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FOUR-DIMENSIONAL LATTICE RULES
GENERATED BY SKEW-CIRCULANT MATRICES

J. N. LYNESS AND T. SØREVIK

Abstract. We introduce the class of skew-circulant lattice rules. These are
s-dimensional lattice rules that may be generated by the rows of an s×s skew-
circulant matrix. (This is a minor variant of the familiar circulant matrix.) We
present briefly some of the underlying theory of these matrices and rules. We
are particularly interested in finding rules of specified trigonometric degree
d. We describe some of the results of computer-based searches for optimal
four-dimensional skew-circulant rules. Besides determining optimal rules for

δ = d+ 1 ≤ 47, we have constructed an infinite sequence of rules Q̂(4, δ) that
has a limit rho index of 27/34 ≈ 0.79. This index is an efficiency measure,
which cannot exceed 1, and is inversely proportional to the abscissa count.

1. Introduction

This paper is a contribution to the theory of multidimensional cubature over
[0, 1]s of specified trigonometric degree d. This work was initiated mainly by Rus-
sian authors (for example, [Mys88] and [Nos91]) and has been significantly devel-
oped internationally. The extensive introduction of lattice rules (see, for example,
[SlJo94]) into this area has broadened the theory. A recent, somewhat detailed,
account of some of this work appears in [CoLy01]. Significant computing power
(see, for example, [SøMy01]) has been devoted to uncovering new rules.

In this paper, we introduce skew-circulant lattice rules. We seek optimal s-
dimensional rules of specified enhanced degree δ (which is defined as δ := d + 1).
We describe a moderate search by means of computer for such rules. New rules in
four and three dimensions are presented in Sections 5 and 7.

1.1. Background: Available optimal rules. For a handful of small values of
dimension s and enhanced degree δ, optimal rules have been known for several
years. In particular, optimal rules for all dimensions with δ ≤ 4 are known. For
s ≥ 4 no other optimal rules are known. For s = 3 an optimal rule for all δ that are
multiples of 6 is also available, and for s = 2 and trivially for s = 1 optimal rules
are known for all δ.
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280 J. N. LYNESS AND T. SØREVIK

It appears that, for each of these (s, δ) values, one or more of the optimal rules
is a lattice rule. All of the known optimal lattice rules with δ ≤ 6 were dis-
covered or could readily have been discovered by a very limited search (among
rank-1 lattice rules only), the optimality being recognized when the abscissa count
N coincided with a theoretically established minimum NME . The others (i.e.,
(s, δ) = (3, 6k); k > 1) are simply k-copies of the one with δ = 6. To show that
these copy rules are optimal requires a simple application of the deeper critical
lattice theory of Minkowski [Min11].

During the past ten years, the situation with respect to known optimal rules has
not changed significantly. Attention has shifted to treating well-defined subsets of
lattice rules and finding, either analytically or by major computer search, optimal
rules with respect to this subset. Many apparently excellent lattice rules have been
discovered in this way; whether any of these is optimal is not known.

1.2. Lattice rules and their trigonometric degree. An s-dimensional lattice
Λ is the set of points generated by all linear integer combinations of s linearly
independent vectors aj , j = 1, 2, . . . , s. These vectors are known collectively as a
set of generators of Λ, and a matrix A whose rows comprise these generators in
any order is known as a generator matrix for Λ. The unit lattice Λ0, also known
as Z(s), is the special lattice comprising all points, all of whose components are
integers. It follows that h ∈ Λ⇔ h = λA for some λ ∈ Λ0.

The generator matrix of a lattice is not unique. However, all generator matrices
of a particular lattice are related in accordance with the following theorem.

Theorem 1.1. A and A′ are generator matrices of the same lattice if and only if
A = UA′, where U is a unimodular matrix.1

An integration lattice Λ is a lattice that satisfies Λ ⊇ Λ0. An s-dimensional lattice
ruleQ(Λ) is simply an integration rule that applies the same weight (ν(Λ))−1 to each
of the ν(Λ) points of an s-dimensional integration lattice Λ that lie in [0, 1)s. Thus
it integrates a constant function correctly, making it of enhanced degree δ(Q) ≥ 1.

Associated with any lattice Λ, generated by A, is its dual lattice, Λ⊥, generated
by the matrix (A−1)T . A consequence of the fact that for an integration lattice
Λ ⊇ Λ0 is that Λ0 ⊇ Λ⊥, which implies that (A−1)T is an integer matrix. The
dual lattice plays an important role in the theory of lattice rules because it can be
used to specify an error expansion of the quadrature rule in terms of the Fourier
coefficients, f̂h, of the integrand function as follows:

(1) EQ(Λ)f = Q(Λ)f − If =
∑

h∈Λ⊥

h 6=0

f̂h.

Here I is the integration operator over [0, 1)s, and f̂0 = If . For a lattice rule to
integrate exactly all polynomials of trigonometric degree d, the right-hand side of
this equation must vanish whenever f is such a polynomial. This requirement leads
to a characterization of the trigonometric degree of a lattice rule2 as follows.

1 A unimodular matrix U is an integer matrix for which det(U) = ±1. The inverse of a
unimodular matrix is also a unimodular matrix.

