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Four-point functions of lowest weight chiral primary operators in N=4 four-dimensional
supersymmetric Yang-Mills theory in the supergravity approximation
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We show that the recently found quartic action for the scalars from the massless graviton multiplet of type
I1B supergravity compactified on an AgS S° background coincides with the relevant part of the action of the
gaugedN=8 5D supergravity on AdS We then use this action to compute the four-point function of the
lowest weight chiral primary operators tef{' 1) in N=4 four-dimensional SYM theory at large and at
strong 't Hooft coupling.

PACS numbgs): 04.50:+h, 11.25.Hf

I. INTRODUCTION their operator product expansiq@PE from AdS gravity
[21].
The AdS/conformal field theor§CFT) duality [1—3] pro- More generally inN=4 SYM, there are chiral multiplets

vides a remarkable way to approach the problem of studyingenerated bysingle-tracg chiral primary operator§CPO):
correlation functions in certain conformal field theories. ForO| = tr( ¢(1. .. ¢W), transforming in thek-traceless sym-
N=4 supersymmetric Yang-Mills theory in four dimensions metric representation of 36). Eight from sixteen super-
(SYM,) this duality allows one to find the generating func- charges annihilat®; while the other eight generate, under
tional of Green functions of some composite gauge invariansupersymmetry transformations, the chiral multiplets. A fun-
operators at largé\ and at strong 't Hooft coupling. by  damental property of CPOs is that they have conformal di-
computing the on-shell value of the type IIB supergravitymensions protected against quantum corrections. Thus, they
action on an AdSx S° background2,3]. may be viewed as BPS states preserving 1/2 of the super-
Thus, the knowledge of type IIB supergravity action up tosymmetry. In particular, the lowest component CPO§
nth order in perturbation of fields near their background val-comprise together with their descendents a multiplet contain-
ues is a necessary starting point for computigoint cor-  ing the stress-energy tensor and Reymmetry current.
relation functions of corresponding operators in SYM  Recently we have found the quartic effective five-
theory. At present the quadrafi¢] and cubic[5—7] actions  dimensional5D) action for scalar fields' that correspond at
for physical fields of type 1B supergravity are available thatlinear order to chiral primary operato@' [25]. We have
allows one to determine normalizations for many two- andalso shown that the found action admits a consistent Kaluza-
three-point functions. Klein (KK) truncation to fields from the massless graviton
With four-point functions the situation is much more in- multiplet. This multiplet represents a field content of the
volved[8-24]. So far the only known examples here are thegaugedN=8, d=5 supergravity{26—28 and by the AdS-
four-point functions of operators tﬂ2+.. ) and tr(Fﬁ CFT correspondence it is dual to the Yang-MiIIs stress-
+...) [8,16] that on the gravity side correspond to massles$£nergy multiplet. _ . _
modes of dilaton and axion fields, where the relevant part of Clearly, these results provide a possibility to find four-
the gravity action was known. These operators are rathgpoint functions ofany CPOs in supergravity approximation.
complicated; in particular, in the representation of the superln this paper as the first step in this direction we compute the
symmetry algebra they appear as descendents of the primaﬂmplest four-plomt correlat|on. funchons for all lowest
operatorsOb= tr ( ¢ ¢)), whereg' are Yang-Mills scalars Weight CPQSOZ. Hopefully, this will further extend our
transforming in the fundamental representation of theunderstanding of the OPE M=4 SYM, at strong coupling.
R-symmetry group S@). The descendent nature of these The detailed study of the OPE of two lowest weight CPOs
operators brings considerable complications both in perturwill be the subject of a separate paper.
bative analysis of the correlation functions, and in study of We start by showing that the quartic actif#b] found by
compactifying 1B supergravity on the AdS S® with the
further reduction to the massless multiplet coincides after
*On leave of absence from Steklov Mathematical Institute,
Gubkin str.8, GSP-1, 117966, Moscow, Russia. Email address:
arut@theorie.physik.uni-muenchen.de The fieldss' correspond to extended CPOs involving single- and
'On leave of absence from Steklov Mathematical Institute,multiple-trace CPOs and their descendents, see R&25]. How-
Gubkin str. 8, GSP-1, 117966, Moscow, Russia. Email addressever, for generic values of conformal dimensions CPOs and ex-
frolov@bama.ua.edu tended CPOs have the same correlation functions.
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some additional field redefinitions with relevant part of the 1

action for the gaugetll =8 five-dimensional supergravity on dszz—z(dz(2,+ nijdxidxj).

