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[1] Recent observations from the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) instrument aboard ENVISAT have brought
new insights in the global distribution of atmospheric methane. In particular, the
observations showed higher methane concentrations in the tropics than previously
assumed. Here, we analyze the SCIAMACHY observations and their implications for
emission estimates in detail using a four-dimensional variational (4D-Var) data
assimilation system. We focus on the period September to November 2003 and on the
South American continent, for which the satellite observations showed the largest
deviations from model simulations. In this set-up the advantages of the 4D-Var approach
and the zooming capability of the underlying TM5 atmospheric transport model are fully
exploited. After application of a latitude-dependent bias correction to the SCIAMACHY
observations, the assimilation system is able to accurately fit those observations, while
retaining consistency with a network of surface methane measurements. The main
emission increments resulting from the inversion are an increase in the tropics, a decrease
in South Asia, and a decrease at northern hemispheric high latitudes. The SCIAMACHY
observations yield considerable additional emission uncertainty reduction, particularly in
the (sub-)tropical regions, which are poorly constrained by the surface network. For
tropical South America, the inversion suggests more than a doubling of emissions
compared to the a priori during the 3 months considered. Extensive sensitivity
experiments, in which key assumptions of the inversion set-up are varied, show that this
finding is robust. Independent airborne observations in the Amazon basin support the
presence of considerable local methane sources. However, these observations also indicate
that emissions from eastern South America may be smaller than estimated from
SCIAMACHY observations. In this respect it must be realized that the bias correction
applied to the satellite observations does not take into account potential regional
systematic errors, which – if identified in the future – will lead to shifts in the overall
distribution of emission estimates.
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1. Introduction

[2] Since pre-industrial times, methane concentrations in
the atmosphere have more than doubled [e.g., Etheridge et
al., 1992]. This is important because methane is a strong
greenhouse gas and because it influences the oxidizing
capacity of the atmosphere. Despite considerable observa-
tional and modeling efforts, the magnitude of the various
methane sources and their spatial distribution remain poorly
known. Improved knowledge on emissions is required to
explain past trends and variability and to make predictions
for the future evolution of methane concentrations.
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[3] A powerful tool to narrow uncertainties in existing
bottom-up emission inventories is inverse modeling using
atmospheric observations. Regarding methane, inverse
modeling has so far almost exclusively been based on
surface observations, both weekly flask samples at �50
globally distributed remote sites [Hein et al., 1997;
Houweling et al., 1999; Mikaloff Fletcher et al., 2004;
Chen and Prinn, 2006; Bousquet et al., 2006] and quasi-
continuous in-situ measurements at a number of European
sites [Bergamaschi et al., 2005].
[4] Recently, satellite observations of atmospheric

methane became available from the Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) instrument on board ESA’s environmental
satellite ENVISAT [Buchwitz et al., 2005; Frankenberg et
al., 2005, 2006; Buchwitz et al., 2006]. These satellite
observations enabled for the first time the global mapping
of column-averaged atmospheric methane mixing ratios
with sensitivity down to the surface. Frankenberg et al.
[2005] found that in the tropics, a region that is poorly
covered by the surface measurement network, CH4 concen-
trations observed by SCIAMACHYare higher than assumed
previously. Frankenberg et al. [2006] presented a longer,
two-year, SCIAMACHY CH4 data set, showing that the
most pronounced tropical methane enhancements compared
to model simulations occur in the months September to
November. Bergamaschi et al. [2007] conducted synthesis
inversions, constraining continental-scale emissions by these
SCIAMACHYobservations.
[5] The goal of this paper is to go a step further by using

the four-dimensional variational (4D-Var) data assimilation
system presented in Meirink et al. [2008] to assess the
implications of SCIAMACHY observations for methane
emission estimates. The main advantage of the 4D-Var
system compared to the synthesis approach is that it can
both handle large volumes of observations and optimize a
large number of model parameters. This allows to optimize
emissions on the model grid scale rather than over large
regions, while at the same time the satellite observations can
be assimilated at high spatial and temporal resolution, thus
preserving information on synoptic scales contained in the
observations. Statistics of differences between observations
and optimized model simulations will be analyzed to give
an indication of observation errors.
[6] Motivated by the results of previous analyses of

SCIAMACHY observations mentioned above, inversions
are conducted for September to November 2003 and with a
special focus on the South American continent, using the
zooming capability of the TM5 atmospheric transport model
[Krol et al., 2005]. We investigate whether this zooming
helps to optimally exploit spatial variability in the SCIA-
MACHY observations for constraining emission rates. A
suite of sensitivity experiments are performed to assess the
robustness of the results to key assumptions and settings in
the inversion set-up. A comparison with independent air-
borne observations [Miller et al., 2007] is presented to
validate the optimized model simulations and thus indirectly
the SCIAMACHY observations.
[7] The paper is structured as follows. In section 2 the

model, observations and inversion set-up are outlined. Results
of the reference inversion are presented in section 3, and

sensitivity experiments in section 4. A comparison of the
inversion results with independent observations is performed
in section 5. Finally, the main conclusions are summarized in
section 6.

2. Method

2.1. Model

[8] The 4D-Var implementation as well as the underlying
atmospheric transport model TM5 and its adjoint have
been extensively discussed in Meirink et al. [2008]. Here
the main characteristics of our (inverse) modeling setup are
summarized.
[9] The TM5 model is a global offline chemistry–trans-

port model with two-way nested zooming capability [Krol
et al., 2005]. We use the methane tracer version as described
in Bergamaschi et al. [2007] in combination with its adjoint.
The model is operated on a basic horizontal resolution of
6� � 4� globally with the possibility to zoom to 1� � 1�
over regions of interest.
[10] 4D-Var is a variational data assimilation technique

that iteratively minimizes a cost function J as a function of a
control vector x:

J xð Þ ¼ 1

2
x� xb
� �T

B�1 x� xb
� �

þ 1

2
Hx� yð ÞTR�1 Hx� yð Þ:

ð1Þ

This cost function measures the difference between a
forward model simulation (operator H applied to the control
vector) and observations y available during the assimilation
time window (typically a month to a few years) and the
deviation of the control vector from its background (also
termed prior) estimate xb. Note that in equation (1) the time
dimension in the operator H and in the observation vector y
has not been denoted explicitly. In our case, the control
vector can be written as x = (s1

T, . . ., sm
T, cT, pT)T, where si are

monthly-mean grid-based surface emissions for source
category i and m is the number of source categories that
are distinguished, c is the three-dimensional concentration
field at the start of the assimilation window, and p contains
any additional parameters, as specified in section 2.3. R and
B are the error covariance matrices of y and xb, respectively.
The background error covariance matrix B is split into
spatial and temporal error correlation matrices as described
in Meirink et al. [2008]. Spatial correlations are modeled as
Gaussian functions of the distance between grid cells, with
correlation lengths Lsi for the various source categories and Lc
for the initial concentration field. Temporal correlations are
modeled as exponential functions of the time difference, with
correlation time scales tsi. Vertical correlations of errors in the
initial concentration field have been determined with the
National Meteorological Center (NMC) method as outlined in
Meirink et al. [2006].
[11] The minimization procedure involves iterative calcu-

lations of the cost function and its gradient, using the
forward and adjoint TM5 models, respectively. The actual
minimization algorithm is the same as employed in the
ECMWF 4D-Var system [Fisher and Courtier, 1995]. This
method produces estimates of the leading eigenvalues and
eigenvectors of the analysis (hereafter termed posterior)
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error covariance matrix. From this, the uncertainty reduction
of the control vector achieved by assimilating observations
can be calculated, defined here as 1 � s

a/sb, where sb and
s
a denote prior and posterior errors, respectively. It turns

out that a reduction in the norm of the cost function gradient
by about ten orders of magnitude is needed to reach
reasonable convergence of posterior error estimates. There-
fore we iterate our inversions to this point, even if much less
iterations would suffice to obtain stable estimates of poste-
rior emissions.

