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A major task in phenomenology today is constraining the parameter space of Standard Model effective
field theory and constructing models of fundamental physics from which the Standard Model derives. To
this effect, we report an exhaustive list of sum rules for 4-fermion operators of dimension 6, connecting
low-energy Wilson coefficients to cross sections in the UV. Unlike their dimension-8 counterparts which
are amenable to a positivity bound, the discussion here is more involved due to the weaker convergence and
indefinite signs of the dispersion integrals. We illustrate this by providing examples with weakly coupled
UV completions leading to opposite signs of the Wilson coefficients for both convergent and non-
convergent dispersion integrals. We further decompose dispersion integrals under weak isospin and color
groups, which lead to a tighter relation between IR measurements and UV models. These sum rules can
become an effective tool for constructing consistent UV completions for Standard Model effective field
theory following the prospective measurement of these Wilson coefficients.
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I. INTRODUCTION

Testing the Standard Model (SM) and searching for new
physics are two essential goals of the current and future
experimental programs in particle physics. In this respect,
all of the measurements can be classified as low-energy
(SM scale) and high-energy experiments. For low-energy
observables, the Standard Model effective field theory
(SMEFT) provides an excellent tool to consistently para-
metrize new physical perturbations, classified order by
order in the form of nonrenormalizable operators with
higher dimensions. We expect new physics to kick in above
at least the weak scale, and as we approach the regime of
high energies greater than this scale, the applicability of
effective field theory (EFT) techniques becomes succes-
sively questionable. Reliable calculations then require a
discussion of the explicit UV completions, and thus it is
clear that the connection between UV and IR observables
and predictions becomes somewhat model dependent, and

explicit matching is required to infer useful information. In
this direction, dispersion relations provide a model-inde-
pendent way to connect low- and high-energy measure-
ments, in the form of sum rules for low-energy Wilson
coefficients and high-energy cross sections. This provides a
consistent way to match the known and measurable low-
energy and speculative high-energy quantities (for a recent
reappraisal, see Ref. [1] and for a textbook introduction
[2,3]). Their power lies in their generality—they follow
from the simple and sacred physical requirements of
Poincaré invariance, unitary, and locality. Recently, there
has been significant attention directed toward the applica-
tion of the dispersion relations and sum rules for SMEFT
[4–7]. For the four fermion interactions, most of the effort
so far has been focused on the dimension-8 operators
[8–11] where the sum rules lead to positivity constraints on
the Wilson coefficients in a model-independent way.
On the other hand, from a phenomenological point of

view, dimension-8 operators are very hard to measure at
experiments, and most likely the new physics will dem-
onstrate itself first via dimension-6 corrections to the SM.
Thus, it becomes crucial to understand similar dispersion
relations for the dimension-6 operators. The situation here
is drastically different from the dimension-8 discussion
because the relevant dispersion integral, aside from being
possibly nonconvergent, is of indefinite sign and does not
admit any simple model-independent positivity bound.
However, the situation is far from hopeless, and the
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dispersion relations turn out to be instructive in a different
way: instead of being viewed as a constraint on Wilson
coefficients, these sum rules are to be used as a tool to
constrain the UV completions of these operators, given
signs to be measured in the IR. Therefore, in a way, we are
approaching the IR-UV relationship from the opposite
standpoint to what is customary. Our emphasis is on model
building for a full theory by taking IR measurements as our
input, instead of trying to predict these measurements from
general inputs from the UV theory. We will show that
different signs of the Wilson coefficients will be related to
the dominance of the particle collision cross sections in the
various channels and decompose these cross sections as
explicitly as possible to indicate the quantum numbers of
initial states with dominant cross sections. Moreover, it is
crucial to emphasize that sum rules can only be written
down for a subspace of the dimension-6 basis, namely, the
effective 4 fermion operators that can generate forward
amplitudes. Based on these sum rules, we will report
examples of the weakly coupled UV completions, which
can lead to either sign of the Wilson coefficients. Such
information, which we believe was not consistently sum-
marized before, can become a useful guide for the future
measurements in case some of the Wilson coefficients are
discovered to be nonzero. These measurements, supple-
mented with the sum rules we derive, will bring us closer to
an understanding of the fundamental physics from which
the SMEFT derives.
The main limitation of the dispersion relations for

dimension-6 operators is that convergence of the integrals
generically is not guaranteed. In particular, it is known that
elementary vector field exchange [4] in the t channel can
lead to a nonvanishing contribution C∞ from the pole at
infinity. Being a characteristic of the amplitudes at high
energies, an EFT analysis cannot resolve its sign or
strength. However, we still believe it is instructive to study
these relations while being agnostic to C∞—in fact, this is
the philosophy used in context of quantum gravity where
the forward graviton pole presents a similar difficulty in
terms of convergence. While the situation with gravity
requires a more sophisticated treatment invoking Regge
towers, in our case, the situation is much simpler, at least
for weakly coupled UV completions. In this case, only the
neutral vector boson exchange in the t channel can spoil the
convergence of the dispersion integrals. Thus, for the rest of
the UV completions, the measurements of IR observables
directly lead us to infer about the strengths of various UV
cross sections and the associated quantum numbers of
states contributing to that cross section.
Second, the dispersion relations cannot identify an exact

UV completion. At best, this IR information allows us to
constrain a hierarchy of couplings and masses in the UV. As
an example, suppose a Wilson coefficient receives con-
tributions (positive and negative, respectively) from both
scalar and vector exchanges in the UV (see discussion in

Sec. III); then, measuring a certain sign of this coefficient
tells us only about the hierarchy of the coupling-to-mass
ratio for the scalar and vector pieces. On the UV side of the
dispersion relation, this information reflects in the relative
sizes of cross sections coming from these two channels,
which, of course, is fixed by this very same hierarchy.
The manuscript is organized as follows. In Sec. II, we

briefly review dispersion integrals. In Sec. III, we study in
detail the operator ðēRγμeRÞ2 and illustrate the relation
between UV completions and signs of the effective operator
at tree and one-loop levels. In Sec. IV, we present the whole
set of the four fermion operators and identify which of them
can be constrained by the dispersion relations. Results are
summarized in the Sec. V. Most details of the calculations
have been relegated to the Appendixes.

II. REVIEW OF DISPERSION RELATIONS

In this section, we will review dispersion relations and
their applications to constraints on EFTs following the
discussion in Refs. [1,4,12,13] (readers familiar with the
formalism can proceed directly to Sec. III). It is a general
principle that the nonanalyticities associated with scattering
amplitudes have a physical origin in the form of poles and
branch cuts arising from localized particle states and
thresholds. The positivity of the spectral function in the
Kallen-Lehmann decomposition generalizes to more gen-
eral cross sections, which can be related to elastic forward
scattering amplitudes via a dispersion integral, to be
reviewed in a moment. What this means in an EFT context
is that, in perturbation theory, one can evaluate the two
sides of a dispersion integral to a certain order; allowing us
to extract information about the effective IR coupling that
contributes to that amplitude at low energies on one side of
the relation, from general observations about the UV piece
of the dispersion relation without any explicit matching.
While unitarity reflects in the positivity of the spectral

function and cross sections, we need additional information
about the high-energy behavior of the amplitude to control
the dispersion integral at the infinite contour. The asymp-
totics of amplitudes at high energies is a question about the
unitarity and locality of the theory. The famous Froissart
bound—while technically proved only for theories with a
mass gap, but believed to hold true generally—tells us that
the behavior of the amplitude AðsÞ is such that AðsÞ=s2→0
as s → ∞ [14–16]. This, in general, allows us to write
down a dispersion relation with two subtractions, i.e., a
linear polynomial of the form aðtÞ þ bðtÞs supplemented
by a contour integral picking up the nonanalytic structure of
the amplitude. aðtÞ; bðtÞ cannot be determined by unitarity
alone, but the nonanalytic structure can be related to
manifestly positive cross sections via the optical theorem.
We can then differentiate this relation with respect to s
twice to get rid of the unknown subtractions, and we are left
with a manifestly positive integral on the right and the
coefficient of s2 in AðsÞ on the left—thereby leading to
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what are conventionally called “positivity bounds” [1] on
EFT parameters.
This prescription, however, cannot be directly applied to

dimension-6 operators. Their contribution to 2 → 2 ampli-
tudes scales as p2, and so d2AðsÞ=ds2 kills information
about their couplings, and we cannot constrain them in any
way. The best we can do is to look at dAð0Þ=ds and be left
with a dispersion integral of indefinite sign as well as an
undetermined subtraction constant (which we will call C∞,
as it captures the pole of the amplitude at infinity).
Let us briefly derive this dispersion relation from first

principles. Consider a process ab → ab with the amplitude
Aab→ab ≡ Aabðs; tÞ, and in the forward limit (t → 0). This
amplitude can be expanded as

Aabðs; 0Þ ¼
X
n

cnðμ2Þðs − μ2Þn;

cnðμ2Þ ¼
1

n!
∂
n

∂sn
Aabðs; 0Þjs¼μ2 ð1Þ

about some arbitrary reference scale μ2 where the ampli-
tude is analytic. We can now use Cauchy’s theorem to write

1

2πi

I
ds

Aabðs;0Þ
ðs−μ2Þnþ1

¼
X
si;μ2

Res
Aabðs;0Þ
ðs−μ2Þnþ1

¼ cnðμ2Þþ
X
si

Res
Aabðs;0Þ
ðs−μ2Þnþ1

; ð2Þ

where si are the physical poles associated with IR stable
resonance exchanges in the scattering, and the contour of
integration is shown in Fig. 1. The residues at physical
poles are IR structures that we will drop henceforth. This
can always be done if the scale μ is chosen such that
μ2 ≫ m2

IR, where m2
IR corresponds to the scale of the si

poles. Indeed, the last term in Eq. (2) gives corrections of
the order Oðm2

IR=μ
2Þ, which can be safely ignored.

