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Four-point functions of lowest weight chiral primary operators in NÄ4 four-dimensional
supersymmetric Yang-Mills theory in the supergravity approximation
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We show that the recently found quartic action for the scalars from the massless graviton multiplet of type
IIB supergravity compactified on an AdS53S5 background coincides with the relevant part of the action of the
gaugedN58 5D supergravity on AdS5. We then use this action to compute the four-point function of the
lowest weight chiral primary operators tr (f ( if j )) in N54 four-dimensional SYM theory at largeN and at
strong ’t Hooft coupling.

PACS number~s!: 04.50.1h, 11.25.Hf
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I. INTRODUCTION

The AdS/conformal field theory~CFT! duality @1–3# pro-
vides a remarkable way to approach the problem of study
correlation functions in certain conformal field theories. F
N54 supersymmetric Yang-Mills theory in four dimensio
(SYM4) this duality allows one to find the generating fun
tional of Green functions of some composite gauge invar
operators at largeN and at strong ’t Hooft couplingl by
computing the on-shell value of the type IIB supergrav
action on an AdS53S5 background@2,3#.

Thus, the knowledge of type IIB supergravity action up
nth order in perturbation of fields near their background v
ues is a necessary starting point for computingn-point cor-
relation functions of corresponding operators in SYM4
theory. At present the quadratic@4# and cubic@5–7# actions
for physical fields of type IIB supergravity are available th
allows one to determine normalizations for many two- a
three-point functions.

With four-point functions the situation is much more i
volved @8–24#. So far the only known examples here are t
four-point functions of operators tr(F21•••) and tr(FF̃
1•••) @8,16# that on the gravity side correspond to massl
modes of dilaton and axion fields, where the relevant par
the gravity action was known. These operators are ra
complicated; in particular, in the representation of the sup
symmetry algebra they appear as descendents of the pri
operatorsO2

I 5 tr ( f ( if j )), wheref i are Yang-Mills scalars
transforming in the fundamental representation of
R-symmetry group SO~6!. The descendent nature of the
operators brings considerable complications both in per
bative analysis of the correlation functions, and in study
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their operator product expansion~OPE! from AdS gravity
@21#.

More generally inN54 SYM4 there are chiral multiplets
generated by~single-trace! chiral primary operators~CPO!:
Ok

I 5 tr( f ( i 1
•••f i k)), transforming in thek-traceless sym-

metric representation of SO~6!. Eight from sixteen super-
charges annihilateOk

I while the other eight generate, und
supersymmetry transformations, the chiral multiplets. A fu
damental property of CPOs is that they have conformal
mensions protected against quantum corrections. Thus,
may be viewed as BPS states preserving 1/2 of the su
symmetry. In particular, the lowest component CPOsO2

I

comprise together with their descendents a multiplet cont
ing the stress-energy tensor and theR-symmetry current.

Recently we have found the quartic effective fiv
dimensional~5D! action for scalar fieldssI that correspond a
linear order to chiral primary operatorsOI @25#. We have
also shown that the found action admits a consistent Kalu
Klein ~KK ! truncation to fields from the massless gravit
multiplet. This multiplet represents a field content of t
gaugedN58, d55 supergravity@26–28# and by the AdS-
CFT correspondence it is dual to the Yang-Mills stre
energy multiplet.

Clearly, these results provide a possibility to find fou
point functions ofanyCPOs1 in supergravity approximation
In this paper as the first step in this direction we compute
simplest four-point correlation functions for all lowe
weight CPOsO2

I . Hopefully, this will further extend our
understanding of the OPE inN54 SYM4 at strong coupling.
The detailed study of the OPE of two lowest weight CP
will be the subject of a separate paper.

We start by showing that the quartic action@25# found by
compactifying IIB supergravity on the AdS53S5 with the
further reduction to the massless multiplet coincides a

,
s:

,
s:

1The fieldssI correspond to extended CPOs involving single- a
multiple-trace CPOs and their descendents, see Refs.@6,25#. How-
ever, for generic values of conformal dimensions CPOs and
tended CPOs have the same correlation functions.
©2000 The American Physical Society16-1
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G. ARUTYUNOV AND S. FROLOV PHYSICAL REVIEW D62 064016
some additional field redefinitions with relevant part of t
action for the gaugedN58 five-dimensional supergravity o
AdS5. This fact together with consistency of the KK redu
tion demonstrates, in particular, that within the supergrav
approach, four-point correlation functions for fields from t
YM stress-energy multiplet are completely determined
the 5D gauged supergravity, i.e., they do not receive
contributions from higher KK modes.

The gaugedN58 five-dimensional supergravity has 4
scalars with 20 of them forming a singlet of the global i
variance group SL(2,R). These 20 scalarssI comprise the20
irrep. of SO~6! and correspond to CPOsOI5Ci j

I tr (f if j ),
whereCi j

I is a traceless symmetric tensor of SO~6!. As we
will see the only fields that appear in Feynman excha
diagrams describing the contribution to the four-point fun
tion of OI are the scalarssI , the graviton and the massles
vector fields. There are also contributions of contact d
grams corresponding to quartic couplings ofsI with two de-
rivatives and without derivatives.

The paper is organized as follows. In Sec. II we summ
rize the results of the KK reduction obtained in Ref.@25# and
put the action in a form suitable for comparison with t
action of gauged 5D supergravity. In Sec. III we employ
explicit parametrization for the coset space SL(6,R)/SO(6)
to write down the relevant part of the action for gauged
supergravity. We then decompose this action near A5
background solution and after an additional field redefinit
find an exact agreement with the action obtained by the
reduction. Finally in Sec. III we combine our knowledge
the action with the technique@16# of computing exchange
Feynman diagrams over the AdS space and give an an
for the four-point function of lowest weight CPOs in term
of universal D-functions. Some technical details are re
egated to two Appendixes.