2The statement that an integer lattice Λ⊥ is of a specified trigonometric degree d should be
taken to mean that the lattice rule Q(Λ) is of degree d. The enhanced degree δ is d+ 1.
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Definition 1.2. A lattice rule Q(Λ) is of enhanced trigonometric degree δ if and
only if ∀h ∈ Λ⊥, other than h = 0 :

‖ h ‖1:=| h1 | + | h2 | + · · ·+ | hs |≥ δ.

Definition 1.3. The lattice rule Q(Λ) in Definition 1.2 is of strict enhanced
trigonometric degree δ if and only if it is not also of enhanced trigonometric degree
δ + 1.

In view of this definition the strict enhanced degree can be expressed as

(2) δ(Q(Λ)) = min
∀h∈Λ⊥;h 6=0

‖ h ‖1 .

A basic cell of any lattice is the smallest nonzero volume enclosed by any s-
dimensional simplex whose vertices are s + 1 distinct lattice points. One may
show that the abscissa count of Q(Λ), denoted by ν(Q) or ν(Λ), coincides with s!V ,
where V is the s-volume of the basic cell of Λ⊥. (See, for example, [Lyn89].) Thus:

(3) ν(Q(Λ)) = s!V = | detB| = | detA|−1,

where B is (A−1)T or any other generator matrix of Λ⊥.
Thus, two algebraic properties of the lattice rule are geometrical properties of the

associated dual lattice. The enhanced degree δ is the shortest L1 distance between
any two points of the lattice, while the abscissa count is a known multiple of the
volume of its basic cell.

1.3. K-optimal rules. These two geometric properties of the lattice lend plau-
sibility to the idea that the more efficient lattice rules might have dual lattices
generated by points h for which ‖h‖1= δ. (See [CoLy01].) The population K(3, δ)
comprises integer lattices generated by three points, each located on a different
pair of opposite faces of the octahedron ‖x‖1= δ. The population K(s, δ) is an ex-
act s-dimensional generalization of this. (The terms facet-pair and s-crosspolytope
may be used in this context.) We refer to the optimal rules corresponding to these
lattices as K(s, δ)-optimal.

This search was extremely expensive, so expensive indeed that for higher values
of δ we were obliged to treat only subcategories of K(s, δ). This work is specified in
detail in [CoLy01]. (A few of the abscissa counts (denoted by NKO) obtained there
are reproduced in Table 2 and Figure 1.) A detailed examination of the K-optimal
rules obtained by this search revealed that some of them conform to a recognizable
simple structure. Specifically, those listed for δ = 1, 2, 6, 11, 13, and 19 (or one of
their symmetric equivalents) could be generated by a skew-circulant matrix. This
fact led us to define and investigate skew-circulant lattice rules (Sections 2 and 3).

1.4. Results for skew-circulant rules. Results of a computer search for optimal
skew-circulant rules in four (and in three) dimensions are presented in Section 5
(and in Section 7). We noticed that almost all the optimal skew-circulant rules
conform to a particular pattern; consequently, we were able to define for s = 4 and
for all positive integers δ a particular skew-circulant rule denoted by Q̂(4, δ). This
is specified in detail in Section 5. There we show the following:

1. For all δ this rule is of enhanced degree δ.
2. For many values of δ including all those in the range [23, 47], Q̂(4, δ) is an

optimal skew-circulant rule of enhanced degree δ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



282 J. N. LYNESS AND T. SØREVIK

3. There are, however, sequences of values of δ for which Q̂(4, δ) is not an optimal
skew-circulant rule of degree δ.

Our proof of statement 1, given in Section 5, is cumbersome, in that it requires a
large but finite number of repetitive calculations. Statement 2 comprises a finite set
of substatements, each of which may be verified by a moderate computer search.
Statement 3 is established in Section 6 by using an argument based on the rho
index of a rule.

From the point of view of matrix theory, the skew-circulant matrix is a somewhat
unexciting variant of the circulant matrix. For many values of δ, however, all four-
dimensional lattice rules generated by a circulant matrix require more abscissas
than does the corresponding skew-circulant rule Q̂(4, δ). In a search up to δ = 47,
only δ = 5 and δ = 9 appeared as exceptions.

2. Skew-circulant matrices and lattices

In this section, we introduce skew-circulant matrices [Dav94] and then define
and discuss skew-circulant lattices.

2.1. Skew-circulant matrices. The theory in this subsection is not new. It is a
straightforward modification of the corresponding theory for the classical circulant
matrix. It is presented here to establish the notation.

An s× s skew-circulant matrix is one of the form

(4) C̄(a) := C̄(a0, a1, . . . , as−1) :=


a0 a1 a2 . . . as−1

−as−1 a0 a1 . . . as−2

...
...

...
...

−a2 −a3 −a4 . . . a1

−a1 −a2 −a3 . . . a0

 .

Here, and in the sequel, we use a to stand for (a0, a1, ..., as−1).
We denote by C̄(s) the class of s × s skew-circulant matrices. Their properties

are readily derived in terms of our principal basic skew-circulant matrix

(5) T = C̄(0, 1, 0, . . . , 0) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
−1 0 0 . . . 0

 .

It follows immediately that

(6) T i = C̄(0, . . . , 0, 1, 0, . . . , 0) =



0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
...

...
...

...
−1 0 0 . . . . . . · 0
...

...
...

...
0 . . . −1 0 0 . . . 0


,

where the unit is the (i + 1)th argument of C̄.
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The following properties of basic skew-circulant matrices are easily established
by applying the definition:3

• det(T ) = (−1)s; T is unimodular.
• T i+s = −T i.
• T TT = I; T is orthogonal.
• (T i)T = −T s−i.

