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Four-tap shift-register-sequence random-number generators

Robert M. Ziff a!

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136

(Received 16 October 1997; accepted 22 April 1998)

Correlations in the generalized feedback shift-register random-number generator are shown to be
greatly reduced when the number of feedback taps is increased from two to four ~or more! and the
tap offsets are made large. Simple formulas for producing maximal-cycle four-tap rules from
available primitive trinomials are given, and explicit three- and four-point correlations are found
for some of those rules. Several generators are also tested using a simple but sensitive
random-walk simulation that relates to a problem in percolation theory. While virtually all two-tap
generators fail this test, four-tap generators with offsets greater than about 500 pass it, have passed
tests carried out by others, and appear to be good multipurpose high-quality random-number
generators. © 1998 American Institute of Physics. @S0894-1866~98!01704-0#

INTRODUCTION

The ability to efficiently generate random ~or ‘‘pseudoran-
dom’’! sequences of numbers with good statistical proper-
ties is crucial to many problems in computational physics.
Indeed, as ever faster computers allow ever more precise
calculations to be carried out, the demands on the quality of
the generator keeps increasing. Various schemes to gener-
ate random numbers have been developed and extensively
studied over the years—see, for example, the reviews in
Refs. 1–4. Yet, in spite of decades of work, the quality of
random-number generators remains an issue. In this article
we discuss one type of popular generator, the generalized
feedback shift-register ~GFSR! generator, and show that
under certain circumstances it can yield sequences of very
high quality.

The GFSR generator R(a ,b ,c , . . . ) produces pseudo-
random numbers by the linear recursion5–7

xn5xn2a % xn2b % xn2c % . . . , ~1!

where % is the exclusive-or operation ~addition modulo 2!

and a ,b ,c , . . . are the feedback taps. Here the xn are either

single bits or multibit words, in which case the % operation
is carried out bitwise. This recursion was first studied ex-
tensively by Golomb6 in the context of computer science,
where it has many other applications, including cryptology
and error-correcting codes. Its use as a random-number
generator was introduced to the computational physics
community by Kirkpatrick and Stoll,8 who suggested the
two-tap rule R~103,250!, and it became fairly popular due
to its simplicity and generally accepted quality.

However, it is now widely known that such genera-
tors, in particular those with two-tap rules such as
R~103,250!, have serious flaws. Many years ago, Hoogland
et al.9 reported irregularities in an Ising-model simulation
using R~15,127!. Parisi and Rapuano10 showed errors in the
results from a similar generator, R~97,127!. The present

author found problems using R~103,250! in a hull-walk
simulation11 and experimented with an empirical combina-
tion generator.12 Marsaglia2 demonstrated very poor behav-
ior with R~24,55! and smaller generators, and advised
against using generators of this type altogether.

More recently, Ferrenberg et al.13 found that
R~103,250! leads to results more than 100 standard devia-
tions from the true values in Ising-model simulations uti-
lizing the Wolff cluster-flipping Monte-Carlo algorithm.
Coddington14 confirmed this observation with an extensive
study involving a large number of various random-number
generators. Grassberger found striking errors in an efficient
depth-first self-avoiding random-walk algorithm when
R~103,250! was used.15 Vattulainen et al.16 devised a num-
ber of simple tests that clearly show the effective correla-
tions and deficiencies in two-tap GFSR generators. And
very recently, Shchur et al.17 simplified the one-
dimensional Wolff algorithm to a repeating one-
dimensional random-walk test, which they found to clearly
fail when R~103,250! is used.

The basic problem of two-tap generators R(a ,b) is

that they have a built-in three-point correlation between xn ,

xn2a , and xn2b , simply given by the generator itself, such

that if any two of the xn are known, the third follows di-

rectly from the recursion xn5xn2a % xn2b . These correla-

tions extend over the size p5max(a ,b) of the generator
and can lead to significant errors, as shown for example in
a recent study of Schmid and Wilding.18

Other problems with this generator are also known.
Compagner and Hoogland19 have shown how a pattern of
all 1’s in the initialization string leads to complex patterns
of subsequent bits that persists for an unexpectedly long
time. Shchur et al.17 pointed out that for an event that oc-
curs with a probability close to 1 ~such as 31/32!, it is not
too unlikely for 249 successive true outcomes to occur,
which then leads to a serious error at the 250th step when
the R~103,250! generator is used.