II. RESULTS OF THE REDUCTION

As was discussed in the Introduction, the computation
a four-point function of arbitrary CPOs requires the co
struction of the effective 5D gravity action with all cub
terms involving two fieldssI and with allsI-dependent quar
tic terms, the problem that has been completely solved
Ref. @25#. For the simplest case of lowest weight CPOs
corresponding gravity fields are 20 scalarssI with the lowest
AdS massm2524 and they are in the massless gravit
multiplet. If we restrict our attention to these fieldssI then
the relevant part of the action may be written in the fo
@25#

S~s!5
4N2

~2p!5E d5xA2ga@L2~s!1L2~wmn!1L2~Am!

1L3~s!1L3~wmn!1L3~Am!1L 4
(0)1L 4

(2)#,

~2.1!

wherega denotes the determinant of the AdS metric with t
signature (21,1, . . . ,1)
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1

z0
2 ~dz0

21h i j dxidxj !.

The quadratic actions for the scalarssI , the graviton and
the massless vector fields on the AdS space are given by@4#

L2~s!5
28

3 (
I

S 2
1

2
¹msI¹msI2

1

2
m2sI

2D , ~2.2!

L2~wmn!52
1

4
¹rwmn¹rwmn1

1

2
¹mwmr¹nwnr

2
1

2
¹mwr

r¹nwmn1
1

4
¹rwm

m¹rwn
n

1
1

2
wmnwmn1

1

2
~wm

m!2, ~2.3!

L2~Am!52
1

12 (
I

@Fmn~AI !#2. ~2.4!

Here the field strengthFmn(AI) is defined by Fmn(AI)
5]mAn

I 2]nAm
I , where Am

I with I 51, . . . ,15 represent 15
massless vectors that correspond to the Killing vectors ofS5.
All these fields occur in the bosonic part of the massl
graviton multiplet of compactified type IIB supergravity o
AdS53S5.

The relevant cubic terms can be easily extracted fr
@5–7#, and they are given by

L3~s!5
53211

33
aI 1I 2I 3

sI 1sI 2sI 3, ~2.5!

L3~wmn!5
27

3p3/2S ¹msI¹nsIwmn

2
1

2
~¹msI¹msI24sIsI !wn

nD , ~2.6!

L3~Am!5
28

32
t I 1I 2I 3

sI 1¹msI 2Am
I 3 . ~2.7!

Here the summation overI 1 , I 2 , I 3 running over the basis
of irrep. 20 of SO~6! is assumed, and we use the followin
notations:

aI 1I 2I 3
5E YI 1YI 2YI 3, t I 1I 2I 3

5E ¹aYI 1YI 2Ya
I 3 ,

where the scalarYI and the vectorYa
I spherical harmonics2

of S5 satisfy ¹a
2YI5212YI , (¹g

224)Ya
I 528Ya

I . We also
assumed that the spherical harmonics of different types
orthonormal, i.e.,*YIYJ5d IJ and*Ya

I Ya
J 5d IJ.

2In this sectiona is used to denote the index ofS5.
6-2
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Finally, in @25# the following values of the quartic cou
plings of the two-derivative vertex

L 4
(2)5

52329

27 (
I 5

aI 1I 2I 5
aI 3I 4I 5

¹m~sI 1sI 2!¹m~sI 3sI 4!

1
213

27p3
¹m~sI 1sI 1!¹m~sI 2sI 2! ~2.8!

and of the nonderivative vertex

L 4
(0)52

523211

9 (
I 5

aI 1I 2I 5
aI 3I 4I 5

sI 1sI 2sI 3sI 4 ~2.9!

were found.
The quartic action can be further simplified by substit

ing the integrals of spherical harmonics for their expli
value viaC tensors~see Appendix A!. Indeed, by using Eq
~A1! together with summation formula~A3! one gets

(
I 5

aI 1I 2I 5
aI 3I 4I 5

5
2433

52p3 S CI 1I 2I 3I 41CI 1I 2I 4I 3

2
1

3
d I 1I 2d I 3I 4D . ~2.10!

where the shorthand notationCI 1I 2I 3I 45Ci 1i 2

I 1 Ci 2i 3

I 2 Ci 3i 4

I 3 Ci 4i 1

I 4

for the trace product of four matricesCI was introduced.
By using this formula, the two-derivative Lagrangian m

be reduced to the following form:

L 4
(2)5

214

32p3
CI 1I 2I 3I 4

¹m~sI 1sI 2!¹m~sI 3sI 4!. ~2.11!

From the cubic couplings one can see that except the
interaction, the scalars from the massless multiplet inte
only via exchange by the massless gravitonwmn and by the
massless vector fieldsAm

I . Introduce a concise notation

S~s!5
N2

8p2E d5x A2gaLred, ~2.12!

where the subscript inLred is to remind the reader that actio
S is obtained by dimensional reduction, and we have emp
sized the five-dimensional gravitational coupling 2k5

2

58p2/N2.
Substituting in Eqs.~2.5!–~2.7! explicit values~A1! of

aI 1I 2I 3
and t I 1I 2I 3

, using forL 4
(0) summation formula~2.10!,

and rescaling the fields as

sI→ 31/2p3/2

29/2
sI , Am

I →61/2p3/2Am
I , wmn→p3/2wmn ,

we get the Lagrangian
06401
-

lf-
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a-

Lred52
1

4
~¹msI¹msI24sIsI !1

1

3
CI 1I 2I 3

sI 1sI 2sI 3

1
1

4 S ¹msI¹nsIwmn2
1

2
~¹msI¹msI24sIsI !wn

nD
1

1

24
CI 1I 2I 3I 4

¹m~sI 1sI 2!¹m~sI 3sI 4!

