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Abstract

Gradient elasticity theories can be used to simulate dispersive wave propagation as it occurs in heterogeneous
materials. Compared to the second-order partial differential equations of classicaly elasticity, in its most general
format gradient elasticity also contains fourth-order spatial, temporal as well as mixed spatial-temporal deriva-
tives. The inclusion of the various higher-order terms has been motivated through arguments of causality and
asymptotic accuracy, but for numerical implementations it is also important that standard discretisation tools can
be used for the interpolation in space and the integration in time. In this paper, we will formulate four different
simplifications of the general gradient elasticity theory. We will study the dispersive properties of the models,
their causality according to Einstein and their behaviour in simple initial/boundary value problems.

1 Introduction
Wave propagation through a heterogeneous material is normally dispersive, that is, each harmonic wave component
travels with a different velocity. In most materials, waves with larger wave numbers travel slower than waves with
smaller wave numbers. Indeed, such dispersive wave propagation has been observed experimentally in a range
of materials and through a range of scales, as for instance phonon dispersion in Bismuth [1]. When dispersive
wave propagation is simulated, the analyst needs to balance accuracy and efficiency of the model. The classical
equations of elasticity are non-dispersive, thus describing the material as homogeneous using classical elasticity is
not an option. A detailed modelling of every heterogeneity in detail is normally prohibitive, but instead so-called
generalised continuum theories can be used as an alternative.

Generalised continuum theories describe the material as homogeneous yet they contain additional terms that
capture the heterogeneities. An important class of generalised continuum theories are the so-called gradient elas-
ticity theories, in which the classical stress-strain relations are extended with additional gradients. These theories
build upon the theories of elasticity with microstructure of Mindlin [2] and Toupin [3]. Simplified formats have
been popularised in the 1990s through the works of Aifantis, e.g. [4] suggested the following constitutive relation
which was motivated for use in statics

σi j =Ci jkl
(
εkl − ℓ2εkl,mm

)
(1)

where σ and ε are the Cauchy stress and the infinitesimal strain, respectively, C contains the elastic moduli and
the additional parameter ℓ is an internal length scale. The format of Equation (1) has been used successfully to
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dispose of strain singularities in crack tip analysis [5–8] and dislocation analysis [9–11]. Another class of gradient
elasticity theories have been formulated whereby the response of a discrete material model is continualised in order
to capture the dynamic behaviour of heterogeneous materials [12–15]. The commonly obtained format reads

σi j =Ci jkl
(
εkl + ℓ2εkl,mm

)
(2)

where the only difference with Equation (1) concerns the sign of the higher-order term. The advantages of such ap-
proaches are that the the internal length scale ℓ is normally straightforwardly identified in terms of the geometry of
the heterogeneity, e.g. particle spacing, and the dispersive properties of discrete material models are approximated
with more accuracy compared with classical elasticity. Unfortunately, however, models according to Equation (2)
are unstable [16–18]; while they possess some merit in predicting the dispersive properties of materials they should
not be used in boundary value problems.

Gradient elasticity theories that can be used in statics (e.g. removal of strain singularities) as well as in dynamics
(e.g. realistic prediction of dispersion) should combine the advantages of Equations (1) and (2). Gradient theories
with higher-order inertia terms fulfill this requirement; a generic format that is an extension of Equation (1) reads
[19–24]

σi j =Ci jkl
(
εkl − ℓ2

s εkl,mm
)
+ρℓ2

mui, jtt (3)

where two length scales are included: ℓs accompanies the higher-order stiffness term and ℓm accompanies the
higher-order inertia term. The double time derivative of the last term in Equation (3) denotes inertia and should not
be confused with viscosity (which would have been indicated with an odd time derivative). In fact, Equation (3)
follows the generic formulation of Mindlin, who proposed a simultaneous extension of the potential energy and
the kinetic energy [2]. Note that the static counterpart of Equation (3) follows Equation (1), not Equation (2).

Although Equation (3) predicts a realistic dispersion of propagating waves, nevertheless further improvements
of Equation (3) have been suggested recently, namely the inclusion of a fourth-order time derivative in the equations
of motion. The case has been argued indepedently in two different ways, namely:

• Metrikine [25] demonstrated that the model according to Equation (3) is non-causal in the sense that energy
can propagate faster than the speed of light (albeit with infinitesimal amplitude). To mitigate this, i.e. to
retain causality of the formulation, a fourth-order time derivative is required alongside fourth-order spatial
derivatives and mixed fourth-order derivatives (twice with respect to time, twice with respect to the spatial
coordinates). It was furthermore shown that such a model can be derived by continualisation of a two-phase
material.

• Pichugin et al. [26] compared various series expansions and explored their asymptotic equivalence in the
construction of gradient elasticity theories. The various higher-order derivatives are asymptotically equiv-
alent but upon truncation give different approximation errors when compared to the response of a discrete
model. The inclusion of the fourth-order time derivative can be used to improve the asymptotic accuracy of
the resulting theory.

Independently of the above arguments of causality and asymptotic accuracy, a number of studies have addressed
the formulation of gradient elasticity theories that lend themselves to straightforward numerical implementation,
e.g. with finite element methods and standard time integration techniques. The equilibrium equations according
to Equation (1) are fourth-order and would thus require C 1-continuity of the spatial interpolation. While some
progress in C 1-continuous implementations for gradient theories has been made using Hermitian finite elements
[27] and meshless methods [28, 29], another line of research has been to re-formulate gradient elasticity prior to
discretisation such that the usual C 0-continuous shape functions can be used. Ru and Aifantis have suggested an
operator split for gradient elasticity by which two second-order equations are solved sequentially, rather than the
original fourth-order equations [6]. Numerical implementations of this approach have been pursued in [30] for
statics and in [31] for dynamics. Other C 0-implementations of gradient elasticity that have been suggested are
based on Padé approximations of Equation (2) [32] and an implementation of the Mindlin theory in which the
difference between micro-displacements and macro-displacements is penalised [33].

This paper focusses on gradient elasticity theories for dispersive wave propagation and their subsequent finite
element implementation. First, we will briefly revisit in Section 2 a generalised gradient elasticity that includes the
terms of Equation (3) as well as the fourth-order time derivative of the displacements. Next, in Section 3 we will
focus on four particular versions of the general model that lend themselves to straighforward implementations,
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in particular formats that can be implemented using standard finite elements with C 0-continuous interpolation
functions. In the next three sections we will study the following properties of the four special gradient elasticity
models, namely dispersion properties (Section 4), causality (Section 5) and the variationally consistent boundary
conditions (Section 6). Numerical examples are presented in Section 7.

2 Formulation of the generic model
In order to keep this contribution self-contained, the formulation of the generic model that includes all fourth-order
terms is recapped briefly by revisisting the derivations of Pichugin et al. [26]. Starting point is the simple discrete
model depicted in Figure 1. All particles have mass M and all springs have stiffness K. Note that we only consider
longitudinal displacement — this leads to the gradient elasticity models mentioned above, whereas the inclusion
of rotational degrees of freedom would result in Cosserat-type models [13, 34, 35].

