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Abstract: We present a four-flavour lattice calculation of the leading-order hadronic vac-

uum polarisation contribution to the anomalous magnetic moment of the muon, ahvp
µ , aris-

ing from quark-connected Feynman graphs. It is based on ensembles featuringNf = 2+1+1

dynamical twisted mass fermions generated by the European Twisted Mass Collaboration

(ETMC). Several light quark masses are used in order to yield a controlled extrapolation

to the physical pion mass. We employ three lattice spacings to examine lattice artefacts

and several different volumes to check for finite-size effects. Incorporating the complete

first two generations of quarks allows for a direct comparison with phenomenological de-

terminations of ahvp
µ . Our final result including an estimate of the systematic uncertainty

ahvp
µ = 6.74(21)(18) · 10−8 shows a good overall agreement with these computations.
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1 Introduction

The detection of a scalar boson at the LHC leaves us, in case that it turns out to be

the standard model Higgs boson, with a somewhat puzzling situation. On the one hand,

the standard model seems then to be complete. On the other hand, e.g. the lack of our

understanding of dark matter, the amount of CP violation, and the generation of baryon

asymmetry in the universe strongly suggest that new physics must exist. It is therefore a

most important task, to find indeed signs of this new physics beyond the standard model

by looking at promising physical observables to detect its manifestations.

The anomalous magnetic moment of the muon, aµ, can be considered as such an

important benchmark quantity to test the standard model of particle interactions, or,

alternatively to detect new physics beyond the standard model. It can be measured ex-

perimentally very precisely [1, 2] and can likewise be computed precisely in the standard

model, see e.g. the review [3]. A comparison between the experimental result for aµ and

a standard model calculation reveals a discrepancy of about three σ which is persistent

over many years now and has been confirmed by computations of a number of groups. The

interesting question is then, whether this discrepancy originates from some undetected ef-

fect in the experimental or theoretical determination of aµ, or, somewhat more excitingly,

whether it points to physics beyond the standard model.
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A key ingredient in the calculation of aµ is the leading order hadronic vacuum po-

larisation contribution, ahvp
µ , which presently is the largest source of uncertainty of the

theoretical computation of aµ. Since ahvp
µ is of intrinsically non-perturbative nature, evi-

dently a lattice QCD computation for this quantity is highly desirable. In fact, in a recent

study, using only two flavours of mass degenerate quarks, it could be demonstrated that by

employing an improved method to compute ahvp
µ on the lattice, an unprecedented precision

for a lattice calculation of ahvp
µ could be reached [4, 5].

In this paper, we want to report on a calculation of ahvp
µ with four flavours of quarks,

using besides mass degenerate up and down quarks also the strange and the charm quarks.

Having such a setup is important for two reasons. First, since the contribution of the

bottom quark is so small that neither experimental nor theoretical determinations are

currently sensitive to it, the standard model calculation is sensitive to four flavours and

disentangling the flavour contributions, for e.g. only the light flavours, is afflicted with am-

biguities. Using four flavours is therefore cleaner and allows for a direct and unambiguous

comparison to phenomenological determinations.

The second reason is that the charm quark contribution computed in perturbation

theory [6] is ahvp
µ,c = 1.44(1)×10−9. Hence, the charm quark contribution has approximately

the same size as the light-by-light contribution [7] and the electroweak contributions [3]

which are larger than the current experimental and theoretical uncertainties. Including the

charm quark contribution in a lattice calculation is therefore important if values of ahvp
µ

are to be evaluated with a precision aiming to match the experimental errors.

For our computation of ahvp
µ we will follow closely the strategy of refs. [4, 5] applying

an improved lattice definition of ahvp
µ . As we will see below, also for the four flavour

calculation discussed here, this method allows for a controlled extrapolation to the physical

point leading to an accurate determination of ahvp
µ .

For our calculations we employ configurations generated for four flavours by the Euro-

pean Twisted Mass Collaboration (ETMC) [8, 9]. These sets of configurations are obtained

at different values of the lattice spacing and several volumes, thus allowing us to estimate

discretisation and finite size effects as systematic uncertainties in our lattice calculation.

In addition, at each value of the lattice spacing configurations exist at several values of the

pion mass, ranging from 230 MeV . mπ . 450 MeV thus allowing an extrapolation to the

physical point.

In this paper, we will give a detailed discussion about the extraction of ahvp
µ , pro-

viding our fitting strategy for the vacuum polarisation functions, and also address Padé

approximants to analyse the vacuum polarisation function as suggested in [10].

2 Basic definitions

The key quantity for the determination of the leading-order hadronic contribution to the

muon g−2 is the hadronic vacuum polarisation tensor Πem
µν (Q) with Euclidean momentum

Q. It can be obtained from the correlator of two electromagnetic vector currents

Jem
µ (x) =

2

3
u(x)γµu(x)− 1

3
d(x)γµd(x) +

2

3
c(x)γµc(x)− 1

3
s(x)γµs(x) (2.1)

– 2 –
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in the following way

Πem
µν (Q) =

∫
d4x eiQ·(x−y)〈Jem

µ (x)Jem
ν (y)〉 . (2.2)

The form of Jem
µ given above anticipates that our simulations involve four dynamical quark

flavours, up(u), down(d), strange(s), and charm(c). Euclidean symmetry and the Ward-

Takahashi identities require the vacuum polarisation tensor to be transverse, i.e.