Note that

(7) C̄(a0, a1, . . . , as−1) =
s−1∑
i=0

aiT
i

and that the (j + 1)th row of C̄(a) is simply a T j, where as usual a is the first row
of C̄(a).

Applying these basic properties, one can easily prove a number of interesting
properties for the class of skew-circulant matrices (denoted C̄(s)).

• If A = C̄(a0, a1, . . . , as−1) and B are in C̄(s), then
(i) AB ∈ C̄(s),
(ii) AB = BA,
(iii) AT = C̄(a0,−as−1, . . . ,−a1),
(iv) (A−1)T ∈ C̄(s).

2.2. Skew-circulant lattices. In this paper we shall use the terminology Λ(B)
to denote the s-dimensional lattice generated by the s rows of an s × s generator
matrix B.

Definition 2.1. A skew-circulant lattice is one that can be generated by a skew-
circulant matrix.

This specification of a skew-circulant lattice Λ in terms of a skew-circulant gen-
erator matrix is not unique.

Theorem 2.2. Let A be a skew-circulant matrix. Then

(8) Λ(AT j) = Λ(T jA) = Λ(A).

Proof. Since both A and T j are skew-circulant matrices, they commute, and so the
arguments in the first two members of (8) are identical. Since T j is a unimodular
matrix, Theorem 1.1 asserts that the lattices in the second and third members of
(8) coincide. �

Theorem 2.2 provides 2s generally distinct skew-circulant matrices, namely, AT j,
j = 0, 1, 2, . . . , 2s− 1, each of which generates the same skew-circulant lattice.

The reader will notice that the lattice Λ(C̄(a0, a1, . . . , as−1)) includes all the
points appearing as rows of C̄(a0, a1, . . . , as−1) together with their negatives. Thus
this lattice includes the set of 2s points a T j, j = 0, 1, . . . , 2s− 1. This is a special
case of the following.

Definition 2.3. A set of 2s points of the form x T j, j = 0, 1, . . . , 2s− 1, is termed
a skew-circulant set of points related to x.

3A superscript T denotes the matrix transpose. Here, (T i)T denotes the transpose of the
matrix T i.
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Theorem 2.4. When x is any element of a skew-circulant lattice Λ, all skew-
circulant points related to x are also elements of Λ.

Proof. x ∈ Λ(A) implies that there exists a λ such that x = λA. It follows that
xT j = λAT j, which is the condition that xT j ∈ Λ(AT j). In view of Theorem 2.2
Λ(AT j) = Λ(A), which establishes Theorem 2.4. �

The dual Λ⊥ of any lattice Λ(B) is the lattice generated by (B−1)T . In view of
the last result of the preceding section, Λ⊥ is a skew-circulant lattice whenever Λ
is.

The reader should bear in mind that a matrix that is not skew-circulant may,
on occasion, generate a skew-circulant lattice. Let B be any integer matrix and let
Λ(B) be the lattice it generates. It follows that Λ(B) is a skew-circulant lattice if
and only if there exists a unimodular matrix U such that UB may be expanded in
the form

(9) UB =
s−1∑
i=0

aiT
i.

3. Lattices and their equivalence classes

In constructing a search over any population, there is usually a major cost re-
duction if the natural symmetry of the population can be exploited in some way.
A symmetric copy of a lattice is another lattice obtained from the first by any
sequence of those affine transformations that take the unit lattice into itself.

Lattices that are symmetric copies of each other are said to belong to the same
equivalence class. They share many of the same characteristics. In the present
context the most important features appear to be that they obviously share the
same trigonometric degree and order. Thus, in any search for optimal skew-circulant
lattice rules there is no need in principle to consider more than one member of each
equivalence class.

In terms of generator matrices, symmetric copies of a lattice may be created by
postmultiplying by permutation matrices and sign change matrices.

In the rest of this section, the theorems will be stated in an s-dimensional context.
However, much of the discussion will be presented in a four-dimensional context.

Let Gi be an element of the group G of 384 affine transformations that takes
the hypercube [0, 1]4 into itself. Let Gi be a standard4 matrix representation of
Gi. (We abbreviate this to Gi ∈ G.) Let A be a generator matrix of a lattice
Λ(A). Then the set of lattices in the equivalence class that contains A comprises all
lattices Λ(AGi), i = 1, 2, . . . , 384. These lattices are not distinct; when Gi = −Gk,
the lattices Λ(AGi) and Λ(AGk) coincide. However, 192 elements of this set may
be distinct. On the other hand, the class may have many fewer elements. In the
extreme case, when Λ(A) is a multiple of the unit lattice, then all members of this
set coincide, and the equivalence class contains only one member.

Definition 3.1. Λ(A) and Λ(Ã) are members of the same equivalence class, written

Λ(A) ≡ Λ(Ã),

if and only if there exists a unimodular matrix U and a permutation matrix G ∈ G
such that Ã = UAG.

4 For any matrix A, the matrix AGi may be constructed by applying Gi to the columns of A.
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We note that the elements T j, j = 0, 1, . . . , 7, introduced in (5) and (6) are
themselves matrix representations Gk of elements of the group G. These elements
form a subgroup of order 8. We introduce the set of 48 right cosets of this subgroup;
these are

(10) {T jGk : j = 0, 1, . . . , 7; }, k = 1, 2, . . . , 48.