The equation of motion of the central particle reads

M
∂ 2un(t)

∂ t2 = K
(

un−1(t)−2un(t)+un+1(t)
)

(4)

where M and K are the particle mass and the spring stiffness, respectively, both of which are assumed to be uniform.
The discrete particle displacements un−1(t), un(t) and un+1(t) are replaced by their continuous counterparts u(x−
ℓ, t), u(x, t) and u(x+ ℓ, t). Taylor series are applied to u(x± ℓ, t), by which up to order O

(
ℓ2
)

the equations of
motion read

∂ 2u(x, t)
∂ t2 = c2

e
∂ 2u(x, t)

∂x2 +O
(
ℓ2) (5)

where ce =
√

E/ρ is the elastic bar velocity, while the mass density ρ = M/Aℓ, the Young’s modulus E = Kℓ/A
and A is the cross sectional area. A higher-order approximation of Equation (4) is obtained by including the next
terms of the Taylor series [13, 14, 36], that is

∂ 2u(x, t)
∂ t2 = c2

e
∂ 2u(x, t)

∂x2 +
1

12
c2

eℓ
2 ∂ 4u(x, t)

∂x4 +O
(
ℓ4) (6)

As is well-known, Equation (6) is unstable for wave numbers k >
√

12/ℓ [16, 20, 37, 38] and should not be used
to solve boundary value problems [16]. The unstable higher-order term in Equation (6) can be replaced by sta-
ble higher-order terms as follows: the second derivative with respect to x is taken of Equation (5); the result is
multiplied with C1ℓ

2 and substracted from Equation (6), by which

∂ 2u(x, t)
∂ t2 −C1ℓ

2 ∂ 4u(x, t)
∂ t2∂x2 = c2

e
∂ 2u(x, t)

∂x2 −
(

C1 −
1

12

)
c2

eℓ
2 ∂ 4u(x, t)

∂x4 +O
(
ℓ4) (7)

The resulting equation of motion is stable for all wave numbers provided that the model parameter C1 >
1
12 . Note

that the truncation errors of Equations (6) and (7) are the same, namely O
(
ℓ4
)
.

Remark 1 The asymptotic equivalence of Equations (6) and (7) has been explored in [37, 38] who used C1 =
1
12 .

Similarly, in [20, 21] a modified relation between the kinematic variables of the discrete model and the continuum
model was defined in the transition from Equation (4) to Equation (7).

xn−2 xn−1 xn xn+1 xn+2

Figure 1: One-dimensional array of particles connected by springs
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Another asymptotically equivalent formulation was obtained by Pichugin et al. [26] by taking the second time
derivative of Equation (5) and multiplying the result with C2ℓ

2/c2
e . Adding the obtained expression to Equation (7)

yields

∂ 2u(x, t)
∂ t2 +C2

ℓ2

c2
e

∂ 4u(x, t)
∂ t4 − (C1 +C2)ℓ

2 ∂ 4u(x, t)
∂ t2∂x2 =

c2
e

∂ 2u(x, t)
∂x2 −

(
C1 −

1
12

)
c2

eℓ
2 ∂ 4u(x, t)

∂x4 +O
(
ℓ4) (8)

Equation (8) is yet again asymptotically accurate up to O
(
ℓ4
)
.

Instead of the particle spacing ℓ and the two model parameters C1 and C2, one can also interpret the coefficients
of the higher-order terms as three separate internal length scales. A reformulation of Equation (8) to this extent
would read

∂ 2u(x, t)
∂ t2 − c2

e
∂ 2u(x, t)

∂x2 +
ℓ2

1
c2

e

∂ 4u(x, t)
∂ t4 − ℓ2

2
∂ 4u(x, t)
∂ t2∂x2 + c2

eℓ
2
3

∂ 4u(x, t)
∂x4 = 0 (9)

where ℓ1 = ℓ
√

C2, ℓ2 = ℓ
√

C1 +C2 and ℓ3 = ℓ
√

C1 − 1
12 . While these three internal length scales cannot be chosen

independently if the behaviour of Equation (4) is to be approximated, more complicated material models may allow
for independent values of the three length scales, see for instance the continualisation of a three-phase material as
studied by Metrikine [25].

3 Formulation of the special models
It is desirable to have a higher-order elasticity theory that not only describes wave dispersion realistically, but
that can also be implemented straightforwardly, i.e. using standard numerical discretisation tools. Here, we will
investigate special cases of Equation (9) that lend themselves to straightforward finite element implementations.
To this end, fourth-order spatial derivatives require special care, and should ideally be replaced by second-order
spatial derivatives. Fourth-order time derivatives can in principle be handled but require an extension of existing
numerical time integration schemes.

3.1 Special model 1: ℓ1 = ℓ3 = 0

The simplest reduction of Equation (9) that is still dispersive can be obtained by setting ℓ1 = 0 (thus avoiding
complications in the time integration a priori) as well as ℓ3 = 0 (thus avoiding complications with the continuity
of the spatial discretisation a priori). The resulting model reads

∂ 2u(x, t)
∂ t2 − c2

e
∂ 2u(x, t)

∂x2 − ℓ2
2

∂ 4u(x, t)
∂ t2∂x2 = 0 (10)

and this particular format has been suggested by many researchers before in the context of dispersive wave propa-
gation, e.g. [37–40]. The only higher-order term is second-order in space (thus, standard finite element techniques
can be used) and second-order in time (this, standard numerical time integration schemes can be used). The dis-
persive properties of this model are somewhat unusual in that the phase and group velocities of the shorter waves
approaches zero and there is a cut-off frequency above which the waves do not propagate (see Section 4). The orig-
inal model also acts as a low-pass filter that does not propagate waves with frequencies above a cut-off. Therefore,
special model 1 can be considered to capture the filtering property of the original model.

3.2 Special model 2: ℓ3 = 0

As an extension of the previous model, the fourth-order time derivative may be retained. Only the fourth-order
spatial derivative is eliminated by setting its coefficient equal to zero, by which

∂ 2u(x, t)
∂ t2 − c2

e
∂ 2u(x, t)

∂x2 +
ℓ2

1
c2

e

∂ 4u(x, t)
∂ t4 − ℓ2

2
∂ 4u(x, t)
∂ t2∂x2 = 0 (11)

The spatial discretisation of this model is straightforward but the time integration algorithm needs adaptations,
which are discussed in detail in Appendix B.
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Remark 2 Pichugin et al. [26] argued that two extra orders of accuracy can be gained for Equation (8) through a
specific choice for C1 and C2, namely C1 =

1
12 and C2 =

1
20 . With this parameter choice, special model 2 is obtained

with ℓ1 = ℓ/
√

20 and ℓ2 = ℓ
√

2/15. Note that there is no clear physical meaning of the numerical coefficients
1/
√

20 and
√

2/15; they merely follow from exploring the equivalence of two asymptotic series.

Remark 3 Due to the presence of two (rather than one) propagating modes as explained in Section 4, special
model 2 may produce high-frequency oscillations that are not present in the original chain-model, especially when
the loading contains substantial high-frequency component. As an approximation of Equation (4) this theory is
only valid for modelling motions dominated by frequencies below the second mode cut-off.