The analytic structure of the amplitude allows us to
decompose the integral as a sum of the contributions
along the branch cuts and over infinite circle, so that
schematically

1

2πi

Z
ds

Aabðs;0Þ
ðs−μ2Þnþ1

¼ integrals along cuts

þ integral on big circle¼Cn
∞þ In

Cn
∞ ¼

Z
2π

0

dθ
2π

AabðjsΛjeiθ;0Þ
ðjsΛjeiθ −μ2Þnþ1

· ðjsΛjeiθÞ:

ð3Þ

The integration over the branch cuts can be written as a sum
of the integrals over discontinuities

2πiIn ¼
Z

∞

4m2

�
Aabðsþ iϵ; 0Þ − Aabðs − iϵ; 0Þ

ðs − μ2Þnþ1
þ ð−1Þn

×
Aabð4m2 − s − iϵ; 0Þ − Aabð4m2 − sþ iϵ; 0Þ

ðs − 4m2 þ μ2Þnþ1

�
:

ð4Þ

Since 4m2 − s ¼ u for t ¼ 0, the second term is just the u
channel crossed amplitude for the process ab̄ → ab̄, i.e.,
Aab̄ (instead of ab → ab).1 Using the optical theorem, we
can rewrite the discontinuity in terms of cross section, and
in the limits m → 0 and μ → 0, we obtain

In ¼
Z

ds
πsn

ðσab þ ð−1Þnσab̄Þ: ð5Þ

For dimension-6 operators, we will be interested in
dispersion relations of Eq. (2) for the case n ¼ 1,

c1ðμ2Þ ¼
Z

ds
πs

ðσab − σab̄Þ þ Cðn¼1Þ
∞ : ð6Þ

Note that the quantity cnðμ2Þ on the left-hand side can be
evaluated in IR using the EFT expansion. This introduces
an additional source of corrections of the order Oðμ2=Λ2Þ,
where Λ is the scale suppressing higher-dimensional
operators. We can see that the dispersion relations are
valid up to corrections of the order Oðm2

IR=μ
2; μ2=Λ2Þ, and

these can be ignored if Λ2 ≫ μ2 ≫ m2
IR.

At last, let us mention that the forward limit t → 0 must
be taken with care and is in principle problematic in the
presence of massless particles propagating in the t channel

FIG. 1. Analytic structure in complex s plane. The infinite
circle is centered at 2m2 and will be traversed counterclockwise.

1Crossing relations for particles with spin become more
nontrivial (see, for example, Refs. [17,18]). However, in the
case of the massless spin-1=2 particles, which are the interest of
this paper, the usual crossing relations for the forward amplitude
remain valid [17], and we will not worry about these issues in the
rest of the paper.
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of the UV amplitude (see, for example, Refs. [4,13]). In
fact, we always have the usual SM Coulomb singularities
that lead to the bad behavior in the forward limit. The way
out of this problem is by using IR mass regulators to match
the known SM contributions to both sides of the dispersion
relation and subtract them away.

III. WARM-UP EXERCISE

We consider the simplest case of a fully right-handed
operator which is made up of singlet fields eR, all of the
same generation (the dispersion relation for this operator
was presented in Ref. [6]),

cRRðēRγμeRÞðēRγμeRÞ: ð7Þ
Following the strategy outlined in the previous section, we
start by considering the amplitude Aeē and derive the
dispersion relation

dAeReRðs; 0Þ
ds

����
s¼0

¼
Z

ds
πs

ðσeReR − σeReRÞ þ C∞; ð8Þ

where we have omitted the (n ¼ 1) subscript for C∞. The
amplitude in the IR (s → 0) limit can be safely calculated
using the EFT, and we find (we use helicity amplitudes; for
notations and for the explicit conventions, see Appendix A)

AeReRðs; tÞ ¼ cRR · 2ð½2γμ1i½3γμ4i − ½3γμ1i½2γμ4iÞ
¼ −8cRR½23�h14i

AeReRðs; tÞjt→0 ¼ −8cRRs ð9Þ
so that we arrive at the following sum rule for the cRR
Wilson coefficient2:

−8cRR ¼
Z

ds
πs

ðσeReR − σeReRÞ þ C∞: ð10Þ

Let us see how this equation can be used as guidance for
UV completions that lead to the possible signs of the cRR
Wilson coefficient.

A. Charge neutral vector exchange

Let us start with the negative sign for cRR. The dispersion
relation predicts that this will be generated by the models
with resonances in ee channel (apart from the C∞ con-
tribution). The simplest model which can enhance the σeē
cross section is a simple neutral Z0 vector boson with the
interaction

LZ0 ¼ λZ0
μēRγμeR: ð11Þ

Integrating Z0 at tree level, we obtain for the Wilson
coefficient

cRR ¼ −
λ2

2M2
Z0
; ð12Þ

where the sign follows the prediction of the dispersion
relations. However, inspecting the amplitudes carefully, we
see that the massive vector exchange in the t channel spoils
the convergence of the amplitude in the forward region,
making the integral over the infinite circle nonvanishing.
To this end, let us look at the amplitude AēReR in detail:

iA ¼ −λ2
�
½2γμ1i½3γμ4i

−i
s −M2

Z0

− ½3γμ1i½2γμ4i
−i

t −M2
Z0

�

Aðs; tÞ ¼ −2λ2½23�h14i
�

1

s −M2
Z0
þ 1

t −M2
Z0

�
: ð13Þ

In the forward limit, this amplitude goes as

Aðs; tÞjt→0 ¼ −2λ2s
�

1

s −M2
Z0
þ 1

−M2
Z0

�
: ð14Þ

We can see that the integral over infinite contour becomes
nonzero and is equal to

CðZ0Þ
∞ ¼ 2λ2

M2
Z0
: ð15Þ

We see that, even though the contribution from the infinite
contour is nonzero, it turns out to be of the same sign and
size as the cross section part of the dispersion relation

�Z
ds
πs

ðσeReR − σeReRÞ
�ðZ0Þ

¼ 2λ2

M2
Z0

ð16Þ

(see Appendix B for details of the calculation). The fact that
exchange of the elementary vector boson spoils the con-
vergence of the amplitude in the forward limit at large s is
not new and was observed, for example, in Ref. [4] in the
discussion of the other dimension-6 operators.
Let us extend the discussion for the operators with two

fermion flavors. For example, ceμðeRγμeRÞðμ̄RγμμRÞ con-
tributes eμ̄ → eμ̄ in the IR. This operator can be generated
by two kinds of UV completions with a charge neutral
vector boson:

Lð1Þ
UV ¼ λZμ

ð1ÞðeRγμμR þ H:c:Þ
Lð2Þ
UV ¼ ðλ1Zμ

ð2ÞeRγ
μeR þ λ2Z

μ
ð2Þμ̄RγμμRÞ: ð17Þ

2In this expression, we should take the value of the Wilson
coefficient at the scale μ → 0. The renormalization group
equation (RGE) evolution of the Wilson coefficients from the
EFT cutoff scale to μ can lead to the modification of the Eq. (10)
(see Ref. [19] for a recent discussion). In this paper, we will
assume that these running effects are subleading and can be safely
ignored.
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The analysis in both cases is very similar to the single flavor

discussion; however, in the first case (Lð1Þ
UV), the integral

over the infinite contour vanishes, since there is no
amplitude with Zð1Þ in the t channel. Writing down the
dispersion relations for the eμ̄ → eμ̄ scattering, we will
obtain [note that there is a different numerical prefactor
compared to Eq. (10) due to combinatorics]:

ceμ ¼ −
1

2

�Z
ds
πs

ðσeRμ̄R − σeRμRÞ
�
¼ −

jλj2
M2

ð1Þ
: ð18Þ

In the second case (Lð2Þ
UV), we are in the opposite

situation since both cross sections σeμ̄ðμÞ ¼ 0 vanish at
leading order in perturbation theory. However, there is a
forward amplitude for this process, which comes from t-
channel diagram, and it contributes only to C∞. In other
words, the pole at infinity saturates the dispersion
relation, and even though no corresponding UV cross
section can be measured to constrain this coefficient, it
can be nonzero because of this pole. In fact, a simple
calculation yields

ceμ ¼ −
C∞

2
¼ −

λ1λ2
M2

ð2Þ
; ð19Þ

which can be either positive or negative depending on
the values of the λ1, λ2 couplings. Let us continue with
our examination of the UV completions for the various
signs of the cRR.