AdS;. This fact together with consistency of the KK reduc- Zy

tion demonstrates, in particular, that within the supergravity i , ,

approach, four-point correlation functions for fields from the "€ quadratic actions for the scalafs the graviton and

YM stress-energy multiplet are completely determined byth® massless vector fields on the AdS space are givga]by

the 5D gauged supergravity, i.e., they do not receive any 28 1 1

contributions from higher KK modes. Lo(s)== > | ==V ,s'VHs' — -m?s?|, (2.2
The gauged\=8 five-dimensional supergravity has 42 3 2" 2

scalars with 20 of them forming a singlet of the global in-

variance group SL(R). These 20 scalas comprise the0 1 p v, L )
. S = — — += up
irrep. of SA6) and correspond to CPAB'=Cj; tr (¢'¢!), Lol @) == 7 Vo0V e 45V, NV 0y,
whereCi'J- is a traceless symmetric tensor of &D As we 1 1

ill th ly fields that in F h _Z vy v
will see the only fields that appear in Feynman exchange R A

diagrams describing the contribution to the four-point func-
tion of O' are the scalars', the graviton and the massless 1 1
vector fields. There are also contributions of contact dia- +—<PW90“"+—(<P“)2, (2.3
grams corresponding to quartic couplingssbfvith two de- 2 2k
rivatives and without derivatives. 1

The paper is organized as follows. In Sec. Il we summa- __ = 112
rize the results of the KK reduction obtained in R&5] and La(A) 12 E| [Pl ADT 249
put the action in a form suitable for comparison with the
action of gauged 5D supergravity. In Sec. Ill we employ anHere the field strengtt=,,(A') is defined byF,,(A")
explicit parametrization for the coset space SRBSO(6) :aﬂAL—avA'ﬂ, where A'M with I=1,...,15represent 15
to write down the relevant part of the action for gauged 5Dmassless vectors that correspond to the Killing vecto®®of
supergravity. We then decompose this action near ;AdSAIl these fields occur in the bosonic part of the massless
background solution and after an additional field redefinitiongraviton multiplet of compactified type 11B supergravity on
find an exact agreement with the action obtained by the KKAdS; X S°.
reduction. Finally in Sec. Il we combine our knowledge of The relevant cubic terms can be easily extracted from
the action with the techniqugl6] of computing exchange [5-7], and they are given by
Feynman diagrams over the AdS space and give an answer

for the four-point function of lowest weight CPOs in terms 5x 211 o
of universal D-functions. Some technical details are rel- 53(5):—33 1,1, SIS, (2.5
egated to two Appendixes.
7
_ Ivveal
IIl. RESULTS OF THE REDUCTION La(@un)= 3.3 VESVS ¢y,

As was discussed in the Introduction, the computation of 1
a four-point function of arbitrary CPOs requires the con- —E(V“SIV’“SI—4SISI)QDZ . (2.8
struction of the effective 5D gravity action with all cubic
terms involving two fields' and with alls'-dependent quar-
tic terms, the problem that has been completely solved in 28 lonclyal3
Ref. [25]. For the simplest case of lowest weight CPOs the La(Ay)= ?t|1|2|3s 1VHS2A D, 2.7
corresponding gravity fields are 20 scalafrsvith the lowest
2_ . .
AdS massm“=—4 and they are in the massless gravitonyere the summation ové, I,, |5 running over the basis

multiplet. If we restrict our attention to these fieldsthen of irrep. 20 of SO6) is assumed, and we use the following
the relevant part of the action may be written in the formpgiations:

[25]

2 aI1'2'3:J Y|1Y|2Y|3, t|1|2|3:J VaYllleYL?v
4N
(2’7T)5J d5X v _ga[£2(5)+£2(¢ﬂy)+£2(AM)

S(s)=

where the scala¥' and the vectoi!, spherical harmoniés
of S° satisfy V2Y'=—12Y', (V2—4)Y,=—-8Y!. We also

+L3(S)+ La(@,,,) + La(A) + LD+ L], Ve (Vs 4, «

(2.)  orthonormal, i.e.fY'Y?=6" and[Y' Y] =Y.

whereg, denotes the determinant of the AdS metric with the
signature 1,1,...,1) 2In this sectiona is used to denote the index &F.
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Finally, in [25] the following values of the quartic cou- 1 o 1 o
plings of the two-derivative vertex Lrea=—7(V,SVHs—4ss)+ 2Cy ) S1S?52
(2) 52><29 l1al l3al 1 | | 1 | | |l v
L4 :T | a|1|2|5a|3|4|5VM(S 1s Z)V’M(S 3S 4) +Z V#s'V's QDMV_E(V’U'S VMS_4SS)QDV
5
13 1
> 3Vﬂ(s' 18'1) V4(sl2s!2) (2.9 + ?C,l,2|3|4VM(S'13'2)V”(s'3s'4)
au
ot 3 1
and of the nonderivative vertex _ §C|1|2|3|45' 1g'2g/3gl 4+ Esl 1g'1g'2g'2
52x 21
L£O0=— > a,..a. . Sis'zslss'a (2.9 1
4 9 P’ I1ol5%5l4ls +T|1|2|3SI1VMSI2AL?_ EFI}.LVFMV I+[/2((p[w)
were found. (2.13

The quartic action can be further simplified by substitut- _ _ _
ing the integrals of spherical harmonics for their explicit that will be used in Sec. IV to compute the four-point func-
value viaC tensors(see Appendix A Indeed, by using Eq. tions of the lowest weight CPOs.