2.2. Observations

[12] We use satellite observations of CH4 from the
SCIAMACHY instrument. The observations have been
obtained with retrieval version V1.1, as described in
Frankenberg et al. [2006] and Bergamaschi et al. [2007].
In short, CH4 and CO2 column abundances are retrieved
from SCIAMACHY radiance measurements in neighboring
spectral regions in the near-infrared (fitting windows are
1631–1670 nm for CH4 and 1563–1585 nm for CO2).
Column-averaged methane mixing ratio observations are
obtained by taking the ratio of retrieved CH4 and CO2

columns, multiplied by column-averaged CO2 mixing ratios
simulated by the TM3-MPI 3.8 model [Heimann and
Körner, 2003]. We apply the same selection criteria for
valid observations as in Frankenberg et al. [2006] including
upper limits to the RMS residuals of the CH4 and CO2

retrievals and to the effective cloud-top height derived from
the CO2 column observation.
[13] The individual SCIAMACHY pixels are 30 km �

60 km. In this study, the original observations are averaged
on a regular 1� � 1� longitude–latitude grid. The observa-

tions are further averaged over 3-hourly assimilation time
windows. Since consecutive SCIAMACHY orbits do not
overlap for sub-polar latitudes (full global coverage is
reached in six days), this basically means that no temporal
averaging is performed. This is different from Bergamaschi
et al. [2007], who used monthly averages. To produce
observation equivalents, modeled CH4 fields are interpolat-
ed from the model resolution to a 1� � 1� grid, and
vertically integrated using the averaging kernels shown in
Frankenberg et al. [2006].
[14] Methane surface observations from the NOAA ESRL

global cooperative air sampling network [Dlugokencky et al.,
1994, 2003] are also assimilated in 3-hourly assimilation
windows. These observations are on the NOAA2004
methane dry-air mole fraction scale [Dlugokencky et al.,
2005]. Since the global model domain has a relatively
coarse resolution of 6� � 4�, it is difficult to simulate
measurements in the vicinity of emission regions. Therefore
only flask measurements from 32 marine and continental
background sites, as listed in Table 1 of Bergamaschi et al.
[2007], are used. The selected sites are also indicated in
Figure 1.
[15] The uncertainty of the SCIAMACHYobservations is

fixed at 1.5% as in Bergamaschi et al. [2007]. This value
accounts for unknown regional systematic errors rather than
the random error which would be generally smaller
[Bergamaschi et al., 2007; Frankenberg et al., 2006]
(see also section 3.3). The measurement error for surface
observations is assumed to be 3 ppb, in addition to which an
estimate of the representativeness error is included, based
on the 3D model gradient from the prior simulation

Figure 1. Locations of regions and sites used in this study. NOAA-ESRL measurement sites are
indicated by solid dots. South American airborne measurement sites (SAN, MAN, FTL) are represented
by open dots. Regions which are analyzed in detail in this study (EXNH (extratropical NH), Tropical
South America, Tropical Africa, Sahara, and South Asia) are indicated by grey boxes. For South Asia a
small region is used for analysis of SCIAMACHY observations, while a large region is used for analysis
of emissions. Finally, the zoom regions of the TM5 model (sam3�2 and sam1�1) are shown.
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[Bergamaschi et al., 2005]. All observation errors are
assumed to be uncorrelated, i.e., R is diagonal.

2.3. Inversion Set-Up

[16] In this paper we investigate a three-month period
(September–November 2003), in which SCIAMACHY
observed high methane concentrations over large parts of
the tropics and in particular over South America
[Frankenberg et al., 2005, 2006]. 4D-Var is a particularly
attractive tool for assimilating a large number of observa-
tions in combination with a large control vector, as is the
case here. Furthermore, the zoom option of TM5 is useful
here to analyze the South American continent in detail.
[17] The TM5model is run at a global resolution of 6�� 4�

with zooming via 3� � 2� to 1� � 1� nested grids over South
America as depicted in Figure 1. The inversions start at
1 September 2003 and continue until 10 December 2003.
The beginning of December is included because the
SCIAMACHY observations in this period contain infor-
mation on emissions for November. Emissions for
December are optimized but not reported in this paper.
[18] The prior emissions in this study are identical to the

prior emissions used in the ‘JK’ scenario of Bergamaschi et
al. [2007]. We refer to Tables 2 and 3 of that paper for a
description of the applied bottom-up inventories and result-
ing yearly total emissions for the 11 source categories
distinguished. For most categories the a priori uncertainty
of monthly grid-scale emissions is assumed to be 50%. For
enteric fermentation a lower uncertainty of 30% is applied,
while for wetlands and biomass burning a higher uncertainty
of 80% is used. Information on spatial correlations of
emission errors is generally lacking. Therefore we specify
spatial error correlations simply by Gaussian functions of
distance. The correlation lengths Lsi are set to 500 km for all
categories. This length scale can be interpreted as the
effective spatial scale at which emissions are optimized.
Emission errors are assumed to be strongly correlated in
time, since most bottom-up inventories are in fact yearly
data sets. Therefore temporal error correlations are specified
by exponential functions with correlation lengths tsi

of
9.5 months, corresponding to a rather high month-to-month
correlation of 0.9. Exceptions are the source categories
wetlands, rice cultivation and biomass burning, for which
temporal error correlations are set to zero, because emis-
sions (and thus presumably errors in emissions) from these
categories vary strongly in time. Errors in emissions from
different categories are assumed to be uncorrelated. The
prior initial concentration field comes from an inversion
using only surface observations over 2003. Prior errors in
the initial concentration field vary with altitude but are
typically 10 ppb in the troposphere. The horizontal spatial
error correlation length Lc is assumed to be 500 km.
[19] The control vector x consists of emissions for 11 source

categories and 4 months and the initial concentration distri-
bution. Furthermore, a parameter vector p is included, which
contains 3 coefficients per month describing an assumed
bias in the SCIAMACHY observations as a second-order
polynomial in latitude. The coefficients have no a priori
constraints. This large-scale bias correction was introduced
by Bergamaschi et al. [2007] in order to reconcile the
SCIAMACHYobservations with model simulations that were
consistent with the NOAA-ESRL surface measurements. The

motivation for assuming a month- and latitude-dependent bias
is that a number of potential causes of systematic errors, e.g.,
errors in CH4 spectroscopy, lead to a bias in the observations
that is proportional to the air-mass factor, which is in turn a
function of the solar zenith angle and thus of latitude and
month. Many other potential sources of systematic errors exist
(for example aerosols; see also Bergamaschi et al. for a
detailed discussion), which cannot be described as a function
of latitude. Moreover, there may also be systematic errors
in the model. However, since the origin of biases in the
SCIAMACHY observations is unclear at the moment, we
have chosen to stick to the present rather simple bias model. It
should be realized that unresolved biases in the observations
directly lead to biases in derived emission estimates.
[20] Observations and their errors are as described in

section 2.2. In total, �105 satellite observations and �400
surface observations are assimilated, compared to a control
vector dimension of�4� 104. The inversions are carried out
in two cycles. In the second cycle only those observations are
assimilated that differ by less than three times the observation
error from the posterior model simulation of the first cycle.
[21] Apart from the inversion scenario as described above

(termed I1), a number of sensitivity inversions (I2 to I11)
have been performed. These are described in Table 1.

