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Abstract. We introduce FourQ, a high-security, high-performance elliptic curve that targets the 128-
bit security level. At the highest arithmetic level, cryptographic scalar multiplications on FourQ can
use a four-dimensional Gallant-Lambert-Vanstone decomposition to minimize the total number of el-
liptic curve group operations. At the group arithmetic level, FourQ admits the use of extended twisted
Edwards coordinates and can therefore exploit the fastest known elliptic curve addition formulas over
large prime characteristic fields. Finally, at the finite field level, arithmetic is performed modulo the
extremely fast Mersenne prime p = 2127 − 1. We show that this powerful combination facilitates scalar
multiplications that are significantly faster than all prior works. On Intel’s Broadwell, Haswell, Ivy
Bridge and Sandy Bridge architectures, our software computes a variable-base scalar multiplication
in 50,000, 56,000, 69,000 cycles and 72,000 cycles, respectively; and, on the same platforms, our soft-
ware computes a Diffie-Hellman shared secret in 80,000, 88,000, 104,000 cycles and 112,000 cycles,
respectively. These results show that, in practice, FourQ is around four to five times faster than the
original NIST P-256 curve and between two and three times faster than curves that are currently under
consideration as NIST alternatives, such as Curve25519.

1 Introduction

This paper introduces a new, complete twisted Edwards [5] curve E(Fp2) : −x2 + y2 = 1 + dx2y2,
where p is the Mersenne prime p = 2127 − 1, and d is a non-square in Fp2 . This curve, dubbed
“FourQ”, arises as a special instance of recent constructions using Q-curves [50, 28], and is thus
equipped with an endomorphism ψ related to the p-power Frobenius map. In addition, it has
complex multiplication (CM) by the order of discriminant D = −40, meaning it comes equipped
with another efficiently computable, low-degree endomorphism φ [51].

We built an elliptic curve cryptography (ECC) library [16] that works inside the cryptographic
subgroup E(Fp2)[N ], where N is a 246-bit prime. The endomorphisms ψ and φ do not give any
practical speedup to Pollard’s rho algorithm [46], which means the best known attack against the
elliptic curve discrete logarithm problem (ECDLP) on E(Fp2)[N ] requires around

√

πN/4 ∼ 2122.5

group operations on average. Thus, the cryptographic security of E (see §2.3 for more details) is
closely comparable to other curves that target the 128-bit security level, e.g., [22, 41, 9, 6].

Our choice of curve and the accompanying library offer a range of advantages over existing
curves and implementations:

– Speed: FourQ’s library computes scalar multiplications significantly faster than all known
software implementations of curve-based cryptographic primitives. It uses the endomorphisms
ψ and φ to accelerate scalar multiplications via four-dimensional Gallant-Lambert-Vanstone
(GLV)-style [23] decompositions. Four-dimensional decompositions have been used before [35,
41, 9], but not over the Mersenne prime1; this choice of field is significantly faster than any

1 p stands alone as the only Mersenne prime suitable for high-security curves over quadratic extension fields. The
next largest Mersenne prime is 2521 − 1, which is suitable only for prime field curves targeting the 256-bit level.



neighboring fields and several works have studied its arithmetic [22, 40, 15]. The combination of
extremely fast modular reductions and four-dimensional scalar decompositions makes for highly
efficient scalar multiplications on E . Furthermore, we can exploit the fastest known addition
formulas for elliptic curves over large characteristic fields [34], which are complete on E since
the above d is non-square [34, §3]. In Section 2, we explain why four-dimensional decomposi-
tions and this special underlying field were not previously partnered at the 128-bit security level.

– Simplicity and concrete correctness: Simplicity is a major priority in this work and in the
development of our software; in some cases we sacrifice speed enhancements in order to design
a more simple and compact algorithm (cf. §4.2 and Remark 7).

On input of any point P ∈ E(Fp2)[N ], validated as in Appendix A if necessary, and any integer
scalar m ∈ [0, 2256), our software does the following (strictly in constant-time and without
exception):

1. Computes φ(P ), ψ(P ) and ψ(φ(P )) using exactly2 68M, 27S and 49.5A – see Section 3.

2. Decomposes m (e.g., in less than 200 Sandy Bridge cycles) into a multiscalar (a1, a2, a3, a4) ∈
Z4 such that each ai is positive and at most 64 bits – see Section 4.

3. Recodes the multiscalar (e.g., in less than 800 Sandy Bridge cycles) to ensure a simple and
constant-time main loop – see Section 5.

4. Computes a lookup table of 8 elements using exactly 7 complete additions, before executing
the main loop using exactly 64 complete twisted Edwards double-and-add operations, and
finally outputting [m]P = [a1]P + [a2]φ(P ) + [a3]ψ(P ) + [a4]ψφ(P ) – see Section 5.

This paper details each of the above steps explicitly, culminating in the full routine presented in
Algorithm 2. Several prior works exploiting scalar decompositions have potential points of fail-
ure (cf. [33, §7], and §4.2), but crucially, and for the first time in the setting of four-dimensional
decompositions, we accompany our routine with a robust proof of correctness – see Theorem 1.

– Cryptographic versatility: FourQ is intended to be used in the same way, i.e., using the same
model, same coordinates and same explicit formulas, irrespective of the cryptographic protocol
or nature of the intended scalar multiplication. Unlike implementations using ladders [4, 24, 9,
6], FourQ supports fast variable-base and fast fixed-base scalar multiplications, both of which
use twisted Edwards coordinates; this serves as a basis for fast (ephemeral) Diffie-Hellman key
exchange and fast Schnorr-like signatures. The presence of a single, complete addition law gives
implementers the ability to easily wrap higher-level software and protocols around the FourQ’s
library exactly as is.

– Public availability: Prior works exploiting four-dimensional decompositions have either made
code available that did not attempt to run in constant-time [9, 28], or not published code that
did run in constant-time [41, 19]. Our library, which is publicly available [16], dispels any myths
concerning the “complications” of making endomorphism-accelerated implementations run in
constant-time [6, §1.2]. This software is compact, simple to read, and easy to audit. The library
is largely written in portable C and includes two modular implementations of the arithmetic
over Fp2 : a portable implementation written in C and a high-performance implementation for
x64 platforms written in C and optional x64 assembly. The library also permits the selection

2 Here, and throughout, I, M, S and A are used to denote the respective costs of inversions, multiplications, squarings
and additions in Fp2 . We note that Frobenius operations amount to conjugations in Fp, which are tallied as 0.5A.
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(at build time) of whether or not endomorphisms are to be used for computing variable-based
scalar multiplications. The code is accompanied by Magma scripts that can be used to verify the
proofs of all claims and the claimed operation counts. Our aim is to make it easy for subsequent
implementers to replicate the routine and, if desired, develop specialized code that is tailored
to specific platforms (e.g., for further performance gains or with different memory constraints).

When the NIST curves [44] were standardized in 1999, many of the landmark discoveries in
ECC (e.g., [23, 18, 22, 50]) were yet to be made. FourQ and its accompanying library represent the
culmination of several of the best known ECC optimizations to date: it pulls together the extremely
fast Mersenne prime, the fastest known large characteristic addition formulas [34], and the highest
degree of scalar decompositions (there is currently no known way of achieving higher dimensional
decompositions without exposing the ECDLP to attacks that are asymptotically much faster than
Pollard rho). Subsequently, for generic scalar multiplications, FourQ performs around four to five
times faster than the original NIST P-256 curve [27], between two and three times faster than
curves that are currently under consideration as NIST alternatives, e.g., Curve25519 [4], and is also
significantly faster than all of the other curves used to set previous speed records (see Section 6 for
the comparisons). Interestingly, FourQ is still highly efficient if the endomorphisms ψ and φ are not
used at all for computing generic scalar multiplications. In this case, FourQ performs about three
times faster than the NIST P-256 curve and up to 1.6 times faster than Curve25519.

It is our belief that the demand for high-performance cryptography warrants the state-of-the-
art in ECC to be part of the standardization discussion: this paper ultimately demonstrates the
performance gains that are possible if such a curve was to be considered alongside the “conservative”
choices.

2 The Curve: FourQ

This section describes the proposed curve, where we adopt Smith’s notation [48, 50] for the most
part. We present the curve parameters in §2.1, shed some light on how the curve was found in §2.2,
and discuss its cryptographic security in §2.3. Both §2.2 and §2.3 discuss that E is essentially one-
of-a-kind, illustrating that there were no degrees of freedom in the choice of curve – see Remark 2.

2.1 A complete twisted Edwards curve

We will work over the quadratic extension field

Fp2 := Fp(i) , where p := 2127 − 1 and i2 = −1.

We define E to be the twisted Edwards [5] curve

E/Fp2 : − x2 + y2 = 1 + dx2y2, (1)

where

d := 125317048443780598345676279555970305165 · i+ 4205857648805777768770.

The set of Fp2-rational points satisfying the affine model for E forms a group: the neutral element
is OE = (0, 1) and the inverse of a point (x, y) is (−x, y). The fastest set of explicit formulas for
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the addition law on E are due to Hisil, Wong, Carter and Dawson [34]: they use extended twisted
Edwards coordinates to represent the affine point (x, y) on E by any projective tuple of the form
(X : Y : Z : T ) for which Z 6= 0, x = X/Z, y = Y/Z and T = XY/Z. Since d is not a square in Fp2 ,
this set of formulas is also complete on E (see [5]), meaning that they will work without exception
for all points in E(Fp2).

The trace tE of the p2-power Frobenius endomorphism πE of E is

tE = 136368062447564341573735631776713817674,

which reveals that

#E(Fp2) = p2 + 1− tE = 23 · 72 ·N, (2)

where N is a 246-bit prime. The cryptographic group we work with in this paper is E(Fp2)[N ].

