraft so that the above ideas are reflected in the resulting speed profile? One alternative could be to specify the minimum and maximum speeds at every, or nearly every, point along the flight path. Such an approach would be not only prohibitive from the point of view of computer storage requirements, but also totally unnecessary. Instead, the basic philosophy is adopted that if the aircraft is sufficiently far away from the final waypoint where generally a prespecified speed must be achieved, then the minimum admissible speed should be set to $1.3 \mathrm{~V}_{\mathrm{S}}(0)$, while the maximum admissible speed should be given by the smallest of the three quantities: (a) 250 knots, (b) the flap placard speed $V_{p}(0)$ corresponding to zero flaps, and
(c) $1.8 V_{S}(0)$, where $V_{S}(0)$ is the stall speed of the aircraft with zero flap setting. As the aircraft proceeds along the flight path and approaches the final waypoint, both the minimum and maximum speeds must be lowered gradually so that the desired speed at the final waypoint can be achieved without excessive rates of speed change (it is assumed that the proper flap setting is maintained during the entire flight).

At this point, the objective is to select a small number of parameters which, when specified as input, could be used to generate the minimum and maximum speeds consistent with the concepts described above. It will be shown in the sequel that the stall speed and the flap placard speed of the aircraft at zero flap setting, the maximum rate of speed change, the desired air speed at the final waypoint, and the magnitude and direction of the wind, along with the knowledge of the ground track, are sufficient to determine the admissible speed ranges.

Let the desired air speed at the final waypoint be denoted by $V_{\text {final }}$, and let v_{w} and ψ_{W} denote the magnitude and direction of the constant wind field, respectively. Furthermore, let $V_{M I N}^{i}, V_{M A X}, i=1,2, \ldots, N W P$, represent the minimum and maximum air speeds at each waypoint. More precisely, it is assumed that if there is a turn associated with waypoint i, then it is to be flown at a constant airspeed, say $V A_{i}$, that satisfies the constraints:

$$
\begin{equation*}
\operatorname{VMIN}_{i} \leq \mathrm{VA}_{i} \leq \operatorname{VMAX}_{i} \tag{68}
\end{equation*}
$$

Now let $\underset{c}{ }$ and \bar{c} be two prespecified numbers satisfying the inequalities

$$
\begin{equation*}
1.3 \leq \mathrm{c}<\overrightarrow{\mathrm{c}} \leq 1.8 \tag{69}
\end{equation*}
$$

and define the minimum and maximum admissible cruising airspeeds, \underline{v} and \bar{v} in the terminal area as follows:

$$
\left.\begin{array}{l}
\underline{\mathrm{v}}=\underline{\mathrm{c}} \cdot \mathrm{v}_{\mathrm{s}}(0) \tag{70}\\
\overline{\mathrm{v}}=\min \left[\overline{\mathrm{c}} \cdot \mathrm{~V}_{\mathrm{S}}(0), \mathrm{V}_{\mathrm{p}}(0), 250 \text { knots }\right]
\end{array}\right\}
$$

It is now possible to determine the speeds VMIN_{i} and $\operatorname{VMAX}_{i}, i=1,2, \ldots$, NWP. The procedure is sequential and starts with the last waypoint. Since the air speed at the last waypoint is specified, the following equalities are obvious:

$$
\begin{equation*}
\operatorname{VMIN}_{\mathrm{NWP}}=\operatorname{VMAX}_{\mathrm{NWP}}=\mathrm{v}_{\text {final }} \tag{71}
\end{equation*}
$$

It will be assumed throughout this analysis that

$$
\begin{equation*}
\mathbf{v}_{\text {final }}<\underline{v} \tag{72}
\end{equation*}
$$

This assumption is entirely consistent with current operational procedures since $v_{\text {final }}$, in most cases, will be the final approach speed of an aircraft. For i < NWP, VMIN ${ }_{i}$ and $V 1 M A X_{i}$ are computed as

$$
\begin{align*}
& \operatorname{VMIN}_{i}= \begin{cases}\underline{v} & \text { if } \operatorname{VMIN}_{\mathbf{i}+1}=\underline{v} ; \text { or if } \operatorname{VMIN}_{i+1}<\underline{v} \text { and } \operatorname{vmin}_{i} \geq \underline{v} \\
\operatorname{vmin}_{i} & \text { otherwise }\end{cases} \tag{73}\\
& \operatorname{VMAX}_{i}= \begin{cases}\overline{\mathrm{v}} & \text { if } \operatorname{VMAX}_{i+1}=\overline{\mathrm{v}} ; \text { or if } \operatorname{VMAX}_{i+1}<\overline{\mathrm{v}} \text { and } \mathrm{vmax}_{i} \geq \overline{\mathrm{v}} \\
\operatorname{vmax} & \text { otherwise }\end{cases} \tag{74}
\end{align*}
$$

where the expressions for vmin_{i} and vmax_{i} are

$$
\begin{align*}
& \operatorname{vmin}_{i}=\left\{\left[\operatorname{VMIN}_{i+1}+v_{w} \cos \left(\psi_{i+1}-\psi_{w}\right)\right]^{2}-2 \cdot a_{\min } \cdot D_{i+1}\right\}^{1 / 2}-v_{w} \cos \left(\psi_{i+1}-\psi_{w}\right) \tag{75}\\
& \operatorname{vmax}_{i}=\left\{\left[\operatorname{VMAX}_{i+1}+v_{w} \cos \left(\psi_{i+1}-\psi_{w}\right)\right]^{2}-2 \cdot a_{\min } \cdot D_{i+1}\right\}^{1 / 2}-v_{w} \cos \left(\psi_{i+1}-\psi_{w}\right) \tag{76}
\end{align*}
$$

Both vmin_{i} and vmax_{i} can be given straightforward physical interpretation (fig. 11). Assume that the aircraft has just completed the turn at waypoint i and is located at the corresponding point Q_{i}. Then vmini, is the precise air speed from which the aircraft could decelerate, using the maximum

deceleration $a_{\text {min }}$, such that the resulting air speed at the beginning of the next turn, that is, at point P_{i+1}, is exactly $\mathrm{VMIN}_{\mathrm{i}+1}$; similarly, vmax V_{i} is the precise air speed from which the aircraft could decelerate, using the maximum deceleration $a_{\text {min }}$, such that the resulting air speed at point P_{i+1} is exactly VMAX $_{i+1}$. The subroutine used to compute the speeds VMIN $_{i}$ and VMAX $_{i}$ is called VRANGE and is described in the appendix.

In order to define completely the minimum and maximum admissible speeds along the entire flight path, and not just at the waypoints, it is assumed that between any two adjacent waypoints the airspeed is constrained to the union of the admissible speed ranges at the two waypoints. Thus, for aircraft in flight from point Q_{i} to point P_{i+1}, the air speed is limited to the range $\left[\min \left(\mathrm{VMIN}_{\mathbf{i}}, \mathrm{VMIN}_{\mathbf{i}+1}\right)\right.$, max $\left.\left(\mathrm{VMAX}_{\mathbf{i}}, \mathrm{VMAX}_{\mathrm{i}+1}\right)\right]$. This point is discussed further when the computation of the actual speed profile is described.

Attainable Arrival Times

Once the minimum and maximum admissible speeds are determined, the computation of the corresponding range in the attainable times of arrival to the last waypoint becomes relatively straightforward. In order to compute the range of arrival times, it is necessary to determine the minimum and maximum flight times from the first to last waypoint. With no additional effort, the range of flight times from every waypoint to the last can be calculated. These numbers are useful when implementing the overall guidance scheme.

Clearly, a flight profile at the maximum admissible speeds results in the minimum flight time; similarly, flight at the minimum speeds yields the maximum flight time (it is understood that the flight is along the previously generated 3-D flight path). The subroutine called TRANGE is used to compute the minimum and maximum flight times.

Let $\operatorname{TMIN}_{\mathrm{i}}, \operatorname{TMAX}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{NWP}$ denote the minimum and maximum flight times, respectively, from waypoint i to the last waypoint. TMIN ${ }_{i}$ and TMAX_{i} are computed via the subroutine called TRANS. The basic inputs required for TRANS are the specification of a waypoint number i, the 3-D flight-path parameters (actually, only the 2-D ground track parameters are needed) from point Q_{i-1} to point Q_{i}, the minimum and maximum admissible speeds at the two waypoints, and a positive number ρ satisfying the inequalities

$$
\begin{equation*}
0 \leq \rho \leq 1 \tag{77}
\end{equation*}
$$

The parameter ρ plays an important role in the computation of flight times. It not only determines what the air speeds should be at the two waypoints involved, but it also specifies the point at which the required speed change should occur. In effect, ρ completely determines the speed profile between waypoints ($i-1$) and i once the minimum and maximum admissible speeds at the two waypoints are given (sketch (b)).

Sketch (b).

Let $V A_{i-1}(\rho)$ and $V A_{i}(\rho)$ denote the desired air speeds at waypoints (i-1) and i, respectively. Then $V A_{i-1}(\rho)$ and $V A_{i}(\rho)$ are defined in terms of ρ as

$$
\left.\begin{array}{rl}
V A A_{i-1}(\rho) & =\operatorname{VMAX}_{i-1}-\rho\left(\operatorname{VMAX}_{i-1}-\operatorname{VMIN}_{i-1}\right) \tag{78}\\
V_{i}(\rho) & =\operatorname{VMAX}_{i}-\rho\left(\operatorname{VMAX}_{i}-\operatorname{VMIN}_{i}\right)
\end{array}\right\}
$$

Note that, since $\operatorname{VMIN}_{\mathrm{i}} \leq \operatorname{VMIN}_{\mathrm{i}-1}$ and $\operatorname{VMAX}_{\mathrm{i}} \leq \operatorname{VMAX}_{\mathrm{i}-1}$, it follows that $V A_{i}(\rho) \leq V A_{i-1}(\rho)$. The ground speeds at points Q_{i-1} and P_{i} are then given in terms of the above air speeds and the appropriate wind component. Thus, if $\mathrm{VQ}_{i-1}(\rho)$ and $\mathrm{VP}_{i}(\rho)$ denote the ground speeds at points $\mathrm{Q}_{\mathrm{i}-1}$ and P_{i}, then

$$
\begin{gather*}
V Q_{i-1}(\rho)=V A_{i-1}(\rho)+v_{W} \cos \left(\psi_{i}-\psi_{w}\right) \tag{79}\\
V P_{i}(\rho)=V A_{i}(\rho)+v_{w} \cos \left(\psi_{i}-\psi_{W}\right) \tag{80}
\end{gather*}
$$

If $\operatorname{VMIN}_{i}<\operatorname{VMIN}_{i-1}$ and/or VMAX ${ }_{i}<\operatorname{VMAX}_{i-1}$, then $\operatorname{VA}_{i}(\rho)<\operatorname{VA}_{i-1}(\rho)$ and therefore $V P_{i}(\rho)<V Q_{i-1}(\rho)$. This implies that a speed reduction must occur somewhere between waypoints $i-1$ and i. Where this speed change should occur is again determined by the parameter ρ. Let $S I I_{i}(\rho)$ be the distance flown
at the ground speed $V Q_{i-1}(\rho), S 12_{i}(\rho)$ the distance required to effect the speed change from $V Q_{i-1}(\rho)$ to $V P_{i}(\rho)$, and $S 22_{i}(\rho)$ the distance flown at the ground speed $V p_{i}(\rho)$ (fig. 12). Since any speed change is assumed to occur during straight flight, the following equality must hold

$$
\begin{equation*}
S 11_{i}(\rho)+S 12_{i}(\rho)+S 22_{i}(\rho)=D_{i} \tag{81}
\end{equation*}
$$

The distance $\mathrm{Sl2} \mathrm{i}(\rho)$ is merely a function of the two ground speeds involved and is given by

$$
\begin{equation*}
S 12_{i}(\rho)=\frac{V P_{i}^{2}(\rho)-V Q_{i-1}^{2}(\rho)}{2 \cdot a_{\min }} \tag{82}
\end{equation*}
$$

The distance $S 22_{\mathbf{i}}(\rho)$ is then defined in terms of ρ as

$$
\begin{equation*}
S 22_{i}(\rho)=\rho \cdot\left[D_{i}-S 12_{i}(\rho)\right] \tag{83}
\end{equation*}
$$

The flight times associated with each of the above three distances can be calculated as

$$
\begin{align*}
& T 11_{i}(\rho)=\frac{S 11_{i}(\rho)}{V Q_{i-1}(\rho)}=\frac{D_{i}-S 12_{i}(\rho)-S 22_{i}(\rho)}{V Q_{i-1}(\rho)} \tag{84}\\
& T 12_{i}(\rho)=\frac{V P_{i}(\rho)-V Q_{i-1}(\rho)}{{a_{m i n}}^{T 2}} \tag{85}\\
& T 22_{i}(\rho)=\frac{S 22_{i}(\rho)}{V P_{i}(\rho)} \tag{86}
\end{align*}
$$

In order to compute the total flight time from point Q_{i-1} to point Q_{i}, it remains to determine the time $T 23_{i}(\rho)$ spent in the turn from point P_{i} to point Q_{i}. A detailed discussion of the general problem of calculating the flight time during curved flight is quite involved (see ref. 8). The problem considered here is simplified somewhat by the assumption that the air speed is held constant during the turn. It is shown in reference 8 that if the desired constant air speed during the turn $\Delta \psi_{i}$ (see ground track generation) is $V A_{i}(\rho)$, then the duration of the turning flight, $T 23_{i}(\rho)$, is given by
$\mathrm{T} 23_{i}(\rho)=\frac{2 \cdot R_{\mathbf{i}} \cdot \operatorname{SGN}\left(\Delta \psi_{\mathbf{i}}\right)}{c_{2}}\left\{\tan ^{-1}\left[\frac{c_{2}}{c_{1}} \tan \left(\frac{\psi_{\mathbf{i}}-\psi_{\mathbf{w}}+\Delta \psi_{\mathbf{i}}}{2}\right)\right]-\tan ^{-1}\left[\frac{c_{2}}{c_{1}} \tan \left(\frac{\dot{\psi}_{\mathbf{i}}-\psi_{w}}{2}\right)\right]\right\}$
where

$$
\begin{equation*}
c_{1}=V A_{i}(\rho)+v_{W} \tag{88}
\end{equation*}
$$

Figure 12.- Speed profile synthesis.

$$
\begin{equation*}
c_{2}=\left[\mathrm{VA}_{i}^{2}(\rho)-\mathrm{v}_{\mathrm{w}}^{2}\right]^{1 / 2} \tag{89}
\end{equation*}
$$

Note that the ground speed is generally not constant during a turn, so that $V P_{i}(\rho)$ and $V Q_{i}(\rho)$ are different. For the sake of flexibility and modularity, a separate routine, TTTURN, was written to calculate $T 23_{i}(\rho)$ (see the appendix).

The minimum and maximum flight times can now be generated from any waypoint to the last waypoint. Given any waypoint i, $i=2,3, \ldots$, NWP, and a ρ satisfying inequalities (77), the corresponding flight time from point Q_{i-1} to point Q_{i} is denoted by $T_{i}(\rho)$. From the above discussion, $\mathrm{T}_{\mathrm{i}}(\rho)$ is given by

$$
\begin{equation*}
T_{i}(\rho)=T 11_{i}(\rho)+T 12_{i}(\rho)+T 22_{i}(\rho)+T 23_{i}(\rho) \tag{90}
\end{equation*}
$$

and is an output of the subroutine TRANS. Clearly, $\rho=0$ results in the maximum speed profile between the two adjacent waypoints involved, while $\rho=1$ yields the minimum speed profile between the waypoints. Thus, $T_{i}(0)$ is the minimum flight time and $\mathrm{T}_{\mathrm{i}}(1)$ is the maximum flight time between points Q_{i-1} and Q_{i}.

The definitions of $\mathrm{TMIN}_{\dot{i}}$ and $\operatorname{TMAX} X_{i}$ require that

$$
\begin{equation*}
\operatorname{TMIN}_{N W P}=\operatorname{TMAX}_{N W P}=0 \tag{91}
\end{equation*}
$$

For $i<N W P$, the flight times $T_{M I N}$ and $T M A X_{i}$ are computed sequentially, but in reverse order. Thus, subroutine TRANGE starts with $i=$ NWP, sets $\rho=0$ or 1 , calls the subroutine TRANS to compute $T_{i}(0)$ or $T_{i}(1)$, and then generates $\mathrm{TMIN}_{\mathrm{i}-1}$ and $\mathrm{TMAX}_{\mathrm{i}-1}$ according to

$$
\begin{align*}
& \operatorname{TMIN}_{\mathbf{i}-1}=\operatorname{TMIN}_{\mathbf{i}}+\mathrm{T}_{\mathbf{i}}(0) \tag{92}\\
& \operatorname{TMAX}_{\mathbf{i}-1}=\operatorname{TMAX}_{\mathbf{i}}+\mathrm{T}_{\mathbf{i}}(1) \tag{93}
\end{align*}
$$

Desired Speed Profile
Once the minimum and maximum flight times from the first to the last waypoint are known, that is, TMIN_{1} and TMAX_{1}, a desired flight time, denoted by ENRTIM ${ }_{1}$, from the first to the last waypoint is selected. If the aircraft is to achieve the desired flight time while flying along the previously generated 3-D flight path without violating the speed constraints, ENRTIM ${ }_{1}$ must satisfy the following inequalities:

$$
\begin{equation*}
\operatorname{TMIN}_{1} \leq \text { ENRTIM }_{1} \leq \operatorname{TMAX}_{1} \tag{94}
\end{equation*}
$$

Assuming that ENRTIM ${ }_{1}$ is chosen such that inequalities (94) are satisfied, the next step is to generate a speed profile which results in a flight time equal to ENRTIM $_{1}$. Let such a speed profile be called the desired speed pro~ file, with the following characteristics:

1. The airspeed remains between the minimum and maximum admissible air speeds along the flight path.
2. The rate of speed change does not exceed the acceleration/deceleration capabilities of the aircraft.
3. The ground speed yields the desired flight time between the first and last waypoints.