Πem
µν (Q) = (QµQν −Q2δµν)Πem(Q2) . (2.3)

Πem(Q2) is the hadronic vacuum polarisation function, for which the label “em” will be

left out in the following to ease notation. Its renormalised variant

ΠR(Q2) = Π(Q2)−Π(0) (2.4)

appears in the expression for the leading hadronic contribution to the anomalous magnetic

moment of the muon in Euclidean space-time [11, 12]

ahvp
µ = α2

∫ ∞

0

dQ2

Q2
w

(
Q2

m2
µ

)
ΠR(Q2) , (2.5)

in which α denotes the fine-structure constant and mµ the muon mass. Since the weight

function w
(
Q2/m2

µ

)
is known from leading-order QED perturbation theory to have the form

w(r) =
64

r2
(

1 +
√

1 + 4/r
)4√

1 + 4/r
, (2.6)

the main task of the lattice calculation is the determination of ΠR(Q2) from the vector

current correlator.

3 Lattice calculation

3.1 Setup

As mentioned before, the calculations are performed employing gauge field configurations

generated by the ETMC with Nf = 2+1+1 dynamical quark flavours. In the gauge sector

the Iwasaki action [13] is used. The up and down quarks reside in a mass-degenerate flavour

doublet χl =

(
u

d

)
. They are described by the standard twisted mass lattice action [14]

SF [χl, χl, U ] =
∑

x

χl(x)
[
DW + iµγ5τ

3
]
χl(x) (3.1)

where

DW =
1

2
γµ
(
∇µ +∇∗µ

)
− a

2
∇∗µ∇µ +m0 (3.2)

is the Wilson Dirac operator with covariant forward and backward derivatives ∇µ and

∇∗µ, respectively. The value of m0 has been tuned to its critical value in order to ensure

– 3 –
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Ensemble β a[fm]
(
L
a

)3 × T
a mPS[MeV] L[fm]

D15.48 2.10 0.061 483 × 96 227 2.9

D30.48 2.10 0.061 483 × 96 318 2.9

D45.32sc 2.10 0.061 323 × 64 387 1.9

B25.32t 1.95 0.078 323 × 64 274 2.5

B35.32 1.95 0.078 323 × 64 319 2.5

B35.48 1.95 0.078 483 × 96 314 3.7

B55.32 1.95 0.078 323 × 64 393 2.5

B75.32 1.95 0.078 323 × 64 456 2.5

B85.24 1.95 0.078 243 × 48 491 1.9

A30.32 1.90 0.086 323 × 64 283 2.8

A40.32 1.90 0.086 323 × 64 323 2.8

A50.32 1.90 0.086 323 × 64 361 2.8

Table 1. Parameters of the Nf = 2 + 1 + 1 flavour gauge field configurations that have been

analysed in this work. β denotes the gauge coupling, a the lattice spacing,
(
L
a

)3 × T
a the space-

time volume, and mPS is the, unphysical, value of the pion mass. The values for mPS have been

determined in [8]. L is the spatial extent of the lattices. The approximate lattice spacings given

here are taken from a first analysis of the used gauge field configurations [16].

automatic O(a) improvement of all physical observables. The bare twisted quark mass is

denoted by µ and τ3 is the third Pauli matrix acting in flavour space. For the heavy quarks

χh =

(
c

s

)
the twisted mass action for a non-degenerate fermion doublet [15]

SF [χh, χh, U ] =
∑

x

χh(x)
[
DW + iµσγ5τ

1 + µδτ
3
]
χh(x) (3.3)

has been implemented with the same value for m0. τ1 is the first Pauli matrix, µδ denotes

the mass splitting between the charm and the strange quarks, and µσ the bare twisted

mass with a twist in flavour space orthogonal to the one in the light sector.

Details of the analysed ensembles are given in table 1. They involve different volumes,

three different lattice spacings, and up to five pion masses per lattice spacing such that

finite-size effects, lattice artefacts, and the chiral extrapolation can be studied.

As mentioned before, the calculation of Π(Q2) requires the evaluation of the vector-

vector correlation function in eq. (2.2). On the lattice, one can use the local vector current

JLµ = χ(x)Qelγµχ(x) in complete analogy to the continuum with the charge matrix Qel =

diag(2/3,−1/3), where χ stands either for the light or the heavy doublet. However, due

to the lattice regularisation this current has to be renormalised multiplicatively and does

not satisfy a Ward-Takahashi identity. To avoid these issues we instead use the conserved

Noether current also known as point-split vector current at sink and source position

JCµ (x) =
1

2

(
q(x+ µ̂)(1 + γµ)U †µ(x)q(x)− q(x)(1− γµ)Uµ(x)q(x+ µ̂)

)
. (3.4)
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This current is defined for each flavour separately using the decomposition of the electro-

magnetic vector current of eq. (2.1) into the quark currents Ju, Jd, Jc, and J s

Jem
µ (x) =

2

3
Ju(x)− 1

3
Jd(x) +

2

3
Jc(x)− 1

3
J s(x) . (3.5)

Since the Noether current is only conserved for actions diagonal in flavour space, we employ

an action for the heavy valence quarks different from the sea quark action given in eq. (3.3),

namely the so-called Osterwalder-Seiler (OS) action [17, 18]

SF [χh, χh, U ] =
∑

x

χh(x)

[
DW + i

(
µc 0

0 −µs

)
γ5

]
χh(x) .

How to achieveO(a) improvement in this situation is discussed in ref. [18]. The bare twisted

mass parameters for the valence strange and the charm quarks, µs and µc, are tuned in

such a way that the physical values for 2m2
K −m2

PS and the D-meson mass, respectively,

are reproduced. Here, mK denotes the kaon mass. This leads to the following values

β aµs aµc

1.90 0.01815(10) 0.2360(10)

1.95 0.01685(10) 0.2150(20)

2.10 0.014165(10) 0.1755(20)

.