It is known from elementary group theory that Gk, k = 1, 2, . . . , 48, may be chosen
in such a way that these cosets are disjoint and the union of their members comprise
the totality of the members of G.

Theorem 3.2. When an s-dimensional equivalence class contains a skew-circulant
lattice Λ̃, the class can contain no more than 2s−1(s− 1)! distinct lattices.

Proof. Let A be a skew-circulant matrix that generates the skew-circulant lattice
Λ̃ and G ∈ G. Since both A and T j are skew-circulant matrices, they commute; it
follows that

(11) Λ(AT jG) = Λ(T jAG) = Λ(AG), j = 0, 1, . . . , 7.

Thus, when G′ and G′′ are members of the same coset specified in (10), the lattices
Λ(AG′) and Λ(AG′′) coincide. Since there are at most only 48 distinct cosets, there
are at most only 48 distinct lattices in this equivalence class. �

By hypothesis one of these is a skew-circulant lattice. The following theorems
show that, when s is even, there are three more in general. In four dimensions, we
have not encountered any equivalence class having more than four distinct skew-
circulant lattices. (No theorem to this effect is known to us.)

The next two theorems depend on a suitable choice of a unimodular matrix U
and of G ∈ G for use in the relation

(12) Λ(UAG) ≡ Λ(A).

Theorem 3.3. Let A = C̄(a0, a1, . . . , as−1) and Ã = C̄(as−1, as−2, . . . , a0). Then
Λ(A) ≡ Λ(Ã).

Proof. Define

(13) P =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
0 1 . . . 0 0
1 0 . . . 0 0

 .

It is readily confirmed that PT jP = −T s−j; since A =
∑s−1

j=0 ajT
j, it follows that

(14) −T−1PAP = −T−1
s−1∑
j=0

ajPT
jP = T−1

s−1∑
j=0

ajT
s−j = C̄(as−1, as−2, . . . , a0).

Setting U = −T−1P and G = P in (12) establishes the theorem. �
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Theorem 3.4. For even s, Λ(A) ≡ Λ(A−), where A = C̄(a0, a1, . . . , as−1) and
A− = C̄(a0,−a1, a2,−a3, . . . ,−as−1).

Proof. Let

(15) S = diag(1,−1, 1,−1, . . . , 1,−1).

It is readily verified that SAS = A−. Setting U = G = S in (12) establishes the
theorem. �

4. A search

Many extensive searches for optimal lattice rules are described in the literature.
Beside these, our simple search for efficient skew-circulant lattice rules in three and
four dimensions appears to be almost trivial. This is because the population C̄(s)

of skew-circulant lattices is relatively small.5

Definition 4.1. The lattice Λ is a C̄(s)-optimal lattice of (strict) enhanced degree
δ when any other C̄(s) lattice Λ′ of (strict) enhanced degree δ satisfies ν(Λ′) ≥ ν(Λ).

To find a C̄(s)-optimal lattice of strict enhanced degree δ̃, it is sufficient to test
every integer lattice Λ(B) generated by B = C̄(b0, b1, . . . , bs−1) having

(16) |b0|+ |b1|+ |b2|+ · · ·+ |bs−1| = δ̃.

Since simple analytical formulas for detB exist, the abscissa count

(17) ν(B) = |detB|
is significantly easier to calculate than the enhanced degree δ(B). We calculate ν(B)
for each lattice of this set. We retain the first lattice encountered for which δ(B) = δ̃
as the first entry on our provisional list of optimal candidates. Subsequently, only
when a new abscissa count ν(B) is found to be less than or equal to the current
provisional count is it necessary to calculate δ(B). If this coincides with our target
enhanced degree δ̃, we retain this lattice on our provisional list. If the new abscissa
count is less than the current provisional count, all other members of this list are
discarded. At the completion of such a search, a complete list of C̄(s)-optimal
lattices remains.

Short though this search appears to be, it turns out that in four dimensions the
population (16) can be curtailed. One needs to include only those Λ(B) for which
all components of b are nonnegative (that is, b is in the principal four-dimensional
quadrant). Moreover, in view of Theorem 3.2, we may further restrict the search to
omit b when b3 < b0 and also when both b3 = b0 and b2 < b1. In view of Theorem
2.2, the skew-circulant lattice generated by bT j coincides with the lattice generated
by b. And, according to Theorem 3.4, the lattice generated by bS is symmetrically
equivalent to the one generated by b. (S is defined in (15) above.) Merely by
checking these sign patterns, one can verify that in four dimensions the sixteen
points bT j and bT jS lie, respectively, in each of the sixteen distinct octants.

The corresponding situation in more than four dimensions is more complicated
and is not discussed here. Even in three dimensions a different situation prevails.
For example, the rule generated by C̄(1,−3, 6) is an optimal skew-symmetric rule
of degree δ = 10. But the set of rules which may be generated by C̄(b) with all

5 Depending on the context, C̄(s) may refer to the set of skew-circulant matrices, the set of
skew-circulant lattices, or the set of skew-circulant lattice rules.
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components of b nonnegative does not include this rule, nor does it include any
optimal skew-symmetric rule with δ = 10.

5. The sequence of lattice rules Q̂(4, δ)

In dimension s = 4 for all δ ≤ 47 we have carried out a search for all the optimal
four-dimensional skew-circulant rules of enhanced degree δ.

