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Abstract
For Landau-quantized graphene, featuring an en-
ergy spectrum consisting of a series of nonequidis-
tant Landau levels, theory predicts a giant
resonantly-enhanced optical nonlinearity. We ver-
ify the nonlinearity in a degenerate time-integrated
four-wave mixing (FWM) experiment in the mid-
infrared spectral range, involving the Landau lev-
els LL−1, LL0 and LL1. A rapid dephasing of the
optically induced microscopic polarization on a
timescale shorter than the pulse duration (∼4 ps)
is observed, while a complementary pump-probe
experiment under the same experimental condi-
tions reveals a much longer lifetime of the induced
population. The FWM signal shows the expected
field dependence with respect to lowest order per-
turbation theory for low fields. Saturation sets in
for fields above ∼ 6 kV/cm. Furthermore, the res-
onant behavior and the order of magnitude of the
third-order susceptibility are in agreement with
theoretical calculations.
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The linear dispersion of graphene results in
highly nonlinear optical properties in a wide spec-

tral range from THz frequencies to visible light.
The third-order nonlinear optical response has
been investigated theoretically, both on a semiclas-
sical and a fully quantum mechanical basis1,2. In
the latter case, in particular the four-wave mix-
ing (FWM) process is addressed. Experimen-
tally FWM signals have been observed in the
near-infrared spectral range3–5. At THz frequen-
cies, however, only pump-probe signals, but no
FWM signals have been found6. When a mag-
netic field is applied perpendicular to the graphene
layer the linear dispersion of graphene breaks up
into a series of non-equidistant Landau levels7.
This offers the possibility to resonantly enhance
the nonlinear-optical response and to tune the res-
onance frequency by adjusting the strength of
the magnetic field. Recently, a giant nonlinear-
optical response has been predicted for Landau-
quantized graphene8,9. In this letter we present
the first experimental investigation of this effect by
studying transient-degenerate FWM. To this end,
the LL−1 → LL0 and LL0 → LL1 transitions
are excited resonantly with radiation at 19 THz
(78 meV). The experimental findings are in good
agreement with our theoretical calculations based
on the density-matrix formalism.

A multilayer epitaxial graphene sample (∼ 50
layers) produced by thermal decomposition of SiC
on the C-face of 4H-SiC10 is used in the experi-
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Figure 1: Experimental setup: The movable aper-
ture (MA) is used for selecting the the FWM signal
in direction 2~k2 − ~k1 or to measure a pump-probe
signal in ~k1 direction with the MCT detector.

ments. The majority of layers is slightly n-doped
and only the layers at the interface to SiC exhibit
a stronger doping and are therefore transparent at
the used photon energy of 78 meV and a magnetic
field of 4.5 T11. The sample is kept in a split-pair
superconducting magnet and the sample temper-
ature is held at 10 K in a cold helium gas atmo-
sphere. The core of the experimental setup is de-
picted in Figure 1. The laser pulses from the free-
electron laser FELBE (photon energy of ∼78 meV)
are split into two separate paths and are focused
with an off-axis parabolic mirror onto the sample
inside the magneto cryostat. A time delay ∆t be-
tween the two pulses can be controlled with a mo-
torized delay stage (not shown). The beams in
direction ~k1, ~k2 and the FWM signal in direction
2~k2 − ~k1 are all collimated by a second parabolic
mirror. A movable aperture is used to select, which
beam is detected by the nitrogen cooled mercury-
cadmium-telluride (MCT) detector. The signals
are amplified with a lock-in amplifier using a dou-
ble modulation technique based on the modula-
tion of both incident beams by a dual-slot chopper
plate.