(A1) together with summation formulé3) one gets Finally we put this Lagrangian in the form most suitable
for comparison with the relevant part of the action of the

24%3 gaugedN=8 5D supergravity. Introducing the matrices
2 a8 .= > Clilalslag clil2lals
I, 125345 524 A=(A)j=Clis', A, =(A,)ij=—Cl;A,,
_ 35|1|25|3|4)' (210  Where Ci; and C{,; are described in the Appendix A, one
3 obtains

ia@'12lsla=c't c'2 ¢!z ¢l 1 1
where the shorthand notaticD C|1|2C|2|3C|3|4C|4|1 Lroq=— 7 1H(V AVEA—4A2) + St A3
for the trace product of four matric&s' was introduced. 4 3

By using this formula, the two-derivative Lagrangian may

. 1 1
be reduced to the following form: t7 tr V,AV,A - ngtr( V,AVYA—4A?) | ot
. 1 3 1
()= — Il I3gl
Ly _327T3C|1|2|3|4VM(S 15'2)V#4(s'ss'4), (2.1 +§t|’( VMAZV'U“AZ)—§II' A4+§(tr A2)2

From the cubic couplings one can see that except the self-

interaction, the scalars from the massless multiplet interact

only via exchange by the massless gravitgy, and by the B

massless vector field%'ﬂ. Introduce a concise notation where tiF , F#'=—F F#¥ J"and normalization condition
(A2) was used.

1
+ U F L =2 t(VAAAA) + Lo(@,,), (214

N2
S( — 5 [
s)= 8772J d°x 9alrea: (212 I1l. LAGRANGIAN OF GAUGED 5D SUPERGRAVITY

Gauged N=8 five-dimensional supergravity was con-
where the subscript ifl,.q4is to remind the reader that action structed in Refs[26,27] by gauging Abelian vector fields of
Sis obtained by dimensional reduction, and we have emphahe N=8 Poincaresupergravity. The gauged theory has a
sized the five-dimensional gravitational couplingK§2 local non-Abelian S@) symmetry, a local composite

=8m?IN2. USp8) symmetry and a global SL(R) symmetry. The
Substituting in Eqs(2.5—(2.7) explicit values(Al) of  bosonic field content is given by graviton, 15 real vector
aj i, andt, ;. , using for £ Y summation formulg2.10), fieldsA, i, i,j=1,...,6transforming in the adjoint repre-
and rescaling the fields as sentation of S(), 12 antisymmetric tensors of the second
rank, and by 42 scalars that in the ungauged theory param-
312,312 etrize the noncompact manifoEJ6(6)/USp(8). Inwhat fol-
s———¢' A 62532l o i p¥2p lows we adopt the conventions of RE28].
2902 . . . . LetA,B,...=1,...,8 be thdndices of the representa-
tion 27 of Eg) and a,b, ... be USK8) indices that are
we get the Lagrangian raised and lowered with the symplectic metflg, . Explic-
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itly, an element ofEg(s)/USp(8) can be described by the cause th(_a existence of the cubic_ terms cpntaining two
scalar vielbeinV ,g2° which is 27 27. In the gauged theory SL(2R) singletss' and one doublet field is forbidden by the
minimal couplings of the connectioA, ;; responsible for SL(2R) symmetry. In fact, from the point of view of the
the local S@6) symmetry are introduced to all the fields dimensional reduction of type IIB supergravity matrix,”
transforming linearly under S@). The transformation prop- describes zero modes of axion and dilaton fields wiilg,,
erties of the fields under S6) are then uniquely specified encodes the scalars arising from the reduction of the anti-

by the embedding of S@) into the group SL(&), the latter
being a subgroup oEg ). Recall that under the subgroup
SL(6R) X SL(2R) the representatiol7 of Eg ) is decom-
posed as 2% (15,1)+(6,2). The components of the vielbein
are then denoted a4;2® andV, ,*°, wherei,j=1, ... ,6 are
SL(6R) anda=1,2 are SL(R) indices.

The relevant bosonic pdrtof the Lagrangian of the
gauged 5D gravity is of the form

1 1
L=R—-£P, abcdP 2P0 P— S F i FA.

2 wviij (31)

HereF ,,.j; is a SA6)-covariant Yang-Mills field strengti®
is a scalar potential and the teng®y,pqq iS given by

P an®=(V )% ABY Vg o+ 2QL5, 5]
—2g(V"He AV ap
—g(V" e A IV, ap

and it represents a coset element in the decomposition of t

Eg(e) Lie algebra into an USRB) and a coset part. In particu-
lar, matrix Q%55 =332,B(T)ap"® is an USK8)-
connection responsible for the local U8psymmetry. Re-
call that U8m8)-connectiorB‘; is nondynamical since it does

not have a kinetic term. Therefore, it can be excluded bygince A
using its equation of motion as in fact is done below. The

dimension of USB) is 36 andTX is a basis of th&7 irrep.
of the USH8) Lie algebrag is the Yang-Mills coupling con-
stant.

Equation(3.1) is our starting point to find the action for
scalarss' on the AdSg background. Since the potential fgr

symmetric tensor fields.

With this parametrization at hand we get the following
expression for the vielbeih/i% in the SL(6R)XSL(2R)
basis

. 1 .
& ab:z(rm)abgﬁl,

1
(V7 hij ca=7Tk)ea(S™HIS™],

1

ab_

1—‘ka)abslk '

-1 ia:_i —1\i
(V Hed*= = 5 T)ea S (3.2

whereI" are SQ@6) I' matrices(see Appendix Aand S is
H@ven by S=e" with A being the traceless symmetric<®

matrix comprising 20 scalars.
It is convenient to introduce a matrRM:

R,=V,SS1+gSAS . 33

is traceless and\_mj is antisymmetric this matrix
appears to be traceledR,;'=0.