As mentioned in Section 1, detailed examination of these results indicates that,
for all δ ∈ [23, 47] the lattice rule Q̂(4, δ) specified below is an optimal skew-circulant
rule of strict enhanced degree δ, and all other optimal skew-circulant rules of the
same strict degree are in the same equivalence class as this one. Q̂ may be specified
as follows.

Definition 5.1. Let δ = 6k + r, where r ∈ [0, 5]. Define b̂(4, δ) as indicated in
Table 1. Then Q̂ is the lattice rule Q(Λ̂), where Λ̂ is the dual of the lattice Λ̂⊥

generated by B̂ = C̄(b̂).

In the lower half of Table 1 we provide the components of a skew-circulant integer
matrix

Ã = C̄(ã0, ã1, ã2, ã3),
which is a scaled version of Â, a generator matrix of Λ̂. These elements are all cubic
polynomials in k. Specifically,

Â = (B̂T )−1 = Ã/N̂ .

Besides being an optimal skew-circulant rule for all δ ∈ [23, 47], the rule Q̂(4, δ) is
also an optimal skew-circulant rule for all values of δ ∈ [1, 22] with the following five
exceptions. For δ = 4, 10, 16, 22 the rules generated by C̄(b) with b(4, 6k + 4) =
(0, 3k + 2, 2k + 1, k + 1), and for δ = 3, the rule generated by C̄(1, 0, 1, 1) are
C̄(s)-optimal.

Table 1. Parameters for specification of Q̂(4, δ) for positive inte-
ger δ.

r b̂(4, 6k + r) δ N̂

0 (0, 3k, 2k, k) 6k 68k4

1 (1, 3k + 1, 2k, k − 1) 6k + 1 68k4 + 48k3 + 28k2 + 8k + 1
2 (0, 3k + 1, 2k + 1, k) 6k + 2 68k4 + 88k3 + 52k2 + 16k + 2
3 (1, 3k + 2, 2k + 1, k − 1) 6k + 3 68k4 + 136k3 + 136k2 + 68k + 17
4 (0, 3k + 2, 2k + 2, k) 6k + 4 68k4 + 176k3 + 208k2 + 128k + 32
5 (1, 3k + 3, 2k + 1, k) 6k + 5 68k4 + 232k3 + 312k2 + 196k + 49

r −ã0 ã1 −ã2 −ã3

0 16k3 26k3 4k3 2k3

1 16k3 +6k2+4k+1 26k3+14k2+7k+1 4k3+2k 2k3+6k2+3k+1
2 16k3 +20k2+8k+1 26k3+24k2+8k+1 4k3−2k2−4k−1 2k3+10k2+6k+1
3 16k3 +26k2+18k+5 26k3+38k2+25k+6 4k3−2k2−4k−3 2k3+16k2+15k+7
4 16k3 +40k2+32k+8 26k3+48k2+32k+8 4k3−4k2−16k−8 2k3+20k2+24k+8
5 16k3 +34k2+26k+7 26k3+68k2+63k+21 4k3+14k2+16k+7 2k3+2k2+k
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For several randomly chosen values of δ ∈ [48, 120] the same search was carried
out. No counterexample to the (incorrect) conjecture that Q̂(4, δ) is optimal for
all δ ≥ 23 was discovered in this way. Later, however, we show theoretically (see
Theorem 6.2) that such a conjecture is false.

The rest of this section is devoted to establishing Theorem 5.3; in the proof we
shall employ the following well-known inequality.

Lemma 5.2. Let A be the generator matrix of an integration lattice Λ, and let
B = (AT )−1. Let h = λB with λ ∈ Λ0. Then

‖ h ‖1≥‖ λ ‖1 / ‖ A ‖1 .
Proof. It follows immediately from the hypothesis that AhT = λT . Applying a
standard L1 inequality to this yields the result. �
Theorem 5.3. For all k ≥ 0 and r = 0, 1, ..., 5, the four-dimensional skew-circulant
rule Q̂(4, 6k + r) specified in Table 1 has enhanced degree δ = 6k + r.

This can be verified numerically for any individual value of k. So we do not
compromise the proof when, at one point, we restrict k to exceed 2. There is no
need to treat r = 0 because Q̂(4, 6k) is the k-copy version of Q̂(4, 6), and so the
theorem is self-evident. And since Q̂(4, 12k+4) is the 2-copy version of Q̂(4, 6k+2),
the case r = 2 need not be treated so long as the case r = 4 is treated. However,
we do not exploit this, and the proof below applies to all r.

Proof. We shall establish the theorem by showing that each nonzero element h of
each dual lattice Λ̂⊥ satisfies ‖ h ‖1≥ δ.

The proof falls into two parts. In Lemma 5.4, we apply Lemma 5.2 to show that
when ‖ λ ‖1≥ 5, the corresponding h has 1-norm larger than or equal to 6k + r.
In Lemma 5.5, we simply record the result of computing ‖h ‖1 for the remaining
elements of Λ̂⊥. For each δ there are 240 of these, corresponding to ‖ λ ‖1≤ 4.

Theorem 5.3 is an immediate consequence of these two lemmas. �

Lemma 5.4. For all k ≥ 0 and r = 0, 1, ..., 5, with Â and δ = 6k + r as specified
in Table 1, when both λ ∈ Λ0 and ‖ λ ‖1≥ 5, it appears that ‖ λ ‖1 / ‖ A ‖1≥ δ.