3.3 Special model 3: ℓ1 = 0

Another specialisation of Equation (9) is obtained by omitting the fourth-order time derivative but keeping the
fourth-order spatial derivative. Thus,

∂ 2u(x, t)
∂ t2 − c2

e
∂ 2u(x, t)

∂x2 − ℓ2
2

∂ 4u(x, t)
∂ t2∂x2 + c2

eℓ
2
3

∂ 4u(x, t)
∂x4 = 0 (12)

In fact, this model is the one-dimensional equivalent of Equation (3) and its wave propagation characteristics have
been studied before in [2, 19–22, 24]. The presence of the fourth order spacial derivative means that this model
associates two wave numbers to each frequency, one of which does not exist in the original model [26]. This
becomes particularly important when formulating boundary conditions for this model.

The development of a finite element implementation of this model has been hampered by the inclusion of the
fourth-order spatial derivative. To overcome this, an operator split has been developed by which the fourth-order
differential equation (12) is rewritten as a set of two second-order differential equations [18, 31], as follows:

• a new displacement-type variable û(x, t) is defined through

û(x, t) = u(x, t)− ℓ2
3

∂ 2u(x, t)
∂x2 (13)

by which Eq. (12) can be rewritten as

∂ 2u(x, t)
∂ t2 − ℓ2

2
∂ 4u(x, t)
∂ t2∂x2 − c2

e
∂ 2û(x, t)

∂x2 = 0 (14)

• Take the second time derivative of Equation (13) and multiply with ℓ2
2/ℓ

2
3. The result is used to replace the

second term in Equation (14).

• Take the second time derivative of Equation (13) and multiply with 1−ℓ2
2/ℓ

2
3. The result is to be used instead

of Equation (13).

• The resulting set of equations is symmetric, fully coupled and contains at most second-order spatial deriva-
tives and at most second-order time derivatives:

ℓ2
2

ℓ2
3

∂ 2û(x, t)
∂ t2 −

ℓ2
2 − ℓ2

3

ℓ2
3

∂ 2u(x, t)
∂ t2 − c2

e
∂ 2û(x, t)

∂x2 = 0 (15)

together with

−
ℓ2

2 − ℓ2
3

ℓ2
3

∂ 2û(x, t)
∂ t2 +

ℓ2
2 − ℓ2

3

ℓ2
3

∂ 2u(x, t)
∂ t2 −

(
ℓ2

2 − ℓ2
3
) ∂ 4û(x, t)

∂ t2∂x2 = 0 (16)

The symmetry issue relates to the coefficient of u in the first equation being equal to the coefficient of û(x, t)
in the second equation — this facilitates identifying the underlying energy densities and, in turn, natural
boundary conditions [31].
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In the derivations the assumption was made that ℓ2 ̸= ℓ3. In case ℓ2 = ℓ3 a model is obtained that is not dispersive
(see also Remark 5 below). The fact that the space and time derivatives are at most of order two means that stan-
dard discretisation techniques can be used (e.g. the usual C 0-continuous finite elements for spatial discretisation
and the standard Newmark scheme for the time integration). From a comparison with Mindlin’s 1964 theory the
second displacement-type variable û(x, t) has been identified as the microscopic displacement whereas the original
displacement variable u(x, t) is the macroscopic displacement [41].

3.4 Special model 4: ℓ2
2 = ℓ2

1 + ℓ2
3

The case ℓ2
2 = ℓ2

1 + ℓ2
3 allows Equation (9) to be rewritten as(

∂ 2

∂ t2 − c2
e

∂ 2

∂x2

)(
1+

ℓ2
1

c2
e

∂ 2

∂ t2 − ℓ2
3

∂ 2

∂x2

)
u(x, t) = 0 (17)

In going from Equation (9) to Equation (17), all fourth-order derivatives have been factorised as products of second-
order derivatives. Equation (17) can be seen as an operator split in which firstly the equations of classical elasticity
are solved, that is

∂ 2uc(x, t)
∂ t2 − c2

e
∂ 2uc(x, t)

∂x2 = 0 (18)

where uc(x, t) is the displacement according to classical elasticity. The solution of Equation (18) then serves as the
source term for a second equation, i.e.

u(x, t)+
ℓ2

1
c2

e

∂ 2u(x, t)
∂ t2 − ℓ2

3
∂ 2u(x, t)

∂x2 = uc(x, t) (19)

In contrast to Equations (15–16), the resulting equations of special model 4 are uncoupled: u(x, t) does not appear
in Equation (18). Thus, Equations (18) and (19) can be solved sequentially which is less time-consuming than
solving the fully coupled system of Equations (15) and (16).

Remark 4 In contrast to the previous 3 special models, special model 4 cannot be obtained from Equation (8)
through an appropriate choice for C1 and C2. Thus, as an approximation of Equation (4) it is only accurate to
order O(ℓ2). This can be interpreted physically as follows: the first factor in Equation (17) assumes non-dispersive
propagation of the fundamental mode, whereas O(ℓ4) asymptotic accuracy of the dispersion relation of the chain
dictates that the fundamental mode must be dispersive [26].

Remark 5 In case ℓ1 = 0 it follows that ℓ2 = ℓ3. This further particularisation of special model 4 is non-dispersive.
This can easily be seen as follows: Equation (18) is non-dispersive, and without time derivatives Equation (19)
provides merely a smooting of uc(x, t) in the spatial domain, not in the time domain. Equation (23) in the next
Section illustrates this point: the angular frequency would be a linear function of the wave number for such a
model.

4 Dispersion properties
To investigate the dispersive properties of the various models, a trial solution u(x, t) = Bexp(i(kx−ωt) is substi-
tuted into Equation (9), whereby B is the amplitude, k is the wave number and ω is the angular frequency. This
results in

ℓ2
1

c2
e

ω4 −
(
1+ ℓ2

2k2)ω2 + c2
ek2 (1+ ℓ2

3k2)= 0 (20)

For the various models the angular frequency ω can be resolved as

Model 1: ω = cek · 1√
1+ ℓ2

2k2
(21)
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Figure 2: Angular frequency versus wave number for Model 1 (dotted), Model 2 (solid), Model 3 (dash-dotted)
and Model 4 (dashed)

Model 2: ω = cek ·

√√√√1+ ℓ2
2k2 ±

√(
1+ ℓ2

2k2
)2 −4ℓ2

1k2

2ℓ2
1k2 (22)

Model 3: ω = cek ·

√
1+ ℓ2

3k2

1+ ℓ2
2k2 (23)

Model 4: ω = cek
∨

ω = cek ·

√
1+ ℓ2

3k2

ℓ2
1k2 (24)

These curves of ω versus k are plotted in Figure 2 for ce = 1 m/s and ℓ2 =
√

2 m; furthermore ℓ1 = 1 m in Models 2
and 4 and ℓ3 = 1 m in Models 3 and 4. All four models have a primary branch in the ω−k plane that passes through
the origin; these branches were called acoustical branches by Mindlin. In addition, the models with a fourth-order
time derivative (i.e. Models 2 and 4) also have a secondary branch that starts at a finite cut-off frequency; Mindlin
denoted these the optical branches. Three cases can be distinguished concerning the primary (acoustical) branches:

• the curve attains a horizontal asymptote: this happens in case ℓ3 = 0, that is for Models 1 and 2. The impli-
cations are that the phase velocity c = ω/k will vanish for the larger wave numbers, i.e. the high-frequency
waves do not propagate. This mimics the low-pass behaviour of the original problem governed by Equa-
tion (4), but may be undesirable in the context of other physical problems. However, this must be judged
against the fact that spatial discretisation filters out all frequencies higher than a threshold value set by the
discretisation (e.g. by the finite element size).

