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Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, 
including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease 
will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Sia-
mese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation 
of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform 
images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzhei-
mer’s disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 
91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the 
literature.
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1  Introduction
Neurological disorders (NLD) affect the central nervous 
system, such as the brain, spinal cord, nerves (cranial 
and peripheral), etc. Any minor disruption in the func-
tionality of these will emerge as fatal physiological disor-
ders. Alzheimer’s disease (AD) is one such NLD that has 

currently affected 55 million people worldwide according 
to the latest World Alzheimer report [1]. AD is the sev-
enth leading cause of death worldwide which is an incur-
able, life-altering, and progressive neurodegenerative 
disease. The protein components inside the brain cells, 
also known as plaques and tangles, will undergo gradual 
degradation when afflicted by AD. Such impaired protein 
component will generate an enormous decline in cogni-
tive abilities leading to severely degraded personal and 
social life [1, 2].

AD causes several discomforts that affect individuals 
wherein patients will have memory discomposure, behav-
ioural disorderliness, and various other physical issues 
causing vision and mobility complications. The main 
bottleneck to early AD detection is the need for more of 
the public’s general knowledge about this disease. As a 
result, cognitive decline and related behaviours are often 
mistaken for phenomena associated with the normal age-
ing process and other psychiatric disorders. Also, factors 
such as remote locations, lack of skilled caregivers, and 
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inaccessibility to experts and modern diagnostic tools 
will compound the suffering of patients [1] to the extent 
of interfering with their autonomy of daily and social life 
activities. Consequently, early AD detection is vital to 
minimise the patient’s suffering and the care-taking of 
family members.

AD is diagnosed mainly by observation of patients’ 
symptoms, and sometimes it usually takes years to 
ensure the presence of the disease [1]. Nonetheless, 
advancements in diagnostic research have led to the 
discovery of several biomarkers (MRI, PET, CT, blood 
tests, etc.) that assist in early AD prediction. When 
coupled with Artificial Intelligence (AI) technologies, 
these biomarkers can assist doctors in accurate diagno-
sis and subsequent patient care. Machine learning (ML) 
classifiers have encompassed many healthcare sectors 
and have been very effective in AD classification [3–5]. 
Deep learning (DL) techniques especially have perme-
ated the healthcare industry in the last several years 
for their ability to learn end-to-end models accurately. 
They can learn end-to-end models using compound 
data [6, 7]. This surge in the usage of DL methods has 
opened up possibilities for the accurate identification 
of neurological disorders in an unprecedented man-
ner. When coupled with DL techniques, neuroimaging 
provides vital clues in the perception of brain activity 
and relevant disorders [8]. There are many effective 
computer-aided diagnosis (CAD) systems proposed for 
the prediction of AD using neuroimaging data, such as 
functional magnetic resonance imaging (fMRI), struc-
tural MRI (sMRI), and positron emission tomography 
(PET). The sMRI provides essential information such as 
brain white matter (WM), grey matter (GM), cortical 
thickness, and volumes that help measure the degener-
ation process affecting several brain regions resulting in 
AD. These high-definition image data and DL’s power-
ful modelling technique extract features that clinicians 
can elucidate for medical decision-making in complex 

AD disorders. Figure 1 demonstrates the typical process 
involved in DL-based techniques for AD classification.

The Siamese Convolutional Neural Network (SCNN) 
is a similarity-checking model that effectively encodes 
the input images in a way that the similarity between 
images of the same classes is higher than those belong-
ing to different categories. The SCNN is proven to be 
an effective model for classifying data points when-
ever the samples in the dataset are limited or imbal-
anced [9, 10]. In [10], a new cost function framework 
was presented where the new triplet-loss function was 
introduced that leverages the concept of the Siamese 
network for optimal classification of facial images. In 
this paper, we employ the idea of SCNN along with the 
triplet-loss function for the four-way classification of 
AD. We utilised the popular VGG16 pre-trained archi-
tecture for the feature extraction of input MRI images 
to obtain the embeddings. The Siamese architecture 
will process these embeddings to transform the input 
space into an optimally clustered space where inter-
class distance will be higher than intra-class distance. 
The model is developed and evaluated using the MRI 
images extracted from the Open Access Series of Imag-
ing Studies (OASIS, www.​oasis-​brains.​org) [11] and 
the Alzheimer Disease Neuroimaging Initiative (ADNI, 
https://​adni.​loni.​usc.​edu/) datasets. The proposed 
model does the four-way classification of MRI images 
where an input MRI image is classified as belonging to 
one of the four classes representing different stages of 
Alzheimer’s disease.