2.2 Where did this curve come from?

The curve E above comes from the family of Q-curves of degree 2 – originally defined by Hasegawa [31]
– that was recently used as one of the example families in Smith’s general construction of Q-curve
endomorphisms [48, 50]. Certain examples of low-degree Q-curves (including this family) were inde-
pendently obtained through a different construction by Guillevic and Ionica [28], who also studied
4-dimensional decompositions arising from such curves possessing CM. In fact, E has a similar
structure to the curve constructed in [28, Ex. 1], but is over the prime p = 2127 − 1.

For ∆ a square-free integer, this family is defined over Q(
√
∆) and is parameterized by s ∈ Q

as

Ẽ2,∆,s : y2 = x3 − 6(5− 3s
√
∆)x+ 8(7− 9s

√
∆). (3)

By definition [48, Def. 1], curves from this family are 2-isogenous (over Q(∆,
√
−2)) to their Galois

conjugates σẼ2,∆,s. Smith reduces Ẽ2,∆,s and σẼ2,∆,s modulo primes p that are inert in Q(
√
∆) to

produce the curves E2,∆,s and σE2,∆,s defined over Fp2 . He then composes the induced 2-isogeny
from E2,∆,s to σE2,∆,s with the p-power Frobenius map from σE2,∆,s back to E2,∆,s, which produces
an efficiently computable degree 2p endomorphism ψ on E2,∆,s.

Recall that in this paper we fix p = 2127 − 1 for efficiency reasons. For this particular prime p
and this family of Q-curves, Smith’s construction gives rise to precisely p non-isomorphic curves
corresponding to each possible choice of s ∈ Fp [50, Prop. 1]. Varying s allows us to readily
find curves belonging to this family with strong cryptographic group orders, each of which comes
equipped with the endomorphism ψ that facilitates a two-dimensional scalar decomposition.

Seeking a four-dimensional (rather than two-dimensional) scalar decomposition on E2,∆,s re-
stricts us to a very small subset of possible s values. This is because we require the existence of
another efficiently computable endomorphism on E2,∆,s, namely the low-degree GLV endomorphism
φ on those instances of E2,∆,s that possess CM over Q(

√
∆). In [50, §9], Smith explains why there

are only a handful of s values in any particular Q-curve family that correspond to a curve with CM,
before cataloging all such instances in the families of Q-curves of degrees 2, 3, 5 and 7. In particular,
up to isogeny and over any prime p, there are merely 13 values of s such that E2,∆,s has CM over
Q(
√
∆). As is remarked in [50, §9], this scarcity of CM curves makes it highly unlikely that we will

find a secure instance of a low-degree Q-curve family with CM over any fixed prime p. This is the
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reason why other authors chasing high speeds at the 128-bit security level have previously sacrificed
the fast Mersenne prime p = 2127 − 1 in favor of a four-dimensional decomposition [41, 9]; one can
always search through the small handfull of exceptional CM curves over many sub-optimal primes
until a cryptographically secure instance is found. However, in the specific case of p = 2127 − 1,
we actually get extremely lucky: our search through Smith’s tables of exceptional Q-curves with
CM [50, Thm. 6] found one particular instance over Fp2 with a prime subgroup of 246-bits, namely
E2,∆,s with s = ±4

9 and ∆ = 5. As is detailed in [50, §3], the specification of ∆ = 5 here does
not dictate how we form the extension field Fp2 over Fp; all quadratic extension fields of Fp are

isomorphic, so we can take s
√
∆ = ±4

9

√
5 in (3) while still taking the reduction of Ẽ2,5,± 4

9

modulo

p to be E2,5,± 4

9

/Fp2 with Fp2 := Fp(
√
−1). To simplify notation, from hereon we fix ẼW := Ẽ2,5,± 4

9

and define EW as the reduction of ẼW modulo p, given as

EW/Fp2 : y2 = x3 − (30− 8
√
5)x+ (56− 32

√
5), (4)

where the choice of the root
√
5 in Fp2 will be fixed in Section 3. We note that the short Weierstrass

curve EW is not isomorphic to our twisted Edwards curve E , but rather to a twisted Edwards curve
Ê that is Fp2-isogenous to E . The reason we work with E rather than Ê is because the curve constant

d on E is non-square in Fp2 , which is not the case for the curve constant d̂ on Ê ; as we mentioned
above, d being a non-square ensures that the fastest known addition formulas are also complete on
E . The isogenies between E and Ê are made explicit as follows.

Proposition 1. Let Ê/K and E/K be the twisted Edwards curves defined by Ê/K : − x2 + y2 =
1 + d̂x2y2 and E/K : − x2 + y2 = 1 + dx2y2. If d = −(1 + 1/d̂), then the map

τ : E → Ê , (x, y) 7→
(

2xy

(x2 + y2)
√

d̂
,
x2 − y2 + 2

y2 − x2

)

is a 4-isogeny, the dual of which is

τ̂ : Ê → E , (x, y) 7→
(

2xy
√

d̂

x2 − y2 + 2
,
y2 − x2
y2 + x2

)

.

Proof. We derive τ and τ̂ using the 2-isogenies ψ and ψ̂ from [1, Theorem 3.2], together with
the isomorphisms σ1σ2 and σ2σ1 in [1, Equations 15-16]. The isogeny τ is the composition of
ψ : E → L−d, of σ2σ1 : L−d → L1/(1+d), and of ψ̂ : L1/(1+d) → Ê , i.e., τ = ψ̂σ2σ1ψ in Hom(E , Ê).
The isogeny τ̂ is the composition of ψ : Ê → L

−d̂, of σ1σ2 : L−d̂ → L1+1/d̂, and of ψ̂ : L1+1/d̂ → E ,
i.e., τ̂ = ψ̂σ1σ2ψ in Hom(Ê , E). It follows that both τ and τ̂ are 4-isogenies. It is easily verified
that τ τ̂ corresponds to multiplication by 4 in End(E), so τ̂ is indeed the dual of τ [21, Theorem
9.6.21]. ⊓⊔

We note at once that if d̂ is a square in K, then τ and τ̂ are defined over K. Fortunately,
while the twisted Edwards curve Ê corresponding to EW/Fp2 has a square constant d̂, our chosen

isogenous curve E has the non-square constant d = −(1+1/d̂). Our implementation will work solely
in twisted Edwards coordinates on E , but we will pass back and forth through EW (via Ê) when
deriving explicit formulas for the endomorphisms φ and ψ in Section 3. We note that Hamburg
used 4-isogenies (also derived from [1]) to a similar effect in [30].
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Remark 1. We tried several other possibilities to achieve a non-square d before resorting to an
isogeny (which ends up adding around 10 multiplications to each endomorphism – see Table 1).
This included looking at the a = −1 twisted Edwards model corresponding to different choices of
roots and corresponding to the Galois conjugate EσW of EW, which is 2-isogenous to EW by definition;
none of these options give rise to a non-square d. We note that using these isogenies once-off in
each endomorphism computation is still much faster than using a slower, complete addition on Ê .

2.3 The cryptographic security of FourQ

Pollard’s rho algorithm [46] is the best known way to solve the ECDLP in E(Fp2)[N ]. An optimized

version of this attack which uses the negation map [54] requires around
√

πN/4 ∼ 2122.5 group
operations on average. We note that, unlike some of the typical GLV [23] or GLS [22] endomorphisms
that can be used to speed up Pollard’s rho algorithm [17], both ψ and φ on E do not facilitate
any known advantage; neither of these endomorphisms have a small orbit and they are both more
expensive to compute than an amortized addition. Thus, the known complexity of the ECDLP on E
is comparable to various other curves used in the speed-record literature; optimized implementations
of Pollard rho against any of the fastest curves in [4, 22, 41, 9, 19, 15, 45] would require between 2124.8

and 2125.8 group operations on average. Ideally, we would prefer not to have the factor 72 dividing
#E(Fp2), but the resulting (∼ 2.8 bit) security degradation is a small price to pay for having the
fastest field at the 128-bit level in conjunction with a four-dimensional scalar decomposition. As
discussed in Remark 2 below, it was a long shot to try and find such a cryptographically secure
Q-curve with CM over Fp2 in Smith’s tables in the first place, let alone one that also had the
necessary torsion to support a twisted Edwards model.

Since E(Fp2) has rational 2-torsion, it is easy to write down the corresponding abelian surface
over Fp whose Jacobian is isogenous to the Weil restriction of E – see [47, Lemma 2.1 and Lemma
3.1]. But since the best known algorithm to solve the discrete logarithm problem on such abelian
surfaces is again Pollard’s rho algorithm, the Weil descent philosophy (cf. [25]) does not pose a
threat here. Furthermore, the embedding degree of E with respect to N is (N − 1)/2, making it
infeasible to reduce the ECDLP into a finite field [43, 20].

We note that the largest prime factor dividing the group order of E ’s quadratic twist is 158
bits, but twist-security [4] is not an issue in this work: firstly, our software always validates input
points (such validation is essentially free), and secondly, x-coordinate-only arithmetic (which is
where twist-security makes sense) on E is not competitive with a four-dimensional decomposition
that uses both coordinates.

In contrast to most currently standardized curves, the proposed curve is both defined over a
quadratic extension field and has a small discriminant; one notable exception is secp256k1 in the
SEC standard [13], which is used in the Bitcoin protocol and also has small discriminant. However,
it is important to note that there is no better-than-generic attack known to date that can exploit
either of these two properties on E . In fact, with respect to ECDLP difficulty, Koblitz, Koblitz and
Menezes [36, §11] point out that slower, large discriminant curves, like NIST P-256 and Curve25519,
may turn out to be less conservative than specially chosen curves with small discriminant.