B. Charge-2 scalar

What about the positive sign of cRR? The dispersion
relation in Eq. (10) predicts that this happens for UV
completions that generate only σee cross section. The
simplest possibility is a charge-2 scalar with the interaction

L ¼ κϕecReR þ H:c: ð20Þ

Then, at the order Oðκ2Þ, only σee will be nonvanishing, so
the Wilson coefficient must be positive. Indeed, integrating
out the scalar field at tree level gives

cRR ¼ jκj2
2M2

ϕ

; ð21Þ

which is manifestly positive. In this case, the forward
amplitude converges quickly enough, so that C∞ ¼ 0—this
is just the statement that a scalar cannot be exchanged in the
t channel for the forward amplitudes. We see that the both
signs of the Wilson coefficient are possible with a weakly
coupled UV completion. One can still wonder whether the
negative sign of the cRR interactions in the Eq. (12) is
related to the t channel pole and nonconvergence of the

amplitude in the UV. To quell any doubts, in the next
subsection, we will build a weakly coupled UV completion
without new vector bosons and with convergent forward
amplitudes.

C. UV completion at one loop

Let us extend the SM with vectorlike fermion Ψ of
charge 1 and a charge−2 complex scalar ϕ with a Yukawa
interaction,

L ¼ jDϕj2 þ iΨ=DΨþMψ Ψ̄Ψ −M2
ϕjϕj2 þ yēRϕΨ: ð22Þ

This generates an effective operator at the order Oðy4Þ, and
at this order, the only cross section available is σeē. The
dispersion relation predicts that the Wilson coefficient must
be negative. Moreover, C∞ ¼ 0 here as the amplitude
scales slowly enough with s. Indeed, integrating out heavy
fields at one loop, we obtain

cRR ¼ −
jyj4

128π2MΨMϕ
fðxÞ; x≡MΨ

MΦ

fðxÞ ¼ ðxþ 4x3 log x − x5Þ
ð1 − x2Þ3 ; lim

x→1
fðxÞ ¼ 1=3; ð23Þ

where one can see that the function fðxÞ is always positive.
See Appendix B for explicit verification of the dispersion
integral in the case MΨ ¼ MΦ.
In summary, this warm-up exercise shows us that both

signs of the Wilson coefficients are possible within weakly
coupled theories. Contribution of the infinite contours is
important for the t-channel exchange of the vector reso-
nances. Interestingly, both signs of the Wilson coefficient
are possible even for the weakly coupled models with
vanishing C∞.
We can see that dispersion relations depend on the

value of C∞, so a completely model-independent rela-
tion between the Wilson coefficients is possible only for
the UV completions satisfying super-Froissart conditions
lims→∞ jAðsÞj < s [20]. In weakly coupled UV comple-
tions, only the amplitudes mediated by the neutral vector
boson exchange in the t channel (see the discussion in
Sec. III A) can violate the convergence lims→∞ jAðsÞj < s
requirement. However, even in this case for the operators
with four identical fermions, as for the operator in Eq. (7),
the sign of the pole at infinity is fixed, and it coincides
with the sign of the cross section term in the dispersion
relations [see Eq. (10)]. Recently, Ref. [21] presented an
analysis of the dispersion relations for four fermion
operators using Jacob-Wick decomposition. In agreement
with our findings, for the amplitudes satisfying the
lims→∞ jAðsÞj < s condition, the authors have shown that
for scalar-dominated (vector-dominated) UV completions
we have cRR > 0ð< 0Þ.
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In the following, we will derive the set of the dispersion
relations for the whole set of four fermion operators and
identify the UV completions leading to the various signs of
the Wilson coefficients.

IV. FOUR FERMION OPERATORS

First of all, let us define a complete basis of the four
fermion operators, and we will do this following the
notations of Refs. [22,23]:

purely left handed∶

Oijkm
ll ¼ ðliLγμljLÞðlkLγμlmL Þ; Oð1Þijkm

qq ¼ ðqiLγμqjLÞðqkLγμqmL Þ;
Oð3Þijkm

qq ¼ ðqiLγμσaqjLÞðqkLγμσaqmL Þ; Oð1Þijkm
ql ¼ ðliLγμljLÞðqkLγμqmL Þ

Oð3Þijkm
ql ¼ ðliLγμσaljLÞðqkLγμσaqmL Þ;

purely right handed∶

Oijkm
ee ¼ ðeRγμeRÞðēRγμeRÞ; Oijkm

uu ¼ ðūRγμuRÞðūRγμuRÞ
Odd ¼ ðd̄RγμdRÞðd̄RγμdRÞ; Oud ¼ ðūRγμuRÞðd̄RγμdRÞ
Oð8Þ

ud ¼ ðūRγμTAuRÞðd̄RγμTAdRÞ; Oeu ¼ ðēRγμeRÞðūRγμuRÞ
OedðēRγμeRÞðd̄RγμdRÞ; ð24Þ

left − right∶

Ole ¼ ðl̄LγμlLÞðēRγμeRÞ; Oqqeeðq̄LγμqLÞðēRγμeRÞ
Olu ¼ ðl̄LγμlLÞðūRγμuRÞ; Old ¼ ðl̄LγμlLÞðd̄RγμdRÞ
Oð1Þ

qu ¼ ðq̄LγμqLÞðūRγμuRÞ; Oð8Þ
qu ¼ ðq̄LγμTAqLÞðūRγμTAuRÞ

Oð1Þ
qd ¼ ðq̄LγμqLÞðd̄RγμdRÞ; Oð8Þ

qd ¼ ðq̄LγμTAqLÞðd̄RγμTAdRÞ
Oledq ¼ ðl̄LeRÞðd̄RqLÞ; Oð1Þ

quqd ¼ ðq̄LuRÞiσ2ðq̄LdRÞT

Oð1Þ
lequ ¼ ðl̄LeRÞiσ2ðq̄LuRÞT; Oð3Þ

lequ ¼ ðl̄LσμνeRÞiσ2ðq̄LσμνuRÞT

Oð8Þ
quqd ¼ ðq̄LTAuRÞiσ2ðq̄LTAdRÞT; ð25Þ

baryon number violating∶

Oduq ¼ ϵABCðd̄cAR uBRÞðq̄cCL iσ2lLÞ; Oqqu ¼ ϵABCðq̄cAL iσ2qBLÞðūcCR eRÞ
Oduu ¼ ϵABCðd̄cAR uBRÞðūcCR eRÞ; OqqqϵABCðiσ2Þαδðiσ2Þβγðq̄cAαL qBβL Þðq̄cCγL lδLÞ: ð26Þ

The rest of the operators can be reduced to the basis of
Eqs. (24)–(26), using the Fierz identities and completeness
relations for the SUð2Þ and SUð3Þ generators

X3
a¼1

ðσaÞijðσaÞkl ¼ 2

�
δilδkj −

1

2
δijδkl

�
ð27Þ

X8
A¼1

ðTAÞijðTAÞkl ¼
1

2

�
δilδkj −

1

3
δijδkl

�
: ð28Þ

As we have seen in the previous section, the dispersion rela-
tions are effective in the case of forward scattering i.e., when

the initial and final states are the same.3 Therefore, only the
following subspace of operators can be subject to sum rules,

Oiijj
ll ;Oijji

ll ;Oð1;3Þiijj
qq ;Oð1;3Þijji

qq ;Oð1;3Þiikk
ql ;Oiijj

ee;uu;dd;O
ijji
ee;uu;dd;

Oð1Þ;ð8Þ;iijj
ud ;Oiijj

ed ;Oiijj
eu ;Oiijj

le;qe;lu;ld;O
ð1Þð8Þiijj
qu ;Oð1Þð8Þiijj

qd ; ð29Þ

3Recently, it was shown [8,9] that for dimension-8 operators,
the scattering of mixed (entangled) flavor states can lead to
additional constraints on the Wilson coefficients. In the case of
dimension-6 operators, performing a similar analysis requires
additional assumptions on the UV completion [specifically; in
Eq. (8), one has to suppose that either the charge 0 or charge 2
cross section dominates the dispersion relation for all the fermion
flavors) since the dispersion relations are of indefinite sign. We do
not investigate this direction further.
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which will be the focus of this paper. For the operators in
Eq. (29), thediscussion follows closely the results reported for
Oee above. Therefore, we will henceforth report only the
results and the examples of UV completions leading to
various signs.