• the curve attains a non-horizontal asymptote: in case ℓ3 ̸= 0 a non-horizontal asymptote is attained for the
large wave numbers, the slope of which is governed by the ratio ℓ3/ℓ2. This means that the corresponding
phase velocities will be finite for all wave numbers. Such is the case for the present Model 3.

• the curve is a straight line through the origin: for the particular combination of ℓ1, ℓ2 and ℓ3 of Model 4
the primary branch is given by ω = cek which happens to be the same as classical elasticity. As such, the
primary branch of Model 4 is associated with the first of the factorised equations, that is expression (18).
This particular branch is non-dispersive.
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As regards the secondary (optical) branches, they start at a cut-off frequency given by ω = ce/ℓ1, and they attain
non-horizontal asymptotes with slopes ceℓ2/ℓ1 (Model 2) and ceℓ3/ℓ1 (Model 4). It is noted that the secondary
branch of Model 4 corresponds to Equation (19).

5 Causality
It is desirable that mechanical models observe the principle of causality [42] according to which the cause has to
precede its effect. In fact, all models that are formulated in the time domain do satisfy this principle. The causality
may be violated if the frequency-domain formulation is adopted and the Kramers-Kroenig relations [43] are not
observed. All the above-introduced models are formulated in the time-space domain and, therefore, satisfy the
causality principle.

A stricter requirement than the causality principle is the so-called Einstein’s causality that postulates that signals
can not propagate faster than the speed of light. In classical mechanics, all disturbances propagate with much lower
speeds and Einstein’s causality may seem to be of no significance. In our view, however, it is desirable that also
classical mechanical models observe Einstein’s causality and do not allow signals to propagate energy infinitely
fast. In this section, it is investigated whether the above-introduced gradient elasticity models satisfy Einstein’s
causality.

5.1 The wave equation
The wave equation is considered here to demonstrate a method that will be applied to check whether the above-
introduced gradient elasticity models observe Einstein’s causality. The method makes use of the Laplace and
Fourier integral transforms that are defined as follows:

us (x,s) =
∞∫

0

u(x, t)exp(−st) dt and us,k (k,s) =
∞∫

−∞

us (x,s)exp(ikx) dx (25)

Consider the wave equation with the right-hand side representing a point pulse load:

∂ 2u
∂ t2 − c2

e
∂ 2u
∂x2 = Fδ (x)δ (t) (26)

where F is a constant and δ (...) is the Dirac delta-function. Applying the integral transforms defined by Equation
(25) to Equation (26), one obtains

us,k
(
s2 + c2

ek2)= F ⇒ us,k =
F

s2 + c2
ek2 (27)

First, the Fourier inversion is applied to Equation (27). Facilitated by the contour integration and the residue
theorem [44], it results in

us =
1

2π

∞∫
−∞

us,k exp(−ikx) dk =
F

2πc2
e

∞∫
−∞

exp(−ikx)(
k− is

/
ce
)(

k+ is
/

ce
) dk =

F
2sce

exp
(
− s |x|

ce

)
(28)

Next, the inverse Laplace transform [45] is applied:

u(x, t) =
1

2πi

a+i∞∫
a−i∞

us (x,s)exp(st) ds (29)

where a is a positive real number that is larger than the real parts of all singularities of us (x,s). Insertion of Equation
(28) into Equation (29) gives

u(x, t) =
F

4πcei

a+i∞∫
a−i∞

1
s

exp
(
− s

ce
(|x|− cet)

)
ds =

1
2πi

a+i∞∫
a−i∞

Z (s) ds (30)
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Figure 3: Integration contours in the complex s-plain for |x|> cet (left) and |x|< cet (right)

The integral in Equation (30) can be evaluated using the contour integration and the residue theorem. The integra-
tion contours are chosen in the manner shown in Figure 3. Let us first consider |x|< cet and use the contour shown
in the left part of Figure 3. According to Cauchy’s residue theorem [44], the following holds

∮
Cleft

Z (s) ds =
a+i∞∫

a−i∞

Z (s) ds+
∫

C−
∞

Z (s) ds = 2πi Res
s=0

(Z (s)) (31)

where Res
s=0

(Z (s)) is the residue of Z (s) at s = 0. Due to Jordan’s lemma [44], the integral over the semicircle C−
∞

vanishes as its radius tends to infinity. Therefore,

u(x, t)|x|<cet =
1

2πi

a+i∞∫
a−i∞

Z (s) ds = Res
s=0

(Z (s)) =
F

2ce
(32)

For |x|> cet, the contour shown in the right part of Figure 3 can be used. As this contour surrounds no singularity,
Cauchy’s residue theorem gives

∮
Cright

Z (s) ds =
a+i∞∫

a−i∞

Z (s) ds+
∫

C+
∞

Z (s) ds = 0 (33)

Due to Jordan’s lemma, the integral over the infinite semicircle C+
∞ is zero and, therefore,

u(x, t)|x|>cet =
1

2πi

a+i∞∫
a−i∞

Z (s) ds = 0 (34)

Equations (32) and (34) reproduce a well-known result that propagation of disturbances in a medium described
by the one-dimensional wave equation is bounded by two propagating fronts located at |x| = cet. This result is
reproduced here to show that existence of the fronts (and, consequently, Einstein’s causality) can be concluded
upon by a relatively simple analysis of the argument of the exponent in the inverse Laplace transform, Equation
(30). Indeed, the fronts can be associated with the transition of the contour closure (the semicircles in Figure 3)
from the left half-plane of the complex s-plain to its right half-plane. This transition, in turn, is associated with
the possibility to close the contour such that the integral along the closure vanishes as its radius tends to infinity.
The latter is one-to-one related to the argument of the exponent in the inverse Laplace transform. If in the limit
Re(s) → +∞ the real part of this argument tends to minus infinity for |x| > Ct, C > 0 then the fronts exist at
|x|=Ct and Einsteins causality is satisfied. This criterion will be used in the following subsections to conclude on
Einstein’s causality of special models 1–4.
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5.2 Special model 1
Application of the integral transforms defined by Equation (25) to Equation (10) enriched by Fδ (x)δ (t) on the
right-hand side, results in

us,k
(
s2 + c2

ek2 + ℓ2
2s2k2)= F ⇒ us,k =

F
s2 + c2

ek2 + ℓ2
2s2k2 (35)