The work presented here is an extension of our previ-
ously published work [12]. This is our ongoing effort in 
researching Siamese architecture for AD detection. The 
extension covers the investigation of the approach using 
the ADNI dataset, provides a comparative study with 
existing methods, and additional experiments to corrob-
orate the effectiveness of the applied techniques. Below 
are the salient contributions of this work: 

Fig. 1  Block diagram showing the process of artificial intelligence-based Alzheimer’s disease classification

http://www.oasis-brains.org
https://adni.loni.usc.edu/
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1.	 We are leveraging VGG16 architecture in imple-
menting Siamese architecture employing the triplet-
loss function for four-way classification of AD.

2.	 The comparative study has been conducted with the 
methods from literature using the AI techniques in 
the four-way classification of AD.

3.	 The usage of the ADNI dataset in the performance 
evaluation of the proposed triplet-loss-based Siamese 
architecture.

The remainder of this paper is structured as follows: 
Sect. 2 presents the review of related literature. The pro-
posed approach is presented in Sect. 3. The experimental 
results and associated analysis are presented in Sect.  4. 
The concluding remarks are drawn in Sect. 5.

2 � Related work
In recent years artificial intelligence (AI) has been applied 
in diverse problem domains to solve various challeng-
ing problems, including text classification [13–16], cyber 
security [17–20], neurological disease detection [12, 21–
23] and management [24–29], elderly care [30, 31], fight-
ing pandemic [32–38], and healthcare service delivery 
[39–41]. In particular, deep learning (DL) has attracted 
a lot of attention [6, 7]. The SCNN is proven to be an 
effective model for classifying data points whenever the 
samples in the dataset are limited or imbalanced [9, 10]. 
The concept of the Siamese network for similarity com-
putation was initially proposed by Tiagman et al. [9] for 
efficient recognition of face images that resulted in a per-
formance on par with human-level performance. Ever 
since, there have been numerous applications of SCNN 
in various domains of pattern recognition and com-
puter vision [42]. In this section, we briefly outline some 
notable works using various Siamese CNN architec-
ture in general medical analytics and specifically in AD 
classifications.

2.1 � Siamese in medical data analytics
The concept of Siamese similarity finding has also been 
extensively explored in diverse fields of medical analytics. 
This section briefly addresses some prominent applica-
tions of the Siamese concept in various medical areas.

Research studies have revealed that the karyotyping 
method uses Siamese networks with deep learning to 
analyse and order human chromosomes to diagnose vari-
ous ailments automatically. In [43], authors have affirmed 
that it will be stimulating to train different Siamese 
networks to learn diverse behaviours collaboratively, 
increasing the accuracy of chromosome classifications.

In another study, Mohamed et  al. [42] presented a  
Siamese  network model using deep meta-learning to 
analyse the chest X-ray (CXR) images to classify the 

COVID-19-affected patients with 95.6% accuracy. The 
model has been trained with ten CXR samples and is 
planned to increase the CXR images with additional 
information like patient health history and location. 
The authors proved that their proposed Siamese model 
performs better than fine-tuned CNN models. For cel-
lular disease identification, the categorisation of cellu-
lar assortment using Siamese for identifying the disease 
using multi-dimensional datasets and its challenges 
were presented by Benjamin et al. in [44]. The authors 
proposed a novel framework that decreases the dimen-
sionality using a Siamese neural network. This Siamese 
network is then trained using the triplet-loss function, 
which allows it to train hundreds of cells linearly.

Kelwin et al. [45] developed a deep Siamese learning 
model to find cervical cancer using the patient’s biopsy 
and individual medical records. The proposed model in 
this paper focuses mainly on reducing the dimensional-
ity of data and works in low-dimensional space. It gives 
more accuracy in prediction than existing models, such 
as denoising autoencoders. Research in [46] used Sia-
mese networks to find the similarity of gene expression 
patterns between two compounds to identify the struc-
tural match of drugs. The proposed model is more suc-
cessful at identifying the chemical compounds on the 
drugs than other existing models, with a Pearson cor-
relation of 0.518. The authors use this model to reduce 
the search space for new drug discoveries. Yet another 
research [47] used the concept of Siamese in Spinal 
metastasis detection, which is mainly used to find met-
astatic cancer on the spine.