A. Experimental constraints

Having defined the operators which we will consider
in our discussion, let us briefly mention the status of
the experimental bounds based on the discussion in
Refs. [24,25]. Current experimental bounds on four lepton
and two-lepton, two-quark operator are obtained from
measurements involving combinations of the Z, W pole
observables, fermion production at LEP (large electron-
positron collider), low-energy neutrino scatterings, parity
violating electron scatterings, and parity violation in atoms.
One of the challenges in deriving these bounds comes from
the modifications of W, Z vertices which, too, can
contribute to the same low-energy observables, so that
the global fit including the W, Z pole observables becomes
necessary. For example, for two-lepton, two-quark oper-
ators Ref. [25] has found nine flat directions unbounded
experimentally. Current combinations of the low-energy
experimental constraints as well as LHC measurements
bound the various Wilson coefficients in the range
10−2–10−3 (where the operators are assumed to be sup-
pressed by the v2ew scale), which means sensitivity to the
scales O (few TeV). Just to be specific, for example,
the four-electron operator discussed in Eq. (7) is bounded
by the Bhabha scattering measurements at LEP-2 [26]
and SLAC E158 experiment for the Møller scattering
(e−e− → e−e−) [27], where both experiments are testing
the complementary combinations of the Wilson coefficients
leading to the net sensitivity of ∼4 × 10−3v−2ew on the value
of the Wilson coefficient. LHC measurements of the
dilepton production in pp scattering leads to additional
strong constraints on the two quark-two lepton operators
[28,29], where for some operators we will become sensitive
to new physics up to the scale of ∼50 TeV. So far, all of the
measurements are consistent with SM predictions.

B. Fully right handed

1. Oee

This operator has already been discussed in Sec. III, and
we would just like to emphasize that there are no sum rules
for more than two flavors of fermions. Following the
notations of Eqs. (24) and (25), the dispersion relations
can be summarized as

−8ciiiiee ¼
Z

ds
πs

ðσēiei − σeieiÞ þ C∞ ð30Þ

−2ðciijjee Þji≠j ¼
Z

ds
πs

ðσēiej − σēiējÞ þ C∞: ð31Þ

Note that in this simple case where the fields are singlets the
operatorsOiijj

ee andOijji
ee are identical after Fierzing, andOiijj

ee

andOjjii
ee are just trivially identical by symmetrization, sowe

report the dispersion relation only in terms of ciijjee in order to
not double-count the operators. Summarizing the discussion
about UV completions in Sec. III, we have the following:
cee<0: (a): neutral Z0 (at tree level); (b) vectorlike singlet

fermion Ψ and a heavy singlet complex scalar Φ
with Q½ΦΨ� ¼ −1 at one loop.

cee>0: (a) charge-2 scalar (at tree level); (b) For operators
with different flavours of fermions (Oiijj

ee ji≠j), Z0

can lead to a possibly positive sign if it’s couplings
to the different flavours of the fermions are of
opposite signs.

2. Ouu; Odd

Let us proceed with our investigation of the four fermion
quark operators. The discussion proceeds exactly in the
same way as for the leptons, except for new color structure.
Fierzing them into the basis of Eq. (24) and (25), there are
only four structures of the operators Oiijj

uu;dd; O
ijji
uu;dd, which

are in this case not related by a Fierz identity because of an
implicit contraction of color indices. Let us start with the
operators where all of the quarks have the same hyper-
charge and focus on the operator Oiiii

uu . Denoting by α, β the
color indices and considering same and different color
scatterings, we will obtain the following relations:

−8ciiiiuu ¼
Z

ds
πs

ðσuαūα − σuαuαÞ þ Cαα
∞

¼
Z

ds
πs

�
2σð8Þuū þ σð1Þuū

3
− σð6Þuu

�
− Cuu;ð6Þ

∞

− 4ciiiiuu ¼
�Z

ds
πs

ðσuαūβ − σuαuβÞ þ Cαβ
∞

�
α≠β

¼
Z

ds
πs

�
σð8Þuū −

σð3̄Þuu þ σð6Þuu

2

�
þ Cuū;ð8Þ

∞ : ð32Þ

In the last step, we have decomposed the various possibilities
of the initial-state fermions in terms of the SUð3Þ QCD
representations. This is convenient, since the Wigner-Eckart
theorem requires the amplitudes to remain the same for all of
the components of the irreducible representation. In particu-
lar, for the quark-antiquark scattering, the initial state will
always be decomposed as a singlet and octet of SUð3Þ. Note
that we can calculate the integral over the infinite contour
using amplitudeAuū or its crossed versionAuu and the values
of these integrals will satisfy (see Appendix C for details):

−Cuuð6Þ
∞ ¼ 2Cuūð8Þ

∞

3
þ Cuūð1Þ

∞

3
−
Cuuð6Þ
∞ þ Cuuð3̄Þ

∞

2
¼ Cuūð8Þ

∞ :

ð33Þ
Finally, let us note that the measurements of the quantities on
the right-hand side of Eq. (32) [σð8Þ and σð1Þ] at collider
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experiments are practically impossible. However, we can
combine the equations in Eq. (32) and express the dispersion
integral in terms of the color averaged cross sections

−
16

3
ciiiiiuu ¼

Z
ds
πs

ðσuū − σuuÞ −
1

3
Cuuð6Þ
∞ þ 2

3
Cuūð8Þ
∞ : ð34Þ

These types of relations can become useful for experimental
verification of dispersion relations. In the rest of the paper,
for the sake of completeness, we will always report the
dispersion relations with and without color averaging. Again,
C∞ can be nonvanishing, for example, in UV models with
charge neutral vector resonances exchange in the t channel,
but unlike the four-electron case, here this resonance can be
either singlet or octet of SUð3ÞQCD. Extending this analysis
to the case of different flavor of the up quarks, we will obtain

−2ciijju ¼
Z

ds
πs

�
2σð8Þuū þ σð1Þuū

3
− σð6Þuu

�
− Cuu;ð6Þ

∞

− 2ðciijju þ cijjiu Þ ¼
Z

ds
πs

�
σð8Þuū −

σð3̄Þuu þ σð6Þuu

2

�

þ Cuū;ð8Þ
∞ : ð35Þ

We again mention that the operatorsOiijj
uu andOjjii

uu (similarly
forOijji

uu andOjiij
uu ) are trivially identical, so it is important that

we do not double-count them. As before, expressing every-
thing in terms of uncolored cross sections, we find

−2ciijjuu −
2

3
cijjiuu ¼

Z
ds
πs

ðσuū − σuuÞ þ
8

9
Cuūð8Þ
∞ þ 1

9
Cuūð1Þ
∞ ;

ð36Þ

and exactly the same relations hold for the down quarks.
Let us look at the possible UV completions. In the case

of ciiiiuu , we will have a negative sign of the Wilson
coefficient with Z0 and a positive sign for the charge
−4=3 scalar which is in 6 of QCD SUð3Þ. Similar to the
lepton case, we can generate a negative Wilson coefficient
by adding vectorlike fermions and a complex scalar with
Q½ΦΨ� ¼ 2=3 and ðΦψÞ fundamental of QCD. The dis-
cussion of two fermion flavors is almost identical to the
lepton case. At last, for the four quark operators, there is a
possibility of UV completion with QCD vector octet field
with interactions of the type gVA

μ ðūiγμTAuiÞ. In this case,
similarly to Z0, integrals over infinite contours are not
vanishing; see for details the discussion in Appendix B 2.