3. Results From the Reference Inversion

3.1. Convergence

[22] In Meirink et al. [2008] the convergence of the 4D-
Var system is discussed in detail. However, this is for a case
in which only a small number of surface observations were
assimilated. The addition of SCIAMACHY data gives many
more constraints to the inversion. Thus it is expected that
more iterations in the minimization procedure are needed
before convergence is reached. Convergence in the refer-
ence scenario I1 is reached in 48 iterations, indeed more
than the 32 iterations needed for an analogous inversion
with only surface observations (scenario I2), but not much
more.
[23] Figure 2 shows the convergence characteristics for

inversion scenario I1, which is typical for a case with satellite
data. The largest eigenvalue (which is the condition number
of the Hessian matrix) is 108, 4 orders of magnitude larger
than in scenario I2, reflecting the much larger number of
assimilated observations. At 12 iterations, there is a sudden
downward jump of the eigenvalues. This number corre-
sponds exactly to the number of bias parameters (3 polyno-
mial coefficients for 4 months) in the control vector. These
parameters can be considered as large-scale patterns, which
are very well constrained by the combined use of satellite and
surface observations. They are associated with large eigen-
values, and are determined in the first 12 iterations. In
subsequent iterations, the emissions are optimized, as is
clearly visible in Figure 2c, showing the convergence of the
uncertainty reduction of emissions aggregated over the globe,
all months, and all categories. Indeed, this uncertainty reduc-
tion is zero in the first 12 iterations, and converges in
subsequent iterations toward a value of 0.66.

3.2. Emissions

[24] The optimized emissions resulting from the inversion
are plotted in Figure 3. The most notable features are a

D17301 MEIRINK ET AL.: INVERSE MODELING OF METHANE EMISSIONS

4 of 20

D17301



decrease in emissions from South Asia, an increase in
emissions from the tropics, and a decrease in emissions
from northern hemispheric (NH) high latitudes. In Figure
4 the emission increments are shown for 3 out of the 11
source categories distinguished. Wetlands constitute glob-
ally the largest (and most uncertain) methane source.
Therefore the bulk of the emission increments are attrib-
uted to this source. Both the enhancements in the tropics
and the decreases at high NH latitudes are mainly related
to wetland emissions. In South Asia, rice cultivation is the
most important methane source in this part of the year.
The strong decrease in emissions from rice cultivation
resulting from the inversion is related to the specific time
period chosen in our inversion. In a 1-year inversion, the
total rice emissions are not much reduced but rather the
timing is changed, such that emissions peak earlier in
the year [see Bergamaschi et al., 2007]. In South Amer-
ica, biomass burning is, after wetlands, the most important
source in the months September through November.
Biomass burning emissions are strongly enhanced in the
inversion. Apart from the three categories shown in Figure
4 other categories contribute regionally to the emission
increments. For example, the decreases in the Middle East
are related to oil and gas production, the decreases in East
China are attributed to waste handling, and the 1-grid-cell
increase near Novosibirsk (Siberia) is related to coal
mining. It should be noted that the observations cannot
distinguish between methane emitted by the various
source categories. Thus attribution to different source
categories relies on the assumed prior spatio-temporal
emission error distributions.
[25] The satellite observations have a modest effect on the

estimated global total emissions (Table 2). However, on
regional/continental scales they induce large increments. For
example, the total emissions from tropical South America
increase from 10.0 Tg CH4 a priori to 21.1 Tg CH4 a
posteriori. Other regions, e.g., South Asia, show reductions
in emissions of similar magnitude. In our inversions, the
surface fluxes are not forced to remain positive. Indeed,
negative (significantly lower than zero) posterior emissions
are derived for some grid boxes (Figure 3), which may
either point to regional systematic errors in the satellite

observations or to model biases, e.g., in transport or in the
prior emission distributions.

3.3. Comparison With SCIAMACHY Observations

3.3.1. Spatial Distribution
[26] The global distribution of the number of assimilated

SCIAMACHY observations is far from homogeneous
(Figure 5). The largest amounts of valid observations are
located over regions with a high surface albedo and few
clouds, particularly deserts. At high latitudes the large solar
zenith angle hampers retrieval, over dark surfaces (such as
forests) the signal-to-noise ratio is often too low, and over
the ocean a useful retrieval can only be performed if the
ground scene is covered with low clouds which have a
high albedo.
[27] As mentioned before, the SCIAMACHY observa-

tions are corrected for a latitude-dependent bias, which is
estimated in the inversion procedure. The resulting bias
estimates are shown in Figure 6. These bias functions are
mainly determined by the regions with a high density of
observations, notably the deserts. Our approach to estimate

Table 1. Description of Sensitivity Inversions

I1 reference inversion (see text)
I2 only surface observations assimilated (no SCIAMACHY)
I3 75 Tg yr�1 prior wetland emissions replaced by vegetation

emissions as recently observed by Keppler et al. [2006]
and following the inventory by Houweling et al. [2006]

I4 OH distribution from Spivakovsky et al. [2000]
instead of Bergamaschi et al. [2007]

I5 CO2 distribution for normalizing SCIAMACHY measured CH4/CO2

ratios taken from CarbonTracker [Peters et al., 2007]
instead of TM3-MPI 3.8

I6 SCIAMACHY uncertainty 1.2% instead of 1.5%
I7 prior error correlation lengths Lsi and Lc set to 1000 km

instead of 500 km
I8 initial concentration field not optimized
I9 no zooming over South America
I10 2004 instead of 2003
I11 2004 instead of 2003 and only surface

observations assimilated (no SCIAMACHY)

Figure 2. Convergence of the 4D-Var minimization for
inversion scenario I1. As a function of iteration the
following are shown: (a) the log of the norm of the cost
function gradient relative to the prior simulation, (b) the log
of the eigenvalue of the Hessian, and (c) the uncertainty
reduction of emissions aggregated over the globe, all
months, and all categories.
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only three polynomial coefficients per month, in combina-
tion with the wealth of satellite data and an accurate
reference provided by the surface observations, leads to a
very well constrained bias correction with posterior uncer-
tainties of only a few ppb. The bias corrections are very
similar to those obtained in Bergamaschi et al. [2007] (see
their Figure 6 where prior to the inversion the SCIAMACHY
observations had been scaled by a factor 0.98, which
explains the different offset). The corrections are substan-
tial, and the difference between the estimates for November
and September/October is quite large. This might indicate

that the time resolution of the applied bias correction is not
high enough. Given the rather ad-hoc and empirical char-
acter of the bias model, some interference of the bias
correction with the estimated emissions is to be expected.
However, since the exact underlying physical processes
have not yet been unambiguously identified, we stick to
the present relatively simple approach.
[28] Figure 7 shows a comparison of SCIAMACHY

observations with prior and posterior model simulations.
The bias-corrected observations and prior model simulation
are similar to the plots presented in Frankenberg et al.

Figure 3. Emissions from September to November 2003 for reference inversion (scenario I1): (top) a
priori, (middle) a posteriori, and (bottom) a posteriori � a priori increment. The (left) global maps are on
6� � 4� resolution; the (right) maps of South America are on 1� � 1� resolution. Units are mg m�2 day�1.
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[2005], although in that study different retrieval and model
versions were used, and the bias correction consisted of a
single global scaling factor applied to the SCIAMACHY
observations. The largest differences are present in the
tropics, where the model underestimates the observed con-
centrations, and in South Asia, where the model over-
estimates the observations. The assimilation corrects most
of these differences, resulting in a generally very good
agreement between the observations and the posterior
simulation. Concentration differences between posterior
and prior model simulations range from �50 ppb in South
Asia to +50 ppb in South America.