From earlier developments in this section, generating the desired speed profile is equivalent to finding the appropriate value for the single parameter ρ. This particular parameterization scheme of the speed profile by a single parameter was chosen to simplify the computations, thereby reducing computer storage and time requirements. In certain situations, this scheme may not be appropriate. Thus, it may be necessary to use two parameters, one to reflect the speed level between the minimum and maximum admissible speeds, the other to determine the points along the ground track at which speed changes occur.

Conceptually, the problem of determining the appropriate ρ is straightforward. In practice, however, an iterative procedure must be used because the functional relationship between ρ and the corresponding flight time is not invertible. Thus, if the flight time from the first waypoint to the last one corresponding to any ρ satisfying equation (77) is denoted by $T(\rho)$, then the explicit expression for $T(\rho)$ is

$$
\begin{equation*}
T(\rho)=\sum_{i=2}^{N W P} T_{i}(\rho) \tag{95}
\end{equation*}
$$

where $T_{i}(\rho)$ are the output of the subroutine TRANS and are given by equation (90). Consequently, the problem of generating the desired speed profile is reduced to finding the value of ρ, say $\hat{\rho}$, that satisfies the equation

$$
\begin{equation*}
\sum_{i=2}^{N W P} T_{i}(\hat{p})=\text { ENRTIM }_{1} \tag{96}
\end{equation*}
$$

Iterative Procedure to Find $\hat{\rho}$

Step 1- Let $j=1$ and select the initial value of ρ_{j} to be

$$
\begin{equation*}
\rho_{j}=\frac{\text { ENRTIM }_{1}-\operatorname{TMIN}_{1}}{\operatorname{TMAX}_{1}-\mathrm{TMIN}_{1}} \tag{97}
\end{equation*}
$$

Step 2- Compute $T\left(\rho_{j}\right)$ according to equation (95), namely,

$$
\begin{equation*}
T\left(\rho_{j}\right)=\sum_{i=2}^{N W P} T_{i}\left(\rho_{j}\right) \tag{98}
\end{equation*}
$$

Define $E R R O R_{j}$ as

$$
\begin{equation*}
\operatorname{ERROR}_{j}=\operatorname{ENRTIM}_{1}-T\left(\rho_{j}\right) \tag{99}
\end{equation*}
$$

and let ε be an arbitrary positive number specified in advance.
Step 3- If ERROR ${ }_{j}$ satisfies the stopping criterion

$$
\begin{equation*}
\mid \text { ERROR }_{j} \mid<\varepsilon \tag{100}
\end{equation*}
$$

then $\hat{\rho}=\rho_{j}$ and the iterative procedure stops. If equation (100) is not satisfied, then ρ_{j+1} is set equal to

$$
\begin{equation*}
\rho_{j+1}=\frac{1}{2}\left\{\operatorname{SAT}\left[2\left(\rho_{j}+\frac{\text { ERROR }_{j}}{\text { TMAX }_{1}-\operatorname{TMIN}_{1}}-\frac{1}{2}\right)\right]+1\right\} \tag{101}
\end{equation*}
$$

and steps 2 and 3 are repeated. The function $S A T(\cdot)$ used above is defined as

$$
\operatorname{SAT}(\cdot)= \begin{cases}1 & \text { if }(\cdot) \geq 1 \tag{102}\\ (\cdot) & \text { if }-1<(\cdot)<1 \\ -1 & \text { if }(\cdot) \leq-1\end{cases}
$$

Defining ρ_{j+1} recursively by equation (101) assures that, if $T\left(\rho_{j}\right)<$ ENRTIM $_{1}$, then $\rho_{j+1}>\rho_{j}$; if $T\left(\rho_{j}\right)>$ ENRTIM $_{1}$, then $\rho_{j+1}<\rho_{j}$; and if $T\left(\rho_{j}\right)=$ ENRTMM $_{1}$, then $\rho_{j+1}=\rho_{j}$. Furthermore, equation (101) assures that $0 \leq \rho_{j+1} \leq 1$ for all $j=1,2, .$. . Although it has not been proved, it is strongly suspected that $T(\rho)$ as given by equation (95) is a monotonic function of ρ. Consequently, the iterative procedure is expected to converge in a small number of iterations. Computational experience indicates that this is indeed the case.

Having thus found the value of $\hat{\rho}$ that satisfies equation (96), it is a simple matter to determine the desired speed profile. The required air speeds
at the various waypoints are given by equations (78), the corresponding ground speeds are generated by equations (79) and (80), and the points at which speed changes occur are derived from equation (83); in all cases p is replaced by $\hat{\rho}$. The desired speed profile is therefore completely determined.

It will be useful to generate a sequence of NWP numbers that correspond to the times required to fly from the various waypoints to the last waypoint while tracking the 4-D flight path. More precisely, let ENRTIM ${ }_{i}$, $i=1,2, .$. , NWP denote the time required to fly from the end of the turn associated with waypoint i, namely, Q_{i}, to the end of the turn associated with waypoint NWP, namely, QNWP, while tracking the desired speed profile computed previously. From the definitions of $T_{i}(\rho)$ and $\hat{\rho}$, it follows that ENRTIM $_{i}$ can be computed by the recursive relationship:

$$
\begin{equation*}
\text { ENRTIM }_{\mathbf{i}}=\text { ENRTIM }_{i-1}-T_{i}(\hat{\rho}), \quad i=2,3, \ldots, \text { NWP } \tag{103}
\end{equation*}
$$

where ENRTIM $_{1}$ is specified as an external input. Clearly, ENRTIM ${ }_{i}$ satisfies the following inequalities:

$$
\begin{equation*}
\operatorname{TMIN}_{i} \leq \operatorname{ENRTIM}_{i} \leq \operatorname{TMAX}_{i}, \quad i=1,2, \ldots, \text { NWP } \tag{104}
\end{equation*}
$$

A11 computations described in this section have been implemented in the form of a subroutine called SPEED. A detailed programming description of SPEED is given in the appendix.

4-D GUIDANCE COMMANDS

In order to generate the sequence of 4-D guidance commands corresponding to the desired ground track, altitude profile, and speed profile computed in the three previous sections, it is necessary to interleave the individual command components in chronological order. This interleaving process is accomplished conveniently in the subroutine SPEED inmediately following the speed profile computations of the previous section.

Before giving a detailed description of generating the chronological sequence of guidance commands, it is useful to recall the basic structure of each of the three components - ground track, altitude profile, and speed profile. The ground track of any flight path (as computed under Ground Track Synthesis) consists of a sequence of alternating straight lines and circular arcs (some of the turns, of course, may be degenerate). Thus, a straight-line flight followed by a circular turn can be considered as the basic element or "building-block" of the ground track. This basic element is completely defined by the following parameters: the x, y coordinates of the beginning of the straight line, the heading and length of the straight line, and the direction, angular extent, and radius of the turn. Given these parameters, the x, y coordinates of the beginning and end of the turn are uniquely determined and can be computed easily. From the definition of the basic element,
it is clear that the number of basic elements in a complete ground track is equal to the number of waypoints.

The altitude profile (as described under Altitude Profile) consists of piecewise constant flight-path-angle segments between the beginnings of straight-line flights. Each segment can be considered as the basic element of the altitude profile. This is particularly appropriate since, in this case, the basic element of the altitude profile coincides with that of the ground track, resulting in a simple, well-defined basic element for the 3-D flight path. The parameters that define each element of the altitude profile are the z coordinate of the beginning of the segment and the sense and magnitude of the constant flight-path angle. Since the ground track is already known, the z coordinate at the end of the segment, as well as any other point, can be computed. The expression for the z coordinate of the end of the straight flight segment is given under Altitude Profile.

Finally, recall from the previous section that the most general speed profile consists of at most four separate subsegments for each basic element of the $3-D$ flight path, that is, from the beginning of one straight line flight to the beginning of the next one. The first three subsegments occur in straight flight: the first subsegment is a constant speed flight, during the second subsegment the speed is changed at a constant rate, and the third subsegment is again a constant speed flight at the new speed. The fourth subsegment occurs during the curved flight, and the speed profile is such that a constant air speed is maintained during the turn. These four subsegments can be considered as the basic unit of the speed profile. A typical unit, such as the one just described, is shown in figure 12. Due to the particular technique of generating the speed profile, the only parameters needed to compute the four subsegments are the minimum and maximum admissible air speeds at the waypoints, the direction and magnitude of the wind, and the parameter ρ that reflects how close the actual speed level is to the maximum admissible level.

Each basic element of the 3-D flight path contains one to four basic elements of the speed profile. Consequently, the entire sequence of 4-D guidance commands is decomposed into subsequences, each of which describes the desired motion of the aircraft from one waypoint to the next (actually, by convention, a subsequence starts at the beginning of a straight flight segment and ends at the beginning of the next straight flight segment).

Guidance Vectors

It is now evident that the guidance commands are piecewise constant during individual guidance intervals. Let Δt_{k} denote the duration of the $k t h$ guidance interval, and let the corresponding constant guidance commands during the k th interval be represented by a_{k}, u_{k}, and γ_{k}, where a_{k} is the rate of change of air speed, u_{k} is the inverse of the turning radius (see equation (11)), and γ_{k} is the flight-path angle. Thus, the 4-D commands for the k th guidance interval can be represented by a constant 4 -vector, f_{k}, of the form:

$$
\begin{equation*}
f_{k}=\left[\Delta t_{k}, a_{k}, u_{k}, \gamma_{k}\right] \tag{105}
\end{equation*}
$$

In order to assemble the chronological sequence of guidance commands, it is necessary to determine the sequence of constant 4 -vectors given by equation (105). This is accomplished in the subroutine SPEED using various parameters of the ground track, altitude profile, and speed profile.

Assume that the command vectors f_{k} have been determined from waypoint 1 to waypoint i-1 or, more precisely, from the beginning of the first straightline segment to the end of the turn associated with waypoint i-1, that is, point Q_{i-1}. Furthermore, assume that the number of nondegenerate command vectors for this portion of the flight path is ($\mathrm{NCI}_{\mathrm{i}-1}-1$), where a comnand vector f_{k} is said to be nondegenerate if the command interval Δt_{k} is nonzero. (Actually, from a computational point of view, f_{k} is considered nondegenerate if $\Delta t_{k} \geq \varepsilon$, where ε is an arbitrarily small positive number. In the computer implementation of the guidance system, ε is taken to be 0.1 second.) The numbers $\mathrm{NCI}_{\mathrm{j}}, \mathrm{j}=1,2$, . . . NWP play an important role in the overall guidance scheme and will be discussed later.

Letting $k=N_{i-1}$, the nondegenerate guidance vectors from point Q_{i-1} to point Q_{i} can now be easily determined by the following sequence of operations:

$$
\begin{aligned}
& \text { Step } 1 \text { - If } T 11_{i}(\hat{\rho}) \geq \varepsilon \text {, set } f_{k}=\left[T 11_{i}(\hat{\rho}), 0,0, G A M_{i}\right] \text {, } \\
& \mathrm{k}=\mathrm{k}+1 \text {, and go to step } 2 \text {; } \\
& \text { otherwise, }
\end{aligned}
$$

Step $5-\mathrm{NCI}_{\mathrm{i}}=\mathrm{k}$.
From (106), it is clear that $\mathrm{NCI}_{\mathrm{i}}-\mathrm{NCI}_{\mathrm{i}-1} \leq 4$ and therefore the $4-\mathrm{D}$ flight path between any two adjacent points Q_{i-1} and Q_{i} can be described by at most four nondegenerate guidance vectors of the form of equation (105). This in turn, implies that the maximum number, MAXSEG, of nondegenerate
guidance vectors needed to generate a complete 4-D flight path satisfies the inequality

$$
\begin{equation*}
\text { MAXSEG } \leq 4 \cdot(N W P-1) \tag{107}
\end{equation*}
$$

In view of (106), the number $\mathrm{NCI}_{\mathrm{i}}$ can be interpreted as a pointer in the following sense. Suppose that all nondegenerate guidance vectors for a particular 4-D flight path have been determined via the operations defined by (106). Then the first guidance vector immediately following waypoint i (actually, point Q_{i}) is $f_{N C I_{i}}$. Thus, if for some reason the only 4-D guidance vectors of interest are those starting at waypoint i, the pointer $N C I_{i}$ makes it possible to identify immediately the correct starting vector. For reasons which will become evident in the next section, the sequence \{NCI $\left.{ }_{i}\right\}$ is initialized by setting $\mathrm{NCI}_{1}=5$.

Once the guidance vectors are known, they can be applied in two different ways for tracking the 4-D flight path. If the control surfaces of the aircraft are coupled to the autopilot/autothrottle, then the guidance vectors could be used as input to the autopilot/autothrottle, which, in turn, would generate the appropriate signals to drive the control surfaces and the throttle. This would allow one to track a 4-D flight path completely automactically. On the other hand, the guidance vectors could be used to drive the flight director and other displays in the cockpit, thereby enabling the pilot to track the 4-D flight path manually. Various mixed modes of operation would also be feasible, for example, the throttle could be driven automatically, while the remaining tracking functions could be performed by the pilot.

The two main tracking options described previously have been incorporated in the design of an automated guidance and control system for STOL aircraft (ref. 5). The system has been tested extensively in the STOLAND flight simulator at Ames Research Center, and the manual tracking option has been tested in flight.

Compensation for Finite Roll and Pitch Rates

Throughout the present analysis, it was assumed that aircraft can make changes in bank angle and flight-path angle instantaneously.. This is a reasonable assumption for the purposes of generating 4-D flight paths that nay be orders of magnitude longer (in time) than the time constants of the controls involved. However, in order to achieve very precise tracking via the guidance vector's described earlier, it is necessary to account, in some fashion, for the fact that both the roll and pitch rates of aircraft are finite. A simple yet effective means of compensating for these finite rates is by introducing appropriate lead times in the guidance vectors. Thus, if the rolling and pitching maneuvers are initiated slightly in advance of the times dictated by the guidance vectors defined by (106), then the tracking errors can be minimized. It will be shown in the sequel that very simple expressions can be derived for the proper lead times, and these lead times depend only on
the maximum control signal (bank angle and flight-path angle) and the maximum control rates (roll and pitch rates).

Roll-Rate Compensation

Assume that the aircraft is flying along a straight line until at some instant of time, say t_{1}, a new guidance vector is applied that requires the aircraft to roll to its maximum permissible bank angle $\phi_{\text {max }}$. In generating the guidance vectors, it was assumed that the aircraft is capable of rolling to $\phi_{\max }$ instantaneously at t_{1}. This is clearly not true since the maximum roll rate of aircraft in generally 1 imited . Denote this maximum roll rate by $\dot{\phi}_{\max }$ and assume that all banking maneuvers are performed at this maximum maxe. Thus, if the roll begins at time t_{0}, then the bank angle, as a function of time, is given by

$$
\begin{equation*}
\phi(t)=\dot{\phi}_{\max } \cdot\left(t-t_{o}\right) \tag{108}
\end{equation*}
$$

Let t_{2} be the earliest time the aircraft achieves $\phi_{\max }$. Then the minimum time required to effect a bank-angle change from 0 to $\phi_{\max }$ is

$$
\begin{equation*}
\left(t_{2}-t_{0}\right)=\frac{\phi_{\max }}{\dot{\phi}_{\max }} \tag{109}
\end{equation*}
$$

The specific question therefore is: at what time, t_{0}, should a banking maneuver of the form of equation (108) begin if the sequence of idealized 4-D guidance vectors requires an instantaneous bank-angle change from 0 to $\phi_{\max }$ at time t_{1} ? In order to transform the question into a well-defined problem, the following boundary condition is imposed: at the instant, t_{2}, when $\phi(t)$ (eq. (108)) achieves $\phi_{\max }$, the heading should be the same as if $\phi_{\max }$ had been achieved instantaneously at t_{1} and maintained until t_{2}. These two bank-angle histories are shown in figure $13(\mathrm{a})$.

Using equation (108) in equation (4) yields the following expression for the heading at time t_{2} :

$$
\begin{equation*}
\psi\left(t_{2}\right)=\psi\left(t_{0}\right)-\frac{g}{v \dot{\phi}_{\max }} \ln \left\{\cos \left[\dot{\phi}_{\max } \cdot\left(t_{2}-t_{0}\right)\right]\right\} \tag{110}
\end{equation*}
$$

Similarly, if the instantaneous bank-angle change of $\phi_{\max }$ were applied at t_{1} and maintained until t_{2}, then the reference heading, $\psi_{r}\left(t_{2}\right)$, at time t_{2} would be

$$
\begin{equation*}
\psi_{r}\left(t_{2}\right)=\psi\left(t_{0}\right)+\frac{g}{v}\left(\tan \phi_{\max }\right)\left(t_{2}-t_{1}\right) \tag{111}
\end{equation*}
$$

Let τ_{ϕ} be the lead time, that is, $\tau_{\phi}=\left(t_{1}-t_{0}\right)$. Then equating $\psi\left(t_{2}\right)$ to $\psi_{r}\left(t_{2}\right)$ and using equation (109) yields the following for τ_{ϕ} :

a. Finite roll rate

b Finite flight-path-angle rate

Figure 13.- Compensating for finite roll and pitch rates.

$$
\begin{equation*}
\tau_{\phi}=\frac{\phi_{\max }}{\dot{\phi}_{\max }}+\frac{\ln \left(\cos \phi_{\max }\right)}{\dot{\phi}_{\max } \tan \phi_{\max }} \tag{112}
\end{equation*}
$$

Since, for the most terminal area operations, $\phi_{\max } \leq 30^{\circ}$, the following approximations are valid:

$$
\begin{align*}
& \ln \left(\cos \phi_{\max }\right) \approx-\frac{\phi_{\max }^{2}}{2} \tag{113}\\
& \quad \tan \phi_{\max } \approx \phi_{\max } \tag{114}
\end{align*}
$$

and the resulting expression for

$$
\begin{align*}
& \tau_{\phi} \text { is } \\
& { }^{\tau}{ }_{\phi}=\frac{\phi_{\max }}{2 \dot{\phi}_{\max }} \tag{115}
\end{align*}
$$

(Note that the lead time given by equation (115) is equally applicable when the aircraft is to roll out of a turn, that is, when the bank angle changes from $\phi_{\max }$ to 0 .) A typical value of $\dot{\phi}_{\max }$ may be 5 degrees/second, and therefore the lead times required for banking maneuvers may be of the order of 2 to 3 seconds.