3. Oð1Þ;ð8Þ
ud

Just as in the previous section, we obtain (we will omit
here flavor indices as these do not play any role, since the
two up quarks and two down quarks should be the same to
form sum rules)

−2
�
cð1Þud þ 1

3
cð8Þud

�
¼

Z
ds
πs

�
2σð8Þ

ud̄
þ σð1Þ

ud̄

3
− σð6Þud

�

þ 1

3
ð2Cud̄ð8Þ

∞ þ Cud̄ð1Þ
∞ Þ

− 2

�
cð1Þud −

1

6
cð8Þud

�

¼
Z

ds
πs

�
σð8Þ
ud̄

−
σð3̄Þud þ σð6Þud

2

�
þ Cud̄ð8Þ

∞ :

ð37Þ

Rewriting the result in terms of an uncolored cross section,
we will obtain

−2cð1Þud ¼
Z

ds
πs

ðσud̄ − σudÞ þ
8

9
Cud̄ð8Þ
∞ þ 1

9
Cud̄ð1Þ
∞ : ð38Þ

Interestingly, we see that only cð1Þud can be reexpressed in
terms of the color averaged cross sections.

4. Oeu;Oed

The only operators with sum rule are of the form

ðēRiγμeRiÞðūRjaγμuRjaÞ; ð39Þ

where no summation over i, j is assumed. The sum rule is
identical for both u and d quarks and is given by

−2ciijjeu ¼
Z

ds
πs

ðσēiuj − σēiūjÞ þ Cēu
∞ and u ↔ d: ð40Þ

UV completions are as before, with a positive sign for uðdÞ
coming from a charge 1=3ð4=3Þ scalar which is antifunda-
mental of QCD and a negative sign from a charge 5=3ð2=3Þ
vector field V which is QCD triplet; note that the amplitude
is convergent in the forward limit and the infinite integrals
do vanish. Neutral charge Z0 can lead to the arbitrary sign of
the Wilson coefficient; again, in this case, the dispersion
relations are saturated by the integrals at infinity.

C. Sum rules for ew doublets

In the next two subsections, we study operators that
contribute to doublet-singlet scattering.

1. Ole;Olu;Old;Oqe

Let us start with the fully leptonic operator and study the
forward scattering of lpe where p ¼ 1, 2 is the isospin
index, in which case the sum rules are of the form
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−2ciijjle ¼
Z

ds
πs

ðσlipL ējR
− σlipL ejR

Þ þ C
liej
∞

¼
Z

ds
πs

ðσeiLējR − σeiLe
j
R
Þ þ C

liej
∞

¼
Z

ds
πs

ðσνiLējR − σνiLe
j
R
Þ þ C

liej
∞ : ð41Þ

Similarly, we can write down the sum rules for the quark
lepton operators,

−2ciijjlu ¼
Z

ds
πs

ðσ l̄pi uj − σlpi ujÞ þ C
liuj
∞ and u ↔ d

−2ciijjqe ¼
Z

ds
πs

ðσq̄pi ej − σqpi ejÞ þ C
qiej
∞ ; ð42Þ

where again p stand for the SUð2ÞL index. Note that these
sum rules hold true for any isospin for the lepton and any
color of the quark.

2. Oð1Þ;ð8Þ
qu ;Oð1Þ;ð8Þ

qd

In this case, the discussion follows closely the one for the
quark singlets, and we arrive at two sum rules (we again
suppress the flavor index for brevity)

−2
�
cð1ÞqdðuÞ þ

1

3
cð8ÞqdðuÞ

�
¼

Z
ds
πs

�2σð8Þ
qd̄ðūÞ þ σð1Þ

qd̄ðūÞ
3

− σð6ÞqdðuÞ

�

þ 1

3
ð2Cqd̄ðūÞð8Þ

∞ þ Cqd̄ðūÞð1Þ
∞ Þ

− 2

�
cð1ÞqdðuÞ −

1

6
cð8ÞqdðuÞ

�

¼
Z

ds
πs

�
σð8Þ
qd̄ðūÞ −

σð3̄ÞqdðuÞ þ σð6ÞqdðuÞ
2

�

þ Cqd̄ðūÞð8Þ
∞ : ð43Þ

Note that σq stands for σqp, where p is a SUð2Þ index and
cross sections on the right-hand side of the Eq. (43) can be
taken for any component of the quark doublet. Rewriting
the result in terms of an uncolored cross section, we will
obtain

−2cð1ÞqdðuÞ ¼
Z

ds
πs

ðσqd̄ðūÞ − σqdðuÞÞþ
8

9
Cqd̄ðūÞð8Þ
∞ þ 1

9
Cqd̄ðūÞð1Þ
∞ :

ð44Þ

Finally, we now study the left-handed operators that
contribute to doublet-doublet scattering, where the doublet
is that of weak isospin.

3. Oll

Let us start with the four lepton operator Oðiijj;ijjiÞ
ll .

Expanding in components, the following sum rules can be
derived [we assume i ≠ j, and we do not write the operators
obtained by interchange of i ↔ j which are identical, just
as in the discussion for up quarks; see Eq. (B11)]:

−2ciijjll − 2cijjill ¼
Z

ds
πs

ðσeiej − σeiejÞ þ Cee;eν
∞

¼
Z

ds
πs

ðσνiνj − σνiν̄jÞ þ Cee;eν
∞

−2ciijjll ¼
Z

ds
πs

ðσeiνj − σeiνjÞ þ Ceν
∞:

ð45Þ

We can decompose the amplitude into the weak isospin
amplitudes (see Appendix C for details) to obtain the
dispersion relations

−2ciijjll − 2cijjill ¼
Z

ds
πs

�
1

2
ðσð1Þ

ij
þ σð3Þij̄ Þ − σð3Þij

�
− Cijð3Þ

∞

−2ciijjll ¼
Z

ds
πs

�
σð3Þij̄ −

1

2
ðσð3Þij þ σð1Þij Þ

�
þ Cðij̄ð3ÞÞ

∞ ;

ð46Þ

where ði; jÞ and ði; j̄Þ refer to the leptons from li; ljðl̄jÞ
doublets and σð3;1Þij;ðij̄Þ refers to cross section from the triplet

and singlet initial state formed by ij or ij̄. In the case of an
operator formed by just one lepton family, we will obtain

−8cll ¼
Z

ds
πs

½σeēðνν̄Þ − σee;ðννÞ� þ Cee
∞

¼
Z

ds
πs

�
1

2
ðσð1Þ

ll̄
þ σð3Þ

ll̄
Þ − σð3Þll

�
− Cllð3Þ

∞

− 4cll ¼
Z

ds
πs

½σeν̄ − σeν� þ Ceν
∞

¼
Z

ds
πs

�
σð3Þ
ll̄

−
1

2
ðσð3Þll þ σð1Þll Þ

�
þ Cðll̄ð3ÞÞ

∞ : ð47Þ

4. Oð3Þ;ð1Þ
lq

In this case, only the operators with iijj flavor structure
can contribute, and we arrive at the following dispersion
relations:

−2cð1Þlq − 2cð3Þlq ¼
Z

ds
πs

½σed̄ðνūÞ − σedðνuÞ� þ Ced̄ðνūÞ
∞

−2cð1Þlq þ 2cð3Þlq ¼
Z

ds
πs

½σeūðνd̄Þ − σeuðνdÞ� þ Ceūðνd̄Þ
∞ : ð48Þ
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As before, decomposing the cross section under isospin, we will obtain

−2cð1Þlq − 2cð3Þlq ¼
Z

ds
πs

�
1

2
ðσð1Þlq̄ þ σð3Þlq̄ Þ − σð3Þlq

�
− Clqð3Þ

∞

− 2cð1Þlq þ 2cð3Þlq ¼
Z

ds
πs

�
σð3Þlq̄ −

1

2
ðσð1Þql þ σð3Þql Þ

�
þ Clq̄ð3Þ

∞ : ð49Þ

5. Oqq and Oð3Þ
qq

Now, let us proceed to the four quark operators; we will start with the case where all quark doublets belong to the same
generation. Then, the dispersion relations in terms of the octet and singlet cross sections will be given by

−8ðcð1Þqq þ cð3Þqq Þ ¼
Z

ds
πs

�
2σð8Þuū þ σð1Þuū

3
− σð6Þuu

�
− Cð6Þuu

∞

− 4ðcð1Þqq þ cð3Þqq Þ ¼
Z

ds
πs

�
σð8Þuū −

σ3̄uu þ σð6Þuu

2

�
þ Cð8Þuū

∞

− 4ðcð1Þqq þ cð3Þqq Þ ¼
Z

ds
πs

�
2σð8Þ

ud̄
þ σð1Þ

ud̄

3
− σð6Þud

�
− Cudð6Þ

∞

− 4ðcð1Þqq − cð3Þqq Þ ¼
Z

ds
πs

�
σð8Þ
ud̄

−
σð6Þud þ σð3̄Þud

2

�
þ Cudð8Þ

∞ : ð50Þ

We can proceed further by performing the decomposition in terms of the SUð2ÞL multiplets using the relations