[29] The synthesis inversion of Bergamaschi et al. [2007]
could not effectively match the small-scale patterns in the
SCIAMACHYobservations in South America in the second
half of the year (see their Figure 10). The overall good fit of
the SCIAMACHY data obtained in the present inversion
can be attributed to the grid-based inversion approach,
which clearly illustrates the power of 4D-Var.
[30] There are two types of locations where the posterior

simulation still differs substantially from the observations.
First, over large mountains such as the Himalayas and the
Andes, the modeled concentrations remain much lower than
observed. This is likely due to systematic errors in the

Figure 4. Emission increments for three source categories: (top) wetlands, (middle) rice cultivation, and
(bottom) biomass burning. The (left) global maps are on 6� � 4� resolution; the (right) maps of South
America are on 1� � 1� resolution.
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retrievals for large surface elevations, since elevation infor-
mation was not included in the prior [see also Bergamaschi
et al., 2007]. Second, over the oceans the model generally
shows higher concentrations than observed. This might
point to a land–ocean bias related to the fact that retrievals
over the ocean are solely possible in the presence of (low)
clouds or sun glint. However, it should be noted that the
derived bias correction is dominated by the land retrievals.
Hence any systematic error over land (e.g., due to aerosols)
would also lead to a systematic land–ocean difference.
3.3.2. Regional Statistics and Time Series
[31] In Figure 8 observations and model simulations are

compared in terms of histograms for specific regions
defined in Figure 1 (the regions are the same as analyzed
by Frankenberg et al. [2006]). In general it should be noted
that the histograms are approximated well by Gaussian
distributions. This gives confidence in the Gaussian treat-
ment of observation errors in the assimilation system,
although the requirement of unbiased observation errors is
clearly not met.

[32] The Sahara is a region where high-precision obser-
vations can be obtained because of cloud-free conditions
and a high surface albedo. The occurrence of dense dust
aerosol loadings in the atmosphere could deteriorate the
precision of the observations, although Frankenberg et al.
[2006] showed that the ratio of retrieved CH4 and CO2

columns, which we use as observations, is relatively weakly
affected by the presence of aerosols. As can be seen in
Figure 8, the standard deviation between model (both prior
and posterior) and observations is about 11.5 ppb (�0.7%).
Assuming that model (including emission) errors and rep-
resentativity errors play a minor role here, this number can
be interpreted as the precision (random error) of 3-hourly-
and 1� � 1�-averaged SCIAMACHY observations under
near-optimal conditions. Since the gridded SCIAMACHY
observations correspond on average to about 2 individual
observations, this would translate to a precision of approx-
imately

ffiffiffi

2
p

� 0.7% = 1% for the latter, consistent with the
estimate of Frankenberg et al. [2006]. The SCIAMACHY
bias at this latitude is estimated to be 42.5 ppb, i.e., almost

Table 2. Prior and Posterior Emissions From September to November (Tg CH4) and Uncertainty Reduction for Selected Regions (see

Figure 1) and for Inversion Scenarios I1 to I11 as Described in Table 1

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

Globe prior 127.9 127.9 129.3 127.9 127.9 127.9 127.9 127.9 127.9 127.9 127.9
posterior 128.4 127.6 130.4 136.2 127.9 129.8 132.8 128.0 130.4 128.1 119.0
uncertainty reduction 0.66 0.51 0.60 0.64 0.61 0.66 0.80 0.66 0.67 0.70 0.53

EXNH prior 47.9 47.9 45.2 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9
posterior 33.8 38.9 34.3 33.7 34.8 32.7 32.0 33.7 33.7 28.8 34.0
uncertainty reduction 0.84 0.73 0.61 0.85 0.85 0.92 0.83 0.84 0.80 0.74 0.68

Tropical South America prior 10.0 10.0 10.7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
posterior 21.1 13.2 20.9 23.5 19.9 21.5 21.7 21.2 21.6 21.5 12.5
uncertainty reduction 0.67 0.19 0.46 0.58 0.65 0.65 0.75 0.65 0.60 0.66 0.13

Tropical Africa prior 8.8 8.8 9.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8
posterior 19.1 14.1 19.8 21.2 18.6 20.0 21.0 19.2 19.3 21.3 13.7
uncertainty reduction 0.61 0.20 0.65 0.60 0.61 0.63 0.70 0.61 0.62 0.66 0.15

South Asia prior 40.8 40.8 42.0 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40.8
posterior 24.4 37.5 24.8 24.0 25.6 24.6 24.4 24.2 24.7 25.7 34.8
uncertainty reduction 0.81 0.31 0.83 0.82 0.77 0.78 0.83 0.81 0.80 0.83 0.32

Figure 5. Number of assimilated SCIAMACHY observations per 1� � 1� grid box from 1 September
until 1 December 2003.
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2.5%. Note again that this bias correction largely replaces
the global scaling factors applied in Frankenberg et al.
[2005] and Frankenberg et al. [2006] Since the Sahara is
relatively far away from emission regions, the histograms of
bias-corrected observations minus prior and posterior model
simulations are almost identical.
[33] Tropical South America is characterized by standard

deviations of 22–24 ppb, twice as large as over the Sahara,
pointing to an observation precision better than 1.3%
(translating to �1.8% for individual observations). This is
still lower than our prior observation error estimate of 1.5%,
but that estimate was meant to partly reflect regional
systematic errors as well. The a priori difference between
observations and model over South America is very large
(77 ppb). The inversion attributes this partly (45 ppb) to a
bias in the SCIAMACHY observations and partly (26 ppb)
to an underestimate of emissions in the model. As a result, a
posterior mismatch of only 5 ppb remains. The changes in
emissions also lead to a small (2 ppb) reduction of the
standard deviation.
[34] For South Asia, the situation is different. After bias

correction, the model strongly overestimates the observa-
tions, which is corrected by lowering the emissions, leading
to a 23 ppb decrease in modeled concentrations and a
virtually vanishing posterior bias. The improvement in
terms of standard deviation is about 4 ppb, thus better than
for tropical South America.
[35] Finally, for tropical Africa the observation–model

difference largely vanishes after the bias correction. The
emission increments do not have a large impact on the mean
concentration over the region. This seems at odds with the
strong enhancements seen in Figure 7, but can be explained
by the fact that most observations are located in the north
and east of the region, where concentration increments are
small. Related to the heterogeneity of the region is the
relatively large (6 ppb) reduction in the observation–model
standard deviation due to optimized emissions.
[36] In Figure 9, the measured and modeled concentra-

tions are averaged over the same large regions and plotted
as a time series. For the Sahara, the model and observations

are on average in good agreement, but the observations
show variations of about 20 ppb, which are much weaker in
the model simulations. We verified that these variations in
the observations are not related to the specific part of the
region covered by observations on a certain day. At this
point it is unclear whether the variations are real or an
observational artifact, e.g., related to aerosols.
[37] For tropical South America, the estimated increase in

emissions leads to an increase in modeled concentrations of
about 25–30 ppb during most of the assimilation period,
except for the beginning of September, when the prior
model simulation is already in reasonable agreement with
the observations. The considerable day-to-day variability in
the observations (10–20 ppb) is fairly well reproduced by
the inversion.
[38] In South Asia both the SCIAMACHY observations

and the model show a decrease in CH4 concentrations
during the assimilation period. This decrease corresponds
to a return to ‘background’ conditions after a large CH4

emission pulse from rice cultivation. However, our prior
estimate still has considerable rice emissions in September
and October [see also Frankenberg et al., 2006; Bergamaschi
et al., 2007], which are strongly reduced in the inversion to
reproduce the satellite observations.
[39] Finally, for tropical Africa observed concentrations

are higher than the prior model simulation in the first two
months, which is corrected by enhanced posterior emis-
sions. The inversion seems to underestimate the satellite
observations severely in the beginning of September, but
there are only few observations in this period, which hardly
constitute a constraint in the inversion.