2
3

22
CI 1I 2I 3I 4

sI 1sI 2sI 3sI 41
1

23
sI 1sI 1sI 2sI 2

1TI 1I 2I 3
sI 1¹msI 2Am

I 32
1

2
Fmn

I Fmn I1L2~wmn!

~2.13!

that will be used in Sec. IV to compute the four-point fun
tions of the lowest weight CPOs.

Finally we put this Lagrangian in the form most suitab
for comparison with the relevant part of the action of t
gaugedN58 5D supergravity. Introducing the matrices

L5~L! i j 5Ci j
I sI , Am5~Am! i j 52Ci ; j

I Am
I ,

where Ci j
I and Ci ; j

I are described in the Appendix A, on
obtains

Lred52
1

4
tr~¹mL¹mL24L2! 1

1

3
tr L3

1
1

4 S tr ¹mL¹nL 2
1

2
gmn tr~ ¹gL¹gL24L2! Dwmn

1
1

24
tr~ ¹mL2¹mL2!2

3

22
tr L41

1

23
~ tr L2!2

1
1

2
tr FmnFmn 22 tr~¹mLLAm!1L2~wmn!, ~2.14!

where trFmnFmn52Fmn
i j Fmn i j and normalization condition

~A2! was used.

III. LAGRANGIAN OF GAUGED 5D SUPERGRAVITY

Gauged N58 five-dimensional supergravity was con
structed in Refs.@26,27# by gauging Abelian vector fields o
the N58 Poincare´ supergravity. The gauged theory has
local non-Abelian SO~6! symmetry, a local composite
USp~8! symmetry and a global SL(2,R) symmetry. The
bosonic field content is given by graviton, 15 real vec
fields Am i j , i , j 51, . . . ,6 transforming in the adjoint repre
sentation of SO~6!, 12 antisymmetric tensors of the secon
rank, and by 42 scalars that in the ungauged theory par
etrize the noncompact manifoldE6(6) /USp(8). Inwhat fol-
lows we adopt the conventions of Ref.@28#.

Let A,B, . . . 51, . . . ,8 be theindices of the representa
tion 27 of E6(6) and a,b, . . . be USp~8! indices that are
raised and lowered with the symplectic metricVab . Explic-
6-3
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itly, an element ofE6(6) /USp(8) can be described by th
scalar vielbeinVAB

ab which is 27327. In the gauged theory
minimal couplings of the connectionAm i j responsible for
the local SO~6! symmetry are introduced to all the field
transforming linearly under SO~6!. The transformation prop
erties of the fields under SO~6! are then uniquely specifie
by the embedding of SO~6! into the group SL(6,R), the latter
being a subgroup ofE6(6) . Recall that under the subgrou
SL(6,R)3SL(2,R) the representation27 of E6(6) is decom-
posed as 275(15,1)1(6,2). The components of the vielbe
are then denoted asVi j

ab andVia
ab, wherei , j 51, . . . ,6 are

SL(6,R) anda51,2 are SL(2,R) indices.
The relevant bosonic part3 of the Lagrangian of the

gauged 5D gravity is of the form

L5R2
1

6
Pm abcdPm

abcd2P2
1

2
Fmn; i j F

mn; i j . ~3.1!

HereFmn; i j is a SO~6!-covariant Yang-Mills field strength,P
is a scalar potential and the tensorPmabcd is given by

Pm ab
cd5~V21!cd AB¹mVAB ab12Qm[a

[c db]
d]

22g~V21!cd i jAm i
kVk j ab

2g~V21!cd iaAm i
jVj a ab

and it represents a coset element in the decomposition o
E6(6) Lie algebra into an USp~8! and a coset part. In particu
lar, matrix Qm[a

[cdb]
d]5(k51

36 Bm
k (Tk)ab

cd is an USp~8!-
connection responsible for the local USp~8! symmetry. Re-
call that USp~8!-connectionBm

k is nondynamical since it doe
not have a kinetic term. Therefore, it can be excluded
using its equation of motion as in fact is done below. T
dimension of USp~8! is 36 andTk is a basis of the27 irrep.
of the USp~8! Lie algebra,g is the Yang-Mills coupling con-
stant.

Equation~3.1! is our starting point to find the action fo
scalarssI on the AdS5 background. Since the potential forsI

was already found in studying the critical points the on
missing piece is an explicit construction of the kinetic ter

To build the kinetic term we need an explicit paramet
zation of the scalar vielbein in terms of 20 scalar fields t
are neutral under SL(2,R). We then employ the parametr
zation of Ref.@28#, in which 42 scalars are represented
two real symmetric traceless matricesL i

j and La
b, a,b

51,2 and by a real completely antisymmetric ini, j, k tensor
f i jka obeying the self-duality condition

f i jka5
1

6
«ab« i jklmnf lmnb .

Since onlyL is a singlet under SL(2,R) in what follows we
put La

b andf i jka to zero. Turning off these fields is allowe
in our specific problem of constructing the action forsI be-

3We put all antisymmetric fields to zero, and changed the ove
normalization of the Lagrangian in comparison to Ref.@28#.
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cause the existence of the cubic terms containing
SL(2,R) singletssI and one doublet field is forbidden by th
SL(2,R) symmetry. In fact, from the point of view of the
dimensional reduction of type IIB supergravity matrixLa

b

describes zero modes of axion and dilaton fields whilef i jka
encodes the scalars arising from the reduction of the a
symmetric tensor fields.