σuū ¼
1

2
ðσð1Þqq̄ þ σð3Þqq̄ Þ; σud̄ ¼ σð3Þqq̄

σuu ¼ σð3Þqq ; σud ¼
1

2
ðσð1Þqq þ σð3Þqq Þ: ð51Þ

Then, we will obtain (the first index will refer now to the QCD multiplet, and the second one will refer to electroweak)

−8ðcð1Þqq þ cð3Þqq Þ ¼
Z

ds
πs

�
1

6
ðð2σð8;1Þqq̄ þ σð1;1Þqq̄ þ 2σð8;3Þqq̄ þ σð1;3Þqq̄ ÞÞ − σð6;3Þqq

�
− Cð6;3Þ

qq∞

− 4ðcð1Þqq þ cð3Þqq Þ ¼
Z

ds
πs

�
1

2
ðσð8;1Þqq̄ þ σð8;3Þqq̄ Þ − 1

2
ðσð3̄;3Þqq þ σð6;3Þqq Þ

�
þ Cð8;1Þ

qq̄∞ þ Cð8;3Þ
qq̄∞

2

− 4ðcð1Þqq þ cð3Þqq Þ ¼
Z

ds
πs

�
1

3
ð2σð8;3Þqq̄ þ σð1;3Þqq̄ Þ − 1

2
ðσð6;1Þqq þ σð6;3Þqq Þ

�
−
Cð6;1Þ
qq∞ þ Cð6;3Þ

qq∞

2

− 4ðcð1Þqq − cð3Þqq Þ ¼
Z

ds
πs

�
σð8;3Þqq̄ −

1

4
ðσð3̄;1Þqq þ σð6;1Þqq þ σð3̄;3Þqq þ σð6;3Þqq Þ

�
þ Cð8;3Þ

qq̄∞: ð52Þ

In terms of the color averaged cross sections,

16

3
ðcð1Þqq þ cð3Þqq Þ ¼

Z
ds
πs

�
σð3Þqq̄ þ σð1Þqq̄

2
− σð3Þqq

�
−
Cð6;3Þ
qq∞

3
þ Cð8;1Þ

q̄q∞ þ Cð8;3Þ
q̄q∞

3

− 4

�
cð1Þqq −

cð3Þqq

3

�
¼

Z
ds
πs

�
σð3Þqq̄ −

σð1Þqq þ σð3Þqq

2

�
−
Cð6;1Þ
qq∞ þ Cð6;3Þ

qq∞

6
þ 2Cð8;3Þ

qq̄∞

3
: ð53Þ

In the case of two flavors, the dispersion relations become
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−2ðciijjqq þ cijjiqq þ cð3Þiijjqq þ cð3Þijjiqq Þ ¼
Z

ds
πs

�
1

6
ð2σð8;1Þqq̄ þ σð1;1Þqq̄ þ 2σð8;3Þqq̄ þ σð1;3Þqq̄ Þ − σð6;3Þqq

�
− Cð6;3Þ

qq∞

− 2ðciijjqq þ cð3Þiijjqq Þ ¼
Z

ds
πs

�
1

2
ðσð8;1Þqq̄ þ σð8;3Þqq̄ Þ − 1

2
ðσð3̄;3Þqq þ σð6;3Þqq Þ

�
þ Cð8;1Þ

qq̄∞ þ Cð8;3Þ
qq̄∞

2

− 2ðciijjqq − cð3Þiijjqq þ 2cð3Þijjiqq Þ ¼
Z

ds
πs

�
1

3
ð2σð8;3Þqq̄ þ σð1;3Þqq̄ Þ − 1

2
ðσð6;1Þqq þ σð6;3Þqq Þ

�

−
Cð6;1Þ
qq∞ þ Cð6;3Þ

qq∞

2

−2ðciijjqq − cð3Þiijjqq Þ ¼
Z

ds
πs

�
σð8;3Þqq̄ −

1

4
ðσð3̄;1Þqq þ σð6;1Þqq þ σð3̄;3Þqq þ σð6;3Þqq Þ

�
− Cð8;3Þ

qq̄∞:

ð54Þ

The power of these relations relations allows us to under-
stand immediately the signs of the Wilson coefficients
in the various UV completions. For example, for a scalar
diquark which is in ð6̄; 1;−1=3Þ representation under
SUð3Þ × SUð2Þ ×Uð1ÞY , we will get

ciijj
qq;6̄

¼ cð3Þijji
qq;6̄

¼ −cð3Þiijj
qq;6̄

¼ −cijji
qq;6̄

> 0: ð55Þ

Similarly, for a scalar diquark which is in ð3; 1;−1=3Þ, we
will get

ciijjqq;3 ¼ cijjiqq;3 ¼ −cð3Þijjiqq;3 ¼ −cð3Þiijjqq;3 > 0: ð56Þ

Finally, we can sum and report these sum rules in terms of
color averaged cross sections, which yield two equations
depending on whether the initial and final states form
SUð2ÞL triplets or singlets,

− 2

�
ciijjqq þ cð3Þiijjqq þ 1

3
cijjiqq þ 1

3
cð3Þijjiqq

�

¼
Z

ds
πs

�
σð3Þqq̄ þ σð1Þqq̄

2
− σð3Þqq

�
−
Cð6;3Þ
qq

3
þ Cð8;1Þ

q̄q∞ þ Cð8;3Þ
q̄q∞

3
;

− 2

�
ciijjqq − cð3Þiijjqq þ 2

3
cð3Þijjiqq

�

¼
Z

ds
πs

�
σð3Þqq̄ −

σð1Þqq þ σð3Þqq

2

�
−
Cð6;1Þ
qq∞ þ Cð6;3Þ

qq∞

6
þ 2Cð8;3Þ

qq̄∞

3
:

ð57Þ

V. SUMMARY

In this work, we explored the sum rules for four-fermion
operators at dimension-6 level. As expected, the conver-
gence of the dispersion integrals leading to the dimension-6
Wilson coefficients is not guaranteed and in particular is
spoiled by the t-channel exchange of the vector bosons.

This additional feature can modify the predictions of the
dispersion relations for sign and strength of IR interactions,
and for some UV completions, the value of the Wilson
coefficients can be even saturated by the pole at infinity.
However, we find that this ambiguity of IR couplings is not
related to the (non)convergence of the dispersion integrals,
and as an example, we have constructed, in addition to tree
level, one-loop weakly coupled models (see Sec. III C)
where both signs become available even when the integral
over the infinite circle vanishes.
We presented forward dispersion relations for all pos-

sible four-fermion dimension-6 operators. To facilitate the
connection between the values of the Wilson coefficients
and new physics scenarios, we have performed the decom-
position in terms of the SUð2Þ and SUð3Þ multiplets. In the
case of the forward amplitudes satisfying super-Froissart
convergence criteria jAðsÞjs→∞j < s, these relations predict
in a model-independent way processes with enhanced total
cross section in the case of discoveries in low-energy
experiments. We carefully indicate all the relevant quantum
numbers of the quantities involved in our dispersion
relations in order to provide a convenient dictionary for
future measurements, where the precise structure of initial
states is often unavailable. This can have curious conse-
quences; for example, Eq. (38) tells us that the Wilson

coefficients cð8Þud;ðquÞ;ðqdÞ do not enter the dispersion relations
with color averaged cross sections.
We emphasize that these sum rules are to be interpreted as

amodel-independent link betweenUVand IRmeasurements
(up to C∞), as opposed to the usual positivity bounds. Even
though they are less constraining on the EFT parameter
space, these relations can instead be used as a powerful tool
for model building to unearth the underlying, fundamental
physics that is to be explored in the coming years.
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APPENDIX A: MASSLESS SPINOR HELICITY
CONVENTIONS