The inverse Fourier transform is accomplished as follows

us =
F
2π

∞∫
−∞

exp(−ikx)
s2 + c2

ek2 + ℓ2
2s2k2 dk =

F
2π

(
c2

e + ℓ2
2s2

) ∞∫
−∞

exp(−ikx)
(k− k1)(k− k2)

dk (36)

where

k1 =
is√

c2
e + ℓ2

2s2
and k2 =

−is√
c2

e + ℓ2
2s2

(37)

Choosing the branch of the square root in Equation (37) such that the real part of this root is positive in the whole
s-plane, one can use the contour integration and evaluate Equation (36) as

us =−2πi
F

2π
(
c2

e + ℓ2
2s2

) exp(−ik2 |x|)
(k2 − k1)

=
1

2s
√

c2
e + ℓ2

2s2
exp

− s |x|√
c2

e + ℓ2
2s2

 (38)

Application of the inverse Laplace transform to Equation (38) gives

u(x, t) =
F

4πi

a+i∞∫
a−i∞

1

s
√

c2
e + ℓ2

2s2
exp

 −s |x|√
c2

e + ℓ2
2s2

+ st

 ds (39)

In the limit Re(s)→+∞ the argument of the exponent in Equation (39) tends to −|x|/ℓ2+ st which makes it clear
that the integral over the infinite semicircle in the right half-plane of the complex s-plane does not vanish for any
x. This means that there are no fronts in model 1 and this model does not observe Einstein’s causality.

Note that the Laplace solution given by Equation (38) differs significantly from that given by Equation (28). The
difference consists in the existence of the branch points and branch cuts in the complex s-plane that are associated
with the chosen branch of the square root in Equation (38). However, as the branch points and the branch cuts are
located at the left of the inverse-Laplace integration contour (the straight vertical line in Figure 3), the criterion
based on the argument of the exponent remains applicable.

5.3 Special model 2
The Laplace-Fourier solution of Equation (11) that is subjected to Fδ (x)δ (t) at its right-hand side reads

us,k =
F

s2 + c2
ek2 + ℓ2

1s4
/

c2
e + ℓ2

2s2k2
(40)

The Fourier inversion can be accomplished in the same manner as for model 1 to give

us =
1

2s
√

c2
e + ℓ2

2s2
√

1+ ℓ2
1s4

/
c2

e

exp

−s |x|

√
1+ ℓ2

1s4
/

c2
e√

c2
e + ℓ2

2s2

 (41)

where the branches of the square roots are chosen such that the real parts of both roots are positive in the whole
s-plane. In the limit Re(s)→+∞ the argument of the exponent in the inverse Laplace transform of Equation (41)
reads

Arg∞ =

st − s |x|

√
1+ ℓ2

1s4
/

c2
e√

c2
e + ℓ2

2s2


Re(s)→+∞

=− s
ce

(
|x| ℓ1

ℓ2
− cet

)
Re(s)→+∞

(42)

The above argument tends to minus infinity provided that |x| > cetℓ2/ℓ1. Thus, this model observes Einstein’s
causality as it predicts signals to propagate no faster than with the speed ceℓ2/ℓ1.
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5.4 Special model 3
The Laplace-Fourier solution for this model is given as

us,k =
F

s2 + c2
ek2 + ℓ2

2s2k2 + ℓ2
3c2

ek4 (43)

In contrast to the preceding models, the denominator of this solution has four k-roots. Let us write the expressions
for these roots directly in the limit Re(s)→+∞. In this limit

k1 =
i
ℓ2
, k2 =− i

ℓ2
, k3 = i

s
ce

ℓ2

ℓ3
and k4 =−i

s
ce

ℓ2

ℓ3
(44)

Accordingly, the inverse Fourier transform of Equation (43) in this limit can be evaluated as

us =
F

2πℓ2
3c2

e

∞∫
−∞

exp(−ikx)
(k− k1)(k− k2)(k− k3)(k− k4)

dk

= − iF
ℓ2

3c2
e

(
exp(−ik2 |x|)

(k2 − k1)(k2 − k3)(k2 − k4)
+

exp(−ik4 |x|)
(k4 − k1)(k4 − k2)(k4 − k3)

)
Re(s)→+∞

=
1
2

F
s2ℓ2

exp
(
−|x|

l2

)
− 1

2
Fceℓ3

s3ℓ3
2

exp
(
− s |x|

ce

ℓ3

ℓ2

)
(45)

Thus, the inverse Laplace transform should be taken of the two terms, which correspond to the following arguments
of the exponents in the limit Re(s)→+∞:

Arg1∞ = st − |x|
ℓ2

and Arg2∞ =− s
ce

(
|x| ℓ3

ℓ2
− cet

)
(46)

Although Arg2∞ ensures a certain abrupt change at |x|= cetℓ2/ℓ3, Arg1∞ does not tend to minus infinity as Re(s)→
+∞. Therefore, this model allows signals to spread infinitely fast and, consequently, it does not observe Einstein’s
causality.

5.5 Special model 4
The Laplace-Fourier solution for this model is given as

us,k =
F

(s2 + c2
ek2)

(
1+ ℓ2

1s2
/

c2
e + ℓ2

3k2
) (47)

The k-roots of the denominator in the limit Re(s)→+∞ read

k1 =
is
ce
, k2 =− is

ce
, k3 =

is
ce

ℓ1

ℓ3
and k4 =− is

ce

ℓ1

ℓ3
(48)

Accordingly, the inverse Fourier transform of Equation (47) in the limit Re(s)→+∞ can be evaluated as

us =
F

2πℓ2
3c2

e

∞∫
−∞

exp(−ikx)
(k− k1)(k− k2)(k− k3)(k− k4)

dk

= − iF
ℓ2

3c2
e

(
exp(−ik2 |x|)

(k2 − k1)(k2 − k3)(k2 − k4)
+

exp(−ik4 |x|)
(k4 − k1)(k4 − k2)(k4 − k3)

)
Re(s)→+∞

= −1
2

Fce

s3
(
ℓ2

3 − ℓ2
1

) exp
(
− s |x|

ce

)
+

1
2

Fceℓ3

s3ℓ1
(
ℓ2

3 − ℓ2
1

) exp
(
− s |x|

ce

ℓ1

ℓ3

)
(49)

The arguments of the exponents in the inverse Laplace transform, as follows from Equation (49) with Re(s)→+∞,
have the following form:

Arg1∞ =− s
ce

(|x|− cet) , Arg2∞ =− s
ce

(
|x| ℓ1

ℓ3
− cet

)
(50)

As Re(s)→ +∞, the first and the second arguments tend to minus infinity at |x| > cet and |x| > cetℓ3/ℓ1, respec-
tively. Thus, as for the physical validity of this model ℓ3/ℓ1 must be not smaller than unity (see the dispersion
analysis of Section 4), the signals are always confined within the leading fronts |x| = cetℓ3/ℓ1 and the model
observes Einstein’s causality.
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6 Boundary conditions
In order to formulate the consistent boundary conditions of the various models, a variational approach will be taken
that later on straigtforwardly leads to the associated finite element equations. Assuming a domain x ∈ [0,L], the
weak form of Equation (9) reads