With our definition of the vacuum polarisation tensor

Πµν(x, y) = 〈JCµ (x)JCν (y)〉+ a−3δµν〈Sν(y)〉 , (3.6)

involving the contact term

Sν(y) =
1

2

{
q(y + ν̂)(1 + γν)U †ν (y)q(y) + q(y)(1− γν)Uν(y)q(y + ν̂)

}
, (3.7)

we can now rely on the Ward identity

∂∗µΠµν(x, y) = 0 (3.8)

being valid at non-zero lattice spacings a. Hence, the vacuum polarisation tensor on the

lattice satisfies in momentum space

Πµν(Q) = (Q̂µQ̂ν − Q̂2δµν)Π(Q2) +O(a) . (3.9)

The reason for the O(a) lattice artefacts is the lack of full Euclidean symmetry due to the

lattice discretisation. Note that nevertheless, as discussed below, the vacuum polarisation

function can be made O(a)-improved.

3.2 Vacuum polarisation

Plugging eq. (2.1) into eq. (2.2) and noting that there are no mixed-flavour contributions for

the quark-connected Feynman diagrams, we can obtain the total vacuum polarisation tensor

– 5 –
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by adding the vacuum polarisation tensors of the single-flavour contributions including the

appropriate charge factors

Πtot
µν (Q) =

5

9
Πud
µν(Q) +

1

9
Πs
µν(Q) +

4

9
Πc
µν(Q) . (3.10)

Notice that we have defined the single-flavour contributions to Πtot
µν (Q) excluding the factors

of the squared charges. In the following we will generically denote them by Πµν(Q) and

the respective vacuum polarisation function by Π(Q2). The factor of Πud
µν(Q) is the sum of

the squared charges of up and down quarks. Similarly, the total ahvp
µ is procured as a sum

of the single-flavour contributions including the charge factors.

For constructing the vacuum polarisation function Π(Q2) from the vacuum polarisation

tensor Πµν(Q) in eq. (3.9), we define for the single-flavour contributions

Π(Q2) = <
{ ∑

µ,ν,Q∈[Q]

Πµν(Q)Pµν(Q)

( ∑

µ,ν,Q

Pµν(Q)Pµν(Q)

)−1}
+O(a2) (3.11)

as the real part of the projection onto the tensor Pµν(Q) = Q̂µQ̂ν−Q̂2δµν withQ2 =
∑

µ Q̂
2
µ.

The class [Q] is defined by all momenta related by a Euclidean space-time symmetry

transformation, although these are not all exact symmetries at non-zero lattice spacing

and finite volume. It has been checked that this does not lead to observable effects in

Π(Q2) in the low-momentum region, Q2 ≤ 2 GeV2, which is by far the most important for

the determination of ahvp
µ . In particular, the definition in eq. (3.11) involves summing over

Q and −Q which is required for achieving O(a) improvement.

Following a similar line of arguments as given in [19, 20], it can be demonstrated that

also for the case of the vacuum polarisation function defined as in eq. (3.11) short-distance

singularities do not spoil automatic O(a) improvement at maximal twist [21]. Therefore,

continuum extrapolations are performed with an a2-term in section 4.

Due to the renormalisation of the vacuum polarisation function given in eq. (2.4), the

calculation of ahvp
µ for each flavour involves both an interpolation of Π(Q2) in between

discrete lattice momenta as well as an extrapolation to zero momentum. Hence, the choice

of fit function is important, especially in the low-momentum region where the weight

function in eq. (2.6) is peaked, and its influence on the calculation of ahvp
µ has to be

investigated.

Our standard fit of the low-momentum dependence of the vacuum polarisation function

involves two different terms. The first is inspired by vector meson dominance with M vector

meson mass poles

Πlow(Q2) =
M∑

i=1

f2
i

m2
i +Q2

+
N−1∑

j=0

aj(Q
2)j , (3.12)

whereas the second term parametrises remaining deviations in the low-momentum region

which extends up to a matching momentumQ2
match. Here, mi denotes the mass of the vector

meson states and fi their decay constants. They are determined before fitting the vacuum

polarisation from the same vector correlation functions partially Fourier transformed in

the spatial directions on the same bootstrap samples as will be described in the next

– 6 –
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section. Thus, the aj are the only parameters fitted here. For the matching of low and

high momentum fit functions we have used Q2
match = 2 GeV2.

The high-momentum fraction of Π(Q2) for Q2 > Q2
match is interpolated, inspired by

perturbation theory, using a polynomial in Q2 and a polynomial multiplied by a logarith-

mic term

Πhigh(Q2) = log(Q2)

B−1∑

k=0

bk(Q
2)k +

C−1∑

l=0

cl(Q
2)l . (3.13)

Here, the fit parameters are denoted bk and cl. The total vacuum polarisation function for

each flavour is then obtained from

Π(Q2) = (1−Θ(Q2 −Q2
match))Πlow(Q2) + Θ(Q2 −Q2

match)Πhigh(Q2) (3.14)

with Θ(Q2) denoting the Heaviside step function.

For the light and the strange quark contributions to Πtot
µν (Q) our standard fit is char-

acterised by M = 1, N = 2, B = 4, and C = 1. An example fit for the vacuum polarisation

for one of our lightest pion masses (B25.32t in table 1) is given in figure 1. Since the

curvature of the vacuum polarisation function for the charm quark contribution is much

smaller, more parameters are needed in the high-momentum domain in order to ensure

smooth contact between the fit functions in the low and high momentum regions. Thus we

employ for the charm quark contribution M = 1, N = 2, B = 3, and C = 5 in our standard

fit. The effect of varying the number of terms has been checked and will be reported when

discussing the systematic uncertainties of our calculation.

To minimise finite-size effects we have excluded the points with the lowest lattice

momentum in the vacuum polarisation fits which due to the big uncertainty of these points

has only a very mild influence on the fits. This has been suggested by a tree-level study

showing that except for the lowest momentum point all other data points for different

volumes fall on top of each other.