We will briefly summarize the key results relevant to
us (for a pedagogical introduction, see Ref. [30]) in
the ðþ;−;−;−Þ signature metric (we will follow the
conventions discussed in Refs. [31–33]). We have the
two-component spinors vL=R; uL=R and their barred ver-
sions. They are related by crossing symmetry, uL=R ¼
vR=L; ūL=R ¼ v̄R=L. It is important to realize that for
antiparticles the spinor has opposite handedness to the
field that describes it. For instance, a right chiral field eR
has an antiparticle which has the spinor vL, while the
particle carries the spinor uR. In other words, both uR and
vL correspond to a right chiral field, whereas vR and uL
correspond to a left chiral field. To be absolutely clear, we
will just refer to the handedness of the relevant spinor as
opposed to the helicity of a particle/antiparticle wherever
necessary. Operationally, we will assign the brackets

v̄L ¼ ūR ≡ ½; v̄R ¼ ūL ≡ h; vL ¼ uR≡i; vR ¼ uL≡�:
ðA1Þ

The inner product is antisymmetric as is expected for
Grassman-valued quantities

hpqi ¼ −hqpi ½pq� ¼ −½qp�: ðA2Þ

Note that this also means that hppi ¼ 0 ¼ ½pp�. Mixed
brackets vanish. The formalism encodes a lot of power—
for example, it tells us that a h and � type spinor cannot
occur at a vertex unless there is a γμ involved—a vector
connects opposite helicity particles. Similarly, the same
helicity spinors making up a vertex indicate a scalar is
involved. Analytic continuation to the negative momenta
can be done using the following prescription:

j − pi ¼ ijpi j − p� ¼ ijp�: ðA3Þ

These brackets satisfy the following properties:

h1jγμ2� ¼ ½2jγμ1i
½ijγμjiji ¼ 2pi hiji½ij� ¼ −2pi · pj ¼ ðpi − pjÞ2: ðA4Þ

The Mandelstam variables will be given by

s ¼ 2p1 · p2 ¼ −½12�h12i t ¼ −2p3 · p1 ¼ ½13�h13i
u ¼ −2p4 · p1 ¼ ½14�h14i: ðA5Þ

Finally, the Fierz rearrangement can be written as the
following identity:

½1jγμj2i½3jγμj4i ¼ −2½13�h24i: ðA6Þ

APPENDIX B: DETAILS ABOUT CROSS
SECTIONS AND LOOP AMPLITUDES

In this Appendix, we will give details about explicit
verification of the dispersion relations presented in the text
for various models.

1. Z0 at tree level

Let us start with neutral vector Z0 coupled to right-
handed current via λZ0

μēRγμeR. It generates eReR scattering
through the diagrams given in Fig. 2. The full amplitude
will be given by

Aee ¼ −2λ2½14�h23i
�

1

s −m2
þ 1

t −m2

�
: ðB1Þ

Matching the IR and UV amplitudes at low energies, we
will obtain

−8c1111ee ½14�h23i ¼ −2λ2½14�h23i
�

1

−m2
þ 1

−m2

�

⇒ c1111ee ¼ −
λ2

2m2
: ðB2Þ

Let us verify that this is consistent with our dispersion
relation. With a vector Z0 at order Oðλ2Þ in perturbation
theory, we have σeē ≠ 0 and σee ¼ 0. To calculate the cross
sections, note that by the optical theorem we have

Imðeē → eēÞ ¼ sσtoteē : ðB3Þ

We use the fact that Imð 1
p2−m2þiϵÞ ¼ −πδðp2 −m2Þ, which,

when substituted in the amplitude (14), gives us

ImðeþLe−R → eþLe
−
RÞ ¼ 2λ2πsδðs −m2Þ: ðB4Þ

Starting from the dispersion relation in Eq. (10), we will get

−8c1111ee ¼
Z

ds
πs

ðσeē − 0Þ þ C∞ ¼
Z

ds
πs2

Imðeē → eēÞ

þ C∞ ¼ 2λ2

m2
þ C∞: ðB5Þ

Calculating explicitly C∞, we will obtain
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C∞ ¼
Z

2π

0

dθ
2π

AðjsΛjeiθ; 0Þ
ðjsΛjeiθÞ2

· ðjsΛjeiθÞ ¼
2λ2

m2

Ajt→0 ¼ −2λ2s
�

1

s −m2
þ 1

−m2

�
; ðB6Þ

which is of the same sign as the dispersion integral, and
therefore we find

−8c1111ee ¼ 4λ2=m2 ⇒ c1111ee ¼ −λ2=2m2 ðB7Þ

as claimed in (12), and our dispersion relation is explicitly
verified.

2. Integrating out color octet

Very similarly to the charge neutral Z0, we can consider
effects coming from integrating out color octet V which has
zero electric charge. Let us look, for example, on an octet
interacting with a right-handed up-quark current:

gijVA
μ ðūiγμTAujÞ ⇒ cijkluu ¼ −gkjgil

M2
V

þ gijgkl
3M2

V
: ðB8Þ

Let us assume that the octet couplings are universal and
flavor diagonal; then, gij ¼ gδij, and the Wilson coeffi-
cients are equal to

ciijjuu ¼ 2g2

3M2
V
; cijjiuu ¼ −2g2

M2
V
: ðB9Þ

Now, let us look at dispersion relations for i ≠ j; then
similar to the discussion in Eq. (19), the cross sections will
vanish at Oðg2Þ, and the right-hand side of Eq. (B11) will
be controlled by the contribution of the integrals over
infinite contours,

Cð8Þ
∞ ¼ Cα≠β

∞ ¼ 8g2

3M2
V
; Cαα

∞ ¼ −Cð6Þ
∞ ¼ −

4g2

3M2
V
; ðB10Þ

which confirm the dispersion relations

−2ciijju ¼ −Cuu;ð6Þ
∞ − 2ðciijju þ cijjiu Þ ¼ Cuū;ð8Þ

∞ : ðB11Þ

3. Charge-2 scalar at tree level

Let us build a model where only σeeðē ēÞ is present at
the lowest order in perturbation theory. This can be done
with a charge−2 scalar, which interacts as follows
(κϕēRecR þ H:c:), where the c subscript stands for charge
conjugation. Matching the amplitudes in EFT and UV
theory, we will obtain

−8c1111ee ½14�h23i ¼ −2!2!κ2
½14�h32i
−m2

⇒ c1111ee ¼ þ κ2

2m2
:

ðB12Þ
At Oðκ2Þ, the only process contributing to the right-hand
side of dispersion relations is ee → ϕ, see Fig. 3 for the
Feynman diagram. If we treat ϕ as a very narrow resonance,
then the cross section is equal to:

σtotee ¼ 4κ2πδðs −m2Þ: ðB13Þ
So, the dispersion relation becomes

−8c1111ee ¼
Z �

0 −
ds
πs

σ−−

�
¼ −

4κ2

m2
; ðB14Þ

and as expected, we find c1111ee ¼ þ κ2

2m2.

4. Dispersion relation at one loop

At last, let us consider the following UV completion for
the ðēγμeÞðēγμeÞ operator. It will demonstrate that it is
possible to have a negative Wilson coefficient with vanish-
ing integrals over infinite circles. Let us extend the SM
with a new heavy scalar Φ and vectorlike fermion Ψ with
interactions

λðΦēRΨÞ þ H:c:; ðB15Þ
where electric charges of new fields satisfy Q½Φ� þ
Q½Ψ� ¼ −1. Let us start by deriving the cee Wilson
coefficient. We can consider eē → eē scattering; then,
the amplitude will be given by a box diagram (see
Fig. 4) and its crossed version. To match with EFT
predictions, we can focus on the processes where external
particles have vanishing momentum, in which case the
amplitude will be given by

FIG. 3. Scalar production in ee collision; note that the vertex is
¼ 2!ð−iκÞ.

FIG. 2. In accordance with fermion statistics, these diagrams
subtract.
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iM ¼ λ4½1jγμj2i½4jγνj3i
Z

dDk
ð2πÞD

kμkν

ðk2 −m2Þ4 − ð2 ↔ 3Þ;

ðB16Þ

where we have assumed that the masses of the new fields
are equalm½Φ� ¼ m½Ψ� ¼ m; the loop function for arbitrary
masses is reported in the main text. Performing the integral,
which is finite, and doing the Fierz rearrangements, we will
obtain

M ¼ 1

3

λ4

16π2m2
½14�h23i;⇒ c1111ee ¼ −

1

3

λ4

128π2m2
: ðB17Þ

So, we see that sign of the Wilson coefficient is indeed
negative. We have checked explicitly that the amplitude
satisfies AðsÞ=s → 0 at an infinite circle, so all we need to
know is the cross section for eē scattering to verify the
dispersion relations. The total cross section at order Oðλ4Þ
receives contribution from two processes: eē → ΨΨ̄ and
eē → ΦΦ� (see Fig. 5). Performing the calculation, we
obtain

σðeē → ΨΨ̄Þ ¼ λ4

16πs2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q

σðeē → ΦΦ�Þ ¼ λ4

64πs2

�
−8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q

− 4s log

�
s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
��

: ðB18Þ

Performing the calculation for the dispersion integral, we
will obtain

Z
ds
πs

ðσðeē → ΨΨ̄Þ þ σðeē → ΦΦ�ÞÞ

¼ λ4

π2m2
ð1=96þ 1=96Þ ¼ λ4

48m2π2
¼ −8c1111ee ; ðB19Þ

satisfying the identity of Eq. (10).