4. Sensitivity Experiments

[40] In this section, sensitivity experiments are presented
in which potentially important assumptions and settings in
the inversion set-up are modified. This gives an indication
of the robustness of the results. An overview of the
sensitivity inversions is given in Table 1. Emissions and
chi-squared statistics resulting from the sensitivity experi-
ments are presented in Tables 2 and 3, respectively.

4.1. Emissions

[41] The largest modification to the reference scenario
I1 is made in scenario I2, in which the SCIAMACHY
observations are withdrawn from the inversion. From
these experiments a consistent picture of the impact of
SCIAMACHY observations emerges. On the (sub-)conti-
nental scale, the emission increments in inversions I1 and I2
have the same sign (increased emissions in the tropics;
decreased emissions at NH high latitudes and in the rice
areas in South Asia), but the increments are greatly magni-
fied when SCIAMACHY observations are included. For
2004 (scenarios I10 and I11) qualitatively very similar
emission increments are obtained, suggesting that interan-
nual variability of the main regional features is relatively
small. The surface observations suggest considerably lower
global total emissions in 2004 than in 2003 (emission
increments are �0.3 and �8.9 Tg CH4 in scenarios I2
and I11, respectively). In contrast, the inversions with
SCIAMACHY observations yield negligible global emis-
sion increments for both 2003 and 2004 (0.5 and 0.2 Tg

Figure 6. Estimate of monthly bias in SCIAMACHY
observations. The bias is modeled as a second-order
polynomial function in latitude.
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Figure 7. Column-averaged CH4 mixing ratios from (top) SCIAMACHY observations, (second row)
model a priori, (third row) a posteriori, (fourth row) observations minus a posteriori, and (bottom) a
posteriori minus a priori. Observations are corrected for a bias as shown in Figure 6. Observations and
model output are averaged over the months September through November 2003 and binned on a 1� � 1�
grid. Units are ppb.
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CH4 in scenarios I1 and I10, respectively). This result is
hard to interpret since the global increment is the net
aggregation of considerable regional increases and
decreases, and the bias correction to the satellite data could
also play a role in the exact outcome.
[42] Scenarios I3 to I9 were designed to check the impact

of a broad range of assumptions and settings in the reference
inversion I1. It is reassuring that on the (sub-)continental
scale the emission increments obtained from all perturbed
inversions are much closer to scenario I1 than to I2,
demonstrating that the impact of SCIAMACHY observa-
tions as described above is not just an artifact related to one
of the assumptions tested here. Analyzing the emission
increments in more detail, we can certainly find some
differences. For example, scenario I4, in which an alterna-
tive OH distribution from Spivakovsky et al. [2000] is
applied, yields significantly larger global total emissions,
resulting mainly from larger tropical emissions. This result
is readily explained by the fact that the Spivakovsky et al.
OH field has much higher concentrations over the tropical
continents than our reference OH field. A second example is
the larger emission increments estimated in experiment I7.
The larger error correlation lengths applied in this experi-
ment lead to both stronger reductions in the NH high
latitudes and stronger enhancements in the tropics, espe-

cially in Africa. The likely explanation is that, since the
same grid-scale prior uncertainties have been used, aggre-
gated prior uncertainties are larger in I7 than in I1, thus
allowing larger emission increments.
[43] Figure 10 shows the spatial distribution of emissions

increments for three sensitivity inversions. They should be
compared to the reference inversion I1 (Figure 3c). First of all,
leaving out the SCIAMACHY observations (scenario I2)
strongly influences emissions in the tropics and South Asia.
Emissions at higher NH latitudes are much less affected.
Indeed, at high latitudes the surface fluxes are relatively
more constrained by the surface observations (see below).
The second plot shows an inversion with emissions from
vegetation (scenario I3), as recently discovered by Keppler
et al. [2006] but later questioned by Dueck et al. [2007].
The vegetation emissions are modeled as in Houweling et
al. [2006], proportional to leaf area index and monthly-
mean NO2 photolysis rates, and replace part of the a priori
wetland emissions. Scenario I3 yields generally somewhat
smaller increments than the reference inversion. This is
because the total prior emissions in I3 are higher in the
tropics and lower at NH high latitudes. Therefore smaller
adjustments are needed to match the satellite observations.
Also, the distribution of vegetation emissions is more
spatially homogeneous compared to wetlands, thus yielding

Figure 8. Histograms of SCIAMACHY-minus-model differences over (a) the Sahara, (b) tropical South
America, (c) South Asia, and (d) tropical Africa. Green lines show uncorrected SCIAMACHY
observations minus a priori model simulation, blue lines show bias-corrected observations minus a priori
model simulation, and red lines show bias-corrected observations minus a posteriori model simulation.
The histograms have been normalized relative to the concentration bin with the largest number of
observations. Gaussian fits to the histograms are represented by solid lines. For each region, the total
number of assimilated observations and the observation-minus-model bias and standard deviation are
indicated in the plots.
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Figure 9. Time series of (black) SCIAMACHY bias-corrected observations, (blue) prior model
simulation and (red) posterior model simulation, averaged over (a) the Sahara, (b) tropical South
America, (c) South Asia, and (d) tropical Africa. The symbols show daily means. The solid lines,
representing 10-day running averages, have been added as a guide to the eye.
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more homogeneous emission increments. Finally, scenario
I10 produces qualitatively the same picture as the reference
inversion, but there are many differences in the details. For
example, the positive flux increment near Novosibirsk is
much weaker in the 2004 inversion and the enhancements in
central Brazil are weaker and more spatially spread out. This
suggests that there is indeed some interannual variability on
regional scales, but the main global emission patterns as
observed by SCIAMACHY and the surface network are
similar in 2003 and 2004.

4.2. Uncertainty Reduction

[44] We now turn our attention to the posterior uncertain-
ties estimated by the 4D-Var algorithm. Figure 11 shows
that grid-scale uncertainty reductions in the reference inver-
sion go up to around 50% for some grid boxes, and are
highest in the tropics and South Asia. In South America six
more or less separate regions with visible uncertainty
reductions can be distinguished. Two of those regions (just
north of Bolivia and near the north coast of Brazil) are
related to biomass burning, the others to wetland emissions.
These six regions are characterized by high prior emission
rates, and consequently large prior uncertainties (cf. Figure 3).
However, they are not (strictly) the regions where the largest
emission increments occur. For example, large emission
increments are present in North-East Venezuela, but their
associated uncertainty reduction is small.