Pitch-Rate Compensation

The derivation of the appropriate lead time to compensate for finite pitch rate is analogous to the derivation of τ_{ϕ}. The essential difference is that the boundary condition imposed on the problem is in terms of the altitude of the aircraft.

Referring to figure $13(\mathrm{~b})$, let the flight-path angle $\gamma(\mathrm{t})$ be given by

$$
\begin{equation*}
\gamma(t)=\gamma_{0}+\dot{\gamma}_{\max }\left(t-t_{0}\right) \tag{116}
\end{equation*}
$$

where $\dot{\gamma}_{\text {max }}$ is the maximum permissible pitch rate. Furthermore, let τ_{γ} be the lead time defined by $\tau_{\gamma}=t_{1}-t_{o}$. The problem is to determine τ_{γ} subject to the following boundary condition: at the instant t_{2} when $\gamma(t)$ (as given by eq. (116)) becomes γ_{2}, the altitude should be the same as if γ_{2} had been achieved instantaneously at t_{1} and maintained until t_{2} (fig. $13(b)$).

Using equation (116) in (3) yields the following expression for the altitude at time t_{2} (assuming constant speed):

$$
\begin{equation*}
z\left(t_{2}\right)=z\left(t_{0}\right)+v \gamma_{0} \cdot\left(t_{2}-t_{0}\right)+\frac{1}{2} v \dot{\gamma}_{\max } \cdot\left(t_{2}-t_{0}\right)^{2} \tag{117}
\end{equation*}
$$

If the flight-path angle were changed instantaneously from γ_{0} to γ_{2} at t_{1} and maintained until t_{2}, then the reference altitude, $z_{r}\left(t_{2}\right)$, at time t_{2} would be

$$
\begin{equation*}
z_{r}\left(t_{2}\right)=z\left(t_{0}\right)+v \gamma_{0} \cdot\left(t_{1}-t_{0}\right)+v \gamma_{2} \cdot\left(t_{2}-t_{1}\right) \tag{118}
\end{equation*}
$$

Equating (117) to (118) and using the fact that $\left(t_{2}-t_{0}\right)=\left(\gamma_{2}-\gamma_{0}\right) / \dot{\gamma}_{\text {max }}$, yields the following for τ_{γ}

$$
\begin{equation*}
\tau_{\gamma}=\frac{\gamma_{2}-\gamma_{o}}{2 \dot{\gamma}_{\max }} \tag{119}
\end{equation*}
$$

In practice, the admissible maneuvers in the vertical plane are limited not so much by the maximum pitch rate of the aircraft, but by the vertical acceleration due to the pitching motion. Assuming that flight-path angle changes take place at constant speed, the maximum vertical acceleration, $\ddot{z}_{\text {max }}$, is obtained from equation (3) by simple differentiation:

$$
\begin{equation*}
\ddot{z}_{\max }=v \dot{\gamma}_{\max } \tag{120}
\end{equation*}
$$

Combining equations (119) and (120) yields

$$
\tau_{\gamma}=\frac{v \cdot\left(\gamma_{2}-\gamma_{0}\right)}{2 \ddot{z}_{\max }}
$$

An accepted value of $\ddot{z}_{\max }$ is $0.68 \mathrm{~m} / \mathrm{sec}^{2}\left(2.25 \mathrm{ft} / \mathrm{sec}^{2}\right)$, so that, for typical terminal area speeds and flight-path angles, τ_{γ} is of the same order of magnitude as τ_{ϕ}.

Having thus obtained the lead times τ_{ϕ} and τ_{γ}, the timing of any 4-D guidance vector that requires a change in bank angle and/or flight-path angle is merely advanced by the appropriate lead time. Extensive simulations on the STOLAND flight simulator indicate that compensating for finite roll and pitch rates in the manner described above is more than adequate for accurate tracking of typical terminal area flight paths.

A particularly convenient place to compute the lead times τ_{ϕ} and τ_{γ} is in the subroutine SPEED. Details of these computations are discussed in the appendix.

CAPTURE MODE

The aim of any 4-D guidance scheme is to guide the aircraft accurately in space and in time. Specifically, the aircraft is to be guided along a precise 3-D flight path and a precise time schedule so that its arrival time to the last waypoint, and therefore to the runway threshold, can be predicted
accurately. In order to accomplish this objective, not only must the aircraft be guided accurately from the first waypoint to the last waypoint, but also from its initial position in the terminal area to the first waypoint. Essentially, a 4-D flight path must be generated from the current state of the aircraft to the desired final state. The major difficulty in computing such a flight path is the fact that the current state of the aircraft, which would serve as the reference point for the computation, is continuously changing. Thus, rather than consider the current position of the aircraft as the first waypoint and contend with a nonstationary reference point, the segment from the current aircraft position to the first waypoint is treated separately. This part of the flight path is referred to as the capture flight path since it represents the maneuvers required to capture the first waypoint.

Two important advantages are derived from separating the capture flight path from the rest. First, the very complex and time-consuming computations needed to generate the $4-D$ flight path from the first to the last waypoint are performed usually once or, at most, a few times during the flight (the reasons for computing the 4-D flight path more than once are discussed later). Thus, valuable computer time is available for other guidance, control, and navigation functions. Secondly, since the capture flight path is relatively simple and is generated rapidly, manual path stretching and time control maneuvers can be performed by the pilot. Such maneuvers will be shown to be important elements of the overall 4-D guidance scheme.

Assume that the aircraft is at an arbitrary point in the terminal area, say point PA, with heading ΨA and airspeed VA (fig. 14). Furthermore, assume that the 4-D flight path from waypoint 1 to waypoint NWP has already been computed. Since the capability of capturing any one of the waypoints is a very useful feature, the point to be captured is denoted by $Q B$ rather than by Q_{1}. Note that this convention in notation anticipates the likelihood that the capture flight path, in general, will begin and end with a turn. Thus, QB may be the endpoint of the turn associated with any one of the waypoints (from now on, it is called the capture waypoint). The heading to be achieved at the capture waypoint is simply the heading of the straight-line segment following point $Q B$, and is denoted by Ψc. Finally, the airspeed at the capture waypoint is denoted by VB. Thus, the objective is to generate a 4-D flight path that starts at PA with a heading ΨA and speed $V A$ and ends at point $Q B$ with heading ΨC and speed VB.

The capture flight path satisfying the above end conditions is generated using the same basic logic used in previous sections. First, the ground track is computed using a straight flight segment and circular turns; then the altitude profile is determined and, finally, an appropriate speed profile is generated.

Ground Track Computation

Since minimum flight time is generally a desirable property of a flight path, the ground track is to have a minimum path length. The problem of computing the minimum path length ground track for arbitrary end conditions is

Figure 14.- Ground track of capture flight path.
quite complex (ref. 9). It was shown in reference 9 that the most general ground track of minimum length subject to a turning radius constraint consists of either three alternating circular turns or two circular turns separated by a straight-line flight. Rather than the complete algorithm developed in reference 9 , only a simplified version is used here, according to which ground tracks with three alternating circular turns are ruled out. This simplification has two significant advantages. First, the substantial computational requirements to check for the existence of, and the actual determination of, a three-turn minimum length flight path for arbitrary end conditions are eliminated. It is shown in reference 9 that the regions of end conditions for which the minimum length ground track consists of three consecutive opposite turns are quite small and they usually occur when the two end points are very close. Eliminating this type of ground track therefore reduces the computational complexity without significantly affecting the minimum length property.

The second advantage of not considering three-turn ground tracks is related to pilot workload. When the $4-D$ flight path is to be flown completely manually, the workload involved in tracking accurately a 4-D flight path consisting of three consecutive, opposite turns appears to be excessive.

Thus the problem is reduced to finding a ground track that consists of a turn, followed by a straight flight, followed by another turn, such that the specified end conditions are met and the resulting ground track has minimum path length among all such ground tracks. Such a ground track for two arbitrary end conditions (shown in fig. 14) is generated by the following iterative procedure.

Iterative procedure- Let $R A$ be the radius of the turn beginning at point $P A$ (assuming a turn at $P A$ is required), $R B$ the radius of the turn ending at point $Q B$ (again assuming that a turn at $Q B$ is required), and define ΨC^{\prime} as

$$
\begin{equation*}
\Psi C^{\prime}=M O D_{\pi}(\Psi C+\pi) \tag{121}
\end{equation*}
$$

Now initialize the iterative procedure by setting $Q A_{0}=P A$ and $j \approx 1$.
Step 1. With subroutine NEWPSI, generate the minimum path length ground track starting at point $Q B$ with heading ΨC^{\prime} and ending at point $Q A_{j-1}$ subject to the minimum turning radius $R B$. Under Problem Description and Basic Approach, it was shown that such a ground track consists of a circular turn of radius $R B$, followed by a straight-line segment to point $Q A_{j-1}$. Denote the angular extent of the resulting turn by $\Delta \Psi B_{j}$, the end point of the turn by $P B_{j}$, and the heading of the straight line by ΨB_{j}^{\prime}.

Step 2. With subroutine NEWPSI, generate the minimum path-length ground track starting at point $P A$ with heading ΨA and ending at point $P B_{j}$ subject to the minimum tuming radius RA. Again, such a ground track consists of a circular turn of radius RA, followed by a straight-line segment to point PB_{j}. Denote the angular extent of the resulting turn by $\triangle \Psi A_{j}$, the end point of the turn by $Q A_{j}$, and the heading of the straight line by ΨB_{j}.

Step 3. Define the quantity TEST by

$$
\begin{equation*}
\operatorname{TEST}=\pi-\left|\Psi B_{j}-\Psi B_{j}^{\prime}\right| \tag{122}
\end{equation*}
$$

and let ε be an arbitrarily small positive number. Then, if \mid TEST $\mid \geq \varepsilon$, set $j=j+1$ and repeat steps 1,2 , and 3 ; if \mid TEST $\mid<\varepsilon$, the iterative procedure is considered to have converged, yielding

$$
\left.\begin{array}{rl}
\Delta \Psi A & =\Delta \Psi A_{j} \tag{123}\\
Q A & =Q A_{j} \\
\Psi B & =\Psi B_{j} \\
P B & =P B_{j} \\
\Delta \Psi B & =-\Delta \Psi B_{j}
\end{array}\right\}
$$

Results of the first few iterations are shown graphically in figure 15 for two arbitrary end conditions. Extensive computational experience indicates that the iterative procedure converges very quickly, usually after two or three iterations.

Since at the time the iterative procedure is applied, the two end conditions can be arbitrary, it is conceivable that the type of turn-straight-turn ground track described above may not be feasible because of the close proximity of the end points. If this is the case, then at some stage of the iterative procedure the minimum length turn-straight ground track from either point $Q B$ to point $Q A_{j-1}$ or from point $P A$ to point $P B_{j}$ is not feasible. If this occurs, then an error message is generated by subroutine NEWPSI and computation stops.

A1titude Profile

The altitude profile for the capture flight path is assumed to consist of a single, constant flight-path-angle segment from the current aircraft altitude to the desired altitude at the capture waypoint. Assuming that PA is the current aircraft position and $Q B$, the capture waypoint (fig. 14), the flight-path angle GAMB is given by

$$
\begin{equation*}
\mathrm{GAMB}=\frac{\mathrm{ZPA}-\mathrm{ZQB}}{\triangle \mathrm{DA}+\mathrm{DB}+\triangle \mathrm{DB}} \tag{124}
\end{equation*}
$$

where $Z P A$ and $Z Q B$ are the z coordinates of points $P A$ and $Q B$, respectively; $\triangle D A$ and $\triangle D B$ are the arclengths of turns $\triangle \Psi A$ and $\triangle \Psi B$, respectively; and $D B$ is the length of the straight flight from point $Q A$ to point $P B$ (fig. 14). Note that equation (124) is the approximate expression for GAMB analogous to equation (64), rather than the exact expression involving the $\tan ^{-1}(\cdot)$ function. Before GAMB (as given by eq. (124)) is considered acceptable, it must be checked to see whether it lies within the minimum and maximum

Figure 15.- Ground track synthesis for capture flight path.
admissible flight-path angles. If it lies outside the allowed range, then an error message is generated and computation stops.

Finally, the z coordinates of points $Q A$ and $P B$ are determined using GAMB and some of the ground track parameters:

$$
\left.\begin{array}{l}
Z Q A=Z P A-\triangle D A \cdot G A M B \tag{125}\\
Z P B=Z Q A-D B \cdot G A M B
\end{array}\right\}
$$

Figure 16 shows the altitude profile corresponding to the ground track of figure 14.

Speed Profile

For computational simplicity, the speed profile is assumed to consist of at most four segments. The initial turn from point PA to QA is flown at constant air speed $V A$; the second and third segments occur during the straight-line flight, the second one being a constant speed segment at speed VA and the third, a speed change segment from VA to VB at a constant rate. Finally, the fourth segment is a turn at constant air speed VB. Such a typical speed profile is depicted in figure 17, which shows both the air speed and ground speed profiles. The expression for the ground speeds at points QA and $P B$, namely, VQA and VPB, are

$$
\left.\begin{array}{l}
V Q A=V A+v_{W} \cdot \cos \left(\Psi B-\psi_{W}\right) \tag{126}\\
V P B=V B+v_{W} \cdot \cos \left(\Psi B-\psi_{W}\right)
\end{array}\right\}
$$

The distance $S A B$ required to achieve the ground speed change from VQA to $V P B$ is

$$
S A B= \begin{cases}\frac{V P B^{2}-V Q A^{2}}{2 \cdot a_{\min }}, & \text { if } \mathrm{VPB} \leq \mathrm{VQA} \tag{127}\\ \frac{V P B^{2}-V Q A^{2}}{2 \cdot a_{\max }}, & \text { otherwise }\end{cases}
$$

Clearly, a speed profile of the structure described above is feasible only if

$$
\begin{equation*}
\mathrm{SAB} \leq \mathrm{DB} \tag{128}
\end{equation*}
$$

If equation (128) is not satisfied, then an error message is generated and computation stops.

Finally, let $T 1, T 2, T 3$, and $T 4$ denote the time duration of each of the four speed segments. $T 1$ and $T 4$, which correspond to the two turns, are computed by the use of subroutine TTTURN. Times T2 and T3 are given by

Figure 16.- Altitude profile synthesis for capture flight path.

Figure 17.- Speed profile synthesis for capture flight path.

$$
\begin{align*}
T 2= & \frac{D B-S A B}{V Q A} \tag{129}\\
T 3= & \begin{cases}\frac{V P B-V Q A}{a_{\min }}, & \text { if } V P B \leq V Q A \\
\frac{V P B-V Q A}{a_{\max }}, & \text { otherwise }\end{cases} \tag{130}
\end{align*}
$$

4-D Commands

The 4-D commands for the capture flight path can be assembled in a manner similar to those for the flight path from the first to last waypoint described under Four-Dimensional Guidance Commands. At most four constant guidance vectors are needed, one for each of the speed segments described above. Let the four guidance vectors be $f_{k}, k=1,2,3$, and 4. Letting $k=1$ and using the same logic as in equation (106), the nondegenerate vectors f_{k} are determined by the following sequence of operation:

$$
\begin{align*}
& \text { Step } 1 \text { - If } T 1 \geq \varepsilon \text {, set } f_{k}=\left[T 1,0, \frac{\operatorname{SGN}(\triangle \Psi A)}{R A}, G A M B\right] \text {, } \\
& k=k+1 \text {, and go to step 2; } \\
& \text { otherwise, go to step } 2 \text {. } \\
& \begin{aligned}
\text { Step } 2 \text { - If } T 2 \geq \varepsilon, ~ s e t ~ & f_{k}=[T 2,0,0, \text { GAMB }], \\
& \text { otherwise, }
\end{aligned} \\
& \text { Step } 3 \text { - If } T 3 \geq \varepsilon \text {, set } f_{k}=\left[T 3, \frac{V P^{2}-V Q A^{2}}{2}, 0, \text { GAMB }\right] \text {, } \tag{131}\\
& k=k+1 \text {, and go to step 4; } \\
& \text { otherwise, } \\
& \text { go to step } 4 . \\
& \text { Step 4-If } T 4 \geq \varepsilon \text {, set } f_{k}=\left[T 4,0, \frac{\operatorname{SGN}(\triangle \Psi B)}{R B}, G A M B\right] \text {, } \\
& k=k+1 \text {, and go to step 5; } \\
& \text { otherwise, go to step } 5 .
\end{align*}
$$

Step $5-N C I=k-1$.
In (131), ε is the same small positive number as in (106), and NCI is the number of nondegenerate command intervals for the capture flight path. Clearly, NCI ≤ 4. If TCAP denotes the time duration of the capture flight path, then TCAP is given by

$$
\begin{equation*}
\mathrm{TCAP}=\sum_{k=1}^{\text {NCI }} \Delta t_{k} \tag{132}
\end{equation*}
$$

The reason for starting the indexing of the guidance vectors f_{k} in the previous section with $k=5$ should now be obvious. Letting the first four vectors in the sequence $\left\{f_{k}\right\}$ refer to the capture flight path (actually, there are only NCI ≤ 4 nondegenerate vectors for the capture flight path) and the remaining vectors $f_{k}, k=5,6, \ldots$. MAXSEG +4 refer to the flight path from the first to the last waypoint, the entire 4-D flight path can be characterized by the single sequence of guidance vectors $\left\{f_{k}\right\}$, $\mathrm{k}=1,2, \ldots ., \mathrm{NCI}, 5,6, \ldots . .$, MAXSEG +4 . This convention eliminates long and cumbersome recomputations of the guidance vectors that would otherwise be required during on-line use of the guidance system.

The computation of the capture flight path is implemented in the form of a subroutine called TST whose programming details are described in the appendix.