APPENDIX C: DECOMPOSITION OF CROSS
SECTIONS IN TERMS OF SUð2Þ

AND SUð3Þ IRREDUCIBLE REPRESENTATIONS

In this Appendix, we will give details of the decom-
position of amplitudes in terms of the irreducible repre-
sentations of the electroweak SUð2Þ and QCD SUð3Þ
groups. The Wigner-Eckart theorem tells us that the
resulting amplitudes and cross sections will depend only
on representations of the initial state (For a similar
decomposition of isospins, see [34,35]; for custodial
isospin see [4,36], and see [5,13] for other groups). Let
us start with two-lepton doublet scattering L1L2 → L1L2,
where L1, L2 are SUð2ÞL doublet leptons, for, e.g., ðνe; eÞT .
Then, the initial state can be decomposed as a singlet and a
triplet under SUð2Þ: 2 ⊗ 2 ¼ 3 ⊕ 1. The singlet and triplet
states are defined as

S ¼ singlet ¼ 1ffiffiffi
2

p ðjνei − jeνiÞ

T ¼ triplet ¼

8>><
>>:

jννi
1ffiffi
2

p ðjνei þ jeνiÞ
jeei

; ðC1Þ

where ðν; eÞ are the components of EW doublet. Similarly,
we can decompose the states for the lepton and antilepton
scattering, where we find

L1 ¼ ðν1; e1ÞT; L̄2 ¼ ð−ē2; ν̄2ÞT ðC2Þ

S̃ ¼ singlet ¼ 1ffiffiffi
2

p ðjeēi þ jνν̄iÞ ðC3Þ

T̃ ¼ triplet ¼

8>><
>>:

−jνēi
1ffiffi
2

p ðjνν̄i − jeēiÞ
jeν̄i

: ðC4Þ

Using this decomposition, we can immediately see that
the amplitude for the forward scatterings of the various
components of the doublets will be decomposed as

FIG. 5. Processes contributing to the σeē at Oðλ4Þ order.FIG. 4. Forward amplitude at Oðλ4Þ order.
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Aee ¼ Að3Þ
LL; Aeē ¼

Að3Þ
LL̄ þ Að1Þ

LL̄

2
;

Aνe ¼
Að1Þ
LL þ Að3Þ

LL

2
; Aν̄e ¼ Að3Þ

LL̄;

Aνν ¼ Að3Þ
LL; Aνν̄ ¼

Að3Þ
LL̄ þ Að1Þ

LL̄

2
: ðC5Þ

Similarly, we can decompose the cross sections for quark
lepton doublet scatterings. Note that forward amplitudes
will satisfy the following crossing relations:

Að1Þ
LLðs; uÞ ¼

3Að3Þ
LL̄ðu; sÞ − Að1Þ

LL̄ðu; sÞ
2

;

Að3Þ
LLðs; uÞ ¼

Að1Þ
LL̄ðu; sÞ þ Að3Þ

LL̄ðu; sÞ
2

Að1Þ
LL̄ðu; sÞ ¼

3Að3Þ
LLðs; uÞ − Að1Þ

LLðs; uÞ
2

;

Að3Þ
LL̄ðu; sÞ ¼

Að1Þ
LLðs; uÞ þ Að3Þ

LLðs; uÞ
2

: ðC6Þ

These relations can be easily obtained starting from
crossing relations presented in Ref. [5]. Generically, the
amplitude for 2 → 2 scattering can be decomposed as

Aabcd ¼
X
α

Pabcd
α Aα; ðC7Þ

where a, b, c, d label the components of the individual
particles, α stands for the irreducible representations of the
product, and Pα are the corresponding projectors. Crossing
symmetry relates

Aab
cdðs; uÞ ¼ Aa

dc
bðu; sÞ; ðC8Þ

then, using the crossing relations for projectors reported in
Ref. [5], one can easily derive the expressions in Eq. (C5).
Since we are looking at the dispersion relations for
dimension-6 operators and the amplitudes in IR scale
linearly with s, the integrals over infinite circle contours
must satisfy

CLLðLL̄Þ
∞ ≡

Z
infinite circle

ds
s2

ALLðLL̄ÞðsÞ;

− CLLð3Þ
∞ ¼ CLL̄ð3Þ

∞ þ CLL̄ð1Þ
∞

2
;−

CLLð3Þ
∞ þ CLLð1Þ

∞

2

¼ CLL̄ð3Þ
∞ : ðC9Þ

The situation is very similar for the quark-quark doublet
scattering, but there we can decompose the initial state in
the representations of the color SUð3Þ as well (see Ref. [5]
for an example).

1. SUð3Þ decomposition

Let us consider for simplicity quark-(anti)quark scatter-
ing, where the particles are singlets under electroweak
SUð2Þ; in this case, initial state can be decomposed as
follows:

3 ⊗ 3 ¼ 3̄ ⊕ 6; 3 ⊗ 3̄ ¼ 1 ⊕ 8: ðC10Þ

In the case of two-particle scattering, there are only two
possibilities: initial particles can have the same or different
colors. For the quark-antiquark scattering various initial
color states can be decomposed as

j11̄i ¼ Sffiffiffi
3

p þ λ8ffiffiffi
6

p þ λ2ffiffiffi
2

p ; j22̄i ¼ Sffiffiffi
3

p þ λ8ffiffiffi
6

p −
λ2ffiffiffi
2

p

j33̄i ¼ S−
ffiffiffi
2

p
λ8ffiffiffi

3
p ; j12̄i ¼ λ1 þ iλ2ffiffiffi

2
p ; j21̄i ¼ λ1 − iλ2ffiffiffi

2
p

j13̄i ¼ λ4 þ iλ5ffiffiffi
2

p ; j31̄i ¼ λ4 − iλ5ffiffiffi
2

p ; j23̄i ¼ λ6 þ iλ7ffiffiffi
2

p ;

j32̄i ¼ λ6 − iλ7ffiffiffi
2

p ; ðC11Þ

where S ¼ j11̄iþj22̄iþj33̄iffiffi
3

p is a SUð3Þ singlet state and

ðλ1…λ8Þ are components of an octet, which can be
formed using Gell-Mann matrices (our normalization is
hλijλji ¼ δij). Similarly, we can decompose the quark-
quark initial state in terms of the 6 and 3̄. Note that in this
case the same and different color initial states can be
schematically decomposed as

jααi ¼ 6αα; jαβiα≠β ¼
6αβ � 3̄αβffiffiffi

2
p : ðC12Þ

Then, theWigner-Eckart theorem tells us that the total cross
sections and forward scattering amplitudes will satisfy the
relations

σαα ¼ σð6Þ; σαβjα≠β ¼
1

2
ðσð3̄Þ þ σð6ÞÞ; ðC13Þ

σαᾱ ¼
σð1Þ þ 2σð8Þ

3
; σαβ̄jα≠β ¼ σð8Þ; ðC14Þ

where αðβ̄Þ indices indicate whether we are looking at the
same or different color scatterings in qq or qq̄ channels
(q here stands for a quark, which can be either up or down
type). In case we are interested in the color averaged cross
sections, these will be related to the above as follows:

σqq ≡ ðσqqÞcol:aver: ¼
2

3
σð6Þ þ 1

3
σð3̄Þ

σqq̄ ≡ ðσqq̄Þcol:aver: ¼
1

9
σð1Þ þ 8

9
σð8Þ: ðC15Þ
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At last, forward amplitudes decomposed under QCD representations will satisfy the following crossing relations:

Að3̄Þ
qq ðs; uÞ ¼

−Að1Þ
qq̄ ðu; sÞ þ 4Að8Þ

qq̄ ðu; sÞ
3

; Að6Þ
qq ðs; uÞ ¼

Að1Þ
qq̄ ðu; sÞ þ 2Að8Þ

qq̄ ðu; sÞ
3

Að1Þ
qq̄ ðu; sÞ ¼ 2Að6Þ

qq ðs; uÞ − Að3̄Þ
qq ðs; uÞ; Að8Þ

qq̄ ðu; sÞ ¼
Að3̄Þ
qq ðs; uÞ þ Að6Þ

qq ðs; uÞ
2

: ðC16Þ

Similarly, the contours over the infinite circles will be related as follows:

−Cqqð6Þ
∞ ¼ Cqq̄ð1Þ

∞ þ 2Cqq̄ð8Þ
∞

3
; −

Cqqð3̄Þ
∞ þ Cqqð6Þ

∞

2
¼ Cqq̄ð8Þ

∞ : ðC17Þ
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