The scalar kinetic part of LagrangidB.1) in parametri-
zation (3.2 is then computed in Appendix A and the result
looks similar to

was already found in studying the critical points the only
missing piece is an explicit construction of the kinetic term.

To build the kinetic term we need an explicit IO"’lr"’lme'[r"Substituting the potential found in R¢28], we get the final

zation of the scalar vielbein in terms of 20 scalar fields tha . . .
are neutral under SL(R). We then employ the parametri- t?nnosr\rl]v:rr]tf?hr etg?a\l;sgr:r?gﬁ(icg;&gglgﬁ;;ve omit for the
zation of Ref.[28], in which 42 scalars are represented by

3
PﬂabchbeCdzztr( R,+R))?%

two real symmetric traceless matricds’ and A .°, «,B
=1,2 and by a real completely antisymmetrid i, k tensor
dijk. Obeying the self-duality condition

1
¢ijka:gsa58ijk|mn¢|mnﬁ-

Since onlyA is a singlet under SL(R) in what follows we
putA ? and dijko 10 zero. Turning off these fields is allowed
in our specific problem of constructing the action &rbe-

1 (2, 9 )
- ZU(R,+R,)?+ =[(ir $9?-2 t(SSS$].

(3.9

L=

Scalar fieldsA;! transform in the20 of SQ(6). We are inter-
ested in the maximally supersymmetric vacuum with only
nontrivial bosonic fields, which implies that the background
solution is invariant under S®). Thus, at the S®) invari-

ant critical pointP, of the potential the scalar fields should
acquire some expectation values that are invariant under
SQ6). Clearly, the only possibility for that is to také;’

=0, i.e., to putSto be the unit matrix. The value of the

3We put all antisymmetric fields to zero, and changed the overalpotential is thenPo=—3g? that leads to the equation of

normalization of the Lagrangian in comparison to ReB].

motion
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4 1
RW=§PO=—gng. £=R+12—tr(V#AVMA—4A2)—4tr[ 5t"
Thus, the background solution is the anti-de Sitter space “ r1 wn | 8. 13
with the cosmological constait= — $g? and with vanishing XVUAAAVEA+ 2 6 AVLAAVEA 3trA
scalarsA;!. Decomposition of Lagrangiaii3.4) near this
background is then easily obtained by decompoSage® +4] - §+2r tr A%+ 2(tr A2)2+ EtrF =
aroundA =0. 3 2w

We find up to the cubic order B VAAA,),

1 1
VMSSﬂ: V,A— E(VMAA —AV,A)— EAVMAA where we have restored the gravity and gauge terms. Let us
chooser to ber=—2/3. Then taking into account that

1
+ EVMA3, tr(V,A2V#A?) =2 t(V ,AAAV A +AV, AAV A),

1 1 and making the rescaling — — 3 A, we find
(VHSS“1)I=VMA+ E(VMAA—AVMA)—EAVMAA . .
1 L=R+12— Ztr(VMAVMA—4A2)+ §trA3
+ EV#Ag
. +i(V A2V”A2)—itrA4+ i(trAz)2
By using these formulas, one then gets 241 K 22 23

1 1
R, +R,=2V, A=AV, AN+ 2V, A%+ 29[A A, ] o rF P =2 (VEAAA,). 3.9

(3.9
Note that —6 is the cosmological constant in the action
The terms quadratic ih cancelled and, therefore, the action ¢4+ 1x./—g(R—2\), A=—1d(d—1) for d=4 that ap-

does not contain cubic iA terms with two derivatives. pears in the reduction from ten dimensions.
Analogously, for the potential we find Multiplying Eq. (3.6) by V—g, and decomposing the met-
) ) ric 9,,=95,+ ¢,, near the background AdS solutigf,,
%[(trSS)Z—Z tr(SSS$]=g? 3+ trA2— §trA3 one immediately finds
L= Lieg-

5 1
—§IFA4+ E(U'AZ)Z . _
Thus, we have shown that the action for the sca$rsb-
tained by compactification of type I[IB supergravity on
) : : o AdS; X S° with further reduction to the fields from the mass-
section we have to fix the coupling constant is fixed to less graviton multiplet coincides with the relevant part of the

be g?=4 by the requirement to have the vacuum solution_ ... _qf ; ; ;
action of the gaugetll=8 five-dimensional supergravity on
defined by the equatioR,,=—4g,,. Namely this back- AdS; backgro%ndg perg y

ground solution was used to obtain the acti@ri4) by com-
pactifying ten-dimensional type 1IB supergravity.

Thus, for Eq.(3.4) up to the fourth order im we get IV. FOUR-POINT FUNCTION
OF LOWEST WEIGHT CPOS

To compare actiort3.1) with the one from the previous

— _ _ 2
L£=12-t(V,AVFEA—4A") The normalized lowest weight CPOs iN=4 SYM,

2 8 theory are operators of the form
- §tr(VﬂAAAV“A—AVMAAV“A) - §trA3
3/2,”_2

0'(x)= Clitr(:¢'pl).

20
- gtrA“—F 2(tr A%)%2—8 tr( VEAAA,).