[45] When SCIAMACHY observations are withdrawn
from the assimilation (scenario I2), the grid-scale uncertain-
ty reduction in the tropics and South Asia is reduced to
almost zero. At the NH high latitudes, surface observations
give the main constraint, resulting in similar posterior error
estimates with and without SCIAMACHY observations.
The uncertainty reduction is at some locations (e.g., Alaska)
even larger in scenario I2 than in I1. The probable expla-
nation for this feature is that inversion I1 first optimizes the
large-scale patterns in the satellite observations. Small-scale
uncertainty reductions around some surface stations are not
yet obtained within the number of iterations performed.
[46] Estimates of the uncertainty reductions aggregated

over large regions converge much faster, and these estimates
are reasonably robust after about 40 iterations Table 2 lists
the uncertainty reductions over 5 different large regions for
all sensitivity inversions. This again shows that the added
value of SCIAMACHY is highest in the tropics (e.g.,
uncertainty reduction increases from 0.19 to 0.67 over
tropical South America by adding SCIAMACHY observa-
tions), and is modest at higher latitudes (e.g., uncertainty
reduction increases from 0.73 to 0.84 in ‘‘EXNH’’), and on
the global scale (increase from 0.51 to 0.66).
[47] The estimates of uncertainty reduction for scenarios

I3 to I9 are generally similar to I1. There is one exception:
experiment I7, which has larger a priori error correlation
lengths, yields generally larger uncertainty reduction. There
are two reasons for this. Most importantly, as noted in

Table 3. c
2/n Statistics with Respect to Surface and SCIAMACHY Observations for Selected Regions (Figure 1) and for Inversion

Scenarios I1 to I11 Described in Table 1a

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

Surface Globe n 1 400 400 400 400 400 400 400 400 400 385 385
prior 1 7.54 7.54 5.12 9.29 7.54 7.54 7.54 7.54 6.97 9.59 9.59
post. 1 1.99 1.82 2.21 1.95 1.91 2.16 2.05 2.09 1.76 1.60 1.17
nout 1 19 10 21 17 15 21 18 23 13 12 7
post. 2 1.17 1.20 1.28 1.19 1.17 1.24 1.18 1.16 1.18 1.17 0.96

SCIA Globe n 1 98190 98190 98190 98190 98186 98190 98190 98190 130719
prior 1 0.96 0.95 1.05 0.90 1.52 0.97 0.97 0.97 0.99
post. 1 0.63 0.63 0.63 0.62 0.97 0.62 0.64 0.62 0.62
nout 1 237 230 237 226 866 227 238 226 322
post. 2 0.60 0.60 0.60 0.60 0.86 0.59 0.61 0.59 0.59

SCIA Sahara n 1 2308 2308 2308 2308 2308 2308 2308 2308 3448
prior 1 0.22 0.22 0.20 0.21 0.33 0.20 0.22 0.21 0.17
post. 1 0.19 0.19 0.19 0.19 0.29 0.19 0.19 0.19 0.15
nout 1 0 0 0 0 0 0 0 0 1
post. 2 0.19 0.19 0.19 0.19 0.29 0.19 0.19 0.19 0.14

SCIA Tropical South America n 1 4256 4256 4256 4256 4256 4256 4256 4256 6611
prior 1 2.13 2.02 2.89 1.84 3.44 2.23 2.15 2.25 1.94
post. 1 0.72 0.71 0.74 0.71 1.08 0.71 0.72 0.70 0.75
nout 1 7 4 8 7 38 7 7 5 16
post. 2 0.70 0.69 0.71 0.69 0.98 0.68 0.70 0.68 0.68

SCIA tropical Africa n 1 9557 9557 9557 9557 9557 9557 9557 9557 12106
prior 1 1.06 1.03 1.23 0.96 1.68 1.09 1.06 1.09 1.21
post. 1 0.61 0.60 0.62 0.59 0.91 0.57 0.62 0.62 0.64
nout 1 11 11 11 10 47 10 11 11 17
post. 2 0.60 0.58 0.60 0.58 0.85 0.56 0.60 0.60 0.62

SCIA South Asia n 1 2647 2647 2647 2647 2647 2647 2647 2647 2820
prior 1 2.68 2.76 2.60 2.57 4.14 2.59 2.68 2.65 2.77
post. 1 0.89 0.89 0.89 0.90 1.37 0.91 0.89 0.89 0.95
nout 1 9 9 10 10 50 9 9 9 24
post. 2 0.85 0.85 0.85 0.85 1.17 0.86 0.85 0.85 0.86

a‘‘n 1’’ and ‘‘nout 1’’ are the number of assimilated observations and the number of posterior outlier observations (posterior model simulation and
observation differ more than three times the observation error) in the first inversion cycle, respectively. ‘‘prior 1’’ and ‘‘post. 1’’ are the a priori and a
posteriori c2/n in the first inversion cycle, respectively. ‘‘post. 2’’ is the a posteriori c2/n in the second cycle. For the calculation of all c2/n with respect
to SCIAMACHY, the bias-corrected observations are used.
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section 4.1, the (aggregated) prior errors are larger in I7,
thus leaving more room for error reduction. Secondly, the
region of influence of the observations is larger in I7, so that
they effectively constrain the emissions in more grid cells.
Figure 11 shows that the global locations of uncertainty
reduction are the same in inversions I1 and I7, but in
scenario I7 the values are larger and the patterns are more
spatially extended. For example, in South America the six
separate regions with significant uncertainty reduction in I1
merge to two or three larger regions in I7. A lesson to be
learned from these sensitivity inversions is that calculated

uncertainty reductions depend strongly on prior assump-
tions. This should be considered when conclusions are
drawn with respect to the information on emission rates
present in the observations.

4.3. Fit to Observations

[48] The fit to the observations is measured by the chi-
squared, defined here as:

c
2 ¼

X

n

i¼1

Hxð Þi�yi
� �

syi

� �2

; ð2Þ

Figure 10. A posteriori � a priori emission increments for three sensitivity inversions: (top) I2 with
only surface observations assimilated, (middle) I3 with part of wetland prior emissions replaced by
vegetation emissions, and (bottom) I10 which covers the year 2004 instead of 2003. (left) The global
maps are on 6� � 4� resolution; (right) the maps of South America are on 1� � 1� resolution.
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where syi
is the uncertainty of observation yi in a subset

of observations with size n. Substitution of x
b and x

a

yields the a priori and a posteriori chi-squared, respectively.
Values of c

2/n with respect to surface observations and
SCIAMACHYobservations for a number of regions and for
the different sensitivity inversions are presented in Table 3.
In an optimal inversion, the a posteriori c2/n, as defined in
equation (2), should be somewhat smaller than 1, depending
on the contribution of the background term in the cost
function to the overall chi-squared [see the discussion in
Meirink et al., 2008].

[49] From Table 3 it appears that the surface observations
are overall poorly reproduced by the prior model simula-
tions. However, this poor performance is mainly related to a
number of sites at high NH latitudes, where the prior
wetland emissions are too high during the first part of the
assimilation period. Most other stations show c

2/n not far
from 1. In the posterior simulations the optimized emissions
lead to a much better fit of the observations. For example,
in scenario I2, with only surface observations assimilated,
c
2/n drops to 1.82 in the first inversion cycle. Adding

SCIAMACHY observations (scenario I1) degrades c
2/n

Figure 11. Uncertainty reduction for the (top) reference inversion I1, (middle) inversion I2 using only
surface observations, and (bottom) inversion I7 using larger prior error correlation lengths. Uncertainty
reductions have been aggregated over September to November and over all source categories. The South
American zoom region has been masked in the global plots on the left and is shown in separate plots on
the right.
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only slightly (to 1.99). Thus the system is able to obtain a
reasonable fit to the surface observations, while also match-
ing the SCIAMACHY observations, which would not have
been possible without a satellite data bias correction. In the
second inversion cycle, c

2/n is further reduced because
posterior outliers from the first cycle have been removed.
This leads to the paradoxical result that c2/n is lower in
scenario I1 than in I2. However, this is solely due to the
larger number of measurements appointed as outliers in the
first cycle of scenario I1.
[50] The global posterior c

2/n with respect to the
SCIAMACHY observations is around 0.6. For regions with
few clouds and a high surface albedo, such as the Sahara,
the posterior c