For reasons like these, many people have, over thea!E-mail: rziff@umich.edu
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years, advocated using larger tap offset values a ,b , . . . and
increasing the number of those taps from two to four or
more ~they are always even in number for maximal-cycle
generators6!. Compagner and co-workers have considered
generators with offsets as large as 132,049,20 and have pro-
posed combining two generators to effectively make mul-
titap rules.21,22 Heuer et al.23 have also discussed similar
combination generators recently. The advantages of using
larger offsets are well documented; for example, Ferren-
berg et al.13 found the generator R~216,1279! to be nearly
acceptable for their problem, and Coddington14 showed that
R~1393,4423! reduces the error below the measurable limit
for the simulation cutoff that he used. Similar trends were
seen by Compagner and Hoogland19 and by Vattulainen
et al. 16

However, the use of more than two taps has not been
common in practice. One reason is undoubtedly that tables
of primitive polynomials on GF~2! ~the Galois field on bi-
nary numbers! of order higher than three, which are needed
to construct maximal-cycle rules, have been limited ~al-
though some have appeared more recently24,25!, and their
direct determination is a nontrivial exercise in number
theory. Golomb has given a prescription for making new
generators from existing ones based upon sequence
decimation,26 which can be used to construct multitap rules.
In this article, we simplify this procedure by giving explicit
formulas for 3, 5, and 7 decimation of two-tap rules, in
which cases four-tap rules always result. These four-tap
rules generate, in single calls, the same sequences that
come from D decimation of the corresponding two-tap gen-
erators.

It turns out that this decimation procedure has been
frequently employed in a literal sense simply by using ev-
ery Dth call of a given generator. For example, Ferrenberg
et al.13 used every fifth call of the generator R~103,250!,
and found that its problems apparently disappear. Below
we show that this five-call process is equivalent to making
a single call of the four-tap generator R~50,103,200,250!,
and also discuss the inherent four-point correlations that
generator possesses. Coddington14 and Vattulainen et al.16

also utilized this explicit decimation procedure. From a
speed point of view, however, it is clearly advantageous to
use a four-tap rule instead of having to make multiple calls
of a two-tap rule for each random number needed.

Recently some lists of higher-order primitive polyno-
mials have appeared in the literature. Those of André
et al.27 concern relatively small offset values p and have
insufficient cycle lengths. Note that these ~and other! au-
thors advocate using many more feedback taps—of the
order of p/2—which, however, would be impractical for

the large p recommended here. Some larger primitive pen-
tanomials have been given by Kurita and Matsumoto24 and

more recently by Živković,25 but none of these has been
studied in this work, which was carried out mainly during
1992–1994.

The formulas for constructing four-tap generators are
given in Sec. I, along with proofs. In Sec. II, the correla-
tions on smaller generators are found explicitly, and show
that four-tap rules are vastly superior to two-tap rules in
regards to three- and four-point correlations, except for cer-
tain classes of four-tap rules that have more prominent

four-point correlations and therefore should be avoided. In
Sec. III, a new test for random-number generators that
makes use of a kinetic self-avoiding random walk related to
percolation and the lattice Lorentz gas28 is introduced.
While the two-tap and smaller four-tap generators fail the
test, four-tap generators with moderately large offsets pass,
and suggest that with larger offsets, the error should be
nearly unmeasurable. This test is evidently particularly sen-
sitive to the type of asymmetric correlation that occurs with
these generators. Some of these four-tap generators have
also been tested on different problems by Coddington14 and
Vattulainen et al.,16 who confirmed the trends seen here.