3.3 Vector meson mass fits

Since the ρ-meson mass will be needed in the chiral extrapolation as will be described below

and since eq. (3.12) involves the masses and decay constants of the vector meson states,

we determine these basic quantities from the same vector-vector correlators, i.e. using

the vector currents as interpolating operators for the vector mesons. Employing the same

bootstrap samples as in the vacuum polarisation fits, the uncertainties of the determination

of the vector meson properties can be correctly propagated to ahvp
µ . In fact, our way of

chirally extrapolating the data to the physical point benefits from a cancellation of the

error of the ρ-meson mass achieved in this way.

In principle, the vector mesons should be treated as resonances. However, due to

angular momentum conservation the decay products, two pions in the case of the light

quarks, can only be produced if the kinematical condition mV ≥ 2
√
m2

PS + ~p2 is satisfied

with ~p 6= 0. Since on the lattice with finite spatial extent L, the momenta are quantised,

– 7 –
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Figure 1. Unrenormalised vacuum polarisation function of the light quarks, Πud(Q2), for ensemble

B25.32t (see table 1 for details).

the above condition becomes

mV ≥ 2

√
m2

PS +

(
2π

L

)2

. (3.15)

This condition is not fulfilled for all but one ensemble (D15.48 of table 1) where the vector

meson mass mV and the energy of the 2-pion state with non-zero momentum become con-

sistent within errors. We nevertheless treat the lightest vector meson as a stable asymptotic

state for all ensembles1 and obtain the spectral information from the large-time behaviour

of the correlator projected to zero momentum in order to utilise it in the vacuum polari-

sation fits, including also the error propagation to ahvp
µ .

Following the analysis described in [23] we adopt

C(t) =
∑

~x

3∑

k=1

〈JCk (t, ~x)JCk (0)〉

t→∞−−−→ 3mV f
2
V e
−mV

T
2 cosh

((
T

2
− t
)
mV

)
(3.16)

for our correlated fits to extract mV and fV from it. The factor three arises from the polar-

isation sum of the vector meson. Likewise fits including M − 1 excited state contributions

1We do not expect a significant effect of taking the resonance mass or the correlator mass in our analysis,

since in the 2-flavour case a comparison between [22] and [4] gave consistent results.

– 8 –



J
H
E
P
0
2
(
2
0
1
4
)
0
9
9

are performed with

C(t;M) =

M∑

i=1

3mif
2
i e
−mi

T
2 cosh

((
T

2
− t
)
mi

)
(3.17)

in an appropriate fit range. The statistical uncertainties of the fit parameters are estimated

using the bootstrap method.

For single-state fits the initial timeslice for the fit should be large enough such that

the first excited state is sufficiently suppressed. The final fitting timeslice should be small

enough to avoid the noisiest part of the correlator which is obtained from simple point

sources in our calculation. Taking those restrictions into account we have selected fixed

time ranges in physical units for the single-state fits by requiring the mean χ2/dof for

all the ensembles to be close to 1. To fit the ρ-meson properties our standard fit range

is 0.7 fm < t < 1.2 fm. For the ss-state we have chosen 0.9 fm < t < 1.4 fm and for the

J/Ψ fits 1.2 fm < t < 1.7 fm. In the appendix in table 4 and table 5 we list the results

for mV and fV obtained with single-state fits in our standard fit ranges. For one value of

the lattice spacing the results for the ρ-meson masses are also depicted in figure 2. For fits

with M = 2 done to check systematic effects of choosing a MNBC fit function, we have

used 0.3 fm < t < 1.2 fm in the light sector, 0.35 fm < t < 1.4 fm in the strange sector,

and 0.4 fm < t < 1.7 fm in the charm sector. We include the systematic effect of choosing

different ranges for fitting the vector meson properties in our total error budget which will

be discussed below.

3.4 Chiral extrapolation of ahvp
µ

As in [4, 5] we use the modified definition

ahvp
µ = α2

∫ ∞

0

dQ2

Q2
w

(
Q2

H2

H2
phys

m2
µ

)
ΠR(Q2) (3.18)

to determine ahvp
µ with the same motivation as outlined there. H stands for some hadronic

scale that can be determined at unphysical values of the pion mass mPS. It is required to

have a well-defined limit at the physical pion mass, mπ, denoted Hphys which has to be

known from experimental measurements for example. With such a choice, by definition

ahvp
µ → ahvp

µ when H → Hphys.

Inspired by the observation that the ρ-meson gives the dominant contribution to ahvp
µ ,

we have chosen H = mV in the following. Here, mV denotes the ρ-meson mass for unphys-

ical values of the light quark masses. As noted in ref. [4] the ρ-meson mass determined

from the time-dependent correlator attains unphysically high values at unphysical values

of the pion mass which cannot reliably be extrapolated to the physical point. This can also

be seen for our Nf = 2 + 1 + 1 ensembles for one value of the lattice spacing in figure 2.

Also in the four-flavour case the condition that the ρ-meson mass attains its physical

value when the pion mass does, seems to hold. Thus, as outlined in [4], choosing H = mV

amounts to an absorption of a large part of the pion mass dependence of ahvp
µ in the light

– 9 –
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Figure 2. Mass of the ρ-vector meson as a function of the squared pion mass for the β = 1.95

ensembles (see table 1).

sector and to an effective redefinition of the muon mass on the lattice given by

mµ = mµ ·
H

Hphys
. (3.19)

Since we want to use a consistent definition of the so modified muon mass for all single-

flavour contributions to ahvp
µ , we also use the ρ-meson mass mV to redefine ahvp

µ for the

strange and the charm quarks.

It is interesting to note that in this way we introduce a non-linear pion mass depen-

dence for the heavy flavour contributions. This is in contrast to the standard definition in

eq. (2.5) where the pion mass dependence of ahvp
µ,s and ahvp

µ,c is rather flat. However, since

the heavy flavours constitute only a small fraction of the total ahvp
µ , the net effect of the

modified definition of ahvp
µ on the lattice is that the total ahvp

µ still exhibits a flat pion

mass dependence.