2/n reaches even much lower values of
around 0.2. Thus in particular for such regions, the assumed
observation error of 1.5% appears to be a clear overesti-
mate, while elsewhere this assumption seems reasonable.
However, as mentioned in section 2.2, the prior estimate of
1.5% was meant to reflect regional systematic errors rather
than just random errors. In synthetic inversion experiments
by Chevallier [2007] this approach to take systematic
observation errors into account came out as preferable to
a number of other approaches, i.e., it lead to the best
correspondence between optimized and true emissions. In
scenario I6 the observation error is decreased to 1.2%. This
leads to expected increases in c

2/n, and a value of twice the
total posterior cost function (including background term)
which exactly equals the number of observations. However,
from Table 2 it is evident that this change in the assumed
SCIAMACHY observation error has very little impact on
the optimized emissions. A further refinement of observa-
tion error estimates will be introduced in future work but the
impact on derived emissions may be limited.
[51] The other sensitivity inversions in which SCIAMACHY

observations are assimilated (scenarios I3 to I5 and I7 to
I10) all achieve a virtually identical posterior fit to those
observations, even if the prior chi-squared varies somewhat
among the scenarios. With respect to the surface observa-
tions, the prior and posterior chi-squared show more varia-
tion. The largest outlier is experiment I3, in which part of the
wetland emissions have been replaced by vegetation emis-
sions. In the prior simulation a betterc2/n is obtained because
part of the too-high boreal wetland emissions have been
removed. In contrast, the posterior c2/n is worse, meaning
that the additional prior vegetation emission pattern does not
imply improved consistency with the surface observations.
[52] Two surprising features regarding the inversion with-

out zoom over South America (scenario I9) emerge from
Table 3. First, not zooming yields a lower c2/n with respect
to surface observations. This, however, is an artifact of the
modeling of the representativity error by the 3D-model
gradient at a surface station. Two stations, RPB and ASC,
are located in the zoom region, resulting in much smaller –
probably too small – representativity errors, and conse-
quently larger c2/n in the reference inversion compared to
the no-zoom inversion. Second, over tropical South Amer-
ica the no-zoom inversion yields a slightly smaller posterior
c
2/n with respect to SCIAMACHY than the reference

inversion, whereas one would expect the loss of spatial detail
to result in a larger posterior c2/n. The smaller chi-squared
cannot be explained by differences in the aggregated prior
errors, since these were nearly identical in scenarios I1 and

I9. Probably, this result indicates that the limitations for the
assimilation system to fit the SCIAMACHY observations do
not lie in the small-scale spatial patterns, but in the coarser
scales. This hints to potential regional systematic errors in the
observations or in the bottom-up emission inventories, to
which prior errors are assumed to be proportional. Moreover,
the relatively coarse, monthly, temporal resolution that all
our inversions have in common may constitute a larger
limitation to fit the observations than the spatial resolution.

5. Comparison With Independent Airborne
Observations

[53] Miller et al. [2007] presented airborne CH4 measure-
ments above two sites in the central Amazon, near Santarém
(SAN: 2.9�S, 55.0�W) and Manaus (MAN: 2.6�S, 60.0�W),
and a site off the Atlantic coast of Brazil, near Fortaleza
(FTL: 4.1�S, 38.3�W). See also Figure 1 for the location of
the sites. These measurements provide excellent indepen-
dent information to validate the assimilation results pre-
sented in this paper. Since we applied zooming over South
America, the model should be optimally capable of resolv-
ing the local features around the measurement sites.
[54] Unfortunately, no flights were performed during the

period 1 September 2003 to 10 December 2003. Therefore
we collected all measurements during these months but in
different years, which resulted in 12 flights (2 at FTL, 6 at
SAN, and 4 at MAN) during the years 2000 to 2006. Model
simulations based on prior emissions and posterior emis-
sions from scenarios I1, I2, and I3 were then sampled at the
same time (but different year) as the observations. To
account for interannual variability in background methane,
the difference between concentrations measured at the
NOAA-ESRL surface station Ascension Island (ASC, see
Figure 1) in the year of the observation and in 2003 was
added to the simulated concentrations. This correction was
small, ranging from �7.6 to �2.2 ppb.
[55] Figure 12 shows the result of this procedure, with all

flights averaged per site. FTL is dominated by trade winds
from the Atlantic Ocean. The observed profiles are charac-
terized by positive vertical gradients. This feature is nicely
reproduced by the TM5 model and can be explained as
follows. Methane emissions in Africa are uplifted and
subsequently transported over the Atlantic, leading to ele-
vated concentrations in the free troposphere relative to the
boundary layer, in which no methane is emitted over the
ocean. According to the model simulations this positive
vertical gradient is strongest near the African coast,
decreases over the Atlantic, but is still clearly present at
the South American east coast. The prior simulation already
shows good agreement with the observations, but appears to
be somewhat too low. When only surface observations are
assimilated (experiment I2), higher concentrations are mod-
eled as a consequence of generally increased emissions in
the tropics. This effect is even stronger when SCIAMACHY
observations are added (experiment I1). Both inversions I1
and I2 show a similarly improved agreement with the
observations compared to the prior simulation.
[56] At SAN, observed CH4 concentrations range from

about 1770 ppb at 4 km altitude to almost 1850 ppb on
average near the surface. The a priori simulation under-
estimates the observations at all levels but mostly near the
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surface, where the difference is about 65 ppb. This indicates
that there are considerable regional methane sources which
are not present in the a priori inventories. When surface
observations are assimilated (scenario I2), modeled concen-
trations increase, fitting the measurements very well above
2 km, but still underestimating them at lower levels. This
situation is reversed when SCIAMACHY observations are
also assimilated (scenario I1). In this case, the observed
near-surface enhancements are accurately reproduced (on
average), but above 2 km the model overestimates the
observations by 20 to 30 ppb.
[57] At MAN, the measured concentrations decrease with

height, as at SAN, but the vertical gradient is much smaller,
suggesting less influence from nearby sources. Again, the
prior simulation underestimates the observations at all
levels. When surface observations are assimilated, the
modeled concentrations increase but are still too low. On
the other hand, when SCIAMACHY observations are
added, the model simulates too-high concentrations. Both

at SAN and at MAN, scenarios I1 and I2 agree about
equally well with the observations.
[58] Obviously, the number of profiles analyzed here is

limited. Furthermore, the influence of the particular mete-
orological situation at the time of the measurements – with
winds either or not blowing from emission regions – is not
taken into account, since the model simulations are for a
different year than the observations. Therefore we also
conducted a two-year (2003 and 2004) inversion, without
zoom to keep reasonable computational costs. Despite the
longer time window, now covering all seasons, the avail-
ability of more profiles, and the correspondence between
observation and model dates, the comparison between
model simulations and observations showed qualitatively
the same picture as in Figure 12.
[59] As mentioned before, the observed vertical gradient

at SAN is much larger than at MAN. This suggests that
there are substantial methane emissions just east of SAN,
where the wind is mainly coming from. Near the MAN site,