L∫
0

w(x)
(

∂ 2u(x, t)
∂ t2 +

ℓ2
1

c2
e

∂ 4u(x, t)
∂ t4

)
dx+

L∫
0

∂w(x)
∂x

(
c2

e
∂u(x, t)

∂x
+ ℓ2

2
∂ 3u(x, t)

∂ t2∂x

)
dx

+

L∫
0

∂ 2w(x)
∂x2 c2

eℓ
2
3

∂ 2u(x, t)
∂x2 dx =

[
w(x)

(
c2

e
∂u(x, t)

∂x
+ ℓ2

2
∂ 3u(x, t)

∂ t2∂x
− ℓ2

3c2
e

∂ 3u(x, t)
∂x3

)]L

0
+

[
∂w(x)

∂x
ℓ2

3c2
e

∂ 2u(x, t)
∂x2

]L

0
(51)

where w(x) is an appropriate test function and integration by parts has been applied once and twice for terms with
first-order spatial derivatives and second-order spatial derivatives, respectively. The right-hand-side of Equation
(51) reveals the format of the boundary conditions, namely

either prescribe u(x, t) or prescribe c2
e

(
∂u(x, t)

∂x
− ℓ2

3
∂ 3u(x, t)

∂x3

)
+ ℓ2

2
∂ 3u(x, t)

∂ t2∂x
(52)

either prescribe
∂u(x, t)

∂x
or prescribe ℓ2

3c2
e

∂ 2u(x, t)
∂x2 (53)

Note that the natural boundary conditions can be expressed in terms of stress-type variables, that is a Cauchy stress
σ as

σ = E
(

ε − ℓ2
3

∂ 2ε
∂x2

)
+ρℓ2

2
∂ 2ε
∂ t2 (54)

where ε = ∂u(x, t)/∂ t is the uniaxial strain, and a higher-order stress τ as

τ = Eℓ2
3

∂ε
∂x

(55)

As regards the non-standard higher-order boundary conditions, most researchers employ homogeneous natural
boundary conditions, that is setting τ = 0. Essential boundaries were analysed in [46], where it was shown that the
boundary conditions of expressions (52) and (53) may result in O(ℓ2) error caused by the presense of boundary
layers in theories with higher-order spacial derivatives. An asymptotic procedure that can reduce this error below
O(ℓ3) is also suggested in [46].

6.1 Special models 1 and 2
Special models 1 and 2 are retrieved from the original model by a specific choice of parameters, without further
manipulations. Thus, the boundary conditions for these two models can be retrieved as well from the boundary
conditions of the original model. Note that there is only one essential boundary condition and only one natural
boundary conditions in these two models, that is, expression (53) does not apply.

6.2 Special model 3
In the formulation of special model 3, a few manipulations have been made by which the boundary conditions are
affected. To find their appropriate format, the weak form of Equations (15–16) is taken, that is

L∫
0

ŵ(x)
(
ℓ2

2

ℓ2
3

∂ 2û(x, t)
∂ t2 −

ℓ2
2 − ℓ2

3

ℓ2
3

∂ 2u(x, t)
∂ t2

)
dx+

L∫
0

∂ ŵ(x)
∂x

c2
e

∂ û(x, t)
∂x

dx =
[

ŵ(x)c2
e

∂ û(x, t)
∂x

]L

0
(56)
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and
L∫

0

w(x)
(
−
ℓ2

2 − ℓ2
3

ℓ2
3

∂ 2û(x, t)
∂ t2 +

ℓ2
2 − ℓ2

3

ℓ2
3

∂ 2u(x, t)
∂ t2

)
dx+

L∫
0

∂w(x)
∂x

(
ℓ2

2 − ℓ2
3
) ∂ 3û(x, t)

∂ t2∂x
dx

=

[
w(x)

(
ℓ2

2 − ℓ2
3
) ∂ 3û(x, t)

∂ t2∂x

]L

0
(57)

where again integration by parts has been applied to terms with spatial derivatives. From the right-hand-sides of
Equations (56) and (57) the boundary conditions are found as

either prescribe û(x, t) or prescribe c2
e

∂ û(x, t)
∂x

= c2
e

(
∂u(x, t)

∂x
− ℓ2

3
∂ 3u(x, t)

∂x3

)
(58)

either prescribe u(x, t) or prescribe
(
ℓ2

2 − ℓ2
3
) ∂ 3u(x, t)

∂ t2∂x
(59)

Note that the two natural boundary conditions of special model 3 together constitute the Cauchy stress as given in
Equation (54), albeit with a different factor accompanying the higher-order inertia term.

Although the model is derived from a format that includes a fourth-order spatial derivative, there are no higher-
order stresses present in this model and expression (53) does not apply. However, it is possible to emulate the
effects of the higher-order stresses by setting a tying between the degrees of freedom û and u. That is, by setting
û(x, t) = u(x, t) on the boundary it is implicitly set through Equation (13) that

ℓ2
3

∂ 2u(x, t)
∂x2 = 0 (60)

on the boundary, which is equivalent to setting the higher-order stress τ equal to zero on the boundary.

6.3 Special model 4
In special model 4, the mechanical equations are treated in two consecutive steps. Firstly, Equation (18) is solved
and it is accompanied by the usual boundary conditions of classical elasticity, that is

either prescribe uc(x, t) or prescribe c2
e

∂uc(x, t)
∂x

(61)

To retrieve the boundary conditions corresponding to the second step, the weak form of Equation (19) is taken.
Integration by parts of the term with spatial derivatives yields

L∫
0

w(x)
(

u(x, t)+
ℓ2

1
c2

e

∂ 2u(x, t)
∂ t2

)
dx+

L∫
0

∂w(x)
∂x

ℓ2
3

∂u(x, t)
∂x

dx =
[

w(x)ℓ2
3

∂u(x, t)
∂x

]L

0
+

L∫
0

w(x)uc(x, t)dx (62)

so that the boundary conditions are found as

either prescribe u(x, t) or prescribe ℓ2
3

∂u(x, t)
∂x

(63)

This model is the only special model to retain all terms that appear in the original model of Equation (9). It is thus
of interest to compare the boundary conditions given through expressions (52–53) with those in expressions (61)
and (63). The first essential and natural boundary conditions in both models are stated in terms of a displacement
and a Cauchy-type stress. However, the second essential boundary condition contains a strain-type variable in
expression (53) in contrast to the displacement variable in expression (63). Similarly, the second natural boundary
condition contains a higher-order stress in expression (53) in contrast to a strain-type variable in expression (63).