Proof. The elements of the skew-circulant matrix Ã are given in the lower part of
Table 1 and the elements of Â are Ã/N̂ . The right-hand side of the inequality in
Lemma 5.2 is

(18) ‖ λ ‖1 N̂/D̂,
where

(19) D̂ = −ã0 + ã1 − ã2 − ã3

for all k > 2.
For fixed r, N̂ is a quartic and D̂ a cubic polynomial in k. All the coefficients

of these polynomials are nonnegative. Carrying out the calculation for each r =
0, 1, . . . , 5 in turn, we find that the coefficient of each power of k in (6k+ r)D̂(r) is
less than the corresponding coefficient in 5N̂(r), and consequently,

(20) (6k + r)D̂(r) < 5N̂(r).

It follows that, when ‖ λ ‖1≥ 5,

(21) ‖ λ ‖1 N̂/D̂ ≥ 5N̂/D̂ > 6k + r,
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as required by the lemma. �

Lemma 5.5. For all k ≥ 0 and r = 0, 1, ..., 5, with B̂ and δ = 6k + r as specified
in Table 1, for λ ∈ Λ0 and ‖ λ ‖1≤ 4 the elements of h = λB̂ satisfy ‖ h ‖1≥ δ.
Proof. We treat separately each value of r. For a fixed value of r, and for one of
the 240 instances corresponding to ‖ λ ‖1≤ 4, we calculate hT = λT B̂ and form
‖ h ‖1. Since B̂ is the skew-circulant matrix specified in Table 1, we find

‖ h ‖1 = |λ1b̂0 + λ2b̂1 + λ3b̂2 + λ4b̂3|
+| − λ1b̂3 + λ2b̂0 + λ3b̂1 + λ4b̂2|
+| − λ1b̂2 − λ2b̂3 + λ3b̂0 + λ4b̂1|
+| − λ1b̂1 − λ2b̂2 − λ3b̂1 + λ4b̂0|.

Here each element b̂i is the linear function of k appearing in the rth line of the
upper part of Table 1. We have to show that this expression of ‖ h ‖1, in terms of
k, is not less than δ = 6k + r.

In fact, we verified very few of these computations by hand. A computer program
was then constructed to carry out this calculation for all 240 assignments of λ and
all six assignments of r. �

6. Abscissa counts

We now briefly discuss the relative efficiency of these skew-circulant rules when
compared with existing rules.

In Table 2 we have listed various abscissa counts for δ ≤ 30. These are as follows:
• NME , a theoretical lower bound on the number of abscissas required by

any rule of this degree [CoSl96],
• NKO, the lowest abscissa count of any K-optimal rule listed in [CoLy01],
• NC̄O, the abscissa count for the optimal skew-circulant rule,
• N̂ , the abscissa count for Q̂(4, δ), calculated from the expression in Table

1.
The reader will notice that, on any particular line in the table, the entries are in

nondecreasing order. This follows principally because the corresponding rules are
optimal with respect to successively smaller populations.

Examination of this table shows that the optimal skew-circulant rule is also a
K-optimal rule in the cases δ = 2, 6, 11, 13, and 19. For some other odd values of δ,
NC̄O is very close to NKO. But for even values of δ, this difference is larger, up to
four percent.

To obtain a visual impression of the relative efficiency of these rules, we have
used the recently introduced rho index ρ(Q), which is defined as follows.

Definition 6.1. The rho index ρ(Q) of any s-dimensional cubature rule Q for
[0, 1)s of strict enhanced degree δ and abscissa count N is

(22) ρ(Q) =
δs

N · s! .

This index was introduced in [CoLy01] and has been discussed at some length in
[LyCo00]. It appears that the value of this index for any m-copy of Q is the same
as its value for Q. And the value of the index cannot exceed 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



290 J. N. LYNESS AND T. SØREVIK

Table 2. Four-dimensional abscissa counts. (The value of NC̄O
is not shown for values of δ for which NC̄O = N̂ .)

δ NME NKO NC̄O N̂

1 1 1 1
2 2 2 2
3 9 9 9 17
4 16 16 18 32
5 41 45 49
6 66 68 68
7 129 152 153
8 192 212 226
9 321 375 425

10 450 516 562 612
11 681 857 857
12 912 1064 1088
13 1289 1601 1601
14 1666 1958 2034
15 2241 2834 2873
16 2816 3312 3554 3616
17 3649 4628 4633
18 4482 5354 5508
19 5641 7081 7081
20 6800 8148 8402
21 8361 10552 10625
22 9922 11886 12546 12548
23 11969 15167 15217
24 14016 16812 17408
25 16641 20961
26 19266 23938
27 22569 28577
28 25872 32544
29 29961 38081
30 34050 42500

A plot of rho indices of various optimal rules having δ ≤ 30 appears in Figure
1. The information required for each entry in this figure appears in Table 2. Natu-
rally, in Figure 1 and Table 2 are simply different ways of presenting the identical
information.
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Figure 1. The rho index of some optimal four-dimensional rules.

� A (hypothetical) optimal trigonometric rule.
(This provides an upper bound on ρ(4, δ).)

◦ A K-optimal rule [CoLy01].
∗ The sequence Q̂(4, δ).
5 An optimal skew-circulant rule, displayed only when

Q̂(4, δ) is not itself an optimal skew-circulant rule.