4 Results

4.1 The light quark contribution, ahvp
µ,ud

Considering only the light currents, for which the sea quark action is identical to the valence

action, provides the contribution of the up and down quarks to the total ahvp
µ . The pion

mass dependence of this light quark portion is shown in figure 3. Here we utilise our lattice

redefinition ahvp
µ,ud, i.e. eq. (3.18) with H = mV . This allows for a linear extrapolation in

the squared pion mass, m2
PS (broken black line with light grey error-band). A quadratic fit

to the data (green solid line with dark grey error-band) gives almost the same value with

a bigger uncertainty at the physical point.
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Figure 3. Light-quark contribution to ahvpµ on

Nf = 2 + 1 + 1 sea.

CL with linear fit in a2
CL with constant fit

data extrapolated to mπ

a2
[
fm2

]

au
d

µ

0.010.0080.0060.0040.0020

6.5e-08

6e-08

5.5e-08

5e-08

4.5e-08

Figure 4. Continuum extrapolation of alightµ .

The value at the physical point obtained by the linear fit can be compared to the value

obtained with only two dynamical quark flavours from our earlier lattice QCD analysis [4]

ahvp
µ,ud = 5.67(11) · 10−8 (Nf = 2 + 1 + 1)

ahvp
µ,ud = 5.72(16) · 10−8 (Nf = 2) (4.1)

yielding fully compatible results. The difference between the error of the two results is that

the Nf = 2 + 1 + 1 uncertainty given above is only of statistical nature whereas the Nf = 2

value involves an estimate of systematic effects. The above result has been obtained by

fitting all data from the ensembles listed in table 1 simultaneously as the present quality of

our data does not allow to discriminate lattice artefacts in the light sector. This is shown

in figure 4. Here, we have first extrapolated ahvp
µ,ud linearly to the physical point fixing the

value of the lattice spacing. The figure shows that all chirally extrapolated values agree

within the errorbars. We can therefore use a constant extrapolation to zero lattice spacing

giving ahvp
µ,ud = 5.72(13) · 10−8 which is compatible with the result quoted in eq. (4.1). We

also performed a combined fit in m2
PS and a2 to all the data in figure 3 yielding a coefficient

of the a2-term compatible with zero. Hence, for the present level of precision of our data,

ahvp
µ,ud does not show any significant lattice spacing artefacts.

4.2 The three-flavour contribution, ahvp
µ,uds

For the three-flavour contribution we use again H = mV as the hadronic scale in order to

have a consistent redefinition of the muon mass on the lattice. It turns out that this leads

to larger statistical uncertainties for the strange quark contribution than employing the

standard definition of ahvp
µ,s . In addition, the dependence of ahvp

µ,s on the squared pion mass

appears to be non-linear. However, since the light quark contribution constitutes by far

the largest part of ahvp
µ , we still obtain a mild pion mass dependence for ahvp

µ,uds as can be

seen when looking at the twisted mass points (upper set of data points with filled symbols)

in figure 5.

In this figure we also include data obtained with different fermion actions naturally

possessing differing cut-off effects from the literature. The orange downward triangles are

– 11 –



J
H
E
P
0
2
(
2
0
1
4
)
0
9
9

domain wall with DSDR
domain wall

clover-improved
twisted mass, a = 0.061 fm
twisted mass, a = 0.078 fm
twisted mass, a = 0.086 fm

m2
PS

[
GeV2

]

au
d
s

µ

0.250.20.150.10.050

7.0e-08

6.0e-08

5.0e-08

4.0e-08

3.0e-08

2.0e-08

1.0e-08

0.0e+00

Figure 5. Comparison of three-flavour contri-

bution to ahvpµ obtained with different fermion

actions.
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Figure 6. Continuum extrapolation of ahvpµ,s at

mPS ≈ 320 MeV.

from [24] using clover-improved Wilson fermions with two dynamical light and a quenched

strange quark. The green upward triangles and diamonds have been computed with Nf =

2 + 1 dynamical domain wall fermions [25]. These results from the other groups employ

the standard definition for ahvp
µ given in eq. (2.5). We therefore add also twisted mass

points obtained with the standard definition (lower set of twisted mass points with open

symbols). We find an overall agreement between the different lattice determinations for the

raw data of ahvp
µ,uds when the standard definition is used. Besides the aforementioned cut-off

effects, slight differences can also originate from utilising different conditions to determine

the strange quark mass used for computing the strange quark contribution to ahvp
µ,uds. It

is clear from figure 5 that the improved definition of ahvp
µ leads to a smooth and linear

extrapolation to the physical point. In contrast, the standard definition of ahvp
µ needs a

more complicated extrapolation resulting in a larger uncertainty.

Since the strange quark is heavier than the light quarks, the size of lattice artefacts

can be significantly enhanced for the strange quark contribution. In fact, if we take lattice

artefacts into account performing a combined fit in m2
PS and a2, we find a non-zero value

for the coefficient of the a2-term. The presence of lattice artefacts can also be seen when

looking at the lattice spacing dependence of ahvp
µ,s at a fixed pion mass of about 320 MeV

as shown in figure 6. Here, we clearly see that the limit a → 0 can no longer be obtained

by a constant extrapolation.