ON-LINE 4-D GUIDANCE

The two separate parts of the $4-\mathrm{D}$ flight path can now be combined to yield a continuous, on-line guidance scheme from an arbitrary initial aircraft position, velocity, and heading to any desired final position, velocity, and heading. Assume that the 4-D flight path from the first to the last waypoint, as well as the $4-D$ capture flight path from the current aircraft position to the capture waypoint, have been computed. Denote the index of the capture waypoint by CWP, let TABS be the current value of absolute time and TOA the absolute time of arrival to the last waypoint. Then, assuming that the aircraft begins immediate tracking of the 4-D flight path generated from its current state through the capture waypoint to the final waypoint, the expression for arrival time to the last waypoint is

$$
\begin{equation*}
T O A=T A B S+T C A P+E N R T I M_{C W P} \tag{133}
\end{equation*}
$$

Equation (133) plays a crucial role in the precise time control of aircraft. First, the arrival time to any specified point, such as the outer marker or approach gate, can be predicted by the use of equation (133) long before the actual arrival. Thus, if the flight paths of several aircraft merge at a common point, the arrival time of each aircraft to the merge point is accurately predicted by equation (133). Consequently, potential conflicts can be detected early, long before last minute collision avoidance maneuvers would be required. Secondly, not only can the possible arrival time be predicted by use of equation (133), but it can also be changed in a highly controlled fashion. Once the aircraft is under 4-D control, a desired arrival time can be achieved in three ways:

1. Change the initial state of the aircraft by performing arbitrary path-stretching maneuvers and speed changes, thereby changing TCAP.
2. Generate a new speed profile along the 3-D flight path from the capture waypoint to the last waypoint, thereby changing ENRTIMCWP.
3. Select a different capture waypoint, that is, a new value for CWP, thereby affecting both TCAP and ENRTIM CWP.

The first of these is the principle method of making gross changes in the time of arrival. It is used primarily to delay arrival time since the 4-D capture flight path is already very nearly the minimum time flight path from the current aircraft position to the capture waypoint (unless the possibility of increasing the speed is considered). Thus, the arrival time can be delayed arbitrarily by appropriate path-stretching maneuvers. If the desired delay is sufficiently long, then these maneuvers generally take the form of holding patterns. By continuously recomputing the 4-D capture flight path from the current updated aircraft state to the capture waypoint, the value of TCAP is also updated. The attainable time of arrival from any point of the path stretching or holding maneuver to the last waypoint is then found simply by using the updated values of TABS and TCAP in equation (133). Assuming that TCAP, and therefore TOA, change in a sufficiently continuous manner as the aircraft performs the various maneuvers, any desired arrival time could be achieved by initiating the tracking mode precisely at the instant TOA becomes the desired time of arrival. (Although questions concerning the continuity of TCAP have not been rigorously investigated, computational experience indicates that TCAP is a sufficiently continuous function along the usual pathstretching and holding maneuvers; for further discussion, see ref. 9.)

The second method of changing the arrival time is useful when minor adjustments are desired. Recall that during the process of generating the desired speed profile it was necessary to compute the two arrays $\operatorname{TMIN}_{i}, \mathrm{TMAX}_{i}$, $i=1,2, .$. . NWP, which are the minimum and maximum feasible flight times from waypoint i to the last waypoint along the $3-D$ flight path. Furthermore, the actual flight time from each waypoint to the last one corresponding to the desired speed profile is also available, and is denoted by ENRTIM. Since inequalities (104) hold for all $i=1,2$, . . . , NWP, it is clear that ENRTIMCWP, and therefore TOA, could be increased or decreased by simply recomputing a new speed profile from the capture waypoint to the last waypoint. Denote the desired change in TOA by $\triangle T O A$. Then the new desired time of arrival can be achieved using this second method if and only if $\triangle T O A$ satisfies the inequalities:

$$
\begin{equation*}
\operatorname{TMIN}_{C W P}-\text { ENRTIM }_{C W P} \leq \triangle T O A \leq \operatorname{TMAX}_{C W P}-\text { ENRTIM }_{C W P} \tag{134}
\end{equation*}
$$

If $\triangle T O A$ satisfies inequalities (134), then the new value of ENRTIMCWP is set equal to ENRTIM ${ }_{C W P}+\triangle T O A$ and subroutine SPEED is called to generate the new desired speed profile.

Note that the application of this method to change the arrival time makes sense only if the aircraft is already tracking the capture flight path. This is necessary so that the precise effect on TOA of changing ENRTIM $C W P$ can be predicted. Otherwise, it would be difficult to separate the effects on TOA of changing ENRTMM ${ }_{C W P}$ and changing TCAP.

The third technique of changing TOA is to select an entirely new capture waypoint. This is perhaps the most general method of achieving a new arrival time. Clearly, once a new capture waypoint is selected, the first two methods are again applicable. The significance of the third technique lies in the fact that, in most cases, arrival time to the last waypoint can be advanced substantially by capturing waypoints that are closer and closer to the last waypoint (closeness, in this case, is measured by distance along the flight path). In fact, the absolute earliest possible arrival time could be achieved by setting CWP = NWP, that is, selecting the last waypoint as the capture waypoint. This follows from the near minimum time property of the capture flight path.

At this point, it seems appropriate to describe briefly the sequence of events that would occur as a result of using the $4-D$ guidance scheme presented here. Assume that an aircraft has just entered the terminal area and is about to be placed under 4-D control. The first step is to specify-the necessary input parameters so that the $4-\mathrm{D}$ flight path from the first to the last waypoint can be generated. This can be achieved in several different ways. One possibility is for the pilot to enter the input parameters into the onboard computer, which would then generate the 4-D flight path - more precisely, the 4-D guidance vectors - from the first to the last waypoint. Since there is no compelling reason to carry out this computation onboard the aircraft, another possibility is to compute the $4-\mathrm{D}$ flight path from the first to the last waypoint in advance, perhaps even prior to takeoff, and store it in the onboard computer. (Actually, several alternative 4-D flight paths may be generated and stored; in each case, however, the last waypoint is assumed to be the outer marker or the approach gate or some other point along the final approach.) Whichever method is used, it is assumed that the 4-D flight path from the first to the last waypoint is available prior to engaging the online guidance system.

The next step is to engage the online system, which imnediately generates the capture flight path from the current aircraft position to the first waypoint (assuming a feasible capture flight path exists). The two flight paths are then combined to form a complete 4-D flight path from current aircraft position to the last waypoint. Simultaneously, the would-be arrival time is computed and displayed to the pilot. As the aircraft continues its flight in the terminal area, the capture flight path and the projected arrival time are continuously recomputed to reflect the current initial state of the aircraft. At some point during the flight, Air Traffic Control specifies the desired arrival time for the aircraft. The pilot then initiates one of the three techniques described earlier to achieve the desired arrival time. When the would-be arrival time displayed in the cockpit coincides with that requested by ATC, he engages the tracking mode. Barring unforeseen circumstances, the aircraft then follows the 4-D flight path and reaches the last waypoint precisely at the requested arrival time.

It is conceivable that, at some point during the tracking mode, the aircraft may have to abandon the original arrival time, disengage the tracking mode, and attempt to meet a new arrival time. This change may be due to various reasons such as another aircraft given unshceduled priority to land,
sudden change in weather over the airport, unforeseen runway congestion, collision avoidance maneuver, etc. If the request is by ATC, then the pilot would disengage the tracking mode, perform the necessary maneuvers to achieve the new arrival time, and then re-engage the tracking mode. If the change is due to a collision avoidance maneuver, then the tracking mode is again disengaged (this time automatically). After the conflict has been resolved, a new desired arrival time is specified and the pilot attempts to meet it using one of the three techniques presented earlier.

The 4-D guidance system presented here has been implemented, along with the necessary control law and executive functions, using the STOLAND avionics hardware-software package (ref. 10) at Ames Research Center. The system has undergone extensive testing in the STOLAND simulator, and it is currently awaiting actual flight tests in the CV-340 aircraft. The system is described further in reference 5 .

AN ILLUSTRATIVE EXAMPLE

A simple example illustrates the ideas described here. The aircraft under consideration is a STOL-type aircraft subject to the following performance and operational constraints:

$$
\begin{align*}
\phi_{\max } & =30^{\circ}, \text { maximum bank angle } \\
\gamma_{\max } & =15^{\circ}, \text { maximum flight-path angle } \\
\gamma_{\min } & =-7.5^{\circ}, \text { minimum flight-path angle } \\
a_{\max } & =0.305 \mathrm{~m} / \mathrm{sec}^{2}, \text { maximum acceleration } \tag{135}\\
a_{\min } & =-0.305 \mathrm{~m} / \mathrm{sec}^{2}, \text { minimum acceleration } \\
V_{\mathrm{s}}(0) & =45.72 \mathrm{~m} / \mathrm{sec}, \text { stall speed with } \delta=0^{\circ} \text { flaps }
\end{align*}
$$

Further, it was assumed that during flight, when the aircraft is sufficiently far away from the outer marker, the admissible air speed may lie anywhere between $1.3 V_{S}(0)$ and $1.7 V_{S}(0)$, that is,

$$
\begin{equation*}
\underline{c}=1.3, \quad \bar{c}=1.7 \tag{136}
\end{equation*}
$$

The geometry of the 3-D flight path is defined by six waypoints whose input parameters are (for this example, distances are in m, speeds in $m / s e c$, and times in sec):

i	1	2	3	4	5	6
INDEX_{i}	1	0	0	0	I	1
$\mathrm{XWP}_{\mathrm{i}}{ }^{1}$	2286	7010	7010	-5182	-5334	-2438
$Y_{W P}{ }_{i}$	2438	2438	-2591	-2591	0	0
ZWP_{i}	-988	-988	-988	-988	-549	-244
R_{i}	---	1219	1219	---	1295	---

The desired final heading and final speed of the aircraft at the last waypoint are given by

$$
\left.\begin{array}{rl}
\psi_{\text {final }} & =0^{\circ} \tag{137}\\
v_{\text {final }} & =41.15 \mathrm{~m} / \mathrm{sec}
\end{array}\right\}
$$

Finally, it is assumed that, in this particular case, the magnitude of the wind is negligible so that

$$
\begin{equation*}
v_{w}=0 \mathrm{~m} / \mathrm{sec} \tag{138}
\end{equation*}
$$

The first step is to generate the $3-D$ flight path by computing the ground track and then the altitude profile. This was accomplished using subroutine THREED. The resulting ground track is shown in figure 18, and the altitude profile is illustrated in figure 19.

Figure 18.- Ground track for example problem.

Figure 19.- Altitude profile for example problem.

i	2	3	. 4	5	6
ψ_{i}	0	-90°	180°	180°	0
GAM_{i}	0	0	0	-6.0°	-6.0°
D_{i}	3505	2591	10973	152	2896
XP_{i}	5791	7010	-5182	-5334	-2438
YP_{i}	2438	-1372	-2591	-2591	0
ZP_{i}	-988	-988	-.988	-972	-244
$\Delta \psi_{i}$	-90°	-90°	0	-180°	0
R_{i}	1219	1219	627	1295	299
ΔD_{i}	1915	1915	0	4070	0
$\mathrm{XQ}_{\mathbf{i}}$	7010	5791	-5182	-5334	-2438
YQ_{i}	1219	-2591	-2591	0	0
$z Q_{i}$	-988	-988	-988	-549	-299

After the 3-D flight path is completely determined, the next step is to compute the speed profile. This involves the computation of the admissible speed ranges at the waypoints with subroutine VRANGE, the attainable minimum and maximum flight times with subroutine TRANGE, and, finally, the computation of the actual speed profile corresponding to a desired time of arrival. The minimum and maximum admissible airspeeds at the waypoints are

\mathbf{i}	1	2	3	4	5	6
VMIN $_{\mathrm{i}}$	59.4	59.4	59.4	59.1	58.5	41.1
VMAX $_{\mathrm{i}}$	77.7	77.7	77.7	59.1	58.5	41.1

The corresponding minimum and maximum flight times from each waypoint to the last waypoint are

\mathbf{i}	1	2	3	4	5	6
$\operatorname{TMIN}_{\mathfrak{i}}$	406	336	278	130	58	0
$\operatorname{TMAX}_{\mathbf{i}}$	483	392	316	130	58	0

At this point, a specific desired flight time must be selected from the first waypoint to the last waypoint. Although any number in the range (TMIN ${ }_{1}$, TMAX_{1}) can be selected, it was decided to generate the minimum time flight
path. Thus, the desired flight time from the first to last waypoint was chosen to be TMIN_{1}, namely,

$$
\begin{equation*}
\mathrm{ENRTIM}_{1}=\mathrm{TMIN}_{1}=406 \mathrm{sec} \tag{139}
\end{equation*}
$$

Having thus specified ENRTIM ${ }_{1}$, subroutine SPEED is called to generate the speed profile (fig. 20). As expected, the speed profile coincides with the maximum admissible speed at every point since the minimum flight time was desired. The minimum admissible speed profile is also shown in figure 20 for comparison.

The next step in the guidance algorithm is to assemble the various guidance commands in chronological order and to form the 4-D guidance vectors. This task is accomplished by subroutine SPEED, resulting in the following chronological sequence of nondegenerate 4-D guidance vectors:

k	Δt_{k}	a_{k}	u_{k}	γ_{k}
5	45.1	0	0	0
6	24.6	0	$-1 / 1219$	0
7	33.3	0	0	0
8	24.6	0	$-1 / 1219$	0
9	87.5	0	0	0
10	61.0	-.305	0	0
11	0.6	0	0	-6.0
12	2.0	-.305	0	-6.0
13	69.5	0	$-1 / 1295$	-6.0
14	0.9	0	0	-6.0
15	57.0	-.305	0	-6.0

The corresponding values of $\mathrm{NCI}_{\mathrm{i}}$ are

\mathbf{i}	1	2	3	4	5	6
NCI $_{i}$	5	7	9	11	14	16

The lead times ${ }^{\tau} \phi$ and ${ }^{\tau_{\gamma}}$ are also computed in subroutine SPEED. Since the ground speed, and therefore the bank angle, may be different at the beginning of a turn from that at the end of the turn, each turn requires the computation of two lead times. For the specific example under consideration,

Figure 20.- Speed profile for example problem.
however, the wind was assumed to be negligible, so the ground speed, and therefore the bank angle, remain constant during a turn. Consequently, the same lead time applies to both the beginning and end of a turn. The values of the lead times for this example are

i	2	3	4	5	6
$\tau_{\phi_{i}}$	2.7	2.7	3.0	1.5	3.0
$\tau_{\gamma_{i}}$	0	0	4.5	0	3.2

This completes the computation of the 4-D flight path from the first to the last waypoint.

In order to illustrate the computation of the 4-D capture flight path, the following initial conditions are assumed for the aircraft:

$$
\left.\left.\begin{array}{ll}
x_{A C}=-1524 \tag{140}\\
y_{A C}=4572 \\
z_{A C}=-610
\end{array}\right\} \quad \text { aircraft position } \quad \begin{array}{ll}
\\
\psi_{A C}=0^{\circ} & \text { aircraft heading } \\
V_{A C}=83.8 \mathrm{~m} / \mathrm{sec} & \text { aircraft airspeed }
\end{array}\right\}
$$

Assuming that the first waypoint is the capture waypoint, that is, CWP $=1$, subroutine TST is called to generate the capture flight path. Using the notation of figure 14, the 3-D parameters of the capture flight path are

$\mathrm{XPA}=-1524$	$\mathrm{YQA}=4352$	$\triangle \Psi \mathrm{~B}=34.6^{\circ}$
$\mathrm{YPA}=4572$	$\mathrm{ZQA}=-674$	$\mathrm{RB}=1067$
$\mathrm{ZPA}=-610$	$\mathrm{GAMB}=4.9^{\circ}$	$\triangle \mathrm{DB}=645$
$\Psi \mathrm{~A}=-0$	$\Psi B=-34.6^{\circ}$	$\mathrm{XQB}=2286$
$\triangle \Psi A=-34.6^{\circ}$	$\mathrm{DB}=3036$	$\mathrm{YQB}=2438$
$\mathrm{RA}=1241$	$\mathrm{XPB}=1680$	$Z Q B=-988$
$\triangle \mathrm{DA}=750$	$\mathrm{YPB}=2627$	
$\mathrm{XQA}=-819$	$\mathrm{ZPB}=-933$	

The speed profile along the capture flight path was then computed by TST, and the $4-D$ guidance commands were assembled into the following nondegenerate 4-D guidance vectors:

k	Δt_{k}	a_{k}	u_{k}	Y_{k}
1	8.9	0	$-1 / 1241$	4.9°
2	17.0	0	0	4.9°
3	20.0	-0.305	0	4.9°
4	8.3	0	$1 / 1067$	4.9°

Assuming that no lead time is introduced for the first turn of the capture flight path, the lead times for the capture waypoint - in this case, the first waypoint - were found to be $\tau_{\phi_{1}}=3.0 \mathrm{sec}$ and $\tau_{\gamma_{1}}=4.8 \mathrm{sec}$.

CONCLUSIONS

This report presented the detailed theoretical development and computer implementation of three main guidance algorithms for an experimental 4-D guidance system. Using a small number of input parameters, the three algorithms generate the ground track, altitude profile, and speed profile of the $4-\mathrm{D}$ reference flight path, respectively. At every stage of the computations, special care is exercised to assure that the final 4-D flight path is feasible from the point of view of aircraft maneuverability and structural limitations, terminal area operational constraints, and passenger comfort.

The flexibility of the algorithms is reflected in the various options that can be provided to the pilot for purposes of controlling the time of arrival: any combination of manual path stretching, speed profile recomputation, and the arbitrary selection of the capture waypoint may be used to control the arrival time of the aircraft. Furthermore, the method of representing the $4-D$ flight paths, namely, by sequences of guidance vectors, is particularly well suited for automatic or manual tracking.

[^1]
APPENDIX

The Appendix describes the programming details of all routines used in the computer implementation of the 4-D guidance system. These routines are:

Main executive routine: FOURD
Subroutines: THREED, ROUND, NEWPSI, VRANGE, TRANGE, SPEED, TTTURN, TRANS, and TST

External functions: PIMOD and SGN
For each program, a statement of the required function to be performed is given, followed by a brief description of the computational method. All input, output, and temporary variables are defined. A list of numerical constants used in each program is also included. Finally, the subroutines called by each program, as well as the name of the calling program, are listed.

In order to make the appendix a self-contained programming reference for the 4-D guidance system, a flow chart and source listing for each program are also included. Finally, the printed output of a typical computer run is given.