With this parametrization at hand we get the followin
expression for the vielbeinVAB

ab in the SL(6,R)3SL(2,R)
basis

Vi j ab5
1

4
~Gkl!

abSk
i Sl

j ,

~V21! i j cd5
1

4
~Gkl!cd~S21! i

k~S21! j
l ,

Via
ab5

1

23/2
~Gka!abSi

k ,

~V21!cd
ia52

1

23/2
~Gka!cd~S21!k

i , ~3.2!

where G are SO~6! G matrices~see Appendix A! and S is
given byS5eL with L being the traceless symmetric 636
matrix comprising 20 scalars.

It is convenient to introduce a matrixRm :

Rm5¹mSS211gSAmS21. ~3.3!

Since L is traceless andAm i
j is antisymmetric this matrix

appears to be traceless:Rm i
i50.

The scalar kinetic part of Lagrangian~3.1! in parametri-
zation ~3.2! is then computed in Appendix A and the resu
looks similar to

PmabcdPm
abcd5

3

2
tr~Rm1Rm

t !2.

Substituting the potential found in Ref.@28#, we get the final
answer for the Lagrangian~for simplicity we omit for the
moment the gravity and the gauge terms!:

L52
1

4
tr~ Rm1Rm

t !21
g2

8
@~ tr SS!222 tr~SSSS! #.

~3.4!

Scalar fieldsL i
j transform in the20 of SO~6!. We are inter-

ested in the maximally supersymmetric vacuum with on
nontrivial bosonic fields, which implies that the backgrou
solution is invariant under SO~6!. Thus, at the SO~6! invari-
ant critical pointP0 of the potential the scalar fields shou
acquire some expectation values that are invariant un
SO~6!. Clearly, the only possibility for that is to takeL i

j

50, i.e., to putS to be the unit matrix. The value of th
potential is thenP052 3

4 g2 that leads to the equation o
motion
ll
6-4
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Rmn5
4

3
P052g2gmn .

Thus, the background solution is the anti–de Sitter sp
with the cosmological constantl52 3

2 g2 and with vanishing
scalarsL i

j . Decomposition of Lagrangian~3.4! near this
background is then easily obtained by decomposingS5eL

aroundL50.
We find up to the cubic order

¹mSS215¹mL2
1

2
~¹mLL2L¹mL!2

1

2
L¹mLL

1
1

6
¹mL3,

~¹mSS21! t5¹mL1
1

2
~¹mLL2L¹mL!2

1

2
L¹mLL

1
1

6
¹mL3.

By using these formulas, one then gets

Rm1Rm
t 52¹mL2L¹mLL1

1

3
¹mL312g@L,Am#.

~3.5!

The terms quadratic inL cancelled and, therefore, the actio
does not contain cubic inL terms with two derivatives.

Analogously, for the potential we find

g2

8
@~ tr SS!222 tr~SSSS! #5g2S 31 tr L22

2

3
tr L3

2
5

3
tr L41

1

2
~ tr L2!2D .

To compare action~3.1! with the one from the previous
section we have to fix the coupling constantg. It is fixed to
be g254 by the requirement to have the vacuum solut
defined by the equationRmn524gmn . Namely this back-
ground solution was used to obtain the action~2.14! by com-
pactifying ten-dimensional type IIB supergravity.

Thus, for Eq.~3.4! up to the fourth order inL we get

L5122 tr~ ¹mL¹mL24L2!

2
2

3
tr~¹mLLL¹mL2L¹mLL¹mL! 2

8

3
tr L3

2
20

3
tr L412~ tr L2!228 tr~ ¹mLLAm!.

It is then useful to perform the following field redefinition

L→L1rL3

under which the Lagrangian transforms into
06401
e

L5R1122tr~¹mL¹mL24L2!24 trF S 1

6
1r D

3¹mLLL¹mL1S r

2
2

1

6DL¹mLL¹mLG2
8

3
tr L3

14S 2
5

3
12r D tr L412~ tr L2!21

1

2
tr FmnFmn

28 tr~ ¹mLLAm!,

where we have restored the gravity and gauge terms. Le
chooser to be r 522/3. Then taking into account that

tr~¹mL2¹mL2!52 tr~¹mLLL¹mL1L¹mLL¹mL!,

and making the rescalingL→2 1
2 L, we find

L5R1122
1

4
tr~¹mL¹mL24L2!1

1

3
tr L3

1
1

24
~¹mL2¹mL2!2

3

22
tr L41

1

23
~ tr L2!2

1
1

2
tr FmnFmn 22 tr~¹mLLAm!. ~3.6!

Note that 26 is the cosmological constant in the actio
*dd11xA2g(R22l), l52 1

2 d(d21) for d54 that ap-
pears in the reduction from ten dimensions.

Multiplying Eq. ~3.6! by A2g, and decomposing the me
ric gmn5gmn

0 1wmn near the background AdS solutiongmn
0 ,

one immediately finds

L5Lred.

Thus, we have shown that the action for the scalarssI ob-
tained by compactification of type IIB supergravity o
AdS53S5 with further reduction to the fields from the mas
less graviton multiplet coincides with the relevant part of t
action of the gaugedN58 five-dimensional supergravity o
AdS5 background.

IV. FOUR-POINT FUNCTION
OF LOWEST WEIGHT CPOS

The normalized lowest weight CPOs inN54 SYM4
theory are operators of the form

OI~xW !5
23/2p2

l
Ci j

I tr~ :f if j : !.

By using the following propagator ^fa
i fb

j &
5gY M

2 dabd
i j /(2p)2x12

2 , wherea,b are color indices andxi j

5xW i2xW j , one finds in the free approximation and at leadi
order in 1/N the following expressions for two-, three-@5#,
and four-point functions ofOI :
6-5
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^OI 1~xW1!OI 2~xW2!&5
d I 1I 2

x12
2

,

^OI 1~xW1!OI 2~xW2!OI 3~xW3!&5
1

N

23/2CI 1I 2I 3

x12
2 x13

2 x23
2

, ~4.1!