Figure 12. Comparison of (diamonds) model simulations with (triangles) aircraft observations [Miller
et al., 2007] at three sites in Brazil: (a) Fortaleza, (b) Santarém, and (c) Manaus. Four different model
simulations are shown: based on prior emissions (blue), and based on posterior emissions from (red)
reference scenario I1, (green) from scenario I2 with only surface observations assimilated, and (pale blue)
from scenario I3 with prior vegetation emissions replacing part of the wetland emissions. Observations
and model concentrations have been binned in 750-m vertical bins. Symbols show the mean, and
horizontal bars show the standard deviation of the observed/modeled concentrations in a bin. The
symbols and bars have been slightly vertically offset with respect to each other for clarity. The number of
observations in each height bin is given in the plots. The modeled concentrations have been corrected for
interannual variability as described in the text.
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which is located �600 km downwind, the methane profile
appears to have been flattened considerably by vertical
mixing in combination with limited additional emissions
at the surface. The failure of the model to reproduce the
difference between observed vertical profiles at the two
Amazonian sites may have various causes. For example,
modeled vertical mixing might be too fast, resulting in too-
flat vertical profiles at SAN. There is also limited coverage
of the region around SAN and MAN by SCIAMACHY (see
Figure 5), reducing the probability that strong emission
events are picked up. Finally, the bottom-up spatial emis-
sion distributions, to which prior errors are assumed to be
proportional, may be wrong, thus preventing emissions to
be added at the right locations. In scenario I3, part of the
wetland emissions were replaced by vegetation emissions,
leading to a different, more homogeneous prior emission
distribution over tropical South America. This scenario
leads to a slightly worse agreement between simulated
and observed vertical gradients (Figure 12). It thus appears
that vegetation emissions, in the way they are included in
the model here, cannot explain the specific differences
between the SAN and MAN sites.
[60] Analysis of the individual profiles reveals a large

temporal variability, in particular at the lower altitudes at SAN
(not shown). While the average CH4 concentration measured
there is accurately reproduced using SCIAMACHY-based
optimized emissions, the individual profiles are often signif-
icantly over- or underestimated, even by the 2-year inversion
in which the model was sampled at the exact time of the
observations. This suggests that there is considerable temporal
variability in emission rates, which cannot be resolved by our
monthly-mean fluxes.
[61] Above 2 km altitude, the assimilation of SCIA-

MACHY observations leads to too-high methane concen-
trations compared with the airborne observations at both
SAN and MAN. The measurements at these heights resem-
ble emissions in a reasonably large footprint around (actu-
ally, due to the prevailing trade winds, mainly east of) the
sites. We may thus conclude that the estimated emission
rates in eastern tropical South America are generally too
high. This in turn suggests that the SCIAMACHY obser-
vations may have some regional bias, in addition to the
average latitudinal bias correction already applied in the
inversion. Such a regional bias could, for example, be
related to aerosols (both amount and type), surface proper-
ties or clouds (see Bergamaschi et al. [2007] for a dis-
cussion). It is very difficult to correct for unknown regional
biases, and trying to do so brings with it the risk that actual
emission signals are falsely designated as retrieval biases.
This could for example be the case if an aerosol bias correction
were introduced, since a process like biomass burning emits
both aerosols and methane. At the same time, the potential
presence of unaccounted regional biases in the satellite obser-
vations inevitably causes a significant uncertainty in derived
flux estimates.

6. Conclusions

[62] An inverse modeling study of atmospheric methane
emissions using SCIAMACHY satellite observations and
NOAA-ESRL surface observations has been conducted

with a 4D-Var assimilation system developed in Meirink
et al. [2008]. The focus is on September through November
2003, during which SCIAMACHY observed high CH4

concentrations in the tropics, particularly in South America
[Frankenberg et al., 2005]. Therefore this continent is
modeled at high (1� � 1�) spatial resolution, exploiting
the zooming capability of the TM5 atmospheric transport
model.
[63] It is shown that, after assimilation, good agreement

is obtained between model and observations, both from
SCIAMACHY and from the surface network. However, a
prerequisite for achieving this consistency with both types
of observations is the application of a bias correction to the
satellite observations. Here, we followed the approach of
Bergamaschi et al. [2007], estimating a monthly latitude-
dependent bias in the SCIAMACHY observations, which
appears to work fairly well, although some aliasing with the
jointly estimated emission rates is to be expected.
[64] The main emission increments resulting from the

inversion are an increase in the tropics, a decrease in South
Asia, and a decrease at northern hemispheric high latitudes.
The tropical and South-Asian increments are mainly im-
posed by SCIAMACHY observations, whereas the NH
high-latitude emissions are mainly constrained by the sur-
face network. The South-Asian emission reduction, attrib-
uted to rice cultivation, is very specific to the time period
chosen in our inversion. Over a whole year, SCIAMACHY
observations do not suggest large reductions in rice culti-
vation emissions [Bergamaschi et al., 2007].
[65] Our 4D-Var implementation allows the estimation of

uncertainties in the posterior emission estimates. The as-
similation of SCIAMACHY observations yields aggregated
uncertainty reductions of 60–80% over tropical South
America, tropical Africa and South Asia, compared to
20–30% when only surface observations are used. In the
extratropical northern hemisphere the added value of SCIA-
MACHY is much lower because this part of the globe is
much better constrained by the surface network.
[66] Statistics of the differences between observations and

optimized model simulations have been used to give an
indication of upper bounds to the observation errors. For
regions with a high surface albedo, such as the Sahara desert,
the precision of daily- and 1� � 1�-averaged SCIAMACHY
observations is estimated to be about 0.7%, which translates
to approximately 1% for individual observations. Over
darker surfaces, such as tropical rain forests, the estimate of
individual observation precision is typically 1.8%.
[67] For tropical South America, the inversion suggests

more than a doubling of emissions compared to the a priori.
This result remains unchanged in an extensive series of
sensitivity experiments, and thus appears to be a robust
feature following from the SCIAMACHY observations.
[68] Another interesting result emerging from the sensi-

tivity experiments is that an inversion without zooming
achieves an equally good fit to the satellite observations as
the reference inversion. This indicates that the limitations
for the assimilation system to fit the SCIAMACHY obser-
vations do not lie in the small-scale spatial patterns, but in
the coarser scales. This in turn hints to potential regional
systematic errors in the observations or in the bottom-up
emission inventories, and also suggests that the relatively
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coarse, monthly, temporal resolution of our inversions may
constitute a larger limitation to fit the observations than the
spatial resolution.
[69] The high spatial resolution does, however, allow for

a detailed comparison with independent airborne measure-
ments near Santarém (SAN) and Manaus (MAN) in the
Amazon, and Fortaleza (FTL) at the Brazilian east coast
[Miller et al., 2007]. Whereas the prior model simulation
underestimates methane at all three sites, the inversions
using only surface observations or both surface and
SCIAMACHY observations lead to higher concentrations
and a much better correspondence with the airborne meas-
urements. At SAN, strong vertical gradients are measured,
suggesting the presence of nearby upwind sources. In
contrast, the measurements at MAN, located approximately
600 km to the west, show much flatter vertical profiles,
suggesting that methane has been vertically mixed during
westward transport, while relatively limited further emis-
sions have been added. This particular difference between
vertical profiles at SAN and MAN is not reproduced by the
model in prior mode, nor in assimilation mode. The intro-
duction of vegetation emissions as recently proposed by
Keppler et al. [2006] does also not resolve this conflict. The
discrepancy between modeled and observed vertical profiles
at the two Amazonian sites may be due to a variety of
reasons, including errors in modeled vertical mixing, limited
coverage of the region by SCIAMACHY observations, and
errors in the spatio-temporal prior emission distributions.
[70] Analysis of the airborne observations above �2-km

altitude reveals that the assimilation of SCIAMACHY
observations causes a general overestimate of methane
concentrations at both Amazonian sites. This suggests that
the SCIAMACHY observations in eastern South America,
and perhaps also in other parts of the tropics, may have a
positive bias in addition to the average latitude-dependent
bias estimated in the inversion. Further work is needed to
detect and repair potential biases in the retrieval process as
any regional patterns in the bias that are identified may lead
to shifts in the overall distribution of emission estimates.
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