FOURD

Required function:
FOURD is the main executive routine used to compute a complete $4-\mathrm{D}$ flight path.

Method:
Numerical values for the required input variables are read from punched cards and are printed out for visual inspection. Constants and often-used variables are defined and polar variables are converted from degrees to radians. Then the subroutine THREED is called, which generates the 3-D flight path between the first and last waypoints. Next the routine VRANGE is called to compute the admissible speed ranges along the 3-D flight path; then TRANGE is executed to determine the corresponding minimum and maximum feasible time ranges from each waypoint to the last one (in order to enable the program to be used on-1ine in an interactive manner, the index of the first waypoint to be captured is defined as a variable and is denoted by CURWPT; given a set of waypoints $W P_{i}, i=1,2, . .$. , NWP and an integer value for CURWPT, $1 \leq$ CURWPT \leq NWP, the program will generate a $4-D$ flight path from the waypoint whose index is CURWPT to the last one, i.e., whose index is NWP).

At this point, a desired flight time, denoted in the program by ENRTIMCURWPT, is required from the capture waypoint to the last waypoint. This time can be any number in the range (TMINCURWPT, TMAX ${ }_{\text {CURWPT }}$). In the present version of the program, TMINCURWP' was chosen arbitrarily. Calling the subroutine SPEED generates the corresponding feasible speed profile. Thus, the $4-D$ flight path is computed. Polar variables are converted from radians to degrees and the flight-path parameters are printed out.

The remaining portion of FOURD (starting with internal statement number 9500) is used as an executive routine to generate the capture flight path via subroutine TST. The input set needed for this part of the program consists of the position, heading, and speed of the aircraft, as well as the index of the waypoint to be captured (CURWPT). This input is read from cards, printed out, and then subroutine TST is called. The parameters of the resulting $4-D$ capture flight path are printed.

Input data:

MAXPHI	maximum admissible bank angle, deg
MAXGAM	maximum admissible flight-path angle, deg
MINGAM	minimum admissible flight-path angle, deg
MAXACC	maximum admissible acceleration (positive), $\mathrm{ft} / \mathrm{sec}^{2}$
MAXDEC	maximum admissible deceleration (negative), $\mathrm{ft} / \mathrm{sec}^{2}$
PHIDOT	maximum admissible roll rate, $\mathrm{deg} / \mathrm{sec}$
VSNF	stall speed of aircraft with zero flaps, ft/sec
VSFF	stall speed of aircraft with full flaps, $f t / \mathrm{sec}$
CUPPER	ratio of maximum admissible cruising airspeed in terminal area to zero-flap stall speed (same as $\overrightarrow{\mathbf{c}}$ in eqs. (69) and (70))
CLOWER	ratio of minimum admissible cruising speed in teminal area to zero-flap stall speed (same as \subseteq in eqs. (69) and (70))
NWP	number of waypoints used to define flight path
HFINAL	desired heading at the last waypoint, deg
GFINAL	desired flight-path angle at the last waypoint, deg
VFINAL	desired airspeed at the last waypoint, $\mathrm{ft} / \mathrm{sec}$
HW	estimated wind direction, deg
VW	estimated wind magnitude, $\mathrm{ft} / \mathrm{sec}$

INDEX $_{i} \quad$ waypoint-type indicator; $\operatorname{INDEX}_{i_{i}}=0 \Rightarrow$ waypoint i is ordinary waypoint; $\operatorname{INDEX}_{i}=1 \Rightarrow$ waypoint i is final heading waypoint
$\mathrm{XWP}_{\mathrm{i}}, \mathrm{YWP}_{\mathrm{i}}$, Cartesian coordinates of waypoint i, ft $Z^{2} \mathrm{WP}_{i}$
R_{i} desired turning radius at waypoint i, $f t$; if R_{i} is unspecified (i.e., $R_{i}=0$.), then R_{i} is set equal to the minimum feasible radius

Output data:
See the output from subroutines THREED, VRANGE, TRANGE, and SPEED.
Temporary variables:
CURWP1 index of waypoint following the capture waypoint (=CURWPT+1)
NWP $1 \quad=\mathrm{NWP}+1$
GTANFI $\quad{ }^{\circ}=\mathrm{G} *$ TAN (MAXPHI)
$\mathrm{L} \quad=\mathrm{CRCD}_{\text {CURWPT }}$

Constants:
$\mathrm{PI} \quad=3.14159$
TWOPI $=6.28319$
G
acceleration due to gravity, $32.172 \mathrm{ft} / \mathrm{sec}^{2}$
RADDEG radians-degrees conversion factor, $57.2958 \mathrm{deg} / \mathrm{rad}$
Subroutines required:
THREED generates 3-D flight-path parameters
VRANGE computes minimum and maximum feasible airspeeds at each waypoint

TRANGE computes minimum and maximum attainable flight times from each waypoint to the last waypoint

SPEED generates the sequence of $4-D$ command sequence
TST generates the 4-D capture flight path from initial aircraft state to the capture waypoint

[^2]

LIST1,LIST2, . . . ,LIST13 contain the following variables:
LIST 1: MAXPHI, MAXGAM,MINGAM, MAXACC, MAXDEC, PHIDOT, VSNF, VSFF, CUPPER, CLOWER

LIST2: NWP,HFINAL, GFINAL, VFINAL, VW,HW
LIST3: $\operatorname{INDEX}_{i}, \mathrm{XWP}_{\mathrm{i}}, \mathrm{YWP}_{\mathrm{i}}, \mathrm{ZWP}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}}, \mathrm{i}=\mathrm{CURWPT}, \mathrm{CURWPT}+1, \cdots, \ldots, N W P$
LIST4: $\quad H_{i}, \mathrm{GAM}_{\mathrm{i}}, \mathrm{D}_{\mathrm{i}}, \mathrm{XP}_{\mathrm{i}}, \mathrm{YP}_{\mathrm{i}}, \mathrm{ZP}_{\mathrm{i}}, \mathrm{TURN}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}}, \mathrm{DELD}_{\mathrm{i}}, \mathrm{XQ}_{\mathrm{i}}, \mathrm{YQ}_{\mathrm{i}}, \mathrm{ZQ}_{\mathrm{i}}$; ${ }_{i=C U R W P T+1}$, CURWPT +2 , . . ,NWP

LIST5: $\operatorname{VMIN}_{i}, \operatorname{VMAX}_{i} ; i=C U R W P T, C U R W P T+1, \ldots$, , NWP
LIST6: TMIN_{i}, TMAX $_{i} ; i=C U R W P T, C U R W P T+1, ~ . ~ . ~, N W P ~$
LIST 7: $\quad V A_{i}, \operatorname{ENRTIM}_{i}$, CRCD $_{i} ; i=C U R W P T, C U R W P T+1, ~ . ~ ., N W P$
LIST8: TIMREF $_{k}$, TRNREF $_{k}$, GAMREF $_{k}$, ACCREF $_{k} ;{ }_{k=C R C D}$ CURWPT, CRCD $_{\text {CURWPT }}{ }^{+1}$, • . . MAXSEG
LIST9: TLEADT $_{i}$, TLEADS $_{i}$, TLEADP $_{i} ; i=C U R W P T+1, C U R W P T+2, \ldots$, ,NWP
LIST10: XAC, YAC, ZAC, HAC, VAC, CURWPT
LIST11: HAC, GAMWP, DAC, XAC, YAC, ZAC , TURNAC, RAC, DELDAC, XQAC, YQAC, ZQAC, HWP, GAMWP, DWP , XPWP , YPWP , ZPWP , TURNWP , RWP , DELDWP , XQWP , YQWP , ZQWP
LIST 12: TIMREF $_{k}$, TRNREF $_{k}$, GAMREF $_{k}$, ACCREF $_{k} ; k=1,2, \ldots$, , CAPSEG
LIST13: TLEADT $_{1}$, TLEADS $_{1}$, TLEADP $_{1}$

```
    COMMON PI,TWOPI,G,RADOEG,GTANFI,NWP,NFINAL,GFINAL,VFINAL,NW,VW,
    IMAXPHI,MAXGAM,MINGAM,MAXACC,MAXDEC,PHIDOT,VSNF,VSFF,VUPPER,
    ZVLOWER,CURWPT,CURWPI,NWP1,II,RU,II,XAC,YAC, ZAC,HAC,VAC,MAXSEG,
    3CAPSEG,UAC, IURNAC,RAC,DELUAC, XQAC,YQAC,ZQAC,HWP,GAMAP,DAP,XPWP,
    GYPWP, ZPWP, TURNWP,RWP,DELDWP,XLWWP, YDWP, ZQWP,INOEX(20),XWP(20),
    SYWP(20),ZWP(20),R(20),H(21),GAM(21),D(20), XP(20),YP(20),ZP(20),
    GTURN(20),DELD(20),XU(20),YO(20),2O(20),VMIN(20),VMAX(20),VA(20),
    7VP(20),VQ(20),DVW(21),TMIN(20),TMAX(20),ENRTIM(20),CRCO(20),
    8TIII(20),TII2(20),TI22(20),TI23(20),T11,T12,T22,T23,TIMREF(80),
    9TRNREF(B0),GAMREF(80),ACCKEF(80),TLEADT(20),TLEADS(20),TLEADP(20)
        REAL MAXPHI,MAXGAM,MINGAM,MAXACC,MAXDEC
        INTEGER CURWPT, CURWPI,CAPSEG,CRLD
        CURWPTEI
        CRCD(CURWPT)=S
        REAO(S,1) MAXPHI,MAXGAM,MINGAM,MAXACC,MAXDEC,PHIDOT,
    IVSNF,VSFF,CUPPEN,CLONER
1 FORMAT(6F10.1/4F10.1)
    READ(S,C) NWP,NFINAL,GFINAL,VFINAL,HW,VW
2 FORMAT(110,5510.1)
    READ(S,3) (INOEX(I),XWP(I),YWP(I),ZWP(I),R(I),I=CURWPT,NWP)
3 FORMAT(110,4F10.1)
    WRITE(6,4) MAXPMI,MAXGAM,MINGAM,MAXACC,MAXDEC,PHIUUT,
    IVSNF,VSFF,CUPPER,CLOWER
4 FORMAT////2X,1MAXPHI E',FG.1/2X,1MAXGAM =1,FG.1/2X,IMINGAM =1,
    1F0.1/2X,1MAXACC =',F0.1/2X,1MAXDEC =1,F0.1/2X,1PHIDOT =1,F0.1/
    22x,IVSNF =1,F6.1/2x,IVSFF =1,F6,1/2x.ICUPPEK =9,F0.1/2x,
    3CLOWER =1,F6.1)
        WRITE(6,5) NWP,HFINAL,GFINAL,VFINAL,HW,VW
5 FORMAT(///2X,INWP =1,I4,5X,'HFINAL =1,F8.1,5X,IGFINAL =1,F&.1,
    15x,IVFINAL =1,F8,1,5x,IHW =1,F8.1,5x,1VW =1,F8.1)
    WRITE (6,6)
6 FORMAT(///2x,IINDEX(I)',4X,IXWP(I)',4X,IYwP(I)',4x,'ZWP(I)',6x,
    |(R(I)'/J
    WRITE(6,3) (INDEX(I),XWP(I),YWP(I),ZWP(I),R(I),I=CURWPT,NWP)
    PI=3.14159
    TWOPI=6.28319
    GE32.172
    RADUEG=57.2958
    CURWPI ZCURWPT+1
    NWPI=NWP+1
    Hw=HW/HADOEG
    H(NNP1)=HFINAL/RADDEG
    GAM(NWDI)=GFINAL/RADOEG
    MAXGAMEMAXGAM/RADDEG
    MINGAMEMINGAM/RADDEG
```

```
    MAXPNIEMAXPAI/RADOEG
    GTANFIEG*TAN(MAXPHI)
    PMIOOT=PHIDOT/RADOEG
    VUPPERIGGUPPER*VSNF
    VGOWERECLOWER*VSNF
    CALL TMREED(&100)
    CALI VRANGE
    CAGL YAANGE
    ENGYIM(CURWPT)gTMIN(CURWPY)
    CALG SPEED
    OO 1! I#CURWPIONWP
        H(I)**(I)#RAODEG
        PUAN(I)=TURN(I)*RADDEG
        GAM(I)EGAM(I)*RADOEG
        WRITE(0,12)
I2 FORMAT(///88X,IH(I)',4X,'GAM(I)',6X,1D(I)1,5X,IXP(I)',5X,IYP(I)',
```



```
    2IYQ(I)',5x,'2U(I)'/)
        WRITE(E,IZ) (HCI),GAM(I),D(I),XP(I),YP(I),ZP(I),TURN(I),N(I).
    IOELD(I),XG(I),YQ(I),ZG(I),I=CURWPI,NWP)
13 FORMAT(2X,2F10.2,10F10.1)
    WWITE(6,14)
14 FORMAT(///2X,IVMIN(I)Y,10X,IVMAX(I)I/)
    WRITE(O,I5) (VMIN(I),VMAX(I),I=CURWНT,NWQ)
15 FOQMAT(SX,F5,1:12X,F5.1)
    WH!TE(0,&O)
16 FORMAT(///2x,GTMIN(I)',JOx,1TMAX(I)'/)
    WRITE(6,17) (TMIN(I).TMAX(I),I=CUKWPT,NWP)
17 FORMAT(2X,FG.1.11X,FO.1)
    WHITE(6,18)
I8 FORMMT///2X,IVA(I)',10x, +ENRYIM(II',10x,ICRCU(I)'/)
    WRITE(0.19) (VA(I),ENRTIM(I),CRCD(I),I=CURWPT,NWP)
19 FORMAY(2X,F5,1,10X,F7,1,15X,I2)
    LICRCD(CUWWPT)
    DO 21 K WL,MAXSEG
        GAMREF(K)=GAMREF(K)由RAUDEG
        WRITE(6,22)
22
    1'ACCREF(K)'/)
    WRITE(6,23) PTIMREF(K),TRNNEF(K),GAMREF(K),ACCREF(K),K=L,MAXSEG)
23 FOAMAT(2X,GFI4, D)
    whITE(6,31)
31 FORMAT(//IOX, IGEADT(I)',SX,ITLEADS(I)I,5X,ITLEADP(I)'/)
    WRITE(6,32) (TLEAOT(I),TLEAUS(I),TLEADP(I).ITEUNWPI,NWP)
    GORMAT(2X,3F14,1)
```

```
    DO 24 I=CURWP1,NWP
        H(I)=H(I)/RADOEG
        TURN(I)=TURN(I)/RADDEG
    GAM(f)EGAM(I)/RADOEG
        READ(5,25) XAC,YAC,ZAC,HAC,VAC,CURWPT
    25 FORMAT(5F10.1.I!0)
        WRITE (6, 26)
    20 FORMATC///7X,'XAC',7X,'YAC',7X,'ZAC',7X,'MAC',7X, IVACI,GX,'CURWPTI
    1/)
        WRITE(6,25) XAC,YAC,ZAC,MAC,VAC,CURWPT
        CURWP!=CURWPT+I
        HAC=HAC/RADOEG
        CALL TST(8100)
        WAC=HAC#RADDEG
        TURNACETURNAC*RADDEG
        HWPEHWP&RADDEG
        TURNWP=TUKNWP&RADDEG
        GAMWP=GAMNP*SADOEG
        DAC=O.
        WRITE(6,27)
```



```
    I'PURN', 9X,'R',6X,'OELD',8X,'XO',8X,'YO',8X,'ZG'/')
        WRITE(6,28) HAC,GAMWP,DAC,XAC,YAC,ZAC,TURNAC,FAC,DELDAC,XGAC,YGAC,
    IZQAC,MWP,GAMWP,DWP, XPWP,YPWP,ZPNP,TURNWP,RWP,OELDNP,XGWP,YQWP,ZWWP
28 FORMAT(2X,12F10.1)
    DO 29 K=1,CAPSEEG
    GAMREF(K)&GAMREF(K)*RADDEG
        WRITE(6,22)
        WRITE(6,23) (TIMREF(K),TRNREF(K),GAMNEF(K),ACEREF(K),K=1,CAPSEG)
        WRITE (6,31)
        WRITE(6,32) TLEADT(1),TLEADS(1), PLEADP(1)
100 CUNTINUE
        STOF
    END
```


THREED

Required function:
Using waypoint input parameters and aircraft performance constraints, THREED computes the 3-D flight-path parameters.

Method:
Beginning with the last waypoint, the minimum turning radius is computed and compared to the specified turning radius (if the radius is not specified, it is set equal to the minimum turning radius). If the specified radius is smaller than the minimum feasible one, a diagnostic message is printed and control is returned to the main executive routine FOURD.

Next, the type of waypoint under consideration is determined by checking the value of INDEX_{i}. For ordinary waypoints (INDEX ${ }_{i}=0$), subroutine ROUND is called; for final heading waypoints (INDEX ${ }_{i}=1$), NEWPSI is called. This step yields the ground track between the waypoint under consideration and the preceding one. Then an upper bound on the ground speed at the previous waypoint is computed, and the above process is repeated sequentially for all but the capture waypoint.

When the complete ground track is known, the altitude at the end of the turn associated with each waypoint is set equal to the prespecified waypoint altitude and the constant flight-path-angle segments between adjacent waypoints are determined. Each flight-path-angle segment is checked to assure that the minimum and maximum flight-path-angle constraints are not violated. If any one of the flight-path-angles is outside the admissible range, a diagnostic message is printed and control is returned to FOURD.