By wusing the following propagator (&,l)

It is then useful to perform the following field redefinition: r -
P g =99 mdand"/(2m)?xZ,, wherea,b are color indices and;;

A—A+rA3 =X;—X;, one finds in the free approximation and at leading
order in 1N the following expressions for two-, thregs],
under which the Lagrangian transforms into and four-point functions 00':
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Stz
2 t
X12

o - - 1 23/2C|1|2|3
(0'1(x1)0'2(X5)0'3(X3) )= = —5—5——,
' N x2x2xs

(0'1(x1)0'2(x,)) =

4.9

(0'1(X1)0'2(x2)0'3(x35) 0'4(x4) )

11213l

2929222
N* XTX1X53X34

gil2glala 1 4C

4 4
X12X34

+ permutations,

where the first term in the four-point function represents the

contribution of disconnected diagrams.

In this section we compute four-point functions ©f
from AdS supergravity. The starting point is actith13.
We will work with the Euclidean version of AdSthat
amounts to changing in E¢2.13 an overall sign, so that

! Iy ugl Il 1 Ll
Ered:Z(V,,,SV S—4SS)—§C|1|2|35 1gl2g's
1 Ivval 1 | | 1 v
4| VEsVIs e, — S (VASV, s —4s's)g,

- ?C|1|2|3|4VM(5| 15'2) V#(s'35'4)

3
+§C|

1
11 S'1s'2slsgla— —gligliglag!2
1'2'3'4 23

1
I v
_T|1|2|3S|1V'MS|2A:+ EF,IU,VFM |_£2((Pp,v).

4.2

It is convenient to introduce the following currents:
| I 1 pal | Il
T,=V,sV,s— EgW(V sV,s—4ss),

Jlf’:'ﬂ (s'1V ,s'2—5'2V '),

123

both of them are conserved on—shéll’:‘Twzvf‘J'lfO.
From Eq.(4.2 we get the following equations of motion
(1) For scalarss',

(V2—m?)s'=—2C,;s’sk. 4.3
(2) For vector fieldsA), :
vVY(V,A -V Al ——EJ' 4.4
( vy 1z y)_ 4w ( . )
(3) For the gravitong,,, :
A 1 2 "y
W/va (Pp)\:Z gﬂu’gvv'_'—gﬂv/gvu’_§g,uvg,u,’v’ ™",
(4.5

PHYSICAL REVIEW D62 064016

whereWM,,P” is the Ricci operator
W,uvp)\gop)\: —V‘Z)QD/“,‘FV#VPQDPV‘FV,,VPQDPM_VMVV(Pz
—2(0u= 9,95

Introduce the scala® [30], the vectorG,, and the graviton
G,uV [2N [15] pI'OpagatorS

(VZ-m?)G(u)=—8(z,w),

VA(Y,G,,~V,G,,)=—0,,8zW),
W,uvp)\GpA w' v = ( g,u,,u'gvv’ + gMV’gV,u.'

2
— §gMVg,lL’V,) 5(Z,W)

being the functions of the invariant AdS-distance

_ (z-w)? 2_
u= TR (z=W)*=6,,(z=W) ,(z=W),.

We represent the solution to the equations of motion in the
form

— 0ol _ A0 al _ 0, 1
S=Ss"+5s7, AM—A#-FAM, Cuv=Cut Cu,

wheres®, A’ , and¢?,, are solutions of the linearized equa-
tions with fixed boundary conditions arel, A}, and ¢,

are the corrections with vanishing boundary conditions. Then
by perturbation theory fos!, A}, ande;, one gets

5
d—:G(U)sJ(Z)sK(z),
Z

si(w)=2C
| |JKJ’ 5

d®z o
—G,."(W)J,(2),
Zy

1
Al '(w)=ZJ (4.6)

L 1(d°z o
(PMV(W):Z ?G,u,v M’V’(U)TM (Z)l
0

where the right-hand sidé€RHS) depends only ors®, A,
and (,02 and from now on we omit the superscript O unless
we want to indicate explicitly that we deal with solutions of
the linearized equations of motion.

It is worth noting that not only the interaction terms but
also the quadratic actiofly,q gives a contribution to the
on-shell value of actiori2.13 depending quartically osy:

1 | oJ K 1 1 Tupv 1 1 lqu !l
Equad:§C|JKSOSOSI+§(PMVT +ZAM J .

Taking into account the summation formula

2

T T, =2(C

1'2'5 '3'4'5

(4.7

olats ™ Ciytglgl )

064016-6
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that follows from Eq.(A4) and using Eq(4.3) we arrive at
the following expression for the on-shell value (d@f2):

1 d°z = Lo
Lred= 7 Ciyiylgl f?sl V# s2(w)G,,,(u)s'3 V" s'4(z)
0

1213l

1(dz N
- Ef Z_ST#V(W)G;LV p}\(u)TP (Z)_ Cl

—55 ) )Jd—szG(u)s'1(w)s'2(w)s'3(z)s'4(z)
6 111215l Zg

1
- ?C|1|2|3|4V,U.(SI1SI2)V'M(SIBSI4)

+ EC slig'eglagla— 1s' 1g'1g'2g"2
4 71125l 8 :

PHYSICAL REVIEW D 62 064016

d®w R -
Da,a,0q8,= —Wg Ka, (W,X1) Ky, (W,X2)