Some of the following observations about the sequence Q̂(4, δ) are illustrated
in this figure. They are established by using elementary algebra based on the
expressions given in Table 1.

In this discussion, we shall abbreviate ρ(Q̂(4, δ)) as ρ̂(δ) and denote the limit of
ρ(Q̂(4, δ)) as δ becomes infinite by ρ̂lim = 27/34 ≈ 0.7941.

Clearly Q̂(4, 6m) is the m-copy of Q̂(4, 6) and, for these m-copy rules, the com-
mon value of ρ̂(6m) is ρ̂lim. Clearly, also, Q̂(4, 12k + 4) is the 2-copy version of
Q̂(4, 6k + 2) for all integers k.

The largest value ρ̂max ≈ 0.7963 of the rho index occurs when δ is 26 and again
when δ is 52; thus ρ̂max exceeds ρ̂lim ≈ 0.7941 by less than one-third of one percent.
The sequence ρ̂(6k + 2) is monotonically increasing for k ≤ 7. It is monotonically
decreasing thereafter, approaching ρ̂lim from above. The sequence ρ̂(6k + 4) has a
similar character, reaching the same maximum when k = 14.

However, ρ̂(δ) < ρ̂lim for all odd δ. For fixed r (= 1, 3, or 5) the sequence
ρ̂(6k + r) approaches the limit monotonically from below.
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We may exploit some of this information to demonstrate the falsity of the con-
jecture that, for sufficiently high δ, the rule Q̂(4, δ) might always be an optimal
skew-circulant rule.

Theorem 6.2. When δ is of the form 18k+ 6 with k ≥ 4 or when δ is of the form
18k+12 with k ≥ 7, the skew-circulant rule Q̂(4, δ) is not an optimal skew-circulant
rule.

Proof. The three-copy version of Q̂(4, 6k + 2) is a skew-circulant rule of degree
18k + 6. When k ≥ 4, its rho index ρ̂(6k + 2) exceeds the rho index ρ̂lim of
Q̂(4, 18k + 6). Thus Q̂(4, 18k + 6) is not optimal. The other result in the theorem
is proved in the same way. �

7. Three-dimensional theory and results

In the preceding two sections we have described at some length some of our
results in our search for optimal four-dimensional skew-circulant lattice rules. We
have also carried out a corresponding search in three dimensions for optimal rules
of strict enhanced degree δ up to enhanced degree δ = 60. The results are less
interesting. We outline some of them here.

As in the four-dimensional case, the search provided a sequence of optimal skew-
circulant rules. We have identified an infinite sequence of skew-circulant rules
Q̂(3, δ), which are specified in Table 3. For all δ ≤ 60, with eleven exceptions
(namely, δ = 5, 7, 8, 10, 11, 13, 14, 17, 20, 26, and 32), it appears that Q̂(3, δ) is an
optimal skew-circulant rule of strict enhanced degree δ.

In three dimensions, as in all dimensions, optimal rules are known for enhanced
degrees δ = 1, 2, 3, 4. In three dimensions only, an optimal rule is also known for δ =
6. This is based on Minkowski’s celebrated critical lattice, stemming from classical
lattice theory [Min11], which provides a lattice and lattice rule of enhanced degree
δ = 6. In our context, this theory also provides an upper bound ρCL = 18/19 on
the rho index of any three-dimensional lattice rule. Since all m-copies Q̂(3, 6m) of
this rule share the same rho index, these copies are all optimal lattice rules.

In [CoLy01] a list of three-dimensional K-optimal lattices appears for δ ∈ [1, 30].
For δ = 6k these are the optimal lattice rules Q̂(3, 6) just mentioned. For δ =
6k+3 ≤ 30, these coincide with one of the optimal skew-circulant rules Q̂(3, 6k+3).
For δ = 6k + r ≤ 30 with r = 1, 2, 4, 5, however, the optimal skew-circulant rules
are inferior to known K-optimal rules.

Table 3. Parameters for specification of Q̂(3, δ) for positive inte-
ger δ.

r b̂(3, 6k + r) N̂
‖ã‖1

‖ ã ‖1 ã(3, 6k + r)

0 k 2k 3k 2k 19k2 7k2 −k2 11k2

1 k 2k 3k+1 2k+1 19k2+7k+1 7k2+2k −(k−1)k 11k2+6k+1

2 k+1 2k 3k+1 2k+1 19k2+8k+1 7k2+4k+1 −(k2−4k−1) 11k2+8k+1

3 k 2k+1 3k+2 2k+1 19k2+22k+7 7k2+7k+2 −(k+1)2 11k2+13k+4

4 k+1 2k+1 3k+2 2k+2 19k2+23k+7 7k2+9k+3 −(k2−k−1) 11k2+15k+5

5 k+1 2k+1 3k+3 2k+3 19k2+30k+12 7k2+11k+4 −(k2−2k−2) 11k2+21k+10
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One disconcerting feature of these results is that, for k ≥ 2, our rule Q̂(3, 6k+5)
actually uses more function values than does Q̂(3, 6k+ 6). This is possible because
definitions and searches are restricted to rules of strict enhanced degree δ; that is,
they exclude any of degree exceeding δ.

Definition 7.1. Let δ = 6k + r, where r ∈ [0, 5]. Define b̂(3, δ) as indicated in
Table 3. Then Q̂ is the lattice rule Q(Λ̂), where Λ̂ is the dual of the lattice Λ̂⊥

generated by B̂ = C̄(b̂).