Input data:
NWP number of waypoints used to define flight path
VFINAL desired airspeed at the last waypoint, ft/sec

INDEX $_{i} \quad$ waypoint type indicator (see input data for FOURD)
$X W P_{i}$, YWP $_{i}$ Cartesian waypoint coordinates, ft $Z_{W P}$

GTANFI $\quad=\mathrm{G} *$ TAN(MAXPHI)
CURWPT index of capture waypoint
CURWP $1=$ CURWPT +1

MAXGAM maximum admissible flight-path angle, radian
MINGAM minimum admissible fligh-path angle, radian
MAXDEC maximum admissible deceleration (negative), $\mathrm{ft} / \mathrm{sec}^{2}$
VUPPER maximum admissible cruising airspeed in terminal area, $\mathrm{ft} / \mathrm{sec}$
Output data:
$H_{i} \quad$ heading of straight flight from point $\mathrm{Q}_{\mathrm{i}-1}$ to point P_{i}, radian

GAM $_{i} \quad f 1 i g h t-p a t h$ angle from point Q_{i-1} to point Q_{i}, radian
$D_{i} \quad$ length of straight flight from point Q_{i-1} to point P_{i}, $f t$
$X P_{i}, Y P_{i}, \quad x, y, z$-coordinates of beginning of turn at waypoint i, ft $Z P_{i}$
$\mathrm{TURN}_{\mathrm{i}} \quad$ angular extent of turn at waypoint $\mathrm{i} ; \mathrm{TURN}_{\mathrm{i}}>0 \Rightarrow$ right turn, $\mathrm{TURN}_{\mathrm{i}}<0 \Rightarrow$ left turn; radian
$\mathrm{R}_{\mathrm{i}} \quad$ turning radius at waypoint i, ft
$\mathrm{DELD}_{\mathrm{i}}$ arclength of $\mathrm{TURN}_{\mathrm{i}}, \mathrm{ft}$
$X Q_{i}, Y Q_{i}, \quad x, y, z$-coordinates of end of turn at waypoint $i, f t$ Z_{i}

Temporary variables:
VGMAX maximum possible ground speed at waypoint to be processed, ft/sec

RMIN minimum admissible turning radius at waypoint to be processed, ft

HI1 reverse of heading H_{i+1} at final heading waypoints; $\mathrm{HII}=\bmod _{\pi}\left(\mathrm{H}_{\mathrm{i}+1}+\pi\right)$, radian

HI reverse of heading H_{i}, radian

Constants:

GTANFI $=G * T A N(M A X P H I)$
PI $\quad=3.14159$

Subroutine required:
NEWPSI computes ground track between waypoints (i-1) and i when waypoint i is a final heading type (i.e., $\operatorname{INDEX}_{i}=1$)

ROUND computes ground track between waypoints (i-1), i, and ($i+1$) when waypoint i is an ordinary type (i.e., $\operatorname{INDEX}_{i}=0$)

Called by: FOURD


```
    SUBROUTINE THREED(*)
    COMMON PI,TWDPI,G,RADDEG,GTANFI,NWP,HFINAL,GFINAL,VFINAL,HW,VW,
    IMAXPHI,MAXGAM,MINGAM,MAXACC,MAXDEC,PHIDOT,VSNF,VSFF,VUPPEK,
    ZVLOWER,CURWPT,CURNPI,NWPI,I,RO,TI,XAC,YAC,ZAC,HAC,VAC,MAXSEG,
    3CAPSEG,DAC,TURNAC,HAC,DELOAG,XOAC,YQAC,ZDAC,MWP,GAMNP,DWP,XPWP,
    GYPWP,ZRWP,TURNWP,RWP, DELOWP, XSWP,YGNP,ZQWP,INQEX(20), XWH(2O),
    SYWP(20),ZWP(20),R(20),H(21),GAM(21),D(20),XP(20),YP(20),ZP(20),
    OTURN(20),DELD(20), XO(20),YO(20),20(20),VMIN(20),VMAX(20),VA(20),
    7VF(20),VQ(20),OVW(21),TMIN(20),TMAX(20),ENRYIM(20),CRCD(20),
    8TIII(20).TII2(20),TI22(20).TI23(20),T11,T12,T22,T23,TIMHEF(80).
    GTGNREF(80),GAMREF(80),ACCREF(80),TLEADT(20),TLEADS(20),TLEADP(20)
    REAL MAXPHI,MAXGAM,MINGAM,MAXACC,MAXDEC
    INTEGER CURWPT,CURWPI,CAPSEG,CRCD
    I =NNP
    VGMAX=VFINAL+VW
10 RMINEVGMAX*VGMAX/GTANFI
    IF(R(I).GT.O.) GO TO 20
        R(I)=RMIN
        GO TO 30
    IF(R(I).GE.RMIN) GO TO 30
        WRITE(0.21) I,RMIN
    FORMAT(///2X,1K(1,I2,1) TOO SMALL, RMIN = 1,F8.1)
    GO TO 100
    IF(INDEX(I).EQ.O) GO TO 40
        XQ(I) ※XWP(I)
        YO(I)#YwP(I)
        HIIEPIMOD(H(I+I)+PI)
        CALL NEWPSI(XQ(I),YO(I),HII,R(I),XWP(I-I),YWP(I*I),TURN(I),
                OELD(I),XP(I),YP(I),HI,8100)
        TURN(I)=-TURN(I)
        H(I)=PIMOD(HI+FI)
        G0 TO 50
    CALL ROUND(XWP(I-I),YWP(I=1),XWN(I),YWP(I),XP(I+I),YP(I+1),R(I),
    IXP(I),YP(I),XG(I),YQ(I),TURN(I),OELD(I),D(I+I),H(I),8100)
    IF(I.LE.CUAWPI) GU TO 60
        I=I-1
        IF(VGMAX.GE.VUPPEH+VW) GO TO 10
        VGMAX=SQRT(VGMAX*VGMAX-2,*MAXDEC*SQRT((XP(I*I)=XWP(I))**2*
    1( (YP(I+1)=Y#P(I))**2))
        IF(VGMAX.GE.VUPPER&VW) VGMAX=VUPPER+VW
        GO PO 10
    XO(CURWPT) =XWF(CURWPT)
    YG(CURWPT) =YWP(CURWPT)
    ZW(CURWPT)=ZWP(CURWPT)
    OO 70 I=CURWPI,NWP
```

```
    D(I)=S⿴RY((KP(I)*XG(IOI))**2*(YP(I)=Y(S(I-I))**2)
    ZO(I):ZWP(I)
    GAM(1)=(LQ(IOI)=ZO(I))/(D(I)+DELD(I))
    IF(GAM(I).LE.MAXGAA,AND,GAM(I).GE.MINGAM) GO TO }7
        WRIPE(6,01) I
    61
        FURMAT(/1/2x.'gAMMA OUTSIDE RANGE'.I10)
        G0 90 100
    70
    ZP(I)=2Q(IO1)OD(D)*GAM(I)
        REPURN
100 RETUGN S
ENO
```


ROUND

Required function:
This routine is used to compute the ground track parameters of a flight path defined by three points in the following manner: the ground track begins at one of the points with a straight line directed toward the second point; near the second point, a circular turn of a given radius is made such that the resulting new heading is directly toward the third point.

Method:

The headings of the straight lines from the first point to the second point and from the second point to the third point are first computed. From their relationship, the magnitude and direction of the required turn are determined. It is then checked whether the three points are sufficiently far apart so that the turn computed above is in fact feasible. If either end point is too close to the middle point, a diagnostic message is printed and control is returned to the calling program (in this case, THREED). If the turn is feasible, then the arclength and the x, y-coordinates of the beginning and end of the turn are computed.

Input data:

$\mathrm{X}, \mathrm{Y} 1$	x, y-coordinates of first point, ft
$\mathrm{X} 2, \mathrm{Y} 2$	x, y-coordinates of second point, ft
$\mathrm{X} 3, \mathrm{Y} 3$	x, y-coordinates of third point, ft
R 2	turning radius at second point, ft

Output data:
H2 heading of straight line from first point to second point, radian

H3 heading of straight line from second point to third point, radian

TURN2 angular extent of turn near second point, radian (note: \mid TURN2|< 2)

D2 length of straight line from first point to point where turn begins, ft

D3 length of straight line from end of turn to third point, ft
DELD2 arclength of TURN2, ft

XP2,YP2 x, y-coordinates of beginning of turn, ft
$\mathrm{XQ} 2, \mathrm{YQ} 2 \mathrm{x}, \mathrm{y}$-coordinates of end of turn, ft
Temporary variables:
SIGN reflects direction of TURN2; SIGN $=+1 \Rightarrow$ TURN $2 \geq 0$, SIGN $=-1 \Rightarrow$ TURN $2<0$

SIDE distance between beginning (end) of turn and second point, ft

Constants:
PI $=3.14159$
TWOPI $\quad=6.28319$
Subroutine required: None
Called by: THREED


```
    1UヒLD己,03.H2,*)
    P1=3.14159
    TNOPI=6,20319
    *2=ATAN2(Y2-Y1.xट-x1)
```



```
    If(SIGN.LT,O.) GO \U1
    1F(N3.LI,H2) M3=M3+TW@HI
    Gu 10 ?
1 IF(M3.GT,H2) H3=H3=1WUPI
& TUFN2=m3=mZ
    SIDE=N2*TAN(AOS(TURN2)/己.)
```



```
    If(u2,TGE,U.) GO TO 3
        WITE{6:10) x2,Y2
```



```
    60 TU 5
```



```
    IF(US.GE.U.) G\ T0 M
        WRITE(m,10) <3, % S
        60 TU 5
4 DELUZ=#2*AF5(T1!NNC)
    \H2=x2-3IOE*COS(H2)
    YZ =Y2-SIOE*SIN(H2)
```



```
    YOZ=Y2+SIOE゙*SIN(HS)
    METURN
5 RETUGN1
    END
```


Required function:

This routine is used to compute the ground-track parameters of the minimum length flight path between two given points; the flight path and therefore the ground track is subject to a given initial heading and a minimum turning radius constraint.

Method:
The desired ground track consists of a circular turn followed by a straight-line segment. It is first determined whether the two points are distinct. In the pathological case when the two points coincide, the turn is set equal to zero and the intermediate computation is onitted. If the two points are distinct, then the direction of the turn is determined by noting whether the second point lies to the right or left of the directed line that passes through the first point and has the given initial heading. When the direction of the turn is known, its center is computed, and it is checked whether the second point lies inside the resulting circle. If the second point lies inside the circle, a diagnostic message is printed and control is returned to the calling program. If the second point is not inside the circle, then the three angles ANGLE1, ANGLE2, and ANGLE3 are computed and are used to determine the angular extent of the turn.

The last step is to compute the arclength, the straight-line heading toward the second point, and the x, y-coordinates of the end of the turn.

Input data:

$\mathrm{X} 1, \mathrm{Y} 1$	x, y-coordinates of the first point, ft
H 1	initial heading at the first point, radian
R 1	radius of turn at the first point, ft
$\mathrm{X} 2, \mathrm{Y} 2$	x, y-coordinates of the second point, ft

Output data:

TURN1	angular extent of turn, radian $(-2 \pi<$ TURN1 $<2 \pi)$
DELD1	arclength, ft
XQ1,YQ1	x, y-coordinates of end of turn, ft
H2	heading of straight line, radian

Temporary variables:
SINH1 $\quad=\sin (\mathrm{Hl})$
COSH1 $\quad=\cos (\mathrm{H} 1)$
$\mathrm{DX} \quad=\mathrm{X} 2-\mathrm{XI}, \mathrm{ft}$
DY $\quad=Y 2-Y 1, f t$
TEMP $\quad=|D X|+|D Y|, f t$
$X C, Y C \quad x, y$-coordinates of the center of turn, ft
SIGN $\quad=+1$ if TURN1 20 ; $=-1$ if TURN1<0
SIGNRI =SIGN*R1, ft
D length of straight-line segment (or its square), ft
ANGLEl heading of line from center of turn to first point, radian ANGLE2 heading of line from center of turn to second point, radian ANGLE3 $=\tan ^{-1}$ (D/R1), radian

Constants:

HALFPI $=1.5708$
TWOPI $\quad=6.28319$
Subroutines required: None
Called by: THREED and TST

$c 2$
ORIGINAL PAGE IS

```
    SUGROUTINE NEWPSI(K1,YI,H1,K!, XZ,YZ,PURNI,DELDI,XN1,YQ1,HZ,*)
    NALFPIE1.5700
    TWOPI=6.20319
    SjNHI=SiN(H1)
    cosm1=cos(ml)
    0ymyz=y1
OX=x2=x!
PEMF=ABS(0X)&ABS(UY)
IF(TEMP.GT.O.) GO TU I
    YURNI=O.
    60 90 5
    & SIGN=SGN(DY*COSMI-OX*SINHI)
    SIGN#1=SIGN*RI
    XC:XIOSIGNKI*SINHI
    YC=Y1+SIGNRI*COSHI
    O=(XZ-XC)*(XZ-XC)+(YZ-YC)*(YZ-YC)=RI*RI
    IF(U.GE,O.) GOTO 2
        NRITE(0,10) K1,X2,Y1,YZ
10 FOFMAT(///2x,'WAYPOINTS
                T0U CLOSE1/2F20.1/2F20.1)
            GO PO O
    2 DESGRT(D)
    ANGLE!=PIMOU(HI-SIGN*HALFPI)
    ANGLEZ=AYANZ(YZ-YC, X2-XC)
    IF(SIGN,LT.O.) 60 T0 3
    IF (ANGLEZ.LT.ANGLEI) ANGLEZ=ANGLEZ+TWOPI
    GO TO &
    IF(ANGLEZ.GT.ANGLEI) ANGLEZ=ANGLEZ-TWGPI
    & ANGLESOAPAN(D/R1)
    TURNI =ANGLEZ-ANGLEI-SIGN*ANGLES
    5 DEGDI=RIMABS(TUNNI)
    M2gPIMOU(#1+TURN1)
    XGI=XC+SIGNEI*SIN(HC)
    YQ!=YC=SIGNR1*COS(H2)
    RETURN
    - RETURN I
    ENO
```

 ORIGINAL PAGE IS
 OF POOR QUALITY

VRANGE

Required function:
This routine computes the minimum and maximum admissible airspeeds at each specified waypoint.

Method:
First the wind component along the ground track at the beginning and end of each turn is computed. Then, starting with the last waypoint and proceeding sequentially backward, a minimum and maximum airspeed at the previous waypoint are generated under the following assumptions: the desired minimum and maximum cruising speeds (VLOWER and VUPPER) are maintained as long as possible, at the last waypoint the desired speed VFINAL is achieved, and speed changes occur at the maximum rate.

Input data:
CURWP1 index of waypoint immediately following the capture waypoint (=CURWPT+1)

NWP index of last waypoint
NWP $1=$ =NWP +1
VW estimated wind magnitude, $\mathrm{ft} / \mathrm{sec}$
HW estimated wind direction, radian
$\mathrm{H}_{\mathrm{i}} \quad$ headings of straight-line segments in ground track, radian ($i=C U R W P 1, C U R W P 1+1, ~ . ~ . ~, N W P 1) ~$

VFINAL desired airspeed at last waypoint, $\mathrm{ft} / \mathrm{sec}$
VLOWER desired minimum cruising speed, $\mathrm{ft} / \mathrm{sec}$
VUPPER desired maximum cruising speed, ft/sec
MAXDEC maximum admissible deceleration, $\mathrm{ft} / \mathrm{sec}^{2}$ (negative)
Output data:
VMIN_{i}, VMAX $_{\mathrm{i}}$
minimum and maximum airspeeds at waypoint $i, i=1,2,$. . . NWP;
$D V W_{i} \quad$ component of the wind in the direction $H_{i}, i=C U R W P 1$, $\mathrm{ft} / \mathrm{sec}$ CURWP1+1, . . . ,NWPI; ft/sec

Temporary variables:
MAXV maximum airspeed at point Q_{i} from which aircraft could decelerate at a rate MAXDEC and achieve VMAX_{i+1} at point $\mathrm{P}_{\mathrm{i}+1}, \mathrm{ft} / \mathrm{sec}$
MINV maximum airspeed at point Q_{i} from which aircraft could decelerate at a rate MAXDEC and achieve VMIN $_{i+1}$ at point P_{i+1}, $\mathrm{ft} / \mathrm{sec}$

Constants: None

Subroutines required: None
Called by: FOURD

SUBROUTINE VRANGE
COMMON PI, TWOPI,G,RADOEG,GTANFI,NWP, HFINAL,GFINAL, VFINAL,HW, VW, IMAXPHI,MAXGAM,MINGAM,MAXACE,MAXDEC, PHIDUT, VSNF, VSFF, VUPPEK.
ZVLONER, CUKWPT, CUANPI,NWPI, I,RU, II, XAC,YAC, ZAC,HAC, VAC, MAXSEG, 3CAPSEG, DAC, TURNAC,RAC, DELUAC, XQAC, YGAC, ZQAC,HWP, GAMWP, QWP, XPWP, 4YPWP, ZPWP, TURNWP, RWP, DELDWP, XGWP, YOWP, ZQWP, INDEX (20), XWP (20),
SYWP(20), ZWP (20),R(20),H(21),GAM(21),D(20),XP(20),YP(20), ZP(20), GTURN(20),DELO(20),XQ(20), YQ(20), 2Q(20),VMIN(20),VMAX(20),VA(20),
TVP(20), VO(20), DVW(21), TMIN(20),TMAX(20), ENRTIM(20),CRCO(20),
8TIII(20),TI12(20), TI22(20), TI23(20), T11, T12,T22,T23,TIMEEF(80),
9THNREF (80),GAMREF (BO), ACCHEF (80), TLEADT(20), TLEADS(20),TLEAOP(20)
REAL MAXPHI, MAXGAM, MINGAM, MAXACC, MAXDEC
INTEGER CURWPT, CURWPI,CAPSEG,CRCD
DO 20 I =CURNPI,NWP!
OVW(I) $=V W * \operatorname{Cos}(H(I)=H w)$
IENMP
VMIN(I) $=V F I N A L$
VMAX(I) $=V F I N A L$
IEI-1
IF (VMAX(I+1), GE.VUPPEK) GU TO ©0
MAXVESQRT($(\operatorname{VMAX}(I+1)+\operatorname{DVW}(I+1)) * * 2-2 . * \operatorname{MAXDEC*D}(I+1))=D V W(1+1)$
IF (MAXV.GE, VUPPER) GO TO 40
VMAX(I)EMAXV
GO 1050
VMAX(I)=VUPPER
IF (VMIN(I+1),GE,VLOWER) GO TO 60
MINVISQRT($(V M I N(I+1)+\operatorname{OVW}(I+1 J) * * 2=2, * M A X U E C * O(I+1))=D V W(I+1)$
IF (MINV,GE.VLOWER) GO 9060
VMIN(1)EMINV
GU 1070
60
VMIN(I)EVLOWER
70 IF(I.GTal) GO YO 30
RETURN
END

Required function:
The routine computes the minimum and maximum feasible flight times from each waypoint to the last one.