XKy (W,X3)Ky, (W,Xz) 4.9

and using identities foD functions (see Appendix B we
find the following on-shell value for Eq2.13):

N2 - - - -
S= QJ d*x,d*x,d*x30%%,8'1(X1)8'2(X,) 8'3(X3) S'4(X4)

X 2777.8 Clll

1
2,2 2.2
Jala T2z L2(XTX54— X1X93) D oooa
X7 X
12X34

2 2 2 2
= X54D 1215~ X130 2121 X14D 2115 X53D 1221]

_ 1 6|1|25|3|4
2778

- 2 D 2211
2X34

In the language of the Feynman diagrams the first three

terms here involving integrals describe the exchange by the
gauge boson, by the graviton and by the scalar fields, respec- + 2
tively. The other contributions correspond to contact dia- X34
grams.z integrals are easily computed by the technique of
Ref.[17] and in the Appendix B we list the corresponding
results. It is worthwhile to note that since we compute the
on-shell value of the gravity action, we take into account

only the connected AdS graphs.

Recall that the solution of the Dirichlet boundary problemyhere C

for the scalar fields' of massm?=—4 on AdS; reads
- 1 - I
s'(z,x)= —2f d*xK(w,Xx)s'(x), (4.9
2
wheres'(i) is a boundary value and

A
Kywx)=| ——2 | .
(10 (W§+(W—X)z>

With this normalization of the bulk-to-boundary propagator

202 1202 22
(X13X24™ X14X53™ X1X34)

D3zt > D 2222

1

1
+ 2
= 5 8 11,041, T2 D2211t 4X34D 2233~ 3D o2
2°m X34

(4.10
|1;|2|3|4: 1/2(C|1|2|3|4iC|2|l|3|4). The eXpreSSIon
under the integral represents the contribution of the

s-channel since it possesses thehannel symmetries<: 2,
3<4, and (12}-(34). In the expression for the four-point
function thet-channel contribution is obtained from this one
by the interchange 44 and theu-channel one by 4 3.

Taking into account the normalization of the quadratic
part of Eq.(4.2) and formula(B3) from the Appendix B, we
get the two-point function of unnormalized CPOs:

the two-point function of corresponding boundary operators

appears to be finite in the limit when the AdS cuteffends

to zero(see Appendix B for details
Introducing the notation

A R . R 8
2<OI1(xl)O|2(X2)O|3(X3)O|4(X3)>: @|: N

+X53D 10011+ & ll25l3l4( -

+2C1 1

1'2'3'4

1
2
-z D 2211+ 4X34D 20337 3D 2220 | +1+U
34

2 5|J
0'(X) O¥(Xp)) = —— —. (4.1
< ( l) ( 2)) 257T4 Xiz :D
Introducing then the normalized CPOs a'

=((2°7*)Y3N)O', we obtain from Eq(4.10 the following
four-point function of the normalized CPOs:

1
2.2 2.2 2 2 2
11,50y NER) [2(X13X54~ X14X23) D 2225~ X24D 1212~ X130 2101 X14D 2112

34

202 U202 u22
(X13X247 X14X53~ X12X3 3
D3zt > D222

2 D 2211+ 2
34 X34

, (4.12
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wheret andu stand for the above discussed contributions of 1

thet andu channels. Due to the conformal behavior of e > ClyiChis= 5 (8mndis = Smsdni) (A4)
functions Eq.(4.12 represents a correct conformally covari- !

ant expression for a four-point function of operators with

conformal dimensiom =2. This set of four-point functions since this time the LHS ofA4) is a traceless and antisym-

allows one to approach the problem of finding the OPE ofmetric inm,| and inn,s indices fourth rank tensor of S6)
the simplest CPOs iNN=4 SYM, that will be the subject of that agrees with the normalizatiga?2).
our further study.
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APPENDIX A ) N
The I' matrices can be represented by Hermitian skew-

Integrals of spherical harmonics symmetric 8<8 matrices [;)2. Indicesa,b=1,...,8 are
Considering the action for the field$, we need the fol- raised or lowered by the symmetric charge conjugation ma-
lowing explicit expressions for the integraiﬁl|2|3 andt|l|2|3 trix C,p, that in the chosen representation coincides \digh.

involving the scalar spherical harmorfleg and Killing vec- ~ 1husS, we do not distinguish the upper and lower indices.
tors Y\ [5,6]: Clearly, the matrices
a L2:9]

2 1/2 1/2 . .
a — ﬁc t — 6_T (Al) Fi ’ II‘iFOa I‘ij ’ F0=IF1F2F3T4F5F6 (A5)
I1l2l3 57732 Ilalgr Flylalg 32 I1lalsr

. el : _ are skew symmetric. Their number is-®+ 15+ 1=28 and
If we introduce a basi€y; in the space of symmetric trace it coincides with a total number>87/2=28 of independent

less second rank tensors of @and a basiL;; in the skew-symmetric matrices among alk® matrices. There-

space of antisymmetric tensors with normalization condi-fore any skew-symmetric matriA,, can be decomposed
’ - ab

tions over the basigsAb):
1
CiiCij=d", CixCix=59"5 (A2) _ _ 1
Aap=ay(T)apt ay(iTiTo)ap+ Ea'?f (I'ij)apt @a(I'o)ap -
then the tensorg, |1, andT,l|2,3 are given by (A6)

clis=clicizc?, Thlals=clici2cls —cliclac!?
ij Tk ki KTk kTR Here in the third term we assume the summation over the

where we have written tens®t1'2's to be explicitly antisym- ~ whole set of indices—not just over<j. We also use the
metric in indicesl 1. convention thate3=—a% . The coefficients are easy to
One can easily establish the following summation formulacompute