If the sample is brought into a magnetic field
of around 4.5 T with a direction orthogonal to the
surface, the band structure of graphene breaks up
into a system of Landau levels and the LL−1 →

LL0 and LL0 → LL1 transitions become resonant
with the photon energy of 78 meV. For the almost
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Figure 2: a) The magnetic field of 4.5 T leads
to a Landau-quantization in the graphene sam-
ple, whereas the transition from LL−1 (LL0) to
LL0 (LL1) is resonant to the photon energy of
78 meV. b) The transient change in population is
recorded by a degenerate pump-probe experiment,
measuring the transient change of transmission of
~k1 (field: 6 kV/cm) caused by the absorption of ~k2

(field: 12 kV/cm). c) The microscopic polariza-
tion is probed by detecting the FWM signal 2~k2−~k1

at the same incident fields. The grayish curves
show the autocorrelation of the Laser pulses cal-
culated from spectra.

intrinsic graphene layers LL−1 is fully occupied,
LL0 close to half filling and LL1 is completely
empty. In detail, we expect the filling of the zeroth
Landau-level to be in the order of 0.52 at this mag-
netic field, based on transmission measurements
with circular polarized light. In this work both
incident pulses are linearly polarized in the same
direction. Thus, the excitation of both transitions
is possible as indicated in Figure 2 a). The tran-
sient change in transmission ∆T/T0 of the sample
due to strong optical excitation is depicted in Fig-
ure 2 b). For this kind of measurement the mov-
able aperture is set to transmit the ~k1 beam and
the transient change in transmission of this beam
caused by the absorption of photons from the ~k2

beam is recorded. The pump-probe signal features
a fast decay and a slower component in the order
of several tens of picoseconds. Recent studies al-
ready gave first insight into the population dynam-
ics of this system12–15. In particular a rapid (faster
than pulse duration of 4 ps) depopulation of an op-
tically pumped level via Auger scattering has been
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observed15. This Coulomb process leads to a fast
thermalization of electrons. The slower timescale
of the decay is attributed to cooling of the elec-
tronic system via phonon scattering.

While the pump-probe signal corresponds
mostly to Pauli blocking and reveals the dynam-
ics of the excited population, the FWM signal is
sensitive to the induced polarization in the sample.
The decay of the microscopic polarization is gov-
erned by both the relaxation of the population and
by pure dephasing processes. In our experiment,
we trace the process where the ~k1 beam induces
a polarization in the sample. The ~k2 beam cre-
ates, after the time delay ∆t, a polarization grating
and a part of it is diffracted under momentum and
energy conservation bounding conditions into di-
rection 2~k2 − ~k1. Figure 2 c) depicts the FWM
signal at the very same experimental conditions as
for the pump-probe signal in Figure 2 b). Compar-
ing both types of signals one can see some clear
differences. The FWM signal is basically symmet-
ric apart from a small artifact, namely a baseline
offset at negative delay times, which stems from
pump-probe signals that are scattered as stray light
into the detector. Note, that we chose to invert the
time delay ∆t for the FWM signal in Figure 2
c).to satisfy the inverted time logic of the two ex-
periments. Whereas the beam in ~k2 direction is
considered as fixed in our pump-probe measure-
ments, contrastingly, in the FWM experiment the
beam in ~k1 direction defines the time zero. The
FWM signal is only present during the temporal
overlap of the pulses, indicating that the dephasing
time is considerably shorter than the temporal res-
olution of our experiment set by the pulse duration
of around ∼4 ps. This result, together with the pre-
vious detailed study of the population dynamics15,
suggests that Auger processes within the LL−1,
LL0 and LL1 subset of Landau levels cause a rapid
dephasing of the microscopic polarization.

Next, we investigate the dependence of the
FWM process on the electric fields of the beams
in ~k1 and ~k2 direction. The electric field of the gen-
erated FWM signal can be estimated from the in-
duced third-order polarization, which depends on
the third-order nonlinear surface (2D) susceptibil-
ity χ(3) (in SI units), as:

|~EFWM | '
ω

2c
|χ(3)E2(~k2)E(~k1)|. (1)
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Figure 3: Saturation behavior of the four wave
mixing signal: a) The field of beam one is kept at
6 kV/cm, while the field from beam two is varied.
b) Both fields are varied while keeping a constant
ratio of 2.