Method:

The minimum and maximum flight times are computed by use of subroutine TRANS. Starting with the last waypoint and proceeding sequentially backward, RO is first set to zero. This implies the maximum feasible speed profile; calling TRANS generates the corresponding minimum flight time between adjacent waypoints. RO is then set to 1 and the process is repeated for the maximum flight time between adjacent waypoints.

Input data:
CURWP1 index of waypoint immediately following the capture waypoint
NWP index of last waypoint
Also, all inputs required for subroutine TRANS.
Output data:
$\mathrm{TMIN}_{\mathrm{i}}$ minimum feasible flight time from waypoint i (actually, from point Q_{i}) to last waypoint (to point $Q_{N W P}$), sec
TMAX_{i} maximum feasible flight time from waypoint i (actually, from point Q_{i}) to last waypoint (to point $Q_{N W P}$), sec

Temporary variables:
RO (see input data for TRANS)
TI flight time from point Q_{i-1} to point Q_{i} corresponding to a particular value of RO (TI is the output of TRANS), sec

Constants: None
Subroutines required: TRANS
Called by: FOURD


```
    SUBROUTINE TRANGE
    COMMON PI,TWOPI,G,RADUEG:GTANFI,NWP,HFINAL,GFINAL,VFINAL,HW,VW,
    IMAXPHI,MAXGAM, MINGAM,MAXACC,MAXOEG,FHIDOT,VSNF,VSFF,VUPPER,
    ZVLOWEH,CURWPT, CURWPI,NWPI,I,NO,TI,XAC,YAC,ZAC,HAC,VAC,MAXSEG,
    3CAPSEG,OAC,TURNAC,RAC,DELDAC,XGAC,YGAC, ZOAC,HWP,GAMWP,DWP,XPWP,
    GYFWP,ZPWP,TURNWP,RWP,DELDNP,XGWP,YOWP,ZOWP,INDEX(ZO),XWP(2O),
    SYwP(20),ZWP(20), R(20),H(21),GAM(21),D(20),XP(20),YP(20),ZP(20).
    GTURN(20), DELD(20), XQ(20),YG(20),2O(20),VMIN(20),VMAX(20),VA(20),
    7VP(20),VO(20),OVW(21),TMIN(20),TMAX(20),ENRTIM(20),CRCD(20).
    8TIII(20),TII2(20),TI22(20),TI23(20),T11,TI2,T22,T23,TIMREF(80),
    GTRNREF(80),GAMREF(80),ACCREF(BO),TLEADT(20),TLEADS(2O),TLEADP(2O)
    REAL MAXPHI,MAXGAM,MINGAM,MAXACC,MAXDEC
    INTEGER CURWPT,CURWPI,CAPSEG,GRCD
    I#NNF
    TMN(I)=0.
    TMAX(I)=0.
10 RO=0.
    CALL TRANS
    TMIN(I-I)=TMIN(I)+TI
    RO=1.
    CALL TRANS
    TMAX(I-I) =TMAX(I)+TI
    IF(I,LE,CURNPI) RETURN
        I#I=l
        GO IU 10
    END
```


Required function:

The purpose of this routine is threefold. First, the value of RO that yields the desired flight time from the capture waypoint to the last waypoint is determined. This is accomplished by an iterative process. Once the proper RO is found, the $4-D$ reference commands are assembled in a chronological sequence. Finally, the appropriate lead times are computed to compensate for finite roll and pitch rates.

Method:
The iterative procedure to find RO starts with an initial value and computes the corresponding flight time from the capture waypoint to the last waypoint. If the resulting flight time differs from the desired value by more than 1 sec (arbitrary), then RO is updated and the flight-time computation is repeated.

After the correct value of $R 0$ is found, the $4-D$ reference commands are assembled between each pair of adjacent waypoints, starting with the capture waypoint and proceeding to the last waypoint. This operation results in four arrays that contain the sequences of piecewise constant $4-D$ guidance commands for the entire flight path. Note that any command whose time duration is less than 0.1 sec was omitted from the final sequence.

The last block of computations for each waypoint involves the determination of the appropriate lead times for finite roll and pitch rate compensation. Since the lead time for roll-rate compensation depends on ground speed, and since the ground speeds at the beginning and end of a turn are generally different, two lead times are computed for each turn one applies to the roll into the turn, the other, to the roll out of the turn.

Input data:

CURWPT	index of capture waypoint
CURWP1	$=$ CURWPT+1
NWP	index of last waypoint
TMIN $_{\text {CURWPT }} \quad$minimum feasible flight time from the capture waypoint to the last waypoint, sec	
TMAX $_{\text {CURWPT }} \quad$maximum feasible flight time from the capture waypoint to the last waypoint, sec	

ENRTIM $_{\text {CURWPT }}$ desired flight time from the capture waypoint to the last waypoint, sec (TMIN CURWPT \leq ENRTIM $_{\text {CURWPT }} \leq$ TMAX $_{\text {CURWPT }}$)
CRCD $_{\text {CURWPT }}$ index of the reference command applied at the capture waypoint; this variable initializes a pointer for the sequence of 4-D reference commands

MAXACC (MAXDEC) maximum admissible acceleration (deceleration), $\mathrm{ft} / \mathrm{sec}^{2}$ $R_{i} \quad$ turning radius at waypoint i, ft
TURN $_{i} \quad$ direction and extent of turn at waypoint i, radian
$\mathrm{GAM}_{\mathbf{i}} \quad$ flight-path angle from point Q_{i-1} to point Q_{i}, radian
$V P_{i}\left(\mathrm{VQ}_{\mathrm{i}}\right) \quad$ ground speed at beginning (end) of the turn at waypoint i, $\mathrm{ft} / \mathrm{sec}$

PHIDOT maximum admissible roll rate, radian/sec
$V_{\text {NWP }} \quad$ desired airspeed at last waypoint, $\mathrm{ft} / \mathrm{sec}$ (same as VFINAL)
$D_{\text {NWP1 }}$ (see output data of subroutine VRANGE)
Also, all other inputs required for the subroutine TRANS.
Output data:
ENRTIM $_{i} \quad$ flight time from waypoint i (from point Q_{i}) to the last waypoint, sec
$\mathrm{VQ}_{\mathrm{NWP}} \quad$ ground speed at last waypoint, $\mathrm{ft} / \mathrm{sec}$
$\operatorname{ACCREF}_{k} \quad$ constant value of the reference rate of change of airspeed during the kth command interval, $\mathrm{ft} / \mathrm{sec}^{2}$

TRNREF $_{k} \quad$ constant value of the signed reference turning radius (or its inverse) during the kth command interval, ft

GAMREF $_{k} \quad$ constant value of the reference flight-path angle during the k th command interval, radian
$\operatorname{TIMREF}_{\mathrm{k}} \quad$ time duration of the kth command interval, sec
TLEADT $_{i} \quad$ lead-time compensation for finite roll rate prior to rolling into the turn at waypoint i, sec

TLEADS $_{i} \quad$ lead-time compensation for finite roll rate prior to rolling out of the turn at waypoint i, sec

TLEADP $_{i} \quad$ lead-time compensation for finite pitch rate prior to changing flight-path angle from $\mathrm{GAM}_{\mathbf{i}}$ to $\mathrm{GAM}_{\mathrm{i}+1}$ at waypoint i (actually at point Q_{i}), sec
$C R C D_{i} \quad$ index of the reference command applied at waypoint i (actually at point Q_{i})

MAXSEG total number of nondegenerate guidance commands needed to generate the complete 4-D flight path

Temporary variables:
RO
(see input data for TRANS)
TRO
flight time from the capture waypoint to the last waypoint corresponding to any given value of RO, sec

TI11,TI12, time duration of the four guidance intervals from point TI22,T123, $\quad Q_{i-1}$ to point Q_{i} corresponding to any given value of RO., sec

ERROR
difference between desired flight time from the capture waypoint to the last waypoint and that corresponding to any given value of RO, sec

Constants:

G acceleration due to gravity, $32.172 \mathrm{ft} / \mathrm{sec}^{2}$
Subroutines required: TRANS
Called by: FOURD

SUBKOUTINE SPEEO
COMMON PI, TWOPI,G,RADUEG,GTANFI,NWP, MFINAL,GFINAL,VFINAL,HW,VW, IMAXPHI, MAXGAM,MINGAM,MAXACE,MAXOEC, PMIDOT, VSNF, VSFF, VUPPEM, ZVLOWER, CURWPT, CURWPI, NWPI, I, RU, TI, XAC, YAC, ZAC, HAC, VAC, MAXSEG, 3CAPSEG, DAC, TURNAC, RAC, DELDAC, XQAC, YGAC, ZQAC, HWP, GAMWP, UNP, XPWP, GYPWP, ZPWP, TURNWP, KWP, DELDWP, XQWP, YQWP, ZQWP, INOEX (20), XWP (20), SYWP(20), ZWP (20),R(20),H(21),GAM(21), D(20), XP(20),YP(20), ZP(20), GYURN(20), DELD (20), XQ(20),YQ(20), ZO(20),VMIN(20),VMAX(20),VA(20), $\operatorname{TVP}(20), V Q(20), \operatorname{OVW}(21), \operatorname{TMIN}(20), \operatorname{TMAX}(20), E N R T I M(20), C R C D(20)$, 8TIII(20),TII2(20), TI22(20),TI23(20), T11, T12,T22,T23,TIMREF(80) QTRNREF (80), GAMREF(80), AECREF (80), TLEADT(20), TLEADS(20), TLEADP(20)
REAL MAXPHI, MAXGAM,MINGAM, MAXACC,MAXDEC
INTEGER CURWPT, CURWPI,CAPSEG,GRCD
RO:O. 5
IF (TMAX (CURWPT)-TMIN(CURWPT).GT.1.)
1ROE(ENRTIM(CURWPT)-TMIN(CURWPT))/(TMAX(CURWPT)-TMIN(CURWPT))
10 I=CURWPI
YRO=O.
20 CALL TRANS
TROZTRD*TI
TII1(I)=T11
TII $2(I)=T 12$
T122(I)-T22
「123(I) F †23
ENRTIM(I)=ENRTIM(I-1)-TI
IF (I.GE,NWP) GO TO 30
$1=1+1$
GO TO 20
30 ERRORZENRTIM(CURWPT)-TRU
If (ABS (ERROR).LT.1.) 60 TO 40
RO=RU+ERROR/ (TMAX (CURWPT) =TMIN(CURWPT))
$I F(A B S(R O-0.5) . G T .0 .5) R O=(1 .+S G N(R O-0.5) / 12$.
GO TO 10
KaCKCD(CURWPT)
$V Q(N W P)=V A(N W P)+D V W(N W P 1)$
DO 90 IIACURWPI,NWP
IF(TIII(I).LT, O.1) GO TO 50
$\operatorname{ACCREF}(K)=0$.
TRNHEF $(x)=0$.
GAMREF (K) $\operatorname{mGAM}(I)$
TIMREF(K) =TIIL(I)
$K=k+1$
IF(TIIC(I).LT.0.1) GU TO 60
ACCREF (K) $=M \triangle X D E C$
IF(VA(I).GT,VA(I-I)) ACCREF(K):MAXACC


```
        TKNKEF(A)=0.
        GAMKEF(K)=GAM(I)
        TIMKEf(K)=YIIC(I)
        k=k+1
    IF(TIZ2(I).LT.0.1) GU T0 70
        ACCREF(N)=0.
        TRNREF(K)=0.
        GAMNEF(K)=GAM(I)
        \IMREF(K)=TI2ट(I)
        k=k+1
    IF(TI23(I).LT.0.1) GU TO BO
        ACCREF(K)=0.
        TRNHEF(K)=5GN(TURN(I))*R(I)
        GAMREF(K)=GAM(I)
        TIMKEF(K)=T123(I)
        k=k+1
    TLEAUT(I)=ATAN((VP(I)*VP(I))/(G*K(I)))/(Z.*PMIOOT)
    TLEAUS(I)=ATAN((VO(I)*VIG(I))/(G*N(I)))/(L.*PMIDOT)
    TLEAUP(I)=AHS(GAM(I+I)*GAM(I))*VG(I)/4.5
90 CRCD(I)=K
    MAXSEG=K-1
    RETURN
    ENO
```

ORIGINAL PAGE IS
OF POOR QUALITY

Required function:
Given the parameters of a circular turn (i.e., initial and final headings and turning radius), the magnitude and direction of the estimated wind, and a desired constant airspeed during the turn, this routine computes the time required to complete the turn.

Method:
The time spent during the turn is given by expression (87). Since the $\tan ^{-1}(\cdot)$ functions in (87) are one-to-many, additional logic must be incorporated to arrive at the correct result. The final values of BETA2 and BETAI represent the first and second $\tan ^{-1}(\cdot)$ functions on the right side of equation (87), respectively.

Input data:
HSTART initial heading at beginning of the turn, radian
TRN direction and angular extent of the turn, radian
RTRN radius of the turn, ft
VWIND magnitude of wind, $\mathrm{ft} / \mathrm{sec}$
HWIND direction of wind, radian
VAIR desired constant airspeed during turn, $\mathrm{ft} / \mathrm{sec}$
Output data:
TRNTIM time spent during the turn, sec
Temporary variables:
C1 ground speed corresponding to the given airspeed and wind when the aircraft heading is parallel to the wind heading, ft/sec

C2 ground speed corresponding to the given airspeed and wind when the aircraft heading is perpendicular to the wind heading, ft/sec

ALPHAI difference between initial heading and wind direction, radian
ALPHA2 $\quad=A L P H A l+T R N$, radian

BETA1
value of the second $\tan ^{-1}\left({ }^{\circ}\right)$ function in equation (87), radian
BETA2 value of the first $\tan ^{-1}(\cdot)$ function in equation (87), radian

Constants:

PI	$=3.14159$
TWOPI	$=6.28319$

Subroutines required: None
Called by: TRANS,TST


```
SUBROUTINE TGTUEN(HSTART,TRN,RTRN,VNINO,WWIND,VAIN,TMNTIM)
PI=3.14159
TNOPI=6.28319
CI=VAIR+VWIND
C2=SQRT(VAIH*VAIR+VWIND*V*IND)
ALPHAI=HSTART-HWINO
If(ABS(ALPHA1),GT.PI) ALPHAI=ALHHAIOSGN(ALHHAI)*TNOPI
BETAL=ALPHA1/2.
IF(PI/2.-ABS(BETAI).TT,O.0001) BETAI=ATAN(CZ*TAN(BETAI)/CI)
ALPMAZ=ALPMA1+TMN
SETAZ=ALPHAZ/Z.
IF(ABS(ALPHAZ).IST.PI) BETAZ#HETAZmSGN(ALPMAZ)*PI
IF(PI/2.-ARS(BETAZ),GT.0.0001) DETAZ=ATAN(CZ*TAN(BETAZ)/CL)
IF(ABS(ALHMAZ).GT.PI) GETAZ=BETAZ+SGN(ALPHAC)*PI
TRNTIM=2.*RTRN*SGN(TRN)*(GETAZ#GETA\)/CZ
RETUKN
END
```

Required function:
Given a value of $i, 2 \leq i \leq N W P$, certain parameters of the $3-D$ flight path between waypoints ($i-1$) and i, the minimum and maximum airspeeds VMIN ${ }_{i-1}$,
 transfer time from point Q_{i-1} to point Q_{i}.

Method:

First the airspeeds at waypoints i-1 and i are computed using the minimum and maximum admissible airspeeds and the speed level parameter RO. Then the corresponding ground speeds at the beginning and end of the straight flight segment are determined. Next, the parameter RO is used to determine the point in the straight flight segment at which the necessary speed change should begin. Once the lengths of the constant speed and constant speedchange segments are known, the corresponding time durations are calculated. In order to determine the flight time during the turn, subroutine TTTURN is called.