The table includes a specification of other quantities required to construct the
rule directly. These are defined in the proof of the following theorem.

Theorem 7.2. Let a, b, c be nonnegative integers such that b2 ≥ ac. Let B =
C̄(a, b, c) and A = (B−1)T . Then ‖ A ‖1= 1/(a− b+ c).

Proof. One finds by simple manipulation that

(23) detB = a3 − b3 + c3 + 3abc = (a− b+ c)(a2 + b2 + c2 + ab+ bc− ca).

It is simple to verify that A = (B−1)T = C̄(ã)/ detB with

(24) ã = (a2 + bc,−(c2 + ab), b2 − ca).

Up to this point a, b, and c can be general. When a, b, and c are nonnegative and
b2 > ac, we find

(25) ‖ A ‖1= (a2 + b2 + c2 + ab+ bc− ca)/ detB,

and in view of (23) we find ‖ A ‖1= 1/(a− b+ c). �

In Table 3, we list, for each δ = 6k + r, the quantities b̂, N̂ , ‖ ã ‖1, and ã as
functions of k. These may be obtained from the corresponding quantities in the
proof of the theorem by replacing (a, b, c) by b̂.

With the exception of enhanced degrees δ = 5, 7, 8, 11, 13, and 17 these are
optimal skew-circulant rules of strict degree δ for δ ∈ [1, 60]. We have no proof that
these are optimal for all δ > 61. And we have no counterexamples to refute such
a conjecture. As mentioned above, however, we have established that Q̂(3, δ) is of
enhanced degree δ for all δ.

Theorem 7.3. For all k ≥ 0 and r = 0, 1, ..., 5, the three-dimensional skew-
circulant rule Q̂(3, 6k + r) specified in Table 3 has enhanced degree δ = 6k + r.

The proof is along the same lines as the proof of Theorem 5.3 but is much
simpler. It appears that in the three-dimensional version of Lemma 5.4 we need
to restrict λ to ‖ λ ‖1≥ 3. The number of simple computations to establish the
three-dimensional version of Lemma 5.5 becomes far fewer, in part because of the
reduced dimension and in part because of the lower limit on ‖ λ ‖1.

8. Concluding remarks

The results in this paper contribute to the theory of multidimensional numerical
quadrature rules for [0, 1)s having specified trigonometric degree. For s ≥ 4, optimal
rules are known only for δ ≤ 4. All available rules of higher degree are copies of
these or have been discovered empirically, nearly always by means of intensive
computer-based searches. A reduction of the population that is searched produces
rules optimal only within the smaller population but at a lower cost. Thus, while we
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would prefer to find optimal rules, we have used computer searches to find optimal
lattice rules, K-optimal rules, and, as described in this paper, optimal skew-circulant
rules. Each population considered is a subset of the previous population. Each of
the final three requires only a finite search. Naturally, each search is shorter than
the corresponding previous one and yields less efficient results.

The search over skew-circulant rules (described in Section 4) is intrinsically much
shorter than the more thoroughgoing searches mentioned above. It may be much
more efficient, however, because of the underlying situation with respect to dupli-
cate copies and symmetric copies. In the absence of special measures, a search
might examine the same rule (specified by different generator matrices) several
times. Moreover, the search might treat many members of the same equivalence
class. Such a class may contain up to 192 distinct rules, all geometrically equiv-
alent. The success or failure of a long search depends critically on the extent to
which the search is capable of avoiding duplicate copies and symmetric copies of
rules that have already been examined. In this respect, the remarks at the end
of Section 4 indicate that our four-dimensional search treats each rule only once.
And, by limited inspection, we have noticed that in general the four-dimensional
search treats only two distinct members of each equivalence class.

In the corresponding search for K-optimal rules, it is possible that the identical
rule be treated up to eight or sixteen times, and all 192 symmetric copies might
also be treated with the same abandon. In practice, empirical evidence suggests an
overall redundancy exceeding ninety-nine percent. (See Section 5 of [CoLy01].)

In an odd-dimensional context, one may show that every skew-circulant rule has
a symmetrically equivalent circulant rule and vice versa. (This may be established
by using a trivial variant of Theorem 3.3.) Hence an optimal odd-dimensional skew-
circulant rule has the same abscissa count as a corresponding optimal circulant rule.

But in four (and in other even) dimensions the equivalence set of a circulant
rule may or may not contain skew-circulant rules. Examination of four-dimensional
results in the present paper and in [CoLy01] reveals the following situation. For δ =
1, 5, and 9, the optimal circulant rule coincides with a K-optimal rule and is more
economic than any skew-circulant rule of the same degree. For δ = 1, 2, 6, 11, 13
and 19, the optimal skew-circulant rule coincides with a K-optimal rule. For all
δ ∈ [2, 47], with the exceptions of 5 and 9, the optimal skew-circulant rule is more
economic than the corresponding optimal circulant rule.

Besides describing a somewhat complex situation with respect to optimal rules
for large and for small values of δ, the main result of this work (illustrated in
Figure 1) may be the specification of an infinite sequence of rules, one for each
value of δ. For δ > 10 all of these have rho indices between 0.70 and 0.80, the limit
exceeding 0.79. (The highest four-dimensional rho index known to us at this time
is 0.825.) While some of these rules may be useful in practice, we feel that the
main contribution of this paper is theoretical, establishing the existence of such a
sequence.
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