^OI 1~xW1!OI 2~xW2!OI 3~xW3!OI 4~xW4!&

5
d I 1I 2d I 3I 4

x12
4 x34

4
1

1

N2

4CI 1I 2I 3I 4

x12
2 x14

2 x23
2 x34

2
1permutations,

where the first term in the four-point function represents
contribution of disconnected diagrams.

In this section we compute four-point functions ofOI

from AdS supergravity. The starting point is action~2.13!.
We will work with the Euclidean version of AdS5 that
amounts to changing in Eq.~2.13! an overall sign, so that

Lred5
1

4
~¹msI¹msI24sIsI !2

1

3
CI 1I 2I 3

sI 1sI 2sI 3

2
1

4 S ¹msI¹nsIwmn2
1

2
~¹msI¹msI24sIsI !wn

nD
2

1

24
CI 1I 2I 3I 4

¹m~sI 1sI 2!¹m~sI 3sI 4!

1
3

22
CI 1I 2I 3I 4

sI 1sI 2sI 3sI 42
1

23
sI 1sI 1sI 2sI 2

2TI 1I 2I 3
sI 1¹msI 2Am

I 31
1

2
Fmn

I Fmn I2L2~wmn!.

~4.2!

It is convenient to introduce the following currents:

Tmn5¹msI¹nsI2
1

2
gmn~¹rsI¹rsI24sIsI !,

Jm
I 35TI 1I 2I 3

~sI 1¹msI 22sI 2¹msI 1!,

both of them are conserved on-shell:¹mTmn5¹mJm
I 50.

From Eq.~4.2! we get the following equations of motio
~1! For scalarssI ,

~¹m
2 2m2!sI522CIJKsJsK. ~4.3!

~2! For vector fieldsAm
I :

¹n~¹nAm
I 2¹mAn

I !52
1

4
Jm

I . ~4.4!

~3! For the gravitonwmn :

Wmn
rlwrl5

1

4 S gmm8gnn81gmn8gnm82
2

3
gmngm8n8DTm8n8,

~4.5!
06401
e

whereWmn
rl is the Ricci operator

Wmn
rlwrl52¹r

2wmn1¹m¹rwrn1¹n¹rwrm2¹m¹nwr
r

22~wmn2gmnwr
r!.

Introduce the scalarG @30#, the vectorGmn and the graviton
Gmn rl @15# propagators

~¹a
22m2!G~u!52d~z,w!,

¹r~¹rGmn
I 2¹mGnr

I !52gmnd~z,w!,

Wmn
rlGrl m8n85S gmm8gnn81gmn8gnm8

2
2

3
gmngm8n8D d~z,w!

being the functions of the invariant AdS-distanceu:

u5
~z2w!2

2z0w0
, ~z2w!25dmn~z2w!m~z2w!n .

We represent the solution to the equations of motion in
form

s5s01s1, Am5Am
0 1Am

1 , wmn5wmn
0 1wmn

1 ,

wheres0, Am
0 , andwmn

0 are solutions of the linearized equa
tions with fixed boundary conditions ands1, Am

1 , and wmn
1

are the corrections with vanishing boundary conditions. Th
by perturbation theory fors1, Am

1 , andwmn
1 one gets

sI
1~w!52CIJKE d5z

z0
5

G~u!sJ~z!sK~z!,

Am
1 I~w!5

1

4E d5z

z0
5

Gm
n~u!Jn

I ~z!, ~4.6!

wmn
1 ~w!5

1

4E d5z

z0
5

Gmn m8n8~u!Tm8n8~z!,

where the right-hand side~RHS! depends only ons0, Am
0 ,

and wm
0 and from now on we omit the superscript 0 unle

we want to indicate explicitly that we deal with solutions
the linearized equations of motion.

It is worth noting that not only the interaction terms b
also the quadratic actionLquad gives a contribution to the
on-shell value of action~2.13! depending quartically ons0:

Lquad5
1

2
CIJKs0

I s0
Js1

K1
1

8
wmn

1 Tmn1
1

4
Am

1 IJm I .

Taking into account the summation formula

(
I 5

TI 1I 2I 5
TI 3I 4I 5

52~CI 1I 2I 4I 3
2CI 1I 2I 3I 4

!, ~4.7!
6-6
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that follows from Eq.~A4! and using Eq.~4.3! we arrive at
the following expression for the on-shell value of~4.2!:

Lred5
1

4
CI 1I 2I 3I 4

E d5z

z0
5

sI 1 ¹m
↔

sI 2~w!Gmn~u!sI 3 ¹n
↔

sI 4~z!

2
1

25E d5z

z0
5

Tmn~w!Gmn rl~u!Trl~z!2S CI 1I 2I 3I 4

2
1

6
d I 1I 2

d I 3I 4D E d5z

z0
5

G~u!sI 1~w!sI 2~w!sI 3~z!sI 4~z!

2
1

24
CI 1I 2I 3I 4

¹m~sI 1sI 2!¹m~sI 3sI 4!

1
3

4
CI 1I 2I 3I 4

sI 1sI 2sI 3sI 42
1

8
sI 1sI 1sI 2sI 2.

In the language of the Feynman diagrams the first th
terms here involvingz integrals describe the exchange by t
gauge boson, by the graviton and by the scalar fields, res
tively. The other contributions correspond to contact d
grams.z integrals are easily computed by the technique
Ref. @17# and in the Appendix B we list the correspondin
results. It is worthwhile to note that since we compute
on-shell value of the gravity action, we take into accou
only the connected AdS graphs.

Recall that the solution of the Dirichlet boundary proble
for the scalar fieldsI of massm2524 on AdS5 reads

sI~z,xW !5
1

2p2E d4xWK2~w,xW !sI~xW !, ~4.8!

wheresI(xW ) is a boundary value and

KD~w,xW !5S w0

w0
21~wW 2xW !2D D

.