I. RULES FOR FOUR-TAP GENERATORS

The taps (a ,b ,c , . . . ) are chosen so that the corresponding

polynomial 11za
1zb

1zc
1 . . . is primitive over GF~2!,

guaranteeing that the cycle length will be the maximum
possible value 2p

21, where p5max(a ,b ,c , . . . ).6,29 Be-
sides giving the maximum possible number of random
numbers before repeating, maximal rules have the advan-
tage that they can be initialized with any sequence ~other
than all zeros!. For two-tap rules, values of a and b can be
found from extensive tables of primitive trinomials.20,30,31

Higher-order polynomials can be generated from these tri-
nomials by using a formal procedure based upon the con-
cept of decimation.6

In D decimation, every Dth term of a given sequence
is selected to produce a new sequence. The resulting se-
quence also satisfies a recursion like ~1!, corresponding to a
polynomial of order p , although the number of taps is in
general different. For some special cases, we have found
simple formulas that give four-tap rules directly. Before
deriving them, we first introduce the following alternate
notation for the recursion ~1!: Let @a ,b ,c , . . . # indicate

that the xn satisfy the relation

xn2a % xn2b % xn2c % . . . 50 ~2!

for all n . Thus, @0,a ,b# is an equivalent way to write R

(a ,b). These relations satisfy some obvious properties: If

@a ,b ,c . . . # is satisfied on a given sequence, then @a

1k ,b1k ,c1k . . . # will also be satisfied for any k on that

sequence ~shift operation!. Furthermore, if both @a ,b , . . . #

and @a8,b8, . . . # are satisfied, then their union or sum

@a ,a8,b ,b8, . . . # will also be satisfied ~addition property!.
Finally, if an offset occurs twice in the list, then it can
be eliminated, because x i % x i50: @a ,b ,b ,c , . . . #

5@a ,c , . . . # .
When a shift-register sequence is decimated by any

power of 2, the original sequence is reproduced exactly,
only shifted.6 To prove this, let us consider the sequence
generated by R(a ,b)5@0,a ,b# . By the shift property,

@a ,2a ,a1b# and @b ,a1b ,2b# are also satisfied on this se-
quence. Adding these three relations together yields

@0,a ,a ,b ,b ,a1b ,a1b ,2a ,2b#5@0,2a ,2b# , which implies
that every other term in the original sequence satisfies

@0,a ,b# . Thus, it follows that the original sequence and the
2-decimated sequence are identical. Because the decima-
tion wraps around the entire sequence, which is odd in
length, the decimated sequence is of the same maximal
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length as the original sequence. This proof can be easily
generalized for any ~even! number of taps, and decimation
by any power of 2.

When decimation is done by a number D that is not a
power of 2, however, a new sequence representing a differ-
ent rule will, in general, be produced. While in general the
resulting number of taps varies and may be large, it turns
out that four-tap rules always result when a two-tap rule R
(a ,b) is decimated by D53, 5, and 7. Those four-tap rules
are given explicitly by the following formulas:

R~a ,b !33

5H R~a ,a/3,2a/3,b ! 3ua , ~3a!

R~a ,~2a1b !/3,~a12b !/3,b ! 3u~a2b !, ~3b!

R~a ,b !35

55
R~a ,a/5,4a/5,b ! 5ua , ~4a!

R~a ,~4a1b !/5,~a14b !/5,b ! 5u~a2b !, ~4b!

R~a ,~a1b !/5,2~a1b !/5,b ! 5u~a1b !, ~4c!

R~a ,~3a1b !/5,~a12b !/5,b ! 5u~2a2b !, ~4d!

R~a ,b !37

5H R~a ,~a1b !/7,3~a1b !/7,b ! 7u~a1b !, ~5a!

R~a ,~5a1b !/7,~a13b !/7,b ! 7u~2a2b !, ~5b!

where Dua indicates that a is divisible by D (D divides a).

The remaining cases follow by switching a and b in the

various formulas—for example, when 2b2a is divisible by

D , then a and b must be switched in ~4d! and ~5b!. Formu-

las for 7ua and 7u(a2b) are not listed because these cases
do not exist for primitive trinomials.

We deduced these decimation formulas by examining
specific examples using both Golomb’s methods6,26 and a
numerical search procedure. We then verified the formulas
by applying the shift and add properties given above.

For example, consider the case of ~3a!. Shifting

@0,a ,b# by b , 2a , 2b and a1b , respectively, yields the fol-
lowing five relations:

@0,a ,b# original rule,

@b ,a1b ,2b# original rule shifted by b ,

@2a ,3a ,2a1b# original rule shifted by 2a ,

@2b ,2b1a ,3b# original rule shifted by 2b ,

@a1b ,2a1b ,2b1a# original rule shifted by a1b .