Clearly, there is a mismatch between the two sets of boundary conditions. A simple way to amend this is to
take the spatial derivative of Equation (19), that is

ε(x, t)+
ℓ2

1
c2

e

∂ 2ε(x, t)
∂ t2 − ℓ2

3
∂ 2ε(x, t)

∂x2 =
∂uc(x, t)

∂x
(64)

in which the strain ε is the primary unknown. The boundary conditions accompanying Equation (64) are

either prescribe ε(x, t) or prescribe ℓ2
3

∂ε(x, t)
∂x

(65)

which are compatible with those given in expression (53).
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Figure 4: One-dimensional dynamic bar problem — geometry and loading conditions
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Figure 5: Wave propagation simulated with discrete model (solid), model 1 (dotted) and model 2 (dashed) at time
instants 40 s (top) and 80 s (bottom)

7 Examples
In this Section we present a number of results for the different models. The test set-up is depicted in Figure 4,
whereby the length of the bar L = 100 mm. A Heaviside forcing function F of magnitude 1 N was applied. The
values of the internal length scales are specified for each particular example but are taken in the order of magnitude
of 1 mm. In order for numerical dispersion to be negligible compared to material dispersion, the bar is discretised
with 500 linear finite elements and the time step size is ∆t = 0.2 s in the time integration — this concurs with the
recommendations for special model 1 given in [47]. The finite element equations for each special model are given
in Appendix A.

7.1 Comparison of special models 1 and 2 with discrete model
Equations (7) and (8) have been suggested as approximations of Equation (4). It is thus of interest to investigate
to which extent the behaviour of Equation (4) can be captured using the gradient elasticity theories. Special model
1, obtained by setting C1 =

1
12 and C2 = 0, has been proposed in earlier studies [37, 38, 40]. Pichugin et al. argued

that optimal parameter choices are given by C1 =
1
12 and C2 =

1
20 , see [26]. With these parameters, special model

2 is obtained.
An exact solution for the acceleration of particle n in the discrete model according to Equation (4) has been
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Figure 6: Wave propagation simulated with model 3 — microscopic strain (left) and macroscopic strain (right)
across bar for times 20 s, 40 s, 60 s and 80 s. Boundary conditions have not been corrected. Dotted lines indicate
the analytical solution for classical elasticity.

given in [48] and reads

an(t) =
2n−1

t
J2n−1(2t) (66)

where J is the Bessel function of the first kind of order 2n− 1. In Figure 5 this exact solution is compared to the
solutions of special models 1 and 2 for time instants 40 s and 80 s, whereby we have taken a particle spacing
ℓ = 1 mm. Thus, ℓ1 = 0 and ℓ2 = 1/

√
12 mm for model 1, whereas for model 2 we have ℓ1 = 1/

√
20 mm and

ℓ2 =
√

2/15 mm. Generally, there is a good correspondence between the three solutions, especially around the
wave front. Compared to special model 1, special model 2 captures the slow travelling higher frequencies of the
discrete model somewhat better.

7.2 Influence of boundary conditions in models 3 and 4
Next, the importance of using homogeneous higher-order natural boundary conditions is demonstrated for special
models 3 and 4. Whereas models 1 and 2 are found from the original model of Equation (9) through a suitable
selection of values for the various length scales, models 3 and 4 are obtained through a number of mathematical
manipulations. As a result, the natural consistent boundary conditions of models 3 and 4 are different from those
of the original model, although amendments have been suggested in Section 6. These boundary conditions and
their suggested improvement are studied in the same problem as above, whereby the length of the bar L = 100
m, Young’s modulus E = 1 N/m2 and mass density ρ = 1 kg/m3. The length scales ℓ2 = 2 m and ℓ3 = 1 m for
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Figure 7: Wave propagation simulated with model 3 — microscopic strain (left) and macroscopic strain (right)
across bar for times 20 s, 40 s, 60 s and 80 s. Boundary conditions have been corrected by setting û = u. Dotted
lines indicate the analytical solution for classical elasticity.

model 3, while ℓ1 = ℓ3 = 1 m for model 4. The bar is discretised with 200 linear finite elements and for the time
integration a time step size of 0.5 s is used.

Firstly, special model 3 is considered. At the free end, the natural boundary conditions of expressions (58)
and (59) are used, that is ∂ û/∂x = 1 and ∂ 3u/∂ t2∂x = 0. It was suggested in Section 6 to emulate zero higher-
order stresses on the boundary by setting a relation between the microscopic displacement û and the macroscopic
displacement u as û(x, t) = u(x, t). Without this amendment, the microscopic and macroscopic strain profiles as
depicted in Figure 6 are obtained, whereby the two strain fields are plotted along the bar for successive time
instants. It can be seen that the microscopic strain (depicted on the left of Figure 6) attains realistic values at the
boundary where the force is applied. In contrast, the macroscopic strain (depicted on the right) unrealistically tends
to zero at the left end of the bar. If the amendment û(x, t) = u(x, t) is adopted, the results of Figure 7 are obtained.
It can be seen that for this case, the value of the macroscopic strain at the left end is realistic. This demonstrates the
importance of using zero higher-order stress on the boundaries in special model 3. Interestingly, the microscopic
strains are affected as well: compared to Figure 6, the microscopic strains in Figure 7 are much smoother.

Next, special model 4 is considered. For every time step, two sets of equations must be solved consecutively.
The first set of equations are those of classical elasticity, and for the second set two options exist, either in terms
of displacements as in Equation (19) or in terms of strains as in Equation (64). Figures 8 and 9 show the strain
profiles along the bar for successive time instants. The results of Equation (18) are also shown — they do not differ
in the two Figures. Yet again, the importance of using zero higher-order stresses on the boundaries is evident. In
Figure 8 the strains following from Equation (19), and using ∂u/∂x = 0 as a boundary condition, attain unrealistic
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Figure 8: Wave propagation simulated with model 4 — strains for classical elasticity (left) and gradient elasticity
(right) across bar for times 20 s, 40 s, 60 s and 80 s. Boundary conditions have not been corrected. Dotted lines
indicate the analytical solution for classical elasticity.

values at the left end of the bar. In contrast, the strains according to Equation (64), and obtained with the boundary
condition ∂ε/∂x = 0, are realistic as is demonstrated in Figure 9.

7.3 Parameter restriction in model 4
In Section 4 the dispersive properties of the various special models were presented. For model 4, the existence
of two branches prohibits certain combinations of parameters. In particular, ambiguities arise if the two branches

cross. This may happen if ℓ1 > ℓ3, in which case the ambiguous wave number k = 1/
√

ℓ2
1 − ℓ2

3. The corresponding
wave length λ is found as

λ =
2π
k

= 2π
√
ℓ2

1 − ℓ2
3 (67)

Figure 10 shows the strain profile evolution for an admissible set of parameters, that is ℓ1 = 1 m and ℓ3 = 2 m.
Compared to the case ℓ1 = ℓ3 (such as the case depicted in Figure 9), the strain profiles for ℓ3 > ℓ1 are extremely
smooth. However, the situation changes dramatically for an inadmissible set of parameters. In Figure 11 the results
are shown for ℓ1 = 2 m and ℓ3 = 1 m. The response is dominated by a single harmonic, of which the amplitude is
twice the amplitude of the input signal and the wavelength is given by Equation (67) — in this case, λ ≈ 11 m which
is in excellent correspondence with the wave length of the signal observed in Figure 11 (right). This phenomenon
is sometimes denoted “internal resonance” and it is emphasized that its occurrence here is completely unphysical.
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Figure 9: Wave propagation simulated with model 4 — strains for classical elasticity (left) and gradient elasticity
(right) across bar for times 20 s, 40 s, 60 s and 80 s. Boundary conditions have been corrected by using Equation
(64). Dotted lines indicate the analytical solution for classical elasticity.