With this normalization of the bulk-to-boundary propaga
the two-point function of corresponding boundary operat
appears to be finite in the limit when the AdS cutoff« tends
to zero~see Appendix B for details!.

Introducing the notation
06401
e

c-
-
f

e
t

r
s

DD1D2D3D4
5E d5w

w0
5

KD1
~w,xW1!KD2

~w,xW2!

3KD3
~w,xW3!KD4

~w,xW4! ~4.9!

and using identities forD functions ~see Appendix B! we
find the following on-shell value for Eq.~2.13!:

S5
N2

8p2E d4x1d4x2d4x3d4x4sI 1~xW1!sI 2~xW2!sI 3~xW3!sI 4~xW4!

3F 1

27p8
CI 1I 2I 3I 4

2
1

x12
2 x34

2 @2~x13
2 x24

2 2x14
2 x23

2 !D2222

2x24
2 D12122x13

2 D21211x14
2 D21121x23

2 D1221#

2
1

27p8
d I 1I 2d I 3I 4S 2

1

2x34
2

D2211

1
~x13

2 x24
2 1x14

2 x23
2 2x12

2 x34
2 !

x34
2

D33221
3

2
D2222D

2
1

26p8
CI 1I 2I 3I 4

1 S 1

x34
2

D221114x34
2 D223323D2222D G ,

~4.10!

where CI 1I 2I 3I 4

6 51/2(CI 1I 2I 3I 4
6CI 2I 1I 3I 4

). The expression

under the integral represents the contribution of
s-channel since it possesses thes-channel symmetries 1↔2,
3↔4, and (12)↔(34). In the expression for the four-poin
function thet-channel contribution is obtained from this on
by the interchange 1↔4 and theu-channel one by 1↔3.

Taking into account the normalization of the quadra
part of Eq.~4.2! and formula~B3! from the Appendix B, we
get the two-point function of unnormalized CPOsO I :

^O I~xW1!O J~xW2!&5
N2

25p4

d IJ

x12
4

. ~4.11!

Introducing then the normalized CPOs asOI

5„(25p4)1/2/N…O I , we obtain from Eq.~4.10! the following
four-point function of the normalized CPOs:
2^OI 1~xW1!OI 2~xW2!OI 3~xW3!OI 4~xW3!&5
8

N2p2 F2CI 1I 2I 3I 4

2
1

x12
2 x34

2 @2~x13
2 x24

2 2x14
2 x23

2 !D22222x24
2 D12122x13

2 D21211x14
2 D2112

1x23
2 D1221#1d I 1I 2d I 3I 4S 2

1

2x34
2

D22111
~x13

2 x24
2 1x14

2 x23
2 2x12

2 x34
2 !

x34
2

D33221
3

2
D2222D

12CI 1I 2I 3I 4

1 S 1

x34
2

D221114x34
2 D223323D2222D 1t1uG , ~4.12!
6-7
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wheret andu stand for the above discussed contributions
the t andu channels. Due to the conformal behavior of theD
functions Eq.~4.12! represents a correct conformally cova
ant expression for a four-point function of operators w
conformal dimensionD52. This set of four-point functions
allows one to approach the problem of finding the OPE
the simplest CPOs inN54 SYM4 that will be the subject of
our further study.
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APPENDIX A

Integrals of spherical harmonics

Considering the action for the fieldssI , we need the fol-
lowing explicit expressions for the integralsaI 1I 2I 3

andt I 1I 2I 3

involving the scalar spherical harmonics4 YI and Killing vec-
tors Ya

I @5,6#:

aI 1I 2I 3
5

22361/2

5p3/2
CI 1I 2I 3

, t I 1I 2I 3
5

61/2

p3/2
TI 1I 2I 3

. ~A1!

If we introduce a basisCi j
I in the space of symmetric trace

less second rank tensors of SO~6! and a basisCi ; j
I in the

space of antisymmetric tensors with normalization con
tions

Ci j
I Ci j

J 5d IJ, Ci ;k
I Cj ;k

J 5
1

6
d IJd i j ~A2!

then the tensorsCI 1I 2I 3
andTI 1I 2I 3

are given by

CI 1I 2I 35Ci j
I 1Cjk

I 2Cki
I 3 , TI 1I 2I 35Cik

I 1Ck j
I 2Ci ; j

I 3 2Cjk
I 1Cki

I 2Ci ; j
I 3 ,

where we have written tensorTI 1I 2I 3 to be explicitly antisym-
metric in indicesI 1 ,I 2.

One can easily establish the following summation form

(
I

Ci j
I Ckl

I 5
1

2
d ikd j l 1

1

2
d i l d jk2

1

6
d i j dkl ~A3!

that steams from the fact that the LHS of the express
above is a fourth rank tensor of SO~6!, symmetric and trace
less both in (i j ) and (kl) indices with the normalization
conditionCi j

I Ci j
I 520.

Analogously one finds

4They describe a basis of irrep20 of SO~6!.
06401
f

f

,

-
I
-
.

-

i-

a

n

(
I

Cm; l
I Cn;s

I 5
1

2
~dmnd ls2dmsdnl! ~A4!

since this time the LHS of~A4! is a traceless and antisym
metric in m,l and inn,s indices fourth rank tensor of SO~6!
that agrees with the normalization~A2!.

Some properties of SO„6… G matrices

In studying the action of the gauged supergravity,
need an identity that follows from the completeness con
tion for SO~6! G matrices and may be found in Refs.@26–
28#. To make the treatment self-contained we recall its de
vation here.

Consider the Clifford algebra ind56 Euclidean dimen-
sions

$G i ,G j%52d i j , i , j ,k,l ,n51, . . . ,6.