Summing these and canceling out common terms yields

@0,a ,2a ,3a ,3b# .

The final relationship ~a five-point correlation! holds for
any rule R(a ,b). However, when a is divisible by 3, then
all five elements are divisible by 3, so it follows that the
3-decimated sequence satisfies @0,a/3,2a/3,a ,b# or the rule

R(a/3,2a/3,a ,b) as given in ~3a!.

Likewise, for ~3b!, sum

@0,2a ,2b# , 2-decimated rule,

@2a ,3a ,2a1b# , original rule shifted by 2a ,

@2b ,2b1a ,3b# , original rule shifted by 2b ,

to find

@0,3a ,2a1b ,a12b ,3b# ,

which implies ~3b! when 2a1b and a12b are both divis-

ible by 3, which occurs when a2b is divisible by 3. For

primitive trinomials, it is always true that either a , b , or

a2b is divisible by 3,6 so ~3! contains all cases. Proofs for
5 and 7 decimation are similar. Note that decimations by
more than 7 ~and not a power of 2! do not, in general, give
four-tap rules but, rather, ones having many more taps. In
this regard, D53, 5, and 7 appear to be special cases.

Using the above formulas with a and b taken from
existing tables of primitive trinomials,20,31 we can find nu-
merous four-tap generators. However, some of these gen-
erators will not be of maximal-cycle length. In order that
the cycle of the decimated sequence be the same as that of
the original sequence, it is necessary that D and 2p

21 have
no common divisors. This requirement is satisfied for 3
decimation when p mod 2Þ0, for 5 decimation when p

mod 4Þ0, and for 7 decimation when p mod 3Þ0. ~On
the other hand, when these conditions are not satisfied, the
cycle length is less than the maximum by a factor of 3, 5, or
7 and is therefore still enormous when p is large, so this
criterion may not be that significant.! An additional crite-
rion for selecting rules to decimate, dealing with four-point
correlations, will be discussed below.

II. CORRELATIONS

The relation @a ,b ,c , . . . # represents a correlation among

the points xn2a , xn2b , xn2c , . . . . These are very strong

correlations; for example, @0,a ,b# , implies that if any two

of xn ,xn2a , and xn2b are known, then the third is com-
pletely determined, as mentioned above. The sequences
generated by ~1! are literally laced with such correlations.
First of all, the basic correlation is given by the defining
rule itself, R(a ,b ,c , . . . ), in that @0,a ,b ,c , . . . # is satisfied

for each n . Then there is also a whole spectrum of three-
point correlations in the system: By the so-called ‘‘cycle
and add’’ property,6,19 there exists an s such that @0,r ,s# is

satisfied for each value of r51,2,3, . . . 2p
21. The value of

max(r ,s) is typically on the order of 2p/2 to 2p when the
defining rule is a pentanomial or higher. However, when
the defining rule is a trinomial R(a ,b), s will be of the

order p for r5a , b , 2a , 2b , 4a , 4b , etc. These closely
spaced three-point correlations interact to form numerous
closely spaced four-point, five-point, and higher correla-
tions, which are unavoidable when two-tap rules are cho-
sen.

For most applications, correlations in a random-
number sequence involving the fewest number of points
will undoubtedly be the most serious. For example, if a
kinetic random walk returns to the same region in space at
steps n , n2a and n2b for some n , then its behavior would
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be strongly affected by the three-point correlation @0,a ,b#
in the random-number sequence. Higher correlations would
correspond to more coincidences in the motion of the walk
and should therefore be less likely. It is thus reasonable to
assume that the reduction of three-point correlations is most
important, followed by four-point correlations, and so on.

Using a four-tap rule R(a ,b ,c ,d) immediately elimi-

nates the overriding three-point correlation @0,a ,b# inherent

in a two-tap rule R(a ,b), and the remaining three-point
correlations ~which still exist! are widely spaced as men-
tioned above. The four-point correlations of a four-tap rule
are also generally widely spaced. An exception occurs
when the four-tap rule follows from a D decimation of a

two-tap rule R(a ,b) and a , b , or a2b is divisible by D . In
this case, the correlation offsets are small and can be de-
rived explicitly. For example, the 3 decimation of R(a ,b)

yields @0,a/3,2a/3,a ,b# according to ~3a!. By shifting this

five-point correlation by a/3 and adding, one finds the four-
point correlation

@0,a/3,2a/3,a ,b#1@a/3,2a/3,a ,4a/3,a/31b#

5@0,4a/3,b ,a/31b# . ~6!