Here ω is the frequency and E(~k1) and E(~k2) the
fields of the incident beams, and c the velocity of
light. The surface susceptibility χ(3) for this pro-
cess is a function of the magnetic field and the pho-
ton energy itself. We will have a closer look on this
in the next section. Eq 1 indicates that the FWM
field scales linearly the field of the beam in direc-
tion ~k1 and quadratically with the field of the beam
in direction ~k2. Thus, if the field of both beams is
tuned simultaneously, the FWM field should scale
cubically. For a variety of different field combina-
tions of the two incident beams FWM transients
were recorded and the maxima of the transients
were extracted. The incident peak fields were de-
termined from the measured power, spot size and
pulse duration. To determine EFWM one has to con-
sider the losses at the movable aperture and the
calibration of the MCT detector additionally. Note
that the inaccuracy of this procedure has no influ-
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ence on the the determination of the scaling behav-
ior of the FWM field with the incident fields. The
quantitative values of the FWM field, however, are
expected to be accurate only within one order of
magnitude. The FWM peak fields are plotted in
Figure 3 as a function of the peak field of the beam
in direction ~k2 beam. Figure 3 a) shows the field
dependence when the field of the ~k1 beam is kept
constant at 6 kV/cm and only the field of the ~k2

beam is varied. Linear and quadratic power laws
are indicated by the dotted red and blue dashed
line, respectively. The three lowest data points are
in agreement with a quadratic dependence. Note
that in the case of a pump-probe signal one would
only expect a linear scaling of the signal. This,
together with the different temporal shapes of the
signals (cp. Figure 2), allows one to clearly iden-
tify the FWM signal and distinguish it from po-
tential stray pump-probe signals. Nevertheless, a
clear saturation is noticeable in the measured field
regime. A deeper analysis of saturation effects is
beyond the scope of this work. However, in ref 9
saturation fields are calculated for FWM processes
with a different level scheme in Landau-quantized
graphene under continuous excitation. Despite the
differences of the processes evaluated in this work
and in ref 9, the reported saturation behavior can
serve as an estimation for the order of magnitude
of the saturation field. For a magnetic field of 4.5 T
and a dephasing time of 190 fs (this value is dis-
cussed later in this letter) the saturation field is in
the order of 4 kV/cm, which is qualitatively con-
sistent with the experiment, where a deviation of
the square root dependence is observed for fields
higher than 6 kV/cm.

In accord with the consideration that two pho-
tons of the beam in ~k2 direction interact with one
photon of the beam in ~k1 direction it is reasonable
to choose a ratio of the two fields of E2/E1 ≈

√
2.

The strength of the FWM signal for this constant
ratio is depicted Figure 3 b). Again the straight
lines represent different power laws. The data
points do not follow the green line that represents
the expected cubic dependence of this case. How-
ever, the dependence is found to be superquadratic
for the low fields. The observed saturation is not
surprising. From Figure 3 a) one can see that at
the measured fields already the parabolic depen-
dence on E2 saturates. Saturation naturally occurs

faster if both fields are varied. It was not possible
to achieve a sufficient signal-to-noise ratio at lower
fields to clearly demonstrate the cubic dependence.
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Figure 4: Linear absorption (red triangles)and
maxima of FWM mixing signals (blue squares) for
different magnetic fields. The field of beam two is
12 kV/cm and beam one 5.3 kV/cm. The blue line
shows the calculated magnetic field dependency of
the χ(3) process. The inset shows a Lorentzian fit to
the linear absorption spectra at 4.5 T to determine
the line broadening.

In the following, the resonant behavior of the
FWM signal is studied by measuring transients at
different magnetic fields, while keeping the pho-
ton energy fixed. In Figure 4 the peak FWM in-
tensities are plotted on a

√
B-scale, i.e. a scale

that is linear in the energy of the optical transition
LL−1 → LL0 and LL0 → LL1. Additionally the
linear absorption measured by Fourier transform
spectroscopy, as described by Orlita et al. in ref 16
is shown. One can clearly see that the resonance of
the χ(3) process is much narrower compared to the
linear absorption. As mentioned before, the de-
pendence on the magnetic field of the FWM stems
from the nonlinear susceptibility χ(3). We derive
an expression for χ(3) using the density matrix for-
malism similarly to refs 8 and 9. Here we only
consider transitions which are close to resonance
with the pumping fields. By using this approxima-
tion, the linear and second-order density matrix el-
ements are solely determined by the pumping field
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E2, while the field E1 only enters the third-order
density matrix elements. For our specific case,
i.e. two incident fields with the same linear po-
larization, and under the assumption of equal line
broadening factors γ for the different transitions,
the surface susceptibility can be written as:

χ(3)(ω, 2~k2 − ~k1) =
1

2πl2
c~

3ε0

e4v4
f

ωω3
c

i
ω + iγ − ωc

×
1

2(2ω + iγ − 2ωc)
(ρ−1 − ρ0) − (ρ0 − ρ1)

ω + iγ − ωc
.