The G matrices can be represented by Hermitian ske
symmetric 838 matrices (G i)a

b . Indices a,b51, . . . ,8 are
raised or lowered by the symmetric charge conjugation m
trix Cab that in the chosen representation coincides withdab .
Thus, we do not distinguish the upper and lower indices.

Clearly, the matrices

G i , iG iG0 , G i j , G05 iG1G2G3G4G5G6 ~A5!

are skew symmetric. Their number is 61611511528 and
it coincides with a total number 837/2528 of independent
skew-symmetric matrices among all 838 matrices. There-
fore, any skew-symmetric matrixAab can be decompose
over the basis~A5!:

Aab5a1
i ~G i !ab1a2

i ~ iG iG0!ab1
1

2
a3

i j ~G i j !ab1a4~G0!ab .

~A6!

Here in the third term we assume the summation over
whole set of indices—not just overi , j . We also use the
convention thata3

i j 52a3
j i . The coefficients are easy t

compute

a1
i 5

1

8
tr ~AG i !, a2

i 5
i

8
tr ~AG iG0!,

a3
i j 52

1

8
tr ~AG i j !, a45

1

8
tr ~AG0!.

Substituting these coefficients back in~A6!, and using the
fact that Eq.~A6! should hold for any skew-symmetric ma
trix Aab , we find an identity:
6-8
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1

16
~G i j !ab~G i j !cd2

1

8
~G i !ab~G i !cd2

1

8
~ iG iG0!ab~ iG iG0!cd

5
1

2
~dacdbd2daddbc!2

1

8
~ iG0!ab~ iG0!cd ,

the term witha4 was written in the LHS.
If one introduces the symplectic metricVab52 i (G0)ab

52Vab and matricesG ia5(G i ,iG iG0) for a51,2 then the
last indentity reads as follows@26–28#:

1

16
~G i j !ab~G i j !

cd2
1

8
~G ia!ab~G ia!cd

5
1

2
~da

cdb
d2da

ddb
c!1

1

8
VabV

cd. ~A7!

Here in the LHS we have written some indices up since
RHS represents now a tensor of USp~8!. It is as well to note
that except the symmetric charge conjugation matrix tha
just the unit matrix one can also raise and lower indices w
the USp~8! metric Vab .

We also summarize the trace formulas needed in the
per

tr~G i j Gkl!58~d i l dk j2d ikd j l !, ~A8!

tr~G inG jnGkl!532~d ikd j l 2d i l d jk!, ~A9!

tr~G iaG j aGkl!516~d i l d jk2d ikd j l !.
~A10!

Note that matricesG i are Hermitian whileG0 , G i j , and
iG iG0 are anti-Hermitian. It follows from here thatG i j and
iG iG0 are real.

Scalar kinetic part of the Lagrangian
of the gauged 5D supergravity

By using ~A7!, one can check the following relation:

~V21!cd
ABVAB

ab5~V21!cd i jV
i jab1~V21!cd

iaVia
ab

5
1

2
~da

cdb
d2da

ddb
c!1

1

8
VabV

cd ~A11!

that is an USp~8! analogue ofVV215I . The properties of
theG matrices, in particular,~A8! imply the further relations

~V21!ab klV
i j ab5

1

2
~dk

i d l
j2dk

j d l
i !, ~V21!ab

iaVj b
ab5d i

jda
b

and also

~V21!ab
iaVkl

ab5~V21!ab klV
ia ab50.

In the SL(6,R)3SL(2,R) basis the elementPm ab
cd is given

by
06401
e

is
h

a-

Pm ab
cd5~V21!cd

i j ¹mVi j
ab1~V21!cdia¹mVia ab

12Qm[a
[c db]

d]1gAm i
j@2Vik

ab~V21! jk
cd

2~V21!cd iaVj a ab#. ~A12!

If we now require thatPm ab
cd is in the coset space

E6 /USp(8),then the tracePm ab
cb should be equal to zero

This allows one to solveQm[a
[c db]

d] via the vielbein

Qma
b52

1

3
$~V21!bcAB¹mVABac1gAm i

j@2Vik
ac~V21! jk

bc

2Vj a ac~V21!bcia#%. ~A13!

Substitution of the explicit expressions~3.2! yields

Qma
b5

1

24
~G inG jn2G iaG j a!a

b~¹mSS211gSAmS21! i
j ,

~A14!

where on the RHS the expression for the matrixRm defined
by Eq. ~3.3! appeared.

It is useful to note the following summation formula forG
matrices:

G inG jn2G iaG j a526G i j 27d i j •I .

Upon substituting this in~A14!, the term withd i j vanishes
due to the tracelessness ofRm . Thus, we finally get

Qma
b5

1

4
~G i j !a

bRm i
j . ~A15!

It is easy to see thatQma
b is an antihermitian matrix indeed

being an element of Usp~8! Lie algebra, i.e., obeying the
condition

Qma
b52VbcQmc

dVda .

For the elementPmab
cd we, therefore, get

Pmab
cd5

1

8
@~G in!cd~G jn!ab2~G ia!cd~G j a!ab#Rm i

j

12Qm[a
[cdb]

d] . ~A16!

Since tensorPmab
cd is completely fixed by the condition

of the vanishing trace one now can check that~A16! is in-
deed an element orthogonal to USp~8! part of the Lie algebra
of E6(6) with respect to to the Killing metric. Orthogonalit
means the following relation:

Pmab
cdUcd

ab50, ~A17!

where Ucd
ab5Qm[c

[add]
b] is an element of the USp~8! Lie

algebra. Formula~A17! then easily follows from Eqs.~A8!,
~A9! and the relation
6-9
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2Qm[a
[cdb]

d]Qm[c
[add]

b]53Qma
cQmc

a

52
3

2
~Rm i

jRm i
j2Rm i

jRm j
i !.