Remark 2. It should be noted that there were no degrees of freedom in choosing the curve E .
Demanding the field Fp2 (with p = 2127 − 1) alongside a four-dimensional decomposition reveals
that, of all the exceptional Q-curves with CM tabulated in [50, Thm. 6], the 246-bit prime subgroup
makes E the only known curve that comes close to the target 128-bit security level. Over this field,
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the second strongest curve found in all of Smith’s tables had a 215-bit prime subgroup. To find
another strong curve supporting four-dimensional decompositions over this field would, to our
knowledge, require increasing the degree of the Q-curve family beyond d = 7, for which explicit
constructions are currently limited [31, 50]. The discussion in §2.2 also shows why four-dimensional
decompositions and our specially chosen underlying field have not been previously partnered at the
128-bit security level. Prior to [48], partnering the Galbraith-Lin-Scott (GLS) endomorphism [22]
with a GLV endomorphism was the only known way to achieve such decompositions on elliptic
curves over large characteristic fields, and a secure curve facilitating GLV+GLS had only been
found over suboptimal primes [22]. One consequence of the constructions in [48] and [28] is that
they increased the search space of curves that facilitate four-dimensional decompositions (over any
fixed field).

3 The Endomorphisms ψ and φ

In this section we derive explicit formulas for the two endomorphisms on E . In what follows we use
ci,j,k,l to denote the constant i+ j

√
2 + k

√
5 + l

√
2
√
5 in Fp2 , which is fixed by setting

√
2 := 264 and

√
5 := 87392807087336976318005368820707244464 · i.

For both ψ and φ, we start by deriving the explicit formulas on the short Weierstrass model
EW. As discussed in the previous section, we will pass back and forth between E and EW via the
twisted Edwards curve Ê that is 4-isogenous to E over Fp2 . The maps between E and Ê are given

in Proposition 1, and we take the maps δ : EW → Ê and δ−1 : Ê → EW from [50, §5] (tailored to our
Ê) as

δ : (x, y) 7→
(

γ(x− 4)

y
,
x− 4− c0,2,0,1
x− 4 + c0,2,0,1

)

and δ−1 : (x, y) 7→
(

c0,2,0,1(y + 1)

1− y + 4,
c0,2,0,1(y + 1)γ

x(1− y)

)

,

where γ2 = c−12,−4,0,−2. The choice of the square root γ ∈ Fp2 becomes irrelevant in the composi-
tions below.

3.1 Explicit formulas for ψ

There is almost no work to be done in deriving ψ on E , since this is Smith’s Q-curve endomorphism
corresponding to the degree-2 family to which EW belongs. We start with ψW : EW → EW, taken
from [50, §5], as

ψW : (x, y) 7→
((

−x
2
− c9,0,4,0
x− 4

)p

,

(

− y

i
√
2

(

−1

2
+

c9,0,4,0
(x− 4)2

))p)

.

With ψW as above, we define ψ : E → E as the composition ψ = τ̂ δψWδ
−1τ . In optimizing the

explicit formulas for this composition, there is practically nothing to be gained by simplifying
the full composition in the function field Fp2(E). However, it is advantageous to optimize explicit

formulas for the inner composition (δψWδ
−1) in the function field Fp2(Ê). In fact, for both ψ and φ,

optimized explicit formulas for this inner composition are faster than the respective endomorphisms
ψW and φW, and are therefore much faster than computing the respective compositions individually.
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Simplifying the composition δψWδ
−1 in the function field Fp2(Ê) yields

(δψWδ
−1) : Ê → Ê , (x, y) 7→

(

2ixp · c−2,3,−1,0

yp · ((xp)2 · c−140,99,0,0 + c−76,57,−36,24)
,
c−9,−6,4,3 − (xp)2

c−9,−6,4,3 + (xp)2

)

.

Note that each of the p-power Frobenius operations above amount to one Fp negation. As
mentioned above, we compute the endomorphism ψ = τ̂(δψWδ

−1)τ on E by computing τ and τ̂
separately; see Section 3.4 for the operation counts.

3.2 Deriving explicit formulas for φ

We now derive the second endomorphism φ that arises from E admitting CM by the order of
discriminant D = −40. We start by pointing out that there is actually multiple routes that could
be taken in defining and deriving φ. The route we took in a preliminary version of this article was
to use Stark’s algorithm [51] (see also [12]). On input of the two curve constants in (4) and an
integral basis {1, β} for the ring of integers in Q(

√
D), Stark’s algorithm outputs two polynomials

f(x) and g(x) defining the endomorphism φW : ẼW → ẼW as

φ : (x, y) 7→
(

f(x)

g(x)
, cy

(

f(x)

g(x)

)′)

,

for a constant c in Q(
√
D). The degrees of f(x) and g(x) are N(β) and N(β)−1, where N(·) is the

norm function from Q(
√
D) down to Q. In our case, since β = 1

2

√
−40 =

√
−10 defines an interal

basis, the degrees of f and g were 10 and 9 respectively, and the resulting endomorphism φW on
EW(Fp2)[N ] corresponded to scalar multiplication by

√
−10 (mod N).

The second possibility, which we use in this paper, produces an endomorphism of lower degree.
This option was revealed to us in correspondence with Ben Smith, who pointed out that Q-curves
with CM can also be produced as the intersection of families of Q-curves, and that our curve E
is not only a degree-2 Q-curve, but is also a degree-5 Q-curve. Thus, the second endomorphism φ
can be derived by first following the treatment in [50, §7] (see also [28, §3.3]) to derive φW as a
5-isogeny on EW, which we do below.

Working in Q(
√
5)[x], the 5-division polynomial (cf. [21, Def. 9.8.4]) of ẼW factors as f(x)g(x),

where f(x) = x2 + 4
√
5 · x + (18 − 4/5

√
5) and g(x) (which is of degree 10) are irreducible. The

polynomial f(x) defines the kernel of a 5-isogeny φσW : ẼW → ẼσW. We use this kernel to compute φσW
via Vélu’s formulae [53] (see also [37, §2.4]), reduce modulo p, and then compose with Frobenius
πp : EσW → EW to give φW : EW → EW, (x, y) 7→ (xφW , yφW ), where

xφW
=

(

x5 + 8
√
5x4 + (40

√
5 + 260)x3 + (720

√
5 + 640)x2 + (656

√
5 + 4340)x+ (1920

√
5 + 960)

5
(

(x2 + 4
√
5x− 1/5(4

√
5− 90)

)2

)p

,

yφW
=

(

−y
(

x2 + (4
√
5− 8)x− 12

√
5 + 26

) (

x4 + (8
√
5 + 8)x3 + 28x2 − (48

√
5 + 112)x− 32

√
5− 124

)

(√
5(x2 + 4

√
5x− 1/5(4

√
5− 90))

)3

)p

,

As was the case with ψ in §3.1, it is advantageous to optimize formulas in Fp2(Ê) for the

composition (δψWδ
−1), which gives (δψWδ

−1) : Ê → Ê , (x, y) 7→ (xφ, yφ), where

xφ =

(

c9,−6,4,−3 · x · (y2 − c7,5,3,2 · y + c21,15,10,7) · (y2 + c7,5,3,2 · y + c21,15,10,7)

(y2 + c3,2,1,1 · y + c3,3,2,1) · (y2 − c3,2,1,1 · y + c3,3,2,1)

)p

,

yφ =

(

c15,10,6,4 · (5y4 + c120,90,60,40 · y2 + c175,120,74,54)

5y · (y4 + c240,170,108,76 · y2 + c3055,2160,1366,966)

)p

.
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Again, we use this to compute the full endomorphism ψ = τ̂(δψWδ
−1)τ on E by computing τ and

τ̂ separately; see §3.4 for the operation counts.

3.3 Eigenvalues

The eigenvalues of the two endomorphisms ψ and φ play a key role in developing scalar decompo-
sitions. In this subsection we write them in terms of the curve parameters. From [50, Thm. 2], and
given that we used a 4-isogeny τ and its dual to pass back and forth to EW, the eigenvalues of ψ
on E(Fp2)[N ] are

λψ := 4 · p+ 1

r
(mod N) (5)

and λ′ψ := −λψ (mod N), where r is an integer satisfying

2r2 = 2p+ tE . (6)

To derive the eigenvalues for φ, we make use of the CM equation for E , which (since E has CM by
the order of discriminant D = −40) is

40V 2 = 4p2 − t2E , (7)

for an integer V . We fix r and V to be the positive integers satisfying (6) and (7), namely

V := 49293975489306344711751403123270296814; r := 15437785290780909242.

Proposition 2. The eigenvalues of φ on E(Fp2)[N ] are

λφ := 4 · (p− 1)r3

(p+ 1)2V
(mod N) (8)

and λ′φ := −λφ (mod N).

Proof. The endomorphism φW ∈ End(EW) has minimal polynomial PφW(T ) = T 2 + 5, so we

first show that
(

(p− 1)r3/((p+ 1)2V )
)2 ≡ −5 mod N . To do this we rewrite (7) as −5 = (t2E −

4p2)/(8V 2) = (tE − 2p)r2/(4V 2), which follows from (6). Since tE ≡ p2 + 1 mod N , we have −5 ≡
(p−1)2r2/(4V 2) mod N , and using [50, Thm. 2] to replace the 4 on the denominator by ((p+1)/r)4

gives that the eigenvalue of φW is (p − 1)r3/((p + 1)2V ). Finally, the factor 4 in (8) comes from
φ = τ̂ δφWδ

−1τ where δ and δ−1 are isomorphisms and τ is a 4-isogeny with dual τ̂ . ⊓⊔

3.4 Section summary

Table 1 summarizes the isogenies derived in this section, together with their exact operation counts.
The reason that multiples of 0.5 appear in the additions column is that we count Frobenius op-
erations (which amount to a negation in Fp) as half an addition in Fp2 . Four-dimensional scalar
decompositions on E require the computation of φ(P ), ψ(P ) and the composition ψ(φ(P )); the
ordering here is important since ψ is much faster than φ, meaning we actually compute φ once and
ψ twice. We note that all sets of explicit formulas were derived assuming the inputs were projective
points (X : Y : Z) corresponding to a point (X/Z, Y/Z) in the domain of the isogeny. Similarly, all
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explicit formulas output the point (X ′ : Y ′ : Z ′) corresponding to (X ′/Z ′, Y ′/Z ′) in the codomain,
and in the special cases when the codomain is E (i.e., for τ̂ , φ, ψ and −ψφ), we also output the coor-
dinate T ′ (or a related variant) corresponding to T ′ = X ′Y ′/Z ′, which facilitates faster subsequent
group law formulas on E – see §5.2.