(2)

Here v f is the Fermi velocity in graphene, ωc =

v f

√
2eB
~

is the resonance frequency, lc =

√
~

eB

the magnetic length, ρi is the occupation of the
LLi and γ is the line broadening. The numer-
ator of the last fraction is in our case approxi-
mately -0.04, because of the small doping. For
intrinsic graphene χ(3) would vanish in this con-
figuration since contributions from the transitions
LL−1 → LL0 and LL0 → LL1 cancel each other.
This reflects electron-hole symmetry of intrinsic
graphene. The line broadening for the calcula-
tion was taken from the linear absorption mea-
surement by applying a Lorentzian fit to the ab-
sorption line (see inset in Figure 4), which yielded
γ ' 3.5 meV. Note that this corresponds to a to-
tal dephasing time of τ = ~/γ = 190 fs, assum-
ing a homogeneously broadened line. The fact
that the decay of FWM signal was faster than the
pulse duration of 4 ps is consistent with this num-
ber. The experimental FWM resonance appears
to be slightly broader than the calculated one (see
Figure 4). This may have two possible reasons.
First, eq 2 does not account for saturation effects.
Taking them into account will broaden the calcu-
lated peak. Second, far away from the resonance
the effect of scattered stray light is more dominant,
as the pump-probe signal possesses a broader res-
onance. Consequently, the strength of the experi-
mental FWM signal may be overestimated in the
nearly off-resonant case.

Finally we discuss the strength of the χ(3)-
process. According to eq 2 one layer of graphene
with ρ0 = 0.52 in a magnetic field resonant to
the photon energy features a surface susceptibil-

ity of 4.9 · 10−20 m3/V2. This corresponds to a
bulk susceptibility of 1.6 · 10−10 m2/V2, assum-
ing a layer thickness of 0.3 nm. For compari-
son with the experiment it is reasonable to select
one of the lower excitation data points from Fig-
ure 3 a), where the saturation is negligible. From
the second point, where the incoming fields are
set to E2 = 4.6 kV/cm and E1 = 5.9 kV/cm
and EFWM = 0.023 kV/cm is measured, we de-
rive χ(3) ∼ 9.2 · 10−20 m3/V2 using eq 1. Note,
that the experimental value is not the χ(3) for one
single layer of graphene, as our sample consists
of roughly 50 layers. Considering the uncertainty
in the experimental determination of EFWM exper-
iment and theory are in reasonable agreement. For
doped graphene, where the zeroth Landau-level is
either completely filled or empty at a magnetic
field of several Tesla, a much higher susceptibil-
ity is expected, as the numerator in eq 2 will be
25 times higher (i.e. χ(3) ∼ 10−18 m3/V2). Con-
sidering the small thickness of graphene this is in
fact a strong nonlinearity. The surface susceptibil-
ity of Landau-quantized graphene is comparable to
the value observed for intersubband transitions in
GaAs quantum wells with much larger thickness
and 2D electron density. For example, the inter-
subband transition at 124 meV in a GaAs/AlGaAs
superlattice results in χ(3) ∼ 1.3 · 10−18 m3/V2,
which is three orders of magnitude larger than the
intraband nonlinearity due to nonparabolicity of
the wells17. Even higher third-order nonlinearities
χ(3) ∼ 5 · 10−17 m3/V2 are predicted in the THz
range by utilizing impurity transitions in GaAs
quantum well18, but have not been verified experi-
mentally, yet.

In summary, the proposed large third-order non-
linearity in Landau-quantized graphene is experi-
mentally demonstrated for the first time. The or-
der of χ(3), the resonance behavior, and the field
dependencies are in a good agreement with the-
oretical predictions. Landau-quantized graphene
represents a system with a strong optical nonlin-
earity and offers spectral tunability by variation of
the magnetic field. These properties are attractive
for a variety of mid-infrared nonlinear optical ap-
plications such as frequency multiplication, para-
metric generation, and sum-frequency generation.
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