The spread of this correlation is of the order of p , not

2p. Such a four-point correlation in R~38,89!33
5R~38,55,72,89! ~where 89238 is divisible by 3! was ob-
served in Ref. 17. A similar result holds for the 5-
decimation rules ~4a! and ~4b!. To avoid these relatively
closely spaced four-point correlations, all 3 decimations
~3!, and the 5 decimations of cases ~4a! and ~4b!, should
not be used. These cases will not be investigated below,
except for the rule R(103,250)355R(50,103,200,250)
which was considered in Ref. 13. Here, 250 is divisible by
5, and as a consequence this rule possesses the relatively
closely spaced four-point correlation @0,309,359,800#.

For generators produced by other rules, it appears that
the correlations can only be found by a search procedure, in
which a long sequence of bits is generated, and possible
correlations are checked exhaustively. To make this proce-
dure feasible for larger p , we made a list of up to 221 32-bit
subsequences and sorted them with keys pointing to their
location in the sequence, which made it possible to quickly
find if a subsequence generated by a trial correlation occurs
in the original sequence. Details will be presented else-
where. This procedure turned out to be practical for finding
three- and four-point correlations for p up to about 50,
which would be impossible by a simple brute-force search.

Some representative results from this search are given
below. Each line shows, respectively, the way the rule was
generated from the two-tap rules of Ref. 31, the equivalent
four-tap rule from ~4! or ~5! ~which also represents the
smallest five-point correlation @0,a ,b ,c ,d# in the se-
quence!, and the smallest four- and three-point correlations
found by the search. These results are

R~5,17!375R~5,6,8,17!)5@0,77,79,101#5@0,67,83# ,
~7a!

R~5,23!375R~4,5,12,23!

5@0,13,50,421#

5@0,1153,4933# , ~7b!

R~3,31!355R~3,8,13,31!

5@0,87,199,397#

5@0,30 189,34 284# , ~7c!

R~6,31!375R~6,7,23,31!

5@0,40,623,2216#

5@0,14 487,101 088# , ~7d!

R~8,39!375R~8,9,29,39!

5@0,111,1072,7006#

5@0,172 074,758 257# , ~7e!

R~3,41!375R~3,8,18,41!

5@0,4280,6131,8713#

5@0,351 102,1 716 109# , ~7f!

R~20,47!375R~20,21,23,47!

5@0,33 579,138 448,150 900#

5@0,8 474 125,11 136 544# , ~7g!

R~21,47!355R~21,22,23,47!

5@0,63 608,148 485,156 350#

5@0,11 941 097,13 215 912# . ~7h!

Thus, for example, the four-tap rule R~5,6,8,17! generates a
series that has the three-point correlation @0,67,83#, four-
point correlation @0,77,79,101#, as well as the inherent five-
point correlation @0,5,6,8,17#. Note that the two-tap rule
R~67,83! corresponding to this three-tap correlation can
only be used to generate the sequence produced by R
(5,6,8,17) if it is started up correctly with the 83 bits from
the latter’s sequence, because the sequence generated by R
(5,6,8,17) is only one of many cycles of the nonmaximal

rule R(67,83). Therefore, the correlations in brackets, such
as @0,67,83#, should not be interpreted as suggested rules
for random-number generators.

The above results clearly show that the separation in
the three-and four-point correlations increases rapidly as p

increases. In fact, the extent of the smallest three-point cor-
relation appears to grow roughly as 2p/2, and the extent of

the smallest four-point correlations as 2p/3. Clearly, for

larger p , such correlations will be irrelevant, and the most
important correlations in four-tap rules will be the five-
point correlations generated by the rule itself.