Table 1 reveals that, on input of a projective point in E(Fp2)[N ], the total cost of the three maps
φ, ψ and ψφ is 68M+27S+49.5A. Computing the maps using these explicit formulas requires the
storage of 16 constants in Fp2 , and at any stage of the endomorphism computations, requires the
storage of at most 7 temporary variables.

Table 1. Summary of isogenies used in the derivation of the three endomorphisms φ, ψ and φψ on E , together with
the cost of their explicit formulas. Here M, S and A respectively denote the costs of one multiplication, one squaring
and one addition in Fp2 .

isogeny domain & degree no. fixed no. temp cost
codomain constants variables M S A

τ E → Ê 4 1 2 5 3 5
τ̂ Ê → E 4 1 2 5 3 4

(δφWδ
−1) Ê → Ê 5p 10 7 20 5 11.5

(δψWδ
−1) Ê → Ê 2p 4 2 9 2 5.5

φ 80p 11 7 30 11 20.5
ψ E → E 32p 5 2 19 8 14.5
ψφ 2560p - 7 19 8 14.5

total cost (φ, ψ, ψφ) 16 7 68 27 49.5

4 Optimal Scalar Decompositions

Let λψ and λφ be as fixed in (5) and (8). In this section we show how to compute, for any integer
scalar m ∈ Z, a corresponding 4-dimensional multiscalar (a1, a2, a3, a4) ∈ Z4 such that m ≡ a1 +
a2λφ+a3λψ+a4λφλψ (mod N), such that 0 ≤ ai < 264−1 for i = 1, 2, 3, 4, and such that a1 is odd
(which facilitates faster scalar recodings and multiplications – see Section 5). An excellent reference
for general scalar decompositions in the context of elliptic curve cryptography is Smith’s article [49],
where it is shown how to write down short lattice bases for scalar decompositions directly from the
curve parameters. Here, we show how to further reduce such short bases into bases that are, in the
context of multiscalar multiplications, optimal.

4.1 Babai rounding and optimal bases

Following [49, §1], we define the lattice of zero decompositions as

L := 〈 (z1, z2, z3, z4) ∈ Z4 | z1 + z2λφ + z3λψ + z4λφλψ ≡ 0 (mod N)〉,

so that the set of decompositions for m ∈ Z/NZ is the lattice coset (m, 0, 0, 0)+L. For a given basis
B = (b1,b2,b3,b4) of L, and on input of any m ∈ Z, the Babai rounding technique [2] computes
(α1, α2, α3, α4) ∈ Q4 as the unique solution to (m, 0, 0, 0) =

∑4
i=1 αibi, and subsequently computes

the multiscalar

(a1, a2, a3, a4) = (m, 0, 0, 0)−
4
∑

i=1

⌊αi⌉ · bi.
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It follows that (a1, a2, a3, a4) − (m, 0, 0, 0) ∈ L, so m ≡ a1 + a2λφ + a3λψ + a4λφλψ (mod N).
Since −1/2 ≤ x − ⌊x⌉ ≤ 1/2, this technique finds the unique element in (m, 0, 0, 0) + L that lies
inside the parallelepiped3 defined by P(B) = {Bx |x ∈ [−1/2, 1/2)4}, i.e., Babai rounding maps Z

onto P(B) ∩ Z4. For a given m, the length of the corresponding multiscalar multiplication is then
determined by the infinity norm, || · ||∞, of the corresponding element (a1, a2, a3, a4) in P(B)∩Z4.

Since our scalar multiplications must run in time independent of m, the speed of the multiscalar
exponentiations will depend on the worst case, i.e., on the maximal infinity norm taken across all
elements in P(B)∩Z4. Or, equivalently, the speed of routine will depend on the width of the smallest
4-cube whose convex body contains P(B)∩Z4. This width depends only on the choice of B, so this
gives us a natural way of finding a basis that is optimal for our purposes. We make this concrete
in the following definition, which is stated for an arbitrary lattice of dimension n. Definition 1
simplifies the situation by looking for the smallest n-cube containing P(B), rather than P(B)∩Zn,
but our candidate bases will always be orthogonal enough such that the conditions are equivalent
in practice.

Definition 1 (Babai-optimal bases). We say that a basis B of a lattice L ∈ Rn is Babai-optimal
if the width of the smallest n-cube containing the parallelepiped P(B) is minimal across all bases
for L.

We note immediately that taking the n successive minima under || · ||ℓ, for any ℓ ∈ {1, 2, . . . ,∞},
will not be Babai-optimal in general. Indeed, for our specific lattice L, neither the || · ||2-reduced
basis (output from LLL [38]) or the || · ||∞-reduced basis (in the sense of Lovász and Scarf [42]) are
Babai-optimal.

For very low dimensions, such as those used in ECC scalar decompositions, we can find a Babai-
optimal basis via straightforward enumeration as follows. Starting with any reasonably small basis
B

′ = (b′
1, . . . ,b

′
n), like the ones in [49], we compute the width, w(B′), of the smallest n-cube whose

convex body contains P(B′); by the definition of P, this is w(B′) = max1≤j≤n {
∑n

i=1 |b′
i[j]|}. We

then enumerate the set S of all vectors v ∈ L such that ||v||∞ ≤ w(B′); any vector not in S
cannot be in a basis whose width is smaller than B

′. We can then test all possible bases B, that
are formed as combinations of n linearly independent vectors in S, and choose one corresponding
to the minimal value of w(B).

Proposition 3. A Babai optimal basis for our zero decomposition lattice L is given by B :=
(b1,b2,b3,b4), where

224 · b1 := (16(−60α+ 13r − 10), 4(−10α− 3r + 12) , 4(−15α+ 5r − 13) , −13α− 6r + 3) ,

8 · b2 := (32(5α− r) , −8 , 8 , 2α+ r) ,

224 · b3 := (16(80α− 15r + 18) , 4(18α− 3r − 16) , 4(−15α− 9r + 15) , 15α+ 8r + 3α) ,

448 · b4 := (16(−360α+ 77r + 42), 4(42α+ 17r + 72), 4(85α− 21r − 77), (−77α− 36r − 17)) ,

for V and r as fixed in Section 3, and (since V ≡ 0 mod r) where α := V/r ∈ Z.

Proof. Straightforward but lengthy calculations using (2), (5), (6), (7) and (8) reveal that b1, b2,
b3 and b4 are all in L. Another direct calculation reveals that the determinant of 〈b1,b2,b3,b4〉
is
(

100V 4 + 20r2(r2 + 2)V 2 + r4(r2 − 2)2
)

/(1568r4), which simplifies to N under (2), (6) and (7),

3 This is a translate (by − 1

2
(
∑

4

i=1
bi)) of the fundamental parallelepiped, which is defined using x ∈ [0, 1)4.

11



so B is a basis for L. To show that B is Babai-optimal, we set B
′ = B and compute w(B′) =

max1≤j≤4

{

∑4
i=1 |b′

i[j]|
}

, which (at j = 1) is w(B′) = (245α+120r+17)/448. Enumeration under

|| · ||∞ yields exactly 128 vectors (up to sign) in S = {v ∈ L | ||v||∞ ≤ w(B′)}; none of the rank 4
bases formed from S have a width smaller than B. ⊓⊔

The size of the set S in the above proof depends on the quality of the initial basis B
′. For the

proof, it suffices to start with the Babai-optimal basis B itself, but in practice we will usually start
with a basis that is not optimal according to Definition 1. In our case we computed the basis in
Proposition 3 by first writing down a short basis using Smith’s methodology [49]. We input this into
the LLL algorithm [38] to obtain an LLL-reduced basis (b1,b2,b1+b4,b3); these are also the four
successive minima under || · ||2. We then input this basis into the algorithm of Lovász and Scarf [42];
this forced the requisite changes to output a basis consisting of the four successive minima under
|| · ||∞, namely (b1,b1 + b4,b2,b1 + b3). Using this as our input B

′ into the enumeration gave a
set S of size 282, which we exhaustively searched to find B.

Remark 3. In practice, when the dimension of the lattice L is very small, a more bovine approach
to enumerating under || · ||∞ is to instead enumerate under || · ||2 by using the simple fact that,
for any v ∈ L, ||v||2 ≤

√
n · ||v||∞ (to see this, maximize the 2-norm of v with respect to a fixed

infinity norm). For example, Magma’s [11] ShortVectors(L, n · γ2) command will enumerate the
set of all vectors of 2-norm up

√
n · |γ|; any vectors with a larger 2-norm than this will necessarily

have an larger infinity norm than |γ|.

We now describe a simple scalar decomposition that uses Babai rounding on the optimal basis
above. Note that, since V and r are fixed, the four α̂i values below are fixed integer constants.