As a result of this observation it is clear that we have to take an a2-term into account

when we discuss the continuum and chiral extrapolation of ahvp
µ,uds. We therefore use the

following fit function to obtain ahvp
µ,uds at the physical point

aµ(mPS, a) = A+B m2
PS + C a2 (4.2)

with A,B,C denoting the free parameters of the fit. The value resulting from this fit at

mPS = mπ and zero lattice spacing is represented in figure 7 by the red triangle slightly

displaced from the physical point in order to facilitate the comparison with the phenomeno-

logical result. The dashed lines represent ahvp
µ,uds(mPS, a) at fixed values of the lattice spacing
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Figure 7. Three-flavour contribution to ahvpµ . The phenomenological value is extracted from [26]

assuming quark-hadron duality.

as indicated by the colours. We have checked in addition that performing chiral and con-

tinuum limit extrapolations independently yields a compatible result with the one obtained

from the combined fit.

In order to compare our three-flavour value to a result from a dispersive analysis,

we need to disentangle the quark flavours. To this end, we have to reweight the total

ahvp
µ . There are different possibilities to carry out such a reweighting. We have decided to

reweight the values given in [26] by the charges of the active flavours. This approach is based

on the assumption of quark-hadron duality. Given the ambiguity of such an approach we

indicate by the abbreviation “pheno” that a certain phenomenological analysis has been em-

ployed. Comparing our lattice result with this phenomenological extraction method leads to

ahvp
µ,uds = 6.55(21) · 10−8 (Nf = 2 + 1 + 1)

ahvp
µ,uds = 6.79(05) · 10−8 (pheno) (4.3)

where we find, at least within the errors, an agreement. Given the fact that our phe-

nomenological value is certainly afflicted by an unkown systematic error, we consider it

reassuring that our lattice QCD analysis can reproduce the phenomenological value at this

level of accuracy. As mentioned in the introduction, this ambiguity in the comparison of

lattice results and those utilising the dispersion relation can be removed by the inclusion

of the charm quark in the calculation which we want to report on next.

4.3 The four-flavour contribution, ahvp
µ

Adding the charm quark contribution according to eq. (3.18) again using H = mV we

are able to directly compare to experimental values and those from different dispersive

analyses. Since the charm quark is even heavier than the strange quark, we again use a
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Figure 8. Nf = 2 + 1 + 1 result for ahvpµ .

combined fit involving an m2
PS- and an a2-term of the form stated in eq. (4.2). In this way,

we arrive at the picture shown in figure 8. Here, our result obtained in the continuum

limit and at a physical value of the pion mass, represented by the red triangle, can now be

unambiguously confronted with the corresponding one from a dispersive analysis [26]:

ahvp
µ = 6.74(21) · 10−8 (Nf = 2 + 1 + 1)

ahvp
µ = 6.91(05) · 10−8 (dispersive analysis) . (4.4)

Comparing the value of the total ahvp
µ now a convincing agreement between the two ways

of determining this important quantity is found. However, it needs to be noted that at

this point our result from twisted mass lattice QCD has a significantly larger error than

the one from the dispersive analysis.

Our result also agrees with the value ahvp
µ = 6.76 · 10−8 obtained for five flavours with

the help of Dyson-Schwinger equations in [27], where the systematic uncertainty of this

number has been estimated to be about 10%.

4.4 Systematic effects

Systematic effects play a very important role in any lattice calculation and need to be

controlled. We therefore provide in this section a comprehensive discussion of the various

systematic uncertainties appearing in our calculation.

• Finite-size effects

The systematic uncertainty of finite-size effects appears to be small in our com-

putation. The ensembles employed for our result in eq. (4.4) feature values of

3.35 < mPS L < 5.93. Restricting our data to the condition mPS L > 3.8 yields

a total

ahvp
µ = 6.73(25) · 10−8
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Ensemble
(
L
a

)3 · Ta ahvp
µ,ud ahvp

µ

B35.32 323 × 64 5.45(18) · 10−8 6.35(19) · 10−8

B35.48 483 × 96 5.46(18) · 10−8 6.44(19) · 10−8

Table 2. Comparison of light-quark contribution to ahvpµ and total ahvpµ from ensembles of different

volumes. See table 1 for a description of the ensembles used here.

after combined continuum and chiral extrapolation which is fully compatible with

the value quoted in eq. (4.4).

Furthermore, there exist ensembles to explicitly check the volume dependence of ahvp
µ

for a pion mass of about 320 MeV. For the B35 ensembles (see table 1) we have two

different volumes (323 × 64 and 483 × 96) at our disposal. A comparison is given

in table 2.

We conclude that finite size effects are negligible compared to our statistical error

and we therefore do not take them as a systematic error into account.

• Chiral extrapolation

Also the systematic uncertainty of the chiral extrapolation is small. The ensembles

utilised to arrive at the result given in eq. (4.4) have values of 227 MeV < mPS <

491 MeV. Restricting our data to the condition mPS < 400 MeV yields the value

ahvp
µ = 6.76(26) · 10−8

after combined continuum and chiral extrapolation which is fully compatible with

the result quoted in eq. (4.4). Hence, we do not assign a systematic uncertainty of

our way of extrapolating to the physical point.

• Fit ranges of the vector meson fits

The vector meson properties play an important role in our analysis of the vacuum

polarisation function. In order to estimate the systematic effect of determining the

vector meson masses and decay constants we have varied the fit ranges of the single-

state vector meson fits by a) 0.1 fm to the left, b) 0.1 fm to the right, and c) 0.1 fm

to the left and to the right.

With this procedure, we do not find any significant differences in the values for ahvp
µ,s

and ahvp
µ,c . For the light quark contribution we find a systematic shift due to excited

state contaminations when including time slices corresponding to a shift of 0.1 fm to

the left of our standard fit range. This can be seen in figure 9.

Taking half the difference of ahvp
µ,ud values obtained after fitting the ρ-meson in the fit

ranges [0.6 fm, 1.2 fm] and [0.7 fm, 1.2 fm], we obtain a systematic uncertainty from

the choice of fit range for the vector mesons of

∆V = 0.13 · 10−8 . (4.5)
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Figure 9. Comparison of the effect of choosing different fit ranges on ahvpµ,ud extrapolated linearly

to the physical pion mass. The standard fit range is [0.7 fm, 1.2 fm].