P 1 1 1 i
EI CijCla=3 Gikdji + 5 il djk— g Jij Sk (A3) ail=%tr(Al“i), ai2=|§tr(AFi1“o),
that steams from the fact that the LHS of the expression
above is a fourth rank tensor of $8), symmetric and trace- 1 1
less both in {j) and (l) indices with the normalization aief:——tr(AI‘ij), as==tr(Aly).
conditionCj; Cj; = 20. 8 8
Analogously one finds

Substituting these coefficients back (A6), and using the
fact that Eq.(A6) should hold for any skew-symmetric ma-
“They describe a basis of irre}® of SQ6). trix Agp, we find an identity:
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1 1 1
1_6(Fij)ab(rij)cd_ g(ri)ab(ri)cd— g(iriro)ab(iriro)cd

1 1. .
:§(5a05bd_ SadSbe) _§(| Fo)an(ilo)cd:

the term witha, was written in the LHS.

If one introduces the symplectic metrf¢?°= —i(I"y)2"
=—0,p and matriced™; ,=(T'; ,il';['g) for «=1,2 then the
last indentity reads as follow26—28:

1 r r cd 1 r r cd
E( i)ap(Tij) _g( ia)ab(Lia)

%(6263, 3905) + 5 Qa2 (A7)

This allows one to solv€

PHYSICAL REVIEW D 62 064016

PM abcd: (V—l)cd
+2QL¢

iV VIt (Vhedey v oy
S+ gA T2V (V)

wla®b

— (v hed eyl (A12)

If we now require thatP, ., ¢d is in the coset space
Eg/USp(8),then the tracePM abe should be equal to zero.

[9a05] via the vielbein

1 ) :
Q,uab: - §{(Vil)bcABV,uVABac+ gAﬂi][zvlkac(Vil)jkbc

—Vjq acVHPeT} (A13)

Substitution of the explicit expressiof3.2) yields

1
Here in the LHS we have written some indices up since the Qp,ab:ﬂ(rinrjn_Fiarja)ab(vuss_l+gSALS_l )

RHS represents now a tensor of U8p It is as well to note

(A14)

that except the symmetric charge conjugation matrix that is

just the unit matrix one can also raise and lower indices wit

the US{8) metric ..

We also summarize the trace formulas needed in the pa-

per
tr(I';;Ty) = 8( i1 6kj— SikOj1) s (A8)
tr(Linljnl ) = 32( 6k 651 — 651 Ojie) s (A9)
tr(L o I'j o) = 16( 6)) Oj— 6k 5j1) -
(A10)
Note that matriced’; are Hermitian whilel'y, I';;, and

iI'iI"y are anti-Hermitian. It follows from here that; and
iI;I"y are real.

Scalar kinetic part of the Lagrangian
of the gauged 5D supergravity

By using (A7), one can check the following relation:

(V HedBVag?= (VY eq VI + (V71 2V 2P

1 1
5(3585— 8155)+ g Qa2 (ALD)

that is an US(B) analogue ofvV~1=1. The properties of
thel” matrices, in particular,A8) imply the further relations

(V" Yap V! ab:§(5lk5f_5f<5:)v (V™ hap eV, 20= sl ol

and also
(V" Hap *Vig?®=(V Hap V'* 2°=0.

In the SL(6R) X SL(2R) basis the elemerR,, ,,°
by

is given

r]/vhere on the RHS the expression for the maRix defined

by Eq. (3.3 appeared.
It is useful to note the following summation formula for
matrices:

Tinrjn—riarja= _6F|] _75” -1,
Upon substituting this ifA14), the term withg;; vanishes
due to the tracelessnessRf . Thus, we finally get

1 _
Qua”=7(Tipa Ry (A15)

It is easy to see thdpﬂab is an antihermitian matrix indeed
being an element of U$p) Lie algebra, i.e., obeying the
condition

QMab_ - Qch,uchda-

For the elemenP ,, 4 we, therefore, get

1 .
P,uadezg[(Fin)Cd(rjn)ab_ (Tia)®UT ;) ablR !

+2Q,2°50] - (A16)
Since tenSOIPMade is completely fixed by the condition
of the vanishing trace one now can check tt/i6) is in-
deed an element orthogonal to U8ppart of the Lie algebra
of Eg(6) With respect to to the Killing metric. Orthogonality
means the following relation:
Pan’Ucd*=0, (A17)
where U.°=Q,,[255] is an element of the USP) Lie

algebra. FormuldA17) then easily follows from Eq9A8),
(A9) and the relation
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2Q,1a°05] Q1?5581 = 3Q,2°Q,.c°
= E(R,U.IJR,U,IJ_R/.LIIR,LL]I)

!