Additional maximal length rules can be generated by
Golomb’s method of repeated 3 decimation.26 ~Indeed, for
some cases of p , repeated 3 decimation of a single
maximal-length rule yields the complete cycle of all pos-
sible maximal-length rules.! For comparison, we have stud-
ied the behavior of some of these other rules. We found
that, for a given p , the three- and four-point correlations are
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roughly equivalent to the correlations found in simple 5-
and 7-decimation rules. For example, for the four-tap rule
R(23,27,40,41), found by successively 3-decimating

R(3,41) 107,005,025 times—equivalent to decimating once

by 3107,005,025 mod (241
21)51,962,142,349,662—we find

R~3,41!31,962,142,349,662

5R~23,27,40,41!

5@0,20 573,22 443,25 575#

5@0,429 959,1 013 792# , ~8!

which may be compared with ~7f!. Six-tap rules with p

541 were found to possess similar three- and four-point
correlations.

Some rules that follow from ~4b!, ~4c! and ~5! for
larger offsets p are given by

R~38,89!355R~33,38,61,89!, ~9a!

R~11,218!375R~11,39,95,218!, ~9b!

R~216,1279!355R~216,299,598,1279!, ~9c!

R~216,1279!375R~216,337,579,1279!. ~9d!

R~471,9689!355R~471,2032,4064,9689!, ~9e!

R~471,9689!375R~471,1586,6988,9689!. ~9f!

R~33 912,132 049!35

5R~33 912,46 757,59 602,132 049!,
~9g!

R~33 912,132 049!37

5R~33 912,43 087,61 437,132 049!.
~9h!

The offset values of the three- and four-point correlations
for these rules are greater than can be found by our search
program and are presumably immense, judging by the
trends seen in ~7!. To assess the quality of these generators,
we turn to a test based upon a problem from percolation
theory.

III. TEST ON THE RANDOM-WALK PROBLEM

The test we use is shown in Fig. 1. A walker starts at the
lower left-hand corner of a square lattice, and heads in the
diagonal direction toward the opposite corner. At each step
it turns by 90° either clockwise or counterclockwise. When
it encounters a site it had never visited before, the walker
chooses which direction to turn with a 50–50 probability,
while at a site that has been previously visited, it always
turns so as not to retrace its path ~a so-called kinetic self-
avoiding trail on a square lattice!. The boundary of the
lattice is a square; the lower and left-hand sides are reflect-
ing, while the upper and right-hand side are adsorbing.
Clearly, by the perfect symmetry of the problem, the
walker should first reach either the top or the right-hand
sides with equal probability. We will see, however, that not
all these random-number generators yield this simple result.

It turns out that this walk is precisely the kinetic self-

avoiding walk that generates the hull of a bond percolation
cluster at criticality. The lattice vertices visited by the walk
are located at the centers of the bonds, and the two choices
correspond to placing either a bond on the lattice or one on
the dual lattice across that vertex point. The probability of
reaching the upper side first corresponds to the crossing
probability of a square, which is exactly 1/2, with no finite-
size corrections for this particular system ~bond percolation
on a square lattice!.32–34 The walk is also identical to a
lattice-Lorentz gas introduced by Ruijgrok and Cohen28

with randomly oriented mirrors, to motion through a sys-
tem of rotators as in the model of Gunn and Ortuño,35 and
to paths on the random tiling of Roux et al.36 Note that this
test is an actual algorithm that has been used in percolation
studies;34,37,38 it is not a ‘‘cooked-up’’ problem designed
specifically to reveal flaws in a specific random-number
generator.

Using this procedure, we tested a variety of genera-
tors, including the two-tap generators R~11,218!, R~103,
250!, R~216,1279!, R~576,3217!, and R~471,9689!, the
four-tap generators R~20,27,34,41!, R~3,26,40,41!, R~1,
15,38,41!, R~1,3,4,64!, R~33,38,61,89!, R~11,39,95,218!,
R~50,103,200,250!, R~216,337,579,1279!, and R~471,
1586,6988,9689!, and the six-tap generators ~determined
through successive 3 decimation26! R~1,5,8,30,35,41!,
R~5,14,20,36,37,41!, and R~18,36,37,71,89,124!. Between
100,000 and 2,000,000 trials were simulated with each
generator, implying a statistical error of about 60.001 in
the crossing probability. The lattice was 409634096, and
intermediate results for squares of side L564, 128,
192, . . . ,4032 were also recorded. Figures 2 and 3 show
the fraction of walks that first arrived at the upper boundary
in each of these runs as a function of L . Clearly, some
generators are very bad; for example, with the notorious
R~103,250!, the top of the 409634096 square was reached
only 33% of the time! This error clearly cannot be statisti-
cal in origin; in fact, it is about 180 times the standard