Figure 10. Comparison of the effect of different M , N , B, C values on ahvpµ,ud extrapolated linearly

to the physical pion mass. The standard fit is M1N2B4C1.

• Fit function

For our MNBC fit functions presented in section 3.2 different values of M ,N , B,

and C have been tested with the result that changing B and C does not have no-

ticeable effects as long as a smooth matching between the low-momentum and the

high-momentum fit functions is ensured. For the strange and the charm quark con-

tributions to ahvp
µ even choosing different combinations of M ∈ 1, 2 and N ∈ 2, 3, 4

does not result in systematic differences. However, we do see systematic effects when

varying M and N for the light quark contribution. This is shown in figure 10.

Thus for the choice of the light quark fit function we take half the difference of

the extrapolated M1N2B4C1 and M2N3B4C1 results as estimate of the systematic

uncertainty of choosing values for M , N , B, and C:

∆MNBC = 0.12 · 10−8 . (4.6)

Additionally, we have checked that varying the matching momentum between 1 GeV2

and 3 GeV2 gives compatible results for ahvp
µ as long as the transition between the fit

functions in the low- and high-momentum regions is smooth. Another criterion has
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been that the coefficients of the fit polynomial in the high-momentum region, where

more data is available, do not influence the coefficients of the fit polynomial in the

low-momentum region. Applying these criteria all choices of different functions to

combine the two momentum regions have not resulted in significant differences in the

final values for ahvp
µ compared to the Heaviside step function that we have used for

our quoted result.

In [10] it was suggested to utilise so-called correlated [1,1] Padé approximants to fit

the vacuum polarisation function in the low momentum region. We tried such fits

using an upper integration scale of 1.5 GeV2. Compared to our standard M1N2 fit,

with the same upper integration limit, we obtain compatible results for the light

ahvp
µ,ud employing the standard definition of eq. (2.5). Performing Padé fits for the

redefinition in eq. (3.18) using H = mV determined from the vector meson two-

point function we, however, observe a larger error than from our M1N2 fits. This

is caused by the fact that for the Padé fits the pole is fitted simultaneously and

not taken as an external input parameter and thus the favourable error cancellation

between the pole and the vector meson mass which holds for the M1N2 fits for the

redefinition of eq. (3.18) with H = mV does not occur. In fact, we find that fitting

the vacuum polarisation function by the Padé ansatz the values of ahvp
µ,ud obtained

with the redefinition show up to three times larger uncertainties.

• OS matching uncertainties

Since we use the OS action in the strange and charm quark sector, different values

for the corresponding quark masses could be used which, however, have to lead to

the physical values of the Kaon and D-meson masses in the continuum and chiral

limit. Varying the strange and charm quark masses within the uncertainties given

for aµs and aµc in section 3.1 has been found to be negligible. Likewise changing

µs to the value obtained from directly matching with the physical kaon mass gives a

compatible result. The same is true when using the µs and µc values procured when

allowing for a2-effects in the fit function employed in the matching.

• Different strange and charm sea quark masses

Additionally to the choice of valence quark masses, our result might be influenced

by sea quark masses which for some of the ensembles have not been tuned to their

correct physical values. For details see [8]. By changing the mass splitting parameter

µδ of the twisted mass action for a non-degenerate fermion doublet eq. (3.3) for the

ensemble with the biggest deviation from the physical strange quark mass, ETMC

has generated an ensemble in which both heavy quark masses are compatible with

their physical values. The new ensemble is called A100.24s whereas the old one is

A100.24, sharing apart from µδ the same parameters. They have both been tuned to

maximal twist and possess a pion mass of about 500 MeV and a space-time volume

in units of the lattice spacing of 243 × 48. Due to the large pion mass they are not

included in the rest of our analysis. Using the same matching condition for the OS

valence quarks, we arrive at consistent values for the single-flavour contributions to
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Ensemble ahvp
µ,ud ahvp

µ,s ahvp
µ,c ahvp

µ

A100.24 5.18(18) · 10−8 8.25(59) · 10−9 3.16(24) · 10−9 6.32(19) · 10−8

A100.24s 5.32(18) · 10−8 8.87(55) · 10−9 3.16(22) · 10−9 6.52(19) · 10−8

Table 3. Comparison of single-flavour contributions and total ahvpµ from ensembles having different

strange and charm sea quark masses.

ahvp
µ as can be seen in table 3. Hence, we conclude that the impact of different sea

quark masses in the heavy sector on ahvp
µ is negligible.

• Disconnected contributions

This is a systematic effect we can currently not adequately quantify. There are, how-

ever, several reasons for assuming that the disconnected contributions are small. First

of all, a dedicated study in the 2-flavour case has revealed them to be compatible with

zero [4]. Note, however, that in refs. [28, 29] the impact of disconnected contributions

has been estimated to be −10%, at least in the energy range 2mπ < q < 3mπ. Sec-

ondly, in the SU(3) flavour limit they are identically zero due to charge cancellation.

Thirdly, the disconnected contribution arising from the charm quark has been com-

puted in perturbation theory and shown to be suppressed by a factor
(

q2

4 m2
c

)4
[30],

where q2 is the relevant energy scale of the problem, i.e. 0.003 GeV2.

5 Conclusions

In this paper, we have performed a first calculation of the four-flavour leading-order QCD

contribution to the muon anomalous magnetic moment. Such a four-flavour computation

has the invaluable advantage that a direct comparison to a phenomenological extraction

of this quantity can be achieved without any ambiguity when discriminating the different

flavour contributions which appears unavoidably in a two- or three-flavour comparison.