7.4 Comparison of special models 1–4
Finally, the four special models will be compared against one another. The parameter choice of Figure 2 is adopted
here, that is ℓ1 = ℓ3 = 1 m and ℓ2 =

√
2 m. The same bar problem as above is taken, and in Figure 12 the strain

profiles are depicted for all four models and for time instants t = 40 s and t = 80 s. The most important observation
is the qualitative differences between models 1–3 on the one hand and model 4 on the other hand. The higher
wave numbers are travelling faster in model 4 than in the other models — in fact, they are travelling with virtually
the same velocity as the lower frequencies. Thus, the dispersive properties of model 4 are much less pronounced
than those of models 1–3, as already seen in Section 4. The other three models, special models 1–3, differ mainly
quantitatively from each other. In all these three models, the lower wave numbers travel faster than the higher wave
numbers. The flattening of the wave front is most visible in special model 3.

8 Concluding remarks
We have presented four simplified gradient elasticity models that can be used to simulate dispersive wave prop-
agation. The four models are obtained through specific values of the various internal length scales of a generic
gradient elasticity formulation that contains three higher-order terms: a fourth-order spatial derivative, a fourth-
order time derivative and a mixed fourth-order derivative. The special models are formulated such that they can be
implemented using standard finite element procedures.
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Figure 10: Wave propagation simulated with model 4 — strains for classical elasticity (left) and gradient elasticity
(right) across bar for times 20 s, 40 s, 60 s and 80 s with ℓ1 = 1 m and ℓ3 = 2 m.

The four models have been compared in terms of their dispersive behaviour and whether they fulfil Einstein’s
causality. The dispersive properties of special model 4 are limited in that only the secondary (optical) branch of
the curve frequency versus wave number is dispersive; the primary (acoustical) branch is non-dispersive. The other
three models exhibit realistic dispersion behaviour. Special models 2 and 4 are strictly causal whereas special
models 1 and 3 are not. The causality of the various models is related to the existence of a secondary dispersion
curve; if this secondary, optical branch exists and positive real frequencies are obtained for the limit of infinitely
large wave numbers, then the model is causal. The variationally consistent boundary conditions have also been
presented. For the two special models that are based on a fourth-order spatial derivative (special models 3 and 4),
particular attention has been paid to the higher-order boundary conditions. For both models, straightforward and
simple amendments have been suggested so as to emulate the effects of zero higher-order stress on the boundary.
The importance of such boundary conditions has been demonstrated for both models — failure to impose the
correct boundary conditions leads to remarkably similar unrealistic results in the two models.

A final verdict depends on which property is deemed most important. Special model 1 is the simplest from the
points of view of implementation and formulation of boundary conditions. Special model 2 is to be preferred if
causality is a critical issue. Compared to these two models, special model 3 offers the attractive feature that the
propagation velocity of the higher frequency components can be controlled. Although special model 4 retains all
three length scales that are present in the original formulation, its dispersive properties are minimal compared to
the other three models.
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Figure 11: Wave propagation simulated with model 4 — strains for classical elasticity (left) and gradient elasticity
(right) across bar for times 20 s, 40 s, 60 s and 80 s with ℓ1 = 2 m and ℓ3 = 1 m.
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A Spatial discretisation aspects
All special models have been rewritten as partial differential equations that are second-order in space, hence spatial
discretisation is straightforward. In this section, the spatially discretised systems of equations are treated briefly.

A.1 Special model 1
The spatial discretisation of special model 1 has been treated in [49] and results in[

M0 + ℓ2
2M1

] ∂ 2u
∂ t2 +Ku = f (68)

in which u and f contain the nodal displacements and the externally applied nodal forces, respectively. Moreover,
two mass matrices are defined as

M0 =

L∫
0

NT ρNdx (69)
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Figure 12: Wave propagation simulated with model 1 (dotted), model 2 (solid), model 3 (dash-dotted) and model
4 (dashed) at time instants 40 s (top) and 80 s (bottom)

M1 =

L∫
0

∂NT

∂x
ρ

∂N
∂x

dx (70)

and the stiffness matrix is given through

K =

L∫
0

∂NT

∂x
E

∂N
∂x

dx (71)

A.2 Special model 2
The spatially discretised version of special model 2 is a straightforward extension of Equation (68), i.e.[

M0 + ℓ2
2M1

] ∂ 2u
∂ t2 +

ℓ2
1

c2
e

M0
∂ 4u
∂ t4 +Ku = f (72)

A.3 Special model 3
The spatial discretisation of special model 3 has been treated in detail in [31]; in its final version it reads

ℓ2
2

ℓ2
3

M0 −
ℓ2

2 − ℓ2
3

ℓ2
3

M0

−
ℓ2

2 − ℓ2
3

ℓ2
3

MT
0

ℓ2
2 − ℓ2

3

ℓ2
3

M0 +
(
ℓ2

2 − ℓ2
3
)

M1




∂ 2û
∂ t2

∂ 2u
∂ t2

+

[
K 0
0 0

][
û
u

]
=

[
f
0

]
(73)

where it has been assumed that the same shape functions are used for the interpolation of û and u.
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A.4 Special model 4
Special model 4 consists of two steps. Firstly, the discretised nodal displacements of classical elasticity uc are
obtained from

M0
∂ 2uc

∂ t2 +Kuc = f (74)

Afterwards, this solution is used as input in the second equation by which the gradient-dependent nodal displace-
ments u are found:[

H0 + ℓ2
3H1

]
u+

ℓ2
1

c2
e

H0
∂ 2u
∂ t2 = H0uc (75)

where

H0 =

L∫
0

NT Ndx (76)

H1 =

L∫
0

∂NT

∂x
∂N
∂x

dx (77)

In case the second step of the model is expressed in terms of strains rather than displacements, cf. Equation (64),
the right-hand-side of Equation (75) is replaced by

∫
NT ∂N

∂x dx uc.

B Numerical time integration of special model 2
For the numerical time integration of Equation (11) an extension of the average acceleration variant of the Newmark
scheme is developed. It is assumed that, within the time interval [t, t+∆t] an average value of the nodal fourth-order
time derivatives c can be defined as

cav ≡
1
2
(ct + ct+∆t) (78)

This quantity is then used in successive integration to obtain the nodal third-order time derivatives b, the nodal
accelerations a, the nodal velocities v and, ultimately, the nodal displacements u as

bt+∆t = bt + cav∆t (79)

at+∆t = at +bt∆t +
1
2

cav∆t2 (80)

vt+∆t = vt +at∆t +
1
2

bt∆t2 +
1
6

cav∆t3 (81)

ut+∆t = ut +vt∆t +
1
2

at∆t2 +
1
6

bt∆t3 +
1
24

cav∆t4 (82)
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