Figure 1. The random-walk algorithm used to test the random numbers

shown for a system of size L54. The test is whether the walker, which

turns 90° to the left or right with equal probability at each newly visited

site, first reaches the right or the top with equal probability. The left and
bottom sides are reflecting.
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deviation s50.001. All of the smaller two-tap generators

are poor, and even the largest one ~with p59689) is barely

within two standard deviations at L54096.

The four-tap generator with p589, on the other hand,

begins to show deviations at large L , and the generator with

p5218 shows no visible deviations at all in this work.

~However, in more recent tests of 108 runs on a lattice of

size 2563256, we found some error creeping in for

R~11,39,95,218!, with the crossing probability at L5256

given by 0.500 3060.000 05.37! Clearly, as p is increased,
more random numbers need to be generated before the er-

rors can be seen. For four-tap rules with p larger than about

Figure 2. Plot of the probability of the walk reaching the top of an L3L system vs L, showing large deviations from the expected value of 1/2 for many

of the generators.

Figure 3. Central portion of Fig. 1 expanded vertically.
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500, deviations in this test should be nearly impossible to
uncover with present-day computers.

There are a number of interesting and puzzling aspects
of these results. Evidently, two-tap generators give low re-
sults, four-tap generators give high results, and six-tap ones
again give low ones. The supposedly bad generator R~50,
103,200,250!, with its strong four-point correlations men-
tioned above, actually yields excellent results. Finally, the
generators R~3,26,40,41! and R~1,15,38,41! are mirrors of
each other, and so have identical ~but mirrored! correlations
of all points, and yet lead to noticeably different behavior.
The explanation of these intriguing phenomena is a subject
for future research. One might also investigate whether the
choice to grow a new hull immediately after the previous
one is completed, without any gap in the random-number
sequence, has any bearing on the results.

Note that the plots in Figs. 2 and 3 are nearly, but not
quite, linear. In fact, one can argue that the deviation must
grow with a power of L that is less than or equal to 7/8.

For, say the error is proportional to Lx with increasing L .
This error will first be noticeable when the number of runs

N runs satisfies N runs
21/2;Lx or N runs;L22x. Because the path

of the walk is a percolation hull, which has a fractal dimen-
sion of 7/4,39 it follows that the number of random numbers
generated per run grows as L7/4. Thus, the total number of
random numbers needed in order that the error can be ob-
served grows as ;L7/422x. Now, the exponent in this ex-
pression cannot be negative, since that would imply that
going to an infinite system would allow the error to be
found with essentially no work. So we deduce x<7/8. Nu-

merically, a value of about x50.7 seems to give the best fit

to the data in Fig. 2. That x is less than 7/8 implies that
doing more runs on a smaller lattice, rather than fewer runs
on a larger lattice, is actually a more efficient way to un-
cover the errors in these generators, to the extent that the
power-law behavior Lx holds for small L .

Because this test is completely symmetric, the errors
seen here highlight the fundamental asymmetry of the
GFSR generator. Indeed, the basic exclusive-or operation
has an inherent asymmetry to it, since two 0’s or two 1’s
both result in a 0. For a correlation @0,a ,b# , the three points

xn , xn2a , and xn2b can have only the values ~0,0,0! and
~0,1,1! ~and permutations! that are clearly not symmetric in
1’s and 0’s. ~This asymmetry is not in the total abundance
of 0’s and 1’s, which are equally probable, but in their
correlations.! Another way of demonstrating this asymme-
try is to note that changing 1’s to 0’s and 0’s to 1’s in the
initial seed sequence does not result in the complementary
sequence being generated. Likewise, complementary subse-
quences are not equally likely.