Proposition 4. For a given integer m, and the basis B := (b1,b2,b3,b4) in Proposition 3, let
(a1, a2, a3, a4) be the multiscalar defined as

(a1, a2, a3, a4) = (m, 0, 0, 0)−
4
∑

i=1

⌊αi⌉ · bi,

where αi = α̂i ·m/N , with

6272r3 · α̂1 = 540V 3 + 10r(27r − 4)V 2 + 6r2(9r2 − 2r + 18)V + r3(27r + 4)(r2 − 2),

25088r3 · α̂2 = 1020V 3 + 10r(47r − 8)V 2 + 2r2(51r2 + 26r + 102)V + r3(47r + 8)(r2 − 2),

25088r3 · α̂3 = 220V 3 + 10r(11r + 16)V 2 + 2r2(11r2 − 46r + 22)V + r3(11r − 16)(r2 − 2),

1792r3 · α̂4 = 60V 3 + 30r2V 2 + 2r2(3r2 + 2r + 6)V + 3r4(r2 − 2).

Then m ≡ a1 + a2λφ + a3λψ + a4λψφ (mod N) and |a1|, |a2|, |a3|, |a4| < 262.

Proof. The tuple (α1, α2, α3, α4) ∈ Q4 is the unique solution to (m, 0, 0, 0) =
∑4

i=1 αibi, so m ≡
a1 + a2λφ + a3λψ + a4λφλψ (mod N). The bounds on the ai follow from all 16 corners of the
parallelepiped P(B) having all four coordinates of absolute value less than 262. ⊓⊔
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4.2 Handling round-off errors

The decomposition described in Proposition 4 requires the computation of four roundings ⌊ α̂i

N ·m⌉,
where m is the input scalar and the four α̂i and N are fixed curve constants. Following [10, §4.2], one
efficient way of performing these roundings is to choose a power of 2 greater than the denominator
N , say µ, and precompute the fixed curve constants ℓi = ⌊ α̂i

N ·µ⌉, so that ⌊ α̂i

N ·m⌉ can be computed

at runtime as ⌊ ℓi·mµ ⌋, and the division by µ can be computed as a simple shift.
It is correctly noted in [10, §4.2] that computing the rounding in this way means the answer can

be out by 1 in some cases, but it is further said that “in practice this does not affect the size of the
multiscalars”. While this assertion may have been true in [10], in general this will not be the case,
particularly when we wish to bound the size of the multiscalars as tightly as possible. We address
this issue on E starting with the following lemma.

Lemma 1. Let α̂ be any integer, and let m,N and µ be positive integers with m < µ. Then

⌊

α̂m

N

⌉

−
⌊⌊

α̂µ

N

⌉

· m
µ

⌋

is either 0 or 1.

Proof. We use x− 1/2 ≤ ⌊x⌉ ≤ x+ 1/2 and x− 1 < ⌊x⌋ ≤ x to see that the above value is greater
than −1/2 − m/(2µ) and less than 3/2 + m/(2µ). Since m < µ, the value therefore lies strictly
between -1 and 2 and the result follows from it being an integer. ⊓⊔

Lemma 1 says that, so long as we choose µ to be greater than the maximum size of our input
scalars m, our fast method of approximating ⌊ α̂i

N ·m⌉ will either give the correct answer, or it will

be ⌊ α̂i

N ·m⌉−1. It is easy to see that larger choices of µ decrease the probability of a rounding error.
For example, on 10 million random decompositions of integers between 0 and N with µ = 2246,
roughly 2.2 million trials gave at least one error in the αi; when µ = 2247, roughly 1.7 million trials
gave at least one error; when µ = 2256, 4333 trials gave an error; and, taking µ = 2269 was the first
power of two that gave no errors.

Prior works have seemingly addressed this problem by taking µ to be large enough so that the
chance of roundoff errors are very (perhaps even exponentially) small. However, no matter how
large µ is chosen, the existence of a permissible scalar whose decomposition gives a roundoff error
is still a possibility4, and this could violate constant-time promises.

In this work, and in light of Theorem 1, we instead choose to sacrifice some speed by guaran-
teeing that roundoff errors are always accounted for. Rather than assuming that (a1, a2, a3, a4) =
∑4

i=1(αi−⌊αi⌉)bi, we account for the approximation α̃i to ⌊αi⌉ (described in Lemma 1) by allowing

(a1, a2, a3, a4) =
4
∑

i=1

(αi − α̃i)bi =
4
∑

i=1

(αi − (⌊αi⌉ − ǫi))bi,

for all sixteen combinations arising from ǫi ∈ {0, 1}, for i = 1, 2, 3, 4. This means that all integers
less than µ will decompose to a multiscalar in Z4 whose coordinates lie inside the parallelepiped
Pǫ(B) := {Bx |x ∈ [−1/2, 3/2)4}. Theorem 1 permits scalars as any 256-bit strings, so we fix

4 This is not technically true: so long as the set of permissible scalars is finite, there will always be a µ large enough
to round all scalar decompositions accurately, but finding or proving this is, to our knowledge, very difficult.
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µ := 2256 from here on, which also means that division by µ will correspond to a shift of machine
words. The edges of Pǫ(B) are twice as long as those of P(B), so the number of points in Pǫ(B)∩Z4

is vol(Pǫ) = 16N . We note that, even though the number of permissible scalars far exceeds 16N , the
decomposition that maps integers in [0, µ) to multiscalars in Pǫ(B)∩Z4 is certainly no longer onto;
almost all of the µ scalars will map into P(B) ∩ Z4, since the chance of roundoff errors that take
us into Pǫ(B)−P(B) is small. Plainly, the width of smallest 4-cube containing Pǫ(B) is also twice
that of the 4-cube containing P(B), so (in the sense of Definition 1) our basis is still Babai-optimal.
Nevertheless, the bounds in Proposition 4 no longer apply, which is one of the issues addressed in
the next subsection.

4.3 All-positive multiscalars

Many points in Pǫ(B)∩Z4 have coordinates that are far greater than 262 in absolute value, and in
addition, the majority of them will have coordinates that are both positive and negative. Dealing
with such signed multiscalars can require an additional iteration in the main loop of the scalar
multiplication, so in this subsection we use an offset vector in L to find a translate of Pǫ(B) that
contains points whose four coordinates are always positive. We note that this does not save the
additional iteration mentioned above, but (at no cost) it does simplify the scalar recoding, such that
we do not have to deal with multiscalars that can have negative coordinates. Such offset vectors
were used in two dimensions in [15, §4].

From the proof of Proposition 3, we have that the width of the smallest 4-cube containing Pǫ(B)
is 2·(245α+120r+17)/448, which lies between 263 and 264. Thus, the optimal situation is to translate
of Pǫ(B) (using a vector in L) that fits inside the convex body of the 4-cubeH = {264·x |x ∈ [0, 1]4}.
In fact, as we discuss in the next paragraph, we actually want to find two unique translates of Pǫ(B)
inside H.

The scalar recoding described in Section 5 requires that the first component of the multi-
scalar (a1, a2, a3, a4) is odd. In the case that a1 is even, which happens around half of the time,
previous works have employed this “odd-only” recoding by instead working with the multiscalar
(a1 − 1, a2, a3, a4), and adding the point P to the value output by the main loop (cf. [45, Alg. 4]
and [19, Alg. 2]). Of course, in a constant-time routine, this scalar update and point addition must
be performed regardless of the parity of a1, and the correct scalars and results must be masked in
and out of the main loop accordingly. In this work we simplify the situation by using offset vectors
in L to achieve the same result; this has the added advantage of avoiding an extra point addition.
We do this by finding two vectors c, c′ ∈ L such that c+ Pǫ(B) and c

′ + Pǫ(B) both lie inside H,
and such that precisely one of (a1, a2, a3, a4) + c and (a1, a2, a3, a4) + c

′ has a first component that
is odd. This is made explicit in the full scalar decomposition described below.

Proposition 5 (Scalar Decompositions). Let B = (b1,b2,b3,b4) be the basis in Proposition 3,
let µ = 2256, and define the four curve constants ℓi := ⌊α̂i · µ/N⌉ for i = 1, 2, 3, 4, with the α̂i as
given in Proposition 4. Let c = 5b2 − 3b3 + 2b4 and c

′ = 5b2 − 3b3 + 3b4 in L. For any integer
m ∈ [0, 2256), let α̃i = ⌊ℓim/µ⌋, and let (a1, a2, a3, a4) be given by

a1 = m− α̃1 · b1[1]− α̃2 · b2[1]− α̃3 · b3[1]− α̃4 · b4[1],

a2 = −α̃1 · b1[2]− α̃2 · b2[2]− α̃3 · b3[2]− α̃4 · b4[2],

a3 = −α̃1 · b1[3]− α̃2 · b2[3]− α̃3 · b3[3]− α̃4 · b4[3],

a4 = −α̃1 · b1[4]− α̃2 · b2[4]− α̃3 · b3[4]− α̃4 · b4[4].
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Then both of the multiscalars (a1, a2, a3, a4) + c and (a1, a2, a3, a4) + c
′ are valid decompositions

of m, have all four coordinates positive and less than 264, and precisely one of them has a first
coordinate that is odd.

Proof. Lemma 1 gives α̃i = ⌊αi⌉− ǫi with ǫi ∈ {0, 1} for i = 1, 2, 3, 4, where (α1, α2, α3, α4) ∈ Q4 is
the unique solution to (m, 0, 0, 0) =

∑4
i=1 αibi in Proposition 4. The point (a1, a2, a3, a4) above is

given as (a1, a2, a3, a4) = (m, 0, 0, 0)−
∑4

i=1 α̃ibi, and since c, c′ ∈ L, then both (a1, a2, a3, a4) + c

and (a1, a2, a3, a4) + c
′ are in (m, 0, 0, 0) + L, so are valid decompositions of m. Furthermore,

(a1, a2, a3, a4) + c =
∑4

i=1(αi − (⌊αi⌉ − ǫi))bi + c is in Pǫ(B) + c, and similarly (a1, a2, a3, a4) + c
′

is in Pǫ(B) + c
′. All sixteen corners of Pǫ(B) + c and Pǫ(B) + c

′ are inside the convex body of H,
meaning they have all four coordinates positive and less than 264. Precisely, one of the multiscalars
having an odd first coordinate follows from the difference of the two multiscalars being c−c

′ = b4,
whose first coordinate is (−360α+ 77r + 42)/28, which is odd. ⊓⊔

The scalar decomposition described in Proposition 5 outputs two multiscalars. Our decomposi-
tion routine uses a bitmask to select and output the one with an odd first coordinate in constant
time. We conclude this section with a remark concerning an alternative decomposition strategy.