Input data:
i
$\operatorname{VMIN}_{\mathrm{i}-1}\left(\mathrm{VMAX}_{\mathrm{i}-1}\right) \underset{\mathrm{ft} / \mathrm{sec}}{\text { minimum (maximum) }}$ admissible airspeed at waypoint $\mathrm{i}-1$, VMIN $_{i}$, VMAX $_{i} \quad \underset{\mathrm{ft} / \mathrm{sec}}{\operatorname{minimum}}($ maximum) admissible airspeed at waypoint i, RO
$D_{i} \quad$ component of wind along the heading $H_{i}, f t / s e c$

MAXACC (MAXDEC) maximum admissible acceleration (deceleration), $\mathrm{ft} / \mathrm{sec}^{2}$
$D_{i} \quad \begin{aligned} & \text { length of straight-line segment from point } Q_{i-1} \\ & \text { point } P_{i}, f t\end{aligned}$ to
$H_{i} \quad$ heading of straight-line segment from point Q_{i-1} to point P_{i}, radian
TURN_{i} direction and magnitude of turn at waypoint i, radian
$\mathrm{R}_{\mathrm{i}} \quad$ radius of turn at waypoint i, radian
VW wind magnitude, $\mathrm{ft} / \mathrm{sec}$
HW wind direction, radian
Output data:
$V A_{i-1}, V A_{i}$ airspeeds at waypoints $i-1$ and $i, f t / s e c$
$V Q_{i-1}, V P_{i}$ ground speeds at points Q_{i-1} and $P_{i}, f t / s e c$
T11

T12

T22

T23

TI duration of flight from point Q_{i-1} to point Q_{i}, sec
Temporary variables:
A12 rate of change of speed occurring in straight flight, $\mathrm{ft} / \mathrm{sec}^{2}$
S12 distance required to change speed from $V Q_{i-1}$ to $V P_{i}$ at a rate given by A 12 , ft

S22 length of straight flight flown at constant ground speed $V P_{i}, f t$
Constants: Nonestit
Subroutines required TTTURN
Called by: TRANGE and SPEED

TRANS

$$
\begin{aligned}
& V A_{i-1}=V M A X_{i-1}-R O *(V M A X \\
& \left.V X_{i-1}-V M I N_{i-1}\right) \\
& V A_{i}=V M A X_{i}-R O *(V M A X \\
& V Q_{i-1}=V A_{i-1}+D V W_{i} \\
& V P_{i}=V A_{i}+D V W_{i} \\
& A I 2=\text { MAXDEC }^{2}
\end{aligned}
$$

surkoutine trans

COMMON PI, TWOFI, G, PADDEG,GTANFI, NWD, HFIINAL,GFINAL, VFINAL,HN,VN, IMAXPHI, MAXGAM, MINGAM, MAXACC, MAXUEC, PHIDUT, VSNF, VSFF, VUPHER, ZVLOWER, CUEWPT, CURWPI.NWPI, I, RO, TI,XAC, YAC, ZAC, HAC,VAC, MAXSEG, SCAPSEG,UAC, TURNAC, RAC, DELDAC, XGAC, YIAC, ZQAC, HWP, GAMNP, DNP, XPWP,
 5YWP(20), ZWP (20), H(20), H(21), GAM(21), D(20), XP(20),YP(20), ZP(20), OTURN(20), DELO (20), XU(20), YO(20), ZQ(20),VMIN(20),VMax(20),VA(20). 7VP(20),VO(20), DVW(21),TMIN(20),TMAX(20), ENRIIM(20), CKCO(20),
 GTKNREF(80),GAMREF(90), ACCREF (80), TLEADT(20), TLEAOS(20), TLEAUP(2U) QEAL MAXPHI,MAXGAM,MINGAM,MAXACL, MAXDEC
INTEGEK CURNPT, CURWWI, CAPSEG,CRCD
$V A(I-1)=V M \Delta \times(I-1)-K U *(V M A X(I-1)-V M I A(I-1))$
$V A(I)=V M A X(I)-R U *(V M \Delta X(I)-V M I N(I))$
vo(1-1) $\operatorname{vas}(1-1)+0 v w(1)$
$V P(I)=V A(1)+D V W(1)$
A1ezMAXDEE
1F(VP(I).GT.VQ(I-1)) 1 IE=MAXACC
S! $2=(V P(i) * V P(I)-V Q(I-1) * V R(I-1)) /(2, * \Delta!2)$
S22=Ru*(D(I)-S12)
T11=(u(1)-512-522)/v0(1-1)
$T 1 \geqslant=(v D(T)=v i(I-1)) / \Delta 12$
T22 $=522$ नVF(I)
CALL TTUKN(H(I), TUKiN(I),R(I), VW, MW, Va(1), T己3)
$T 1=111+112+T ? 2+123$
RETUKF
ENO

Required function:
This routine is used to generate a $4-D$ capture flight path from the current aircraft state to one of the waypoints (capture waypoint) on the precomputed flight path.

Method:

The capture flight path is computed in several distinct stages. After proper initialization, subroutine NEWPSI is used in an iterative fashion to generate the ground track. If at any stage of the iterative process the ground track is not feasible (because the aircraft is located too near the capture waypoint), a diagnostic message is printed and control is returned to the calling program.

After the ground-track parameters have been computed, the constant flightpath angle is determined. If this angle falls outside the permissible range, a diagnostic message is printed and control is returned to the calling program.

Next it is checked whether the ground track (its straight segment) is long enough to allow the required speed change. If not, a diagnostic message is printed and control is returned to the calling program.

The last stage of the process generates the sequence of 4-D reference commands for the capture flight path and the lead times associated with the capture waypoint. This stage is analogous to the last stage of subroutine SPEED.

Input data:
$X A C, Y A C, Z A C \quad \dot{x}, y, z$-coordinates of aircraft position, ft
HAC aircraft heading, radian
VAC airspeed of aircraft, $\mathrm{ft} / \mathrm{sec}$
CURWPT index of the capture waypoint, $1 \leq C U R W P T \leq N W P$
VW wind magnitude, $\mathrm{ft} / \mathrm{sec}$
HW wind direction, radian
\(\left.\begin{array}{l}\mathrm{XQ}_{CURWPT}

\mathrm{YQ}_{CURWPT}

\mathrm{ZQ} \mathrm{CURWPT}\end{array}\right\} \quad\)| $\mathrm{x}, \mathrm{y}, \mathrm{z}$-coordinates of capture waypoint (actually of the |
| :--- |
| end of the turn associated with the capture way- |
| point), ft |

VACURWPT airspeed at capture waypoint, $\mathrm{ft} / \mathrm{sec}$

HCURWPI

MINGAM (MAXGAM)
DVWCURWP1
MAXACC (MAXDEC)

PHIDOT
$\mathrm{VQ}_{\text {CURWPT }}$

GAMCURWP1

Output data:
TURNAC

RAC
DELDAC
$X Q A C, Y Q A C, Z Q A C$

VQAC

HWP

GAMWP

DWP
XPWP, YPWP, ZPWP

TURNWP

RWP
heading of straight-flight segment immediately following the capture waypoint, radian
minimum (maximum) admissible flight-path angle, radian wind component along the heading HCURWP1, $\mathrm{ft} / \mathrm{sec}$ maximum admissible acceleration (deceleration), $\mathrm{ft} / \mathrm{sec}^{2}$
maximum admissible roll rate, radian/sec
ground speed at the end of the turn associated with thi capture waypoint, $\mathrm{ft} / \mathrm{sec}$
flight-path angle immediately following the capture waypoint, radian
direction and magnitude of first turn in the capture flight path, radian
turning radius of first turn in capture flight path, ft arclength of TURNAC, ft
x, y, \bar{z}-coordinates of end of first turn in capture flight path, ft
ground speed at end of first turn in capture flight path, $\mathrm{ft} / \mathrm{sec}$
heading of straight segment in capture flight path, radian
constant flight-path angle of the capture flight path, radian
length of straight segment in capture flight path, ft x, y, z-coordinates of beginning of second turn in capture flight path, ft
direction and magnitude of second turn in capture flight path, radian
turning radius of second turn in capture flight path, ft

DELDWP	arclength of TURNWP, ft
XQWP, YQWP, ZQWP	x, y, z-coordinates of end of second turn in capture flight path (same as $\mathrm{XQ}_{\text {CURWPT }}, \mathrm{YQ}_{\text {CURWPT }}, \mathrm{ZQ}_{\text {CURWPT }}$), ft
VPWP	ground speed at beginning of second turn in capture flight path, ft/sec
$\mathrm{ACCREF}_{\mathrm{k}}$	constant value of the reference rate of change of airspeed during the kth command interval, $\mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{TRNREF}_{\mathrm{k}}$	constant value of the signed reference turning radius (or its inverse) during the kth command interval, ft
$\mathrm{GAMREF}_{\mathrm{k}}$	constant value of reference flight-path angle during the k th command interval, radian
TIMREF $_{\mathrm{k}}$	time duration of the k th command interval, sec
TLEADT_{1}	lead-time compensation for finite roll rate prior to rolling into the turn at the capture waypoint, sec
TLEADS $_{1}$	lead-time compensation for finite roll rate prior to rolling out of the turn at the capture waypoint, sec
TLEADP_{1}	lead-time compensation for finite pitch rate prior to changing flight-path angle from GAMWP to GAMCURWP1 at the capture waypoint, sec
CAPSEG	total number of nondegenerate guidance commands needed to generate the $4-\mathrm{D}$ capture f1ight path, $1 \leq C A P S E G \leq 4$
orary variables:	
VWP	airspeed of capture waypoint, $\mathrm{ft} / \mathrm{sec}$
HH 2	reverse of heading $\mathrm{H}_{\text {CURWP1 }}$, radian
$\mathrm{HH1}$	heading of straight line generated by NEWPSI the first time it is called in the iterative process, radian
TEST	variable that measures the convergence of the iterative process generating the ground track of the capture flight path, radian
DUMMY	wind component along the heading HWP, $\mathrm{ft} / \mathrm{sec}$
Al2	rate of change of speed occurring in the straightflight segment of the capture flight path, $\mathrm{ft} / \mathrm{sec}^{2}$

S12

TA
distance required to change speed from VQAC to VPWP at a rate given by A 12 , ft
time duration of any one of the command intervals in capture flight path, sec

Constants:
PI
$=3.14159$
G
acceleration due to gravity, $32.172 \mathrm{ft} / \mathrm{sec}^{2}$
GTANFI $\quad=G * T A N(M A X P H I)$
Subroutines required: NEWPSI and TTTURN
Called by:
FOURD

ORIGINAL PAGE IS OF POOR QUALITY

SUBROUTINE TST(*)
COMMON PI, TWOPI,G,RADUEG,GTANFI,NWP,HFINAL,GFINAL,VFINAL,HW,VW, IMAXPHI, MAXGAM, MINGAM, MAXACC, MAXDEC, PHIDOT, VSNF, VSFF, VUPPER, 2VLOWER, CURWPT, CURWPI,NWPI,I,RO,II, XAC, YAC, ZAC, HAC, VAC,MAXSEG, 3CAPSEG, DAC, TURNAC, RAC, DELDAC, XOAC,YQAC, ZQAC, HWP,GAMWP, DWP, XPWP, 4 YPWP, ZPNP, TURNWP, RWP, DELDWP, XQWP, YOWP, ZQWP, INDEX 20), XWP (20), $\operatorname{SYWP}(20), Z W P(20), R(20), H(21), G A M(21), D(20), X P(20), Y P(20), 2 P(20)$, GTURN(20), DELD (20), XQ(20),YO(20), ZQ(20), VMIN(20), VMAX(20),VA(20), TVP(20), VQ(20), DVW(21),TMIN(20), TMAX(20), ENRTIM(20), CRCD(20), 8T111(20),TII2(20), TI22(20), T123(20),T11,T12.T22,T23,TIMHEF(80), 9TRNREF (BO), GAMREF(B0), ACCKEF (80), TLEADT(20), TLEAOS(20), TLEADP(20)
REAL MAXPHI, MAXGAM,MINGAM,MAXACC,MAXDEC
INTEGER CURWPT, CURWPI, CAPSEG,CRED
RACa(VAC*VW)*(VAC*VW)/GTANFD
XGACEXAC
YQACEYAC
VWPAVA(CURWPT)
$X Q W P=X Q(C U R W P T)$
YQWPEYG(CURWPT)
ZQWP=ZQ(CURWPT)
$R W P=(V W P+V W) *(V W P+V N) / G T A N F I$
HH2=PIMUO(H(CURWP!)+PI)
1HH1,8100)
CALL NEWPSI (XAC,YAC,HAC, RAC, XPWP, YPWP, TURNAC, DELDAC, XGAC,YGAC, 1HWP, \&100)
TESTEABS (PI=ABS (HWP-NHI))
IF(TEST,GE.0.02) GO TO 10
TURNWP= TURNWP
DWP=SGRT ($(X P W P-X Q A C) * * 2+(Y P W P-Y G A C) * * 2)$
GAMWP=(ZAC~ZQWP)/(DELOAC + DWP +DELDWP)
IF (GAMWP.LE. MAXGAM.ANU,GAMWP.GE.MINGAM) GD TO 20
WRITE(6,15)
GO 10100
DUMMY = VA*COS (HWP=HN)
VGACZVAC+DUMMY
VPWP=VWP\&DUMMY
VOWPsVWP\&DVM(CUNWPI)
AIEEMAXDEC
IF (VPWP.GT.VQAC) AIZ玉MAXACC
S12 $2(V P W P * V P W P-V Q A C * V(A C) /(2, * A 12)$
IF (SIZ.LE,OWP) GO TO 30
WRITE(6,25)
FORMAT(///2X, DELTAV TOO LARGEI)

```
        60 TU 109
    40 L,AC=LAC-LELDAC#MAN+P
    ZFMP=Z, AC-DNO&!SAMAO
    * =1
    4O CALL ITTUNN(HAC,TURNAC,NAC,VW,MN,VAC,TA)
    IF(TA.LT,O&1) GO T0 50
        \triangleCLKEF(N)=0.
        YRNOEP(K)=SGN(TUNNGC)*KAC
        GAMREF(A) EGOMAF
        IIMNEF(K)=1\Delta
        k=长+1
    S0 TA=(DNP=512)/VDAC
    If(TA,LT:0.1) Gij iO m0
        ACCNEF(K)=0.
```



```
        GAMGEF(K)=GAMWG
        I|M&EF(N)=1A
        A=A+1
```



```
    If(1A.61.0,1) \0 10 70
        AC(QEF(k)=AIZ
        TMN紙F(k)=0.
        GAMQEF(K)=GAMNP
        TIMNEF(K)ETA
        KこK+!
    CALL TTTUKN(HaP,TUPNAP, KWP, \forallW,HN,VMP,TA)
    IF(TA,LT,O.1) GU IO 80
        ACCN&F(K)=0.
        TRNREF(K)=SGN(TU~NNP)*NWQ
        GAMNEF(K)EGAMNO
        11MNEF(K)=TA
        K=k+1
    CADSEG#K=1
```



```
    TLEAOH(I)=AGS(GAM(CURWP1)=[AGMNO)*VO(CURWPT)/G.S
    qETUKiy
100 QETURA 1
    END
```


PIMOD (XYZ)

Required function:
This function converts an arbitrary angle $X Y Z$ to the equivalent angle within the range $-\pi<X Y Z \leq \pi$.

Method:
If $X Y Z>\pi$, it is decreased by 2π decrements until it falls within the desired range. If $X Y Z \leq-\pi$, it is increased by 2π increments until it falls within the desired range.

Input data (argument):
XYZ
any angle, radian
Output data (value of function):
$\operatorname{PIMOD}(X Y Z) \quad-\pi<$ PIMOD $(X Y Z) \leq \pi$
Temporary variables: None
Constants:
PI
$=3.14159$
TWOPI $\quad=6.28319$
Subroutines required: None
Called by: THREED, NEWPSI, and TST


```
    FUNETION PIMOD(XYZ)
    PJ=3.14159
    TWOPI=0,28319
    PIMOD=XYZ
10 IF(PIMOO.EO,PI) RETURN
    IF(FIMDD.LT.PI) GO TO 20
        PIMOU=PIMOO-TWGPI
        GO T0 10
    IF(FIMOD,GT, -PI) RETURN
        PIMOD=PIMOD+TWOPI
        GO 10 20
    END
```

ORIGINAL PAGE IS OF POOR QUALITY

Required function:
This function generates the sign of its argument.

Method:
If $X Y Z \geq 0$, the value of the function is set to +1 ; if $X Y Z<0$, it is set to -1 .

Input data (argument):
$X Y Z \quad$ any number
Output data (value of function):
$\operatorname{SGN}(X Y Z)$
$=\left\{\begin{array}{lll}+1 & \text { if } & X Y Z \geq 0 \\ -1 & \text { if } & X Y Z<0\end{array}\right.$
Temporary variables: None
Constants: None
Subroutines required: None
Called by: ROUND, NEWPSI, SPEED, TTTURN, and TST

FUNCTION SGN(XYZ)
SGN=1.
IF (XYZ.LT.O.) SGN=-1:
RETURN
ENO

ORIGINAL PAGE IS OF POOR QUALITY
MAXPHI $=30.0$
MAXGAM $=15.0$
MINGAM $=-7.5$
HAXACC $=1.0$
MAYIGC $=-1.0$
WHIJHT $=5.0$
VSHF $=150.0$
VSFF $=170.0$
CIPMER $=1.7$
CITHER $=1.3$

ImnEx（1）	X 4 P（I）$^{\text {（ }}$	YHPI
1	7500.0	8000
0	23000.0	8000
0	アみ0nの．0	－ A SOO
0	－17000．0	－8500
1	－17200．0	O
1	－80）n¢．0	0
HII	GAW（1）	
0.00	0.00	115
－90．00	0.00	850
180.00	9．00	360
190.00	－5．96	5
－0．00	－6．03	95
－3！inil	－ria	11！
165．0	255	． 0

REFERENCES

1. McLean, J. D.; and Tobias, L.: An interactive real time simulation for scheduling and monitoring of STOL aircraft in the terminal area, Journal of Aircraft, vo1. 10, no. 6, June 1973, pp. 372-378.
2. Hynes, R. J.; Stevenson, L. E.; and Capen, E. B.: 4-D Guidance of STOL Aircraft, AIAA Paper No. 71-770, July 12-14, 1971.
3. Miele, A.: Flight Mechanics, vol. l - Theory of Flight Paths. AddisonWesley (Reading, Mass.), 1962.
4. Lee, H. Q.; and McLean, J. D.: Guidance Technique for Automated Air Traffic Control, AIAA Paper No. 72-121, Jan. 17-19, 1972.
5. Lee, H. Q.; Neuman, F.; and Hardy, G.: 4D Area Navigation Operating System Description and Flight Test Results. NASA TN D-7874, 1975.
6. Erzberger, H.; and Lee, H. Q.: Terminal-Area Guidance Algorithms for Automated Air-Traffic Control. NASA TN D-6773, Apr. 1972.
7. Duning, K. E.; Hemesath, N. B.; Hickok, C. W.; Lammer, D. G.; and Goemaat, M. L.: Curved Approach Path Study. Final Report, Collins Radio Company, Cedar Rapids, Iowa, Oct. 1972.
8. Erzbergex, H.; and Pecsvaradi, T.: 4-D Guidance System Design With Application to STOL Air Traffic Control. Stanford University, Stanford, Calif., Aug. 16-18, 1972, Joint Automatic Control Conference, 13th, 1972.
9. Pecsvaradi, T.: Optimal Horizontal Guidance Law for Aircraft in the Terminal Area. IEEE Trans. Automatic Control, vol. AC-16, no. 6, Dec. 1972, pp. 763-772.
10. Hansen, Q. M; Young, L. S.; Rouse, W. E.; and Osder, S. S.: Development of STOLAND, a Versatile Navigation, Guidance and Control System. AIAA Paper No. 72789, Aug. 7-9, 1972.

[^0]: *For sale by the National Technical Information Service, Springfietd, Virginia 22151

[^1]: Ames Research Center
 National Aeronatuics and Space Administration Moffett Field, Calif., 94035, October 8, 1974

[^2]: * For variables contained in LISTI... LISTI3, see page following this flow diagram