Tests were also carried out using 31- and 48-bit linear
congruence generators, and no errors were found. Evi-
dently, congruence generators have a symmetry such that
complementary subsequences are generated with equal
probability, which guarantees that the probability of reach-
ing the top is exactly 1/2. This result underscores the re-
striction that the test used here is not a definitive one, and
does not uncover all errors in a random-number
generator—as indeed no test does. It is necessary to use a
battery of tests, as was done in Refs. 14 and 16. Both of
those works included some of the four-tap generators we

proposed, and both confirmed excellent behavior when p is
large.

IV. CONCLUSIONS

Clearly, all GFSR random-number generators will eventu-
ally show detectable errors if a sufficiently long run is
made. However, when the four-tap generators with p

greater than about 500 is used, the amount of computer
time that would be needed to uncover those errors would be
prohibitive. The three- and four-point correlations of these
generators are projected to be spread very far apart. Thus,
such large four-tap generators appear useful as high-quality
~pseudo-! random-number generators.

Two-tap generators, in contrast, do not pass the test
carried out here, except perhaps those with the largest tap
offsets. Thus, for critical applications, all two-tap genera-
tors, not just R~103,250!, should be avoided. This includes
all the two-tap generators discussed in Knuth’s book,1 for
example.

If a problem is sensitive to the built-in five-point cor-
relations of a four-tap generator, then a higher number of
taps should be used. For this, the combination generators
like those discussed by Compagner21,22 and Heuer et al.23

should be useful.
In spite of their known correlations as discussed here,

there are many reasons that GFSR random-number genera-
tors remain of interest. In contrast to some combination
generators, they are clean and well characterized; a large
body of fundamental theory on their properties has been
produced ~i.e., in Ref. 4!. Even with four taps, they remain
fast and easy to program. Each bit is entirely independent,
which is not the case for linear congruence generators or
‘‘lagged-Fibonacci’’ generators with addition or multiplica-
tion. Although they require storing a long list to obtain
good behavior, the memory requirements are not a problem
for present-day computers.

Over the last 10 years, we have carried out extensive
simulations on a variety of problems in percolation and
interacting particle models using the four-tap generators de-
rived here. Our earlier work40 made use of R~157,314,471,
9689!, which derives from R~471,9689!33; in more recent
work 34,37,41,42 we switched to the 7-decimation generator
~9f!, because of the inherently strong four-point correla-
tions in 3-decimation rules as discussed above—although
in fact we never observed any problem with R~157,314,
471,9689!, presumably because of its large offset p

59689. In this work we often made checks with exact re-
sults when available, and never found any indication of
bias. In a recent paper determining the bond percolation
threshold for the Kagomé lattice,41 we also checked the
results of using R~471,1586,6988,9689! against runs using
a 64-bit congruential generator, as well as the 3 decimation
of R~471,1586,6988,9689! @thus equivalent to R(471,

9689)321], and found complete consistency throughout.
In closing, we give an explicit example of the genera-

tor, written in a single line of the C programming language.
It makes use of the define statement, which produces in-text
substitution during the precompiling stage, so that no time
is lost in a function call:
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#define RandomInteger (11nd, ra[nd & M] 5 ra[(nd-A) & M] \

^ ra[(nd-B) & M] ^ ra[(nd-C) & M] ^ ra[(nd-D) & M])

The generator is called simply as follows

if(RandomInteger,prob) . . .

where, for rule ~9f!, for example, A5471, B51586,
C56988, D59689; and M516383 ~defined as constants!, ra

is an integer array over 0..M that is initialized using a stan-
dard congruential random number, nd is its index ~an inte-
ger!, & is the bitwise ‘‘and’’ operation, and ^ is the bitwise
‘‘xor’’ operation. ‘‘Anding’’ with M effectively causes the
numbers to cycle endlessly around the list, when M11 is
chosen to be a power of 2 as above. The list in this example
requires 64 kbytes of memory ~16,38434!, if 32-bit ~4-
byte! integers are used. Here, prob is the probability of the
event occurring, converted to an integer in the range of 0 to
the maximum integer. A floating-point number can also be
produced by dividing RandomInteger by the maximum in-
teger ~which depends upon the number of bits in ra!, but
this added step consumes additional time. Generating a ran-
dom integer with this program takes about 50 ns on an HP
9000/780 workstation—a billion in less than a minute—and
about 140 ns on a Macintosh 266-MHz G3 personal com-
puter.
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