Remark 4. Another way of dealing with negative components in multiscalars (a1, a2, a3, a4) that lie
in Pǫ(B) is to always compute all eight points ±P , ±φ(P ), ±ψ(P ) and ±ψ(φ(P )), before selecting
the correct combination according to the signs of the ai, and proceeding with the multiscalar
(|a1|, |a2|, |a3|, |a4|). In this case the |ai| would then be at most 63 bits each, rather than the 64 bits
that we have above. Moreover, there are many translates of Pǫ(B) insideH′ = {263 ·x |x ∈ [−1, 1]4},
so we can readily find two that differ by a vector in L whose first component is odd. This would
require additional point negations and four masked selections, but would save us a double-and-
add operation in the main loop. In our software we opted for the slower approach for its obvious
simplicity benefits: our code avoids the sign-dependent maskings so that the outputs of scalar
decomposition and endomorphism routines are fed into the main loop independently of one another.

5 The Scalar Multiplication

This section describes the full scalar multiplication of P ∈ E(Fp2) by an integer m ∈ [0, 2256), pulling
together the endomorphisms and scalar decompositions derived in the previous two sections.

5.1 Recoding the multiscalar

The “all-positive” multiscalar (a1, a2, a3, a4) that is obtained from the decomposition described in
Proposition 5 could be fed as is into a simple 4-way multiexponentiation (e.g., the 4-dimensional
version of [52]) to achieve an efficient scalar multiplication. However, more care needs to be taken
to obtain an efficient routine that also runs in constant-time. For example, we need to guarantee
that the main loop iterates in the same number of steps, which would not currently be the case
since maxj(log2(|aj |)) can be several integers less than 64. As another example, a straightforward
multiexponentiation could leak information in the case that the i-th bit of all four aj values was 0,
which would result in a “do-nothing” rather than a non-trivial addition.

To achieve an efficient constant-time routine, we adopt the general recoding Algorithm from [19,
Alg. 1], and tailor it to scalar multiplications on FourQ. This results in Algorithm 1 below, which
is presented in two flavors: one that is geared towards the general reader and one that is geared
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towards implementers (we note that the lines do not coincide for the most part). On input of any
multiscalar (a1, a2, a3, a4) produced by Proposition 5, Algorithm 1 outputs an equivalent multiscalar
(b1, b2, b3, b4) with bj =

∑64
i=0 bj [i] · 2i for bj [i] ∈ {−1, 0, 1} and j = 1, 2, 3, 4, such that we always

have b1[64] = 1 and such that b1[i] is non-zero for every i = 0, . . . , 63. This fixes the length of the
main loop and ensures that each addition step of the multiexponentiation requires an addition by
something other than the neutral element.

Another benefit of Algorithm 1 is that bj [i] ∈ {0, b1[i]} for j = 2, 3, 4; as was exploited in [19],
this “sign-alignment” means that the lookup table used in our multiexponentiation only requires
8 elements, rather than the 16 that would be required in a näıve multiexponentiation that uses
(a1, a2, a3, a4). More specifically, since b1[i] (which is to be multiplied by P ) is always non-zero,
every element of the lookup table T must contain P , so we have

T [u] := P + [u0]φ(P ) + [u1]ψ(P ) + [u2]ψ(φ(P )),

where u = (u2, u1, u0)2 for u = 0, . . . , 7. In Proposition 1 we present and prove the three required
properties of the output multiscalars. We point out that the recoding must itself be implemented
in constant-time; the implementer-friendly version shows that Algorithm 1 indeed lends itself to
such an implementation. We further note that the outputs of the two versions are formatted dif-
ferently: the left side outputs the multiscalar (b1, b2, b3, b4), while the right side instead outputs
the corresponding lookup table indices (the di) and the masks (the mi) used to select the correct
signs of the lookup elements. That is, (m64, . . . ,m0) corresponds to the binary expansion of b1 and
(d64, . . . , d0) corresponds to the binary expansion of b2 + 2b3 + 4b4.

Algorithm 1 FourQ multiscalar recoding: reader-friendly (left) and implementer-friendly (right).

Input: four positive integers aj = (0, aj [63], . . . , aj [0])2 ∈ {0, 1}65 less than 264 for 1 ≤ j ≤ 4 and with a1 odd.

Output: four integers bj =
∑

64

i=0
bj [i] · 2i, with

bj [i] ∈ {−1, 0, 1}.
1: b1[64] = 1
2: for i = 0 to 64 do
3: if i 6= 64 then
4: b1[i] = 2a1[i+ 1]− 1
5: for j = 2 to 4 do
6: bj [i] = b1[i] · aj [0]
7: aj = ⌊aj/2⌋ − ⌊bj [i]/2⌋
8: return (bj [64], . . . , bj [0]) for 1 ≤ j ≤ 4.

Output: (d64, . . . , d0) with 0 ≤ di < 7, and
(m64, . . . ,m0) with mi ∈ {−1, 0}.
1: m64 = −1
2: for i = 0 to 63 do
3: di = 0
4: mi = −a1[i+ 1]
5: for j = 2 to 4 do
6: di = di + (aj [0] ≪ (j − 2))
7: c = (a1[i+ 1] | aj [0]) ∧ a1[i+ 1]
8: aj = (aj ≫ 1) + c
9: d64 = a2 + 2a3 + 4a4

10: return (d64, . . . , d0) and (m64, . . . ,m0).

Proposition 6. The four integers b1, b2, b3 and b4 output from Algorithm 1 are such that:

(Property 1) bj = aj , for 1 ≤ j ≤ 4;

(Property 2) b1[i] ∈ {−1, 1}, for 0 ≤ i ≤ 64;

(Property 3) bj [i] ∈ {0, b1[i]}, for 2 ≤ j ≤ 4 and 0 ≤ i ≤ 64.

Proof. We refer to the lines in the “reader-friendly” version. Property 3 follows immediately from
Line 6 and Property 2 follows immediately from Lines 1 and 4. Property 1 with j = 1 also follows
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from Lines 1 and 4 since b1 = 264+
∑63

i=0(2a1[i+1]−1) ·2i = (264−
∑63

i=0 2
i)+

∑63
i=0 a1[i+1] ·2i+1 =

1+
∑64

i=1 a1[i] ·2i, which is a1 because a1[0] = 1. It remains to prove Property 1 for j = 2, 3, 4, so for
j as any of them, let aij and bij respectively denote the intermediate values of the integers aj and bj

immediately after the execution of Line 7 of the i-th iteration, and note that bij =
∑i

k=0 bj [k] · 2k.
We claim that the value 2i+1 ·aij+ bij is invariant as follows. Line 6 gives bi+1

j = bij+2i+1 · b1[i] ·aij [0]
and Line 7 gives ai+1

j = ⌊aij/2⌋ − ⌊bj [i]/2⌋ = (aij − aij [0])/2 − ⌊b1[i] · aij [0]/2⌋. We then write

2i+2 · ai+1
j + bi+1

j = 2i+1
(

(aij − aij [0])/2− ⌊b1[i]aij [0]/2⌋
)

+
(

bij + 2i+1 · b1[i] · aij [0]
)

. Evaluating this

expression for the four possible combinations of aij [0] ∈ {0, 1} and b1[i] ∈ {−1, 1} always gives

2i+2 · ai+1
j + bi+1

j = 2i+1 · aij + bij , and hence the claimed invariance. Viewing the end of the first
(i = 0) iteration yields that this invariant is the input integer aj , and this invariance clearly holds
until the last iteration (i = 64), at which point a64j = 0, giving b64j = aj as the output integer. ⊓⊔

5.2 Fast addition formulas

The fastest set of explicit formulas for the addition law on E are due to Hisil, Wong, Carter and
Dawson [34]: they use extended twisted Edwards coordinates to represent the affine point (x, y) on
E by any projective tuple of the form (X : Y : Z : T ) for which Z 6= 0, x = X/Z, y = Y/Z and
T = XY/Z.

Starting with the alternatives discussed in Hisil’s thesis [32, §5.1.4], some minor modifications
of the original formulas in [34] have proven to facilitate a more friendly implementation in certain
scenarios. For example, Hamburg [29, §3.2] uses the tuple (X,Y, Z, Ta, Tb) to represent a point
(X : Y : Z : T ) in extended twisted Edwards coordinates, where Ta and Tb are any field elements
such that T = TaTb. In our case, a careful analysis of the full scalar multiplication routine and
explicit formulas revealed that there are four alternative point representations that can be used
to achieve a faster scalar multiplication. Table 2 summarizes these alternative representations,
denoted R1,R2,R3 and R4, and Table 3 summarizes the costs of the three functions that we
need to convert between these representations, as well as the three functions used to compute the
group law on E . We point out that the function ADD(P,Q) is equivalent to (and implemented as)
ADD(P,Q) = ADD_core (R1toR3(P ), Q), and reiterate that the three group law functions in Table 3
have no exceptions.