We also need (Pm)ab
cd5Vaa8Vbb8Vcc8Vdd8Pma8b8

c8d8:

~Pm!ab
cd5

1

8
~~G in!cd~G jn!ab2~G ia!cd~G j a!ab!Rm j

i

22Qm[c
[add]

b] .

Now we are ready to compute the scalar kinetic part of
grangian~3.1!. By using the orthogonality condition~A17!
we can write it in the form

PmabcdPm
abcd5S 1

8
@~G in!cd~G jn!ab2~G ia!cd~G j a!ab#Rm j

i

12Qm[a
[cdb]

d] D S 1

8
@~Gkm!cd~G lm!ab

2~Gkb!cd~G lb!ab#Rm l
kD .

After some algebra we arrive at the answer

PmabcdPm
abcd53Rm i

j~Rm! i
j13Rm i

j~Rm! j
i5

3

2
tr~Rm1Rm

t !2.

~A18!

Note that the RHS of the scalar kinetic term appears to
manifestly positive in an Euclidean signature space a
should be.

APPENDIX B

z integrals

z integrals are computed by using the technique in R
@17#. We list here the corresponding results

E d5z

z0
5

GD~u!sI 3~z!sI 4~z!

5
1

24p4E d4x3d4x4

sI 3~xW3!sI 4~xW4!

x34
2

3K1~w,xW3!K1~w,xW4!,

E d5z

z0
5

Gmn~u!sI 3¹JmsI 4~z!

5
1

24p4E d4x3d4x4

sI 3~xW3!sI 4~xW4!

x34
2

3K1~w,xW3! ¹m

↔
K1~w,xW4!,
06401
-

e
it

f.

E d5z

z0
5

Gmn rl~u!Trl~z!

5
1

24p4E d4x3d4x4

sI~xW3!sI~xW4!

x34
2

3S gmm8gnn81gmn8gnm82
2

3
gmngm8n8D

3¹m8K1~w,xW3!¹n8K1~w,xW4!.

Note that computing the last integral, we have used
gauge freedom in the definition of the graviton propagato
obtain the answer in the simplest covariant form.

Two-point function of lowest weight CPOs

As was noted in Ref.@29#, a correct way to compute a
two-point correlation function of operators in the bounda
CFT, which is compatible with the Ward identitites, consis
of two steps. First one uses the prescription by@2# for posing
the Dirichlet boundary problem on gravity fields. Then o
computes the two-point function in the momentum space
transform it further to thex space. Below we undertake th
procedure to find the two-point function of the lowest weig
CPOs.

For a scalar field of the AdS-massm2524 with the con-
ventionally normalized quadratic action, the solution of t
Dirichlet boundary problem reads

K~z,k!5S z0

« D 2 K0~kz0!

K0~k«!

with the Fourier transform defining the following bulk-to
boundary propagator

K~z,xW !52
1

2p2«2 ln «
S z0

z0
21uxW u2D

2

52
1

2p2«2 ln «
K2~z,xW !. ~B1!

For the two-point correlation function in the momentu
space we then have@29#

^O~kW !O~kW8!&5«23d~kW1kW8! lim
z0→«

]z0F S z0

« D 2 K0~kz0!

K0~k«! G
5d~kW1kW8!

k

«3

K1~k«!

K0~k«!
.

where a nonessential local term 1/«4 was omitted andk de-
notesukW u. Decomposing the result in power series, one ge
6-10
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^O~kW !O~kW8!&52d~kW1kW8!
k

«3

1

k«
1 (

n50

`

@~k«/2!2n11/n! ~n11!! #@ ln~k«/2!2~1/2!c~k11!2~1/2!c~k12!#

2 ln «2 ln k1 ln 22c~k11!1«~••• !

5d~kW1kW8!
1

«4 ln «
S 12

ln k

ln «
1

k2«2

2
ln k1••• D .
,

rm
k

f

h
es

dif-

t
ng

ns

s

The most singular relevant term here is the second one
modulo local terms one finds

^O~kW !O~kW8!&52d~kW1kW8!
1

«4 ln2 «
ln k.

Performing the Fourier transform, we finally get

^O~xW1!O~xW2!&5
1

2p2«4 ln2 «x12
4

. ~B2!

In order to have a finite two-point function in the limit«
→0 one has to rescale the boundary operator asO(xW )→
2(1/«2 ln «)O(xW), so that

^O~xW1!O~xW2!&5
1

2p2x12
4

. ~B3!

To preserve the scale-invariance of the interaction te
*d4xO(xW )s(xW ), wheres(xW ) is the boundary value of the bul
supergravity scalars(z) we then need to rescale thes(xW ) in a
way s(xW )→2«2 ln «s(xW). After this rescaling the solution o
the Dirichlet boundary problem reads as~4.8!.

Some identitites for D functions

As soon asz integrals are performed, one is left wit
contact diagrams involving different numbers of derivativ
By using the identity@14#

¹mKD1
~w,xW1!¹mKD2

~w,xW2!

5D1D2@KD1
~w,xW1!KD2

~w,xW2!

22x12
2 KD111~w,xW1!KD211~w,xW2!#
. B

v

06401
so

.

all the contact diagrams are then reduced to the sum of
ferentD functions.

In Ref. @16# some identities involving differen
D-functions were proved. We made use of the followi
ones:
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and identities obtained from these by different permutatio
of indices to reduce the number of possibleD-functions ap-
pearing in the four-point function of the lowest weight CPO
to the minimal set giving byD1212, D2233 ~with different
permutations of indices!, andD2222. HereB is a generating
function for DD1D2D3D4

and it is given by
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