! ’ !
We also needR,)%4= Q2 QP2 0 Qyg P o ©

1 )
(Pﬂ)abcd:g((rin)cd(rjn)ab_ (Tiw)ed TR,

—2Q,125Y
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d°z N
f ?G,uv p)\(u)Tp (Z)

0
4y .d%x
44jd

X gﬂu’gvv’+gpv’gvu’_

5 (Xs)s (X4)

X34

2
§g,uvg,u’v’

X VA K (W,X3) V" Ky (W,Xy).

Now we are ready to compute the scalar kinetic part of La-

grangian(3.1). By using the orthogonality conditiofA17)
we can write it in the form

1 cd cd i
g[(rin) (I'jn)ab= (I'i2) " (T'j o) ablRyj

I:),u,abcdl:’fibcd=
1 ab
+2Q,u[a 8[(ka)cd(rlm)

—(Tip)edTip) IR,

After some algebra we arrive at the answer

o .3
P uancdP}, = 3R, (R + 3R, (R¥) ' = S tr(R, +R),)%.
(A18)

Note that computing the last integral, we have used the
gauge freedom in the definition of the graviton propagator to
obtain the answer in the simplest covariant form.

Two-point function of lowest weight CPOs

As was noted in Ref[29], a correct way to compute a
two-point correlation function of operators in the boundary
CFT, which is compatible with the Ward identitites, consists
of two steps. First one uses the prescriptior ®yfor posing
the Dirichlet boundary problem on gravity fields. Then one
computes the two-point function in the momentum space and
transform it further to thex space. Below we undertake this
procedure to find the two-point function of the lowest weight
CPOs.

For a scalar field of the AdS-mas®= — 4 with the con-

Note that the RHS of the scalar kinetic term appears to b&entionally normalized quadratic action, the solution of the
manifestly positive in an Euclidean signature space as iPirichlet boundary problem reads

should be.

APPENDIX B

zintegrals

z integrals are computed by using the technique in Ref.

[17]. We list here the corresponding results
d°z
f — Ga(u)s'3(2)s'y(2)
z
0

'3(X3)8'4(Xa)

1 S -
— 4 4
_24w4fdxgd X4 >

X34

XK1 (W,Xg) K1 (W,Xg),

f d°z G
z;
5'3(X3)s'4(X)

=]
= d*x5d*x4
2474 X§4

w(u)s'sV s'4(2)

—

X Ky(W,X3) V ,K1(W,Xg),

Ko(kzp)
Ko(ke)

pE

with the Fourier transform defining the following bulk-to-
boundary propagator

1

27%e2%Ine

Zy

K(z,X)=—

zg+|x|?

1 -
Z—mKZ(Z,X). (Bl)

For the two-point correlation function in the momentum
space we then haJ@9]

o L o(kzo)
I\ — 3 4
(O(K)O(k")) == 5(k+k)z:Tga ( ) Ko(ke)
B N -, k Kl(ks)
=3k +K) =5 i)

where a nonessential local termeiivas omitted and de-
notes|k|. Decomposing the result in power series, one gets
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1

) k8+§_‘, [(ke/2)2" Y1 (n+ 1)1[In(Ke/2) — (1/2) p(k+ 1) — (1/2) e(k+2)]
(O()O(K)=~8(k+K") — “ine—Ink+in2— gkt De(--)
o1 Ink k2g2
—5(k+k)m “ine

The most singular relevant term here is the second one, sl the contact diagrams are then reduced to the sum of dif-

modulo local terms one finds ferentD functions.
In Ref. [16] some identities involving different
(O( (K)O(K’ ))——5(k+k ) Ink. D-functions were proved. We made use of the following

e*lne ones:

Performing the Fourier transform, we finally get 2 2 _ 2
g y g X24D 2312+ X23D 2321 D2211_ 2)(12D 3311»

- - 1
(O(X)O(X))= — 75 71 (B2) 1
2me”In"exy, 2X%2D3311:§X§4D2222+ §D2211,
In order to have a finite two-point function in the limit
—0 one has to rescale the boundary operatoOés)— X5,D 121~ X53D 2121,
—(1/e2 In £)O(X), so that , ,
X14D 21157 X33D 1201,

(O(x1)O(Xp))= =5 (B3)
2mX7, 1 5 5

) . . . X13X12D3221+ X24X34D1223— 2(X12X34+X13X23)D2222
To preserve the scale-invariance of the interaction term

Td*x0O(x)s(x), wheres(x) is the boundary value of the bulk

3
> 2 4
supergravity scalas(z) we then need to rescale thgx) in a - §X14D2112+ 2X14D3113
way S()_())—)_Sz In ss(i). After this rescaling the solution of
the Dirichlet boundary problem reads @s8). +EB
2

Some identitites for D functions

and identities obtained from these by different permutations

of indices to reduce the number of possibl€unctions ap-

pearing in the four-point function of the lowest weight CPOs

to the minimal set giving byD 1515, D2s33 (with different

VMKAl(inl)VMKAZ(Wv)ZZ) permutations of indicesandD,,,. HereB is a generating
function for Da,a,nqn, and it is given by

As soon asz integrals are performed, one is left with
contact diagrams involving different numbers of derivatives.
By using the identityf 14]

= AlAZ[KAl(Wv)Zl)KAZ(Wy)ZZ)
_ f [de;6(Za;—1)

= 2x3 K, (WX Ky 41 (W,X)] (S aeaxd)?
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