Table 2. Different representations of a
point in extended twisted Edwards coor-
dinates.

rep. representation of
(X : Y : Z : T )

R1 (X,Y, Z, Ta, Tb)
R2 (X + Y, Y −X, 2Z, 2dT )
R3 (X + Y, Y −X,Z, T )
R4 (X,Y, Z)

Table 3. Summary of conversion and addition functions, together with
the (respective) representation of input and output points.

function input rep(s). output rep. cost
M S A

R1toR2 P R1 P R2 2 - 4
R1toR3 P R1 P R3 1 - 2
R2toR4 P R2 P R4 - - 2

ADD_core P,Q R3,R2 P +Q R1 7 - 4
ADD P,Q R1,R2 P +Q R1 8 - 6
DBL P R4 [2]P R1 3 4 6

5.3 The full routine

We now present Algorithm 2: the full scalar multiplication routine. This is immediately followed
by Theorem 1, which proves that Algorithm 2 computes the correct result in a constant number
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(and fixed sequence) of operations. This proof also provides more details on the steps summarized
in Algorithm 2; in particular, it specifies the representations of all points in order to state the total
number of Fp2 operations. Algorithm 2 assumes that the input point P is in E(Fp2)[N ], i.e., has
been validated according to Appendix A. As such we assume that P is input as a projective point
represented using R1 (or R4, since the endomorphisms only need the first three coordinates – see
Table 2).

Algorithm 2 FourQ’s scalar multiplication on E(Fp2)[N ].

Input: Point P ∈ E(Fp2)[N ] and integer scalar m ∈ [0, 2256).
Output: [m]P .

Compute endomorphisms:
1: Compute φ(P ), ψ(P ) and ψ(φ(P )) using the explicit formulas summarized in Table 1.
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P ) + [u1]ψ(P ) + [u2]ψ(φ(P )) for u = (u2, u1, u0)2 in 0 ≤ u ≤ 7.
Scalar decomposition:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in Proposition 5.
Scalar recoding:
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . ,m0) using Algorithm 1. Write si = 1 if mi = −1 and
si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q+ si · T [di]
9: return Q

Theorem 1. For every point P ∈ E(Fp2)[N ] and every non-negative integer m less than 2256,
Algorithm 2 computes [m]P correctly using a fixed sequence of exactly 1I, 842M, 283S, 950.5A and
a fixed sequence of integer and table-lookup operations.

Proof. We proceed through each line of Algorithm 2 and refer back to Table 3 for definitions
and costs of lower level functions. As discussed in Remark 6, φ and ψ compute correctly for all
points in E(Fp2)[N ], including the neutral point (0, 1). Line 1 therefore requires exactly 68M,
27S and 49.5A (see Table 1), at which point we have P , φ(P ), ψ(P ) and ψ(φ(P )) in R1. Before
computing the lookup table, we convert formats and take P ← R1toR2(P ), φ(P )← R1toR3(φ(P )),
ψ(P )← R1toR3(ψ(P )), ψ(φ(P ))← R1toR3(ψ(φ(P ))) at a cost of 5M and 10A. Executing Line 2
then requires exactly 7 executions of ADD_core, which costs 49M and 28A. The output of these
additions are in R1; in preparation for a faster main loop, they are all converted to R2 at a
cost of 14M and 28A. Line 3 requires only integer operations and Proposition 5 proves that it
computes a correct, all-positive decomposition (a1, a2, a3, a4) for every 0 ≤ m < µ = 2256, such that
0 < ai < 264 − 1. For Line 4, Proposition 6 proves that Algorithm 1 computes a correct recoding
of (a1, a2, a3, a4) using a fixed sequence of bit operations. Line 5 uses one point negation (costing
1A) and one table lookup to extract the initial value of Q; this is converted to R4 using R2toR4

which costs 2A. What follows in Line 6-8 is 64 point doublings (DBL), 64 point additions (ADD), 64
point negations and 64 table lookups, which costs 704M, 256S and 832A. We reiterate that these
group operations all work without exception. Finally, Line 9 requires a normalization which incurs
1I and 2M, and the tallied operation count is as claimed. ⊓⊔
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Remark 5. Providing exact counts for the integer operations in the scalar decomposition is not too
meaningful, since this depends on the underlying architecture. It suffices to say that, for example,
the entire scalar decomposition requires less than 200 clock cycles on both the Sandy Bridge and Ivy
Bridge architectures. In addition, we note that implementers targeting different architectures may
find it advantageous exploit other trade-offs (within the explicit formulas) and arrive at different
operation counts in Fp2 than those stated in Theorem 1.

6 Performance Analysis and Results

This section shows that, at the 128-bit security level, FourQ is significantly faster than all other
known curve-based primitives. We reiterate that our software runs in constant-time and is therefore
fully protected against timing and cache attacks.

6.1 Operation counts

We begin with a first-order comparison based on operation counts between FourQ and two other
efficient curve-based primitives that are defined over large prime characteristic fields and that
target the 128-bit security level: the twisted Edwards GLV+GLS curve defined over Fp2 with
p = 2127−5997 proposed in [41], and the genus 2 Kummer surface defined over Fp with p = 2127−1
that was proposed in [26]; we dub these “GLV+GLS” and “Kummer” below. Both of these curves
have recently set speed records on a variety of platforms (see [19] and [6]). Table 4 summarizes the
operation counts for one variable-base scalar multiplication on FourQ, GLV+GLS and Kummer.
In the right-most column we approximate the cost in terms of prime field operations (using the
standard assumption that 1 base field squaring is approximately 0.8 base field multiplications),
where we round each tally to the nearest integer. For the GLV+GLS and FourQ operation counts,
we assume that one multiplication over Fp2 involves 3 multiplications and 5 additions/subtractions
over Fp (when using Karatsuba) and one squaring over Fp2 involves 2 multiplications and 3 addi-
tions/subtractions over Fp.

Table 4. Operation counts for variable-base scalar multiplications on three different curves targeting the 128-bit
security level. In the case of the Kummer surface, we additionally use a “word-mul” column to count the number of
special multiplications of a general element in Fp by a small (i.e., one-word) constant – see [6].

primitive prime op. count over Fp2 approx. op. count over Fp

char. p inv mul sqr add inv mul add word-mul

FourQ 2127 − 1 1 842 283 950.5 1 3092 6960 -

GLV+GLS 2127 − 5997 1 833 191 769 1 2885 6278 -

Kummer 2127 − 1 - - - - 1 4319 8032 2008

Table 4 shows that the GLV+GLS routine from [41] requires slightly fewer operations than
FourQ. This can mainly be explained by the faster endomorphisms, but (as we will see in Table 5)
this difference is more than made up for by the faster modular arithmetic and superior simplicity
of FourQ. Table 4 shows that FourQ requires far fewer operations (in the same ground field) than
Kummer; it is therefore expected, in general, that implementations based on FourQ outperform
Kummer implementations for computing variable-base scalar multiplications.
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6.2 Experimental Results

To evaluate performance, we wrote a standalone library supporting FourQ – see [16]. The library’s
design pursues modularity and code reuse, and leverages the simplicity of FourQ’s arithmetic.
It also facilitates the addition of specialized code for different platforms and applications: the
core functionality of the library is fully written in portable C and works together with pluggable
implementations of the arithmetic over Fp2 (and a few other complementary functions). The first
release version of the library comes with two of those pluggable modules: a portable implementation
written in C and a high-performance implementation for x64 platforms written in C and optional
x64 assembly. The library computes all of the basic elliptic curve operations including variable-base,
fixed-base and double-scalar multiplications, making it suitable for a wide range of cryptographic
protocols. In addition, the software permits the selection (at build time) of whether or not the
endomorphisms ψ and φ are to be exploited in variable-based scalar multiplications.

In Table 5, we compare FourQ’s performance with other state-of-the-art implementations doc-
umented in the literature. Our benchmarks cover a wide range of x64 processors, from high-end
architectures (e.g., Intel’s Haswell) to low-end architectures (e.g., Intel’s Atom). To cast the perfor-
mance numbers in the context of a real-world protocol, we choose to illustrate FourQ’s performance
in one round of an ephemeral Diffie-Hellman (DH) key exchange. This means that both parties can
generate their public keys using a fixed-base scalar multiplication and generate the shared se-
cret using a variable-base scalar multiplication. Exploiting such precomputations to generate truly
ephemeral public keys agrees with the comments made by Bernstein and Lange in [8, §1], e.g., that
“forward secrecy is at its strongest when a key is discarded immediately after its use”. Thus, Table 5
shows the execution time (in terms of clock cycles) for both variable-base and fixed-base scalar
multiplications. We note that the laddered implementations in [4, 9, 6] only compute variable-base
scalar multiplications, which is why we use the cost of two variable-base scalar multiplications to
approximate the cost of ephemeral DH in those cases. For the FourQ and GLV+GLS implementa-
tions, precomputations for the fixed-base scalar multiplications occupied 7.5KB and 6KB of storage,
respectively.

Table 5 shows that, in comparison with traditional curves, FourQ is 2.2–2.9 times faster than
the Curve25519 implementations in [3, 14] and up to 5.6 times faster than the curve P-256 im-
plementation in [27], when computing variable-base scalar multiplications. When considering the
results for the DH key exchange, FourQ performs 1.9–3.7 times faster than Curve25519 and up to
4.4 times faster than curve P-256.