In our work we found that also for the four-flavour situation considered here, the

improved method of ref. [4] leads to a smooth and well-controlled chiral extrapolation of

ahvp
µ . In addition to the chiral extrapolation, we performed a comprehensive analysis of

systematic effects, such as finite lattice spacing and finite volume artefacts, excited state

contaminations in the vector meson mass determination, different choices of the vacuum

polarisation fitting function, and different choices of valence and sea strange and charm

quark masses. From this set of systematic effects only the different choices of the fitting

functions and excited state contaminations of the vector states lead to significant systematic

uncertainties which we include in our final error estimate.

As our main result we provide a comparison to a dispersive analysis [26]:

ahvp
µ = 6.74(21)(18) · 10−8 (Nf = 2 + 1 + 1)

ahvp
µ = 6.91(01)(05) · 10−8 (dispersive analysis) . (5.1)

In figure 11 we also compare the outcome of our first-principle computation with a sum-

mary of other results obtained utilising the dispersion relation. Although our lattice QCD
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Figure 11. Comparison of our first four-flavour lattice result of ahvpµ with different results based

on dispersion relations: Davier et al. [31], Jegerlehner and Szafron [32], Hagiwara et al. [33], and

HLS [34].

determination of ahvp
µ shows an overall agreement with phenomenology, the lattice QCD

result has clearly a significantly larger error being, however, already at the same order

of magnitude.

A substantial step forward to improve the lattice determination will be computations

directly at the physical value of the pion mass. Such simulations, in combination with a

significantly increased statistics including also isospin breaking and electromagnetic effects

have the potential to reach or even beat the error from a dispersive analysis. In addition,

results from lattice QCD will only rely on QCD alone and hence can provide a strin-

gent test of the standard model. This opens the exciting possibility to eventually clarify

whether the present discrepancy for the muon anomalous magnetic moment is indeed a

sign of new physics.
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A Data

Ensemble fρ[GeV] mρ[GeV] χ2/dof fss[GeV] mss[GeV] χ2/dof

D15.48 0.263(17) 0.933(55) 1.01 0.289(08) 1.129(14) 1.06

D30.48 0.279(12) 0.998(34) 0.21 0.291(10) 1.132(16) 0.79

D45.32sc 0.279(09) 1.003(27) 0.52 0.273(06) 1.112(13) 1.06

B25.32t 0.261(14) 0.903(44) 1.23 0.268(12) 1.112(21) 0.88

B35.32 0.269(15) 0.967(47) 0.47 0.271(09) 1.129(19) 1.28

B35.48 0.288(16) 1.028(44) 1.13 0.286(18) 1.156(35) 1.77

B55.32 0.278(11) 0.996(33) 1.81 0.294(10) 1.144(17) 0.10

B75.32 0.289(10) 1.056(28) 1.02 0.285(15) 1.154(26) 0.15

A30.32 0.264(25) 0.954(68) 1.18 0.284(14) 1.149(27) 1.16

A40.32 0.238(13) 0.863(39) 0.81 0.278(12) 1.135(20) 1.55

A50.32 0.271(16) 0.992(42) 1.50 0.268(12) 1.117(22) 1.08

Table 4. ρ- and φ-meson masses and decay constants obtained from correlator fits outlined in

section 3.3.

Ensemble fJ/Ψ[GeV] mJ/Ψ[GeV] χ2/dof

D15.48 0.439(07) 3.079(05) 0.99

D30.48 0.435(06) 3.078(04) 0.44

D45.32sc 0.429(05) 3.070(03) 0.83

B25.32t 0.443(08) 3.057(05) 0.66

B35.32 0.437(08) 3.051(05) 0.95

B35.48 0.412(11) 3.035(08) 1.45

B55.32 0.446(09) 3.053(06) 1.63

B75.32 0.447(12) 3.065(08) 0.93

A30.32 0.438(09) 3.039(06) 2.42

A40.32 0.436(10) 3.041(06) 0.37

A50.32 0.453(09) 3.051(06) 1.50

Table 5. J/Ψ masses and decay constants obtained from correlator fits outlined in section 3.3.
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Ensemble ahvp
µ,ud ahvp

µ,s ahvp
µ,c ahvp

µ

D15.48 5.59(16) · 10−8 6.68(75) · 10−9 2.13(25) · 10−9 6.47(18) · 10−8

D30.48 5.51(15) · 10−8 7.57(51) · 10−9 2.40(16) · 10−9 6.51(16) · 10−8

D45.32sc 5.41(10) · 10−8 7.36(40) · 10−9 2.43(13) · 10−9 6.39(11) · 10−8

B25.32t 5.70(60) · 10−8 5.96(56) · 10−9 2.12(21) · 10−9 6.50(17) · 10−8

B35.32 5.45(18) · 10−8 6.55(62) · 10−9 2.41(23) · 10−9 6.35(19) · 10−8

B35.48 5.46(18) · 10−8 7.23(63) · 10−9 2.61(23) · 10−9 6.44(19) · 10−8

B55.32 5.44(14) · 10−8 7.40(44) · 10−9 2.53(17) · 10−9 6.43(15) · 10−8

B75.32 5.23(12) · 10−8 7.67(45) · 10−9 2.79(16) · 10−9 6.28(13) · 10−8

B85.24 5.15(16) · 10−8 8.21(51) · 10−9 3.11(18) · 10−9 6.28(17) · 10−8

A30.32 5.40(28) · 10−8 6.42(89) · 10−9 2.34(34) · 10−9 6.28(30) · 10−8

A40.32 5.25(17) · 10−8 5.33(48) · 10−9 1.92(18) · 10−9 5.98(18) · 10−8

A50.32 5.28(20) · 10−8 6.98(58) · 10−9 2.58(22) · 10−9 6.23(21) · 10−8

Table 6. Values for single-flavour contributions as well as total ahvpµ obtained in our calculation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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