In terms of comparisons to the previously fastest implementations, variable-base scalar multi-
plications using our software are between 1.24 and 1.29 times faster than the Kummer [9, 6] and
the GLV+GLS [19] implementations on AMD’s Kaveri and Intel’s Atom Pineview, Sandy Bridge
and Ivy Bridge. The Kummer implementation for Haswell in [6] is particularly fast because it takes
advantage of the powerful AVX2 vector instructions. Nevertheless, our implementation (which does
not currently exploit vector instructions to accelerate the field arithmetic) is still 1.09x faster in the
case of variable-base scalar multiplication. Moreover, in practice we expect a much larger advantage.
For example, in the case of the DH key exchange, we leverage the efficiency of fixed-base scalar
multiplications to achieve a factor 1.39x speedup over the Kummer implementation on Haswell. For
the rest of platforms considered in Table 5, a DH shared secret using the FourQ software can be
computed 1.6–1.7 times faster than a DH secret using the Kummer software in [6]. We note that
the eBACS website [7] and [6] report different results for the same Kummer software on the same
platform (i.e., Titan0): eBACS reports 60,556 Haswell cycles whereas [6] claims 54,389 Haswell
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Table 5. Performance results (expressed in terms of thousands of clock cycles) of state-of-the-art implementations
of various curves targeting the 128-bit security level on various x64 platforms. Benchmark tests were taken with
Intel’s TurboBoost and AMD’s TurboCore disabled and the results were rounded to the nearest 1000 clock cycles.
The benchmarks for the FourQ and GLV+GLS implementations were done on 1.66GHz Intel Atom N570 Pineview,
3.4GHz Intel Core i7-2600 Sandy Bridge, 3.4GHz Intel Core i7-3770 Ivy Bridge, 3.4GHz Intel Core i7-4770 Haswell,
2.30GHz Intel Core i5-5300U Broadwell and 3.1GHz AMD A8 PRO-7600B Kaveri. All the results for FourQ, excepting
on the Atom Pineview platform, were obtained with version 2.0 of FourQlib [16]. For the Kummer implementations [9,
6] and Curve25519 implementation [3], Atom Pineview, Sandy Bridge, Ivy Bridge and Haswell benchmarks were taken
from eBACS [7] (machines h2atom, h6sandy, h9ivy and titan0), while AMD Kaveri and Intel Broadwell benchmarks
were obtained by running eBACS’ SUPERCOP toolkit on the corresponding targeted machine. The benchmarks for
curve NIST P-256 were taken directly from [27] and the second set of Curve25519 benchmarks were taken directly
from [14].

proc. operation
FourQ GLV+GLS Kummer Curve25519 P-256

(this work) [19] [9] [6] [3] [14] [27]

Atom
var-base 442 - 556 - 1,109 - -

Pineview
fixed-base 217 - - - - - -
ephem. DH 659 - 1,112 - 2,218 - -

Sandy
var-base 72 92 123 89 194 157 400

Bridge
fixed-base 40 51 - - - 54 90
ephem. DH 112 143 246 178 388 211 490

Ivy
var-base 69 89 119 88 183 159 -

Bridge
fixed-base 35 49 - - - 52 -
ephem. DH 104 138 238 176 366 211 -

var-base 56 - 111 61 162 - 312
Haswell fixed-base 32 - - - - - 67

ephem. DH 88 - 222 122 324 - 379

var-base 50 - - 61 144 - -
Broadwell fixed-base 30 - - - - - -

ephem. DH 80 - - 122 288 - -

AMD
var-base 122 - 151 164 301 - -

Kaveri
fixed-base 66 - - - - - -
ephem. DH 188 - 302 328 602 - -

cycles. This difference in performance raises questions regarding accuracy. The results that we ob-
tained after running the eBACS’ SUPERCOP toolkit on our own targeted Haswell machine seem
to confirm that the results claimed in [6] for the Kummer were measured with TurboBoost enabled.

We recently benchmarked our software on an Intel Broadwell machine and observed, when com-
puting variable-base scalar multiplications, factor-2.88 and factor-1.22 speedups in comparison with
the Curve25519 implementation from [3] and the Kummer implementation from [6], respectively.
This highlights the impressive performance of FourQ on modern CPUs without even considering
the additional speedup that can be obtained through the use of fixed-base scalar multiplications or
the use of vector instructions.

We note that in the case of binary elliptic curves the fastest implementation in the literature is
due to Oliveira et al. [45]. Although its performance is just slightly slower than FourQ’s performance
for computing variable-base scalar multiplications on Haswell ([45] computes a variable-base scalar
multiplication in 62 thousand cycles, according to eBACS [7]), it is not as competitive on other
platforms (e.g., it costs 114 and 120 thousand cycles on Ivy and Sandy Bridge architectures [7]).
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Software from [45] does not currently support fixed-base scalar multiplications.

FourQ without endomorphisms. Our library can be built with a version of the variable-base
scalar multiplication function that does not exploit the endomorphisms ψ and φ to accelerate
computations (note that fixed-base scalar multiplications do not exploit these endomorphisms by
default). In this case, FourQ computes one variable-base scalar multiplication in (respectively) 92,
104, 127, 134 and 803 thousand cycles on the Broadwell, Haswell, Ivy Bridge, Sandy Bridge and
Atom Pineview processors used for our experiments. These results are up to 3 times faster than
the corresponding results for NIST P-256 and between 1.2–1.6 times faster than the corresponding
results for Curve25519.
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A Point validation

The main scalar multiplication routine (in Algorithm 2) assumes that the input point lies in
E(Fp2)[N ]. However, since we have #E(Fp2) = 392 ·N , and in light of small subgroup attacks [39]
that can be carried out in certain scenarios, here we briefly mention how our software enables the
assertion (if desired) that scalar multiplications only accept points in E(Fp2)[N ]. We then discuss
why this validation is not done via more sophisticated means.

On input of a point P = (x, y) ∈ Fp2 × Fp2 , we

(i) Validate that P ∈ E , i.e, assert that −x2 + y2 = 1 + dx2y2, otherwise reject P and abort.
(ii) Compute P ← [392]P . Plainly, since (392)2 = (1, 1, 0, 0, 0, 1, 0, 0, 0), this sequence involves 8

doubling and 2 addition operations. We note that these operations are independent of secret
data and so constant-time strategies are irrelevant here.

Our method of achieving step (ii) above prompts the question as to why we do not absorb
this cofactor into the decomposition. Indeed, this would be faster than multiplying input points
by the cofactor outside of the multiexponentiation routine, since (as with the rest of the scalar) it
compresses the length of the required loop by a factor close to 4.

The difficulty in “killing the cofactor” in this way arises because the initial decomposition in
Proposition 4 maps all integers in the coset m + NZ to the same multiscalar (a1, a2, a3, a4) ∈
P(B)∩Z4. Thus, if we instead take m̃ = 392m where m is chosen uniformly in an interval of length
at least N , then the decomposition of m̃ will produce the same multiscalar as all integers in m̃+NZ,
and in particular, will produce the same multiscalar as the unique representative of this coset in
[0, N), the distribution of which is (approximately) uniform modulo 392. Subsequently, we cannot
simply force scalars to be a multiple of the cofactor and expect the decomposition in Proposition 4
to respect this divisibility.

One possibility of dealing with the above problem is to use a sublattice L′ of index 392 in L, such
that det(L′) = #E(Fp2). This way, for any m ∈ [0, N), then m̃ = 392m is the unique representative
of the coset m̃+ 392NZ, and the decomposition will respect the divisibility of m̃ by 392.
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Unfortunately though, the above approach cannot work on E(Fp2). One reason for this is that
there are small prime order subgroups of E(Fp2) that are not fixed by both ψ and φ. The group
structure of E is E(Fp2) ∼= Z/8Z × (Z/7Z)2 × Z/NZ, meaning that the entire 7-torsion is Fp2-
rational; it consists of 8 linearly independent cyclic subgroups of order 7. On the one hand, ψ fixes
each of these subgroups and has a consistent eigenvalue on E [7], namely ψ|E[7] = [2]|E[7], but on
the other hand, φ only fixes two of the subgroups and therefore does not have an eigenvalue on all
of E [7]. Subsequently, there is no meaningful way to build the (sub)lattice L′ above such that it
encompasses the action of φ and ψ on all points in E(Fp2). Another obstruction concerning the use
of L′ is that E(Fp2)[8] contains elements in the kernels of φ and ψ, since ker(τ) is the four points
of exact order 8 in E(Fp2). This is why we choose to avoid any complications or exceptions, opting
for a simple double-and-add sequence to compute P 7→ [392]P .

Our code leaves the cofactor killing as an option to the user: the scalar multiplication API
includes an input for enabling or disabling it during the computation. It is important to note
that, in real-world scenarios, the cofactor killing can only be disabled when the input point is in
E(Fp2)[N ], e.g., is a known (multiple of a) public generator that is asserted to be of order N . We
point out that, even with cofactor killing enabled, the total cost of scalar multiplications is still
significantly faster than all known implementations (many of which do not kill cofactors, e.g., [6]).

Remark 6. An observation that is important in the proof of Theorem 1 is that the (Fp2-rational
parts of the) kernels of all of the isogenies in Table 1 are killed by the map P 7→ [392]P , and
furthermore, that all of the explicit formulas derived in this work are well behaved on E(Fp2)[N ],
including the neutral point (0, 1). This also means that, besides the two steps above, we never have
to perform further checks or blacklist certain inputs into the main scalar multiplication.

Remark 7. There is a way to absorb part of the cofactor into a multiexponentiation. The explicit
formulas for φ and ψ are well behaved on E(Fp2)[4], mapping all four elements to the neutral point
(0, 1) on E . Thus, the maps φ and ψ can be extended to E(Fp2)[4N ] \ E(Fp2)[4] without modifying
the eigenvalues (we must remove the 4-torsion since both maps are equivalent to [0] when restricted
to E(Fp2)[4].). This means that we could instead work with the lattice L̃ = 〈 (z1, z2, z3, z4) ∈
Z4 | z1 + z2λφ + z3λψ + z4λφλψ ≡ 0 (mod 4N)〉 of index 4 in L, decompose scalars of the form
m̃ = 4m form ∈ [0, N), and begin with P 7→ [98]P , saving two doublings. In fact, the Babai-optimal
basis B̃ of L̃ is such that all 16 corners of P(B̃) still have absolute value less than 262, meaning
that these doublings could be absorbed into the multiexponentiation for free (if a similar treatment
beginning with the analogue of Proposition 4 were carried out). However, this would require a new
decomposition which means a new set of fixed constants; this is why we chose the simplified but
slightly slower option of killing the full cofactor outside of the multiexponentiation.
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