Early detection of diabetic retinopathy (DR) using 
an automatic diagnostic system instead of a manual 
process helps avoid early blindness. To increase the 
diagnosis accuracy, Xianglong et  al. [48] proposed a 
Siamese-like architecture to train conventional neu-
ral networks (CNN) using binocular fundus images. 
This model provides a higher area under the curve 
(AUC) accuracy of 0.951 than the existing monocular 
model, which shows a lower AUC accuracy of 0.940. 
In another study in a similar field, Yu-An et  al. [49] 
proposed a learning model trained on a subset of the 
diabetic retinopathy (DR) fundus image dataset with 
binary image representations using deep Siamese CNN. 
The authors proved that their approach required less 
supervision and reduced the computational expense 
of medial image machine learning. Shreyas et  al. [50] 
proposed a hybrid model combining stacked bidirec-
tional long short-term memory (LSTM) and LSTMs 
with Siamese network architecture. It classifies brain 
fibre tracts into meaningful clusters with high accuracy 
using high-accuracy tractography data as an input. The 
experimental results proved that the accuracy is lower 
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in inter-brain images than in intra-brain pictures due to 
the possibility of varying size and shape.

2.2 � Siamese in Alzheimer’s disease prediction
Here, we review papers that dealt with Alzheimer’s dis-
ease classification using general machine learning algo-
rithms, including Siamese.

In [51], the deep Siamese neural network was used 
to enhance the discriminatory feature of whole-brain 
volumetric asymmetry. This paper demonstrated the 
performance to be on par with the model that utilises 
whole-brain MRI images. In [52], the authors have used 
the pre-trained VGG-16 model to classify AD using the 
OASIS dataset. They have achieved a test accuracy of 
99.05%. In [53], authors have proposed multi-modal data 
for training to predict the evolution of the disease. This 
achieved an accuracy of 92.5% on the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset that was curated 
to consider the baseline and 12-month MRI. Mehmood 
et al. [54] have proposed a transfer learning-based CNN 
classification to diagnose the early stage of AD using the 
ADNI dataset. Authors have provided a 2-way classifica-
tion (AD vs CN & EMCI vs LMCI) using this method and 
obtained an accuracy of 98.37% and 83.72%, respectively. 
In [55], authors have applied CNN to classify AD using 
MRI images collected using the ADNI dataset. The algo-
rithm applies specifically preprocessing to the images of 
MRI to aid in the efficient diagnosis of AD. In another 
study, [56], authors have used the popular AlexNet 
model for the feature extraction from the brain MRI 
images for subsequent classification by popular tools 
such as Random Forest (RF), Support Vector Machine 
(SVM), k-Nearest Neighbour (KNN), etc. The proposed 
approach resulted in good accuracy in the classification 
of AD disease. Arifa et al. [57] propose a hybrid approach 
to train a deep neural network that combines the fea-
tures from MRI and EEG signals. The main idea of this 
approach is to consider multi-modal data in training the 
classifier. Chitradevi et al. [58] presented an approach to 
segment the cerebral sub-regions for efficient AD classi-
fication. The segmented output is fed to machine learn-
ing classifiers for diagnosing AD, which resulted in 98% 
accuracy using the Grey-Wolf optimisation approach.

Based on this recent brief review of the research, we 
can conclude that: 

1.	 Siamese deep learning architecture is widely used 
in medical data analysis. This prompted us to evalu-
ate the SCNN using the Triplet-loss function for AD 
classification.

2.	 Many works have been reported that leverage the 
CNN architecture for AD classification purposes 
either by using pre-trained models [52, 56] or a mini-

malist non-pretrained CNN model [55]. These mod-
els have obtained satisfactory results.

3.	 Not many works reported the use of Siamese in the 
recent past for the classification of AD except for a 
few works [51–53]. Although there has been reported 
use of SCNN for the classification of AD, employing 
the triplet-loss function for learning the underly-
ing brain MRI for optimal separation of Alzheimer’s 
classes are not done to the best of our knowledge.

We overcome the above-mentioned gap by employing 
the pre-trained VGG16 model as an encoder and trans-
forming the MRI images into efficient lower-dimensional 
embeddings. These embeddings were later trained using 
the triplet-loss function for the four-way classification of 
Alzheimer’s Disease using the OASIS and ADNI datasets. 
To compare the performance of the pre-trained model, 
we have also utilised the non-pretrained simplistic CNN 
model. We believe this work will serve as a prelude for 
many works that exploit the benefit of triplet-loss cou-
pled with various DeepNet architectures in the literature.

3 � Methods
In this section, we present the building blocks of the Sia-
mese CNN using the triplet-loss function to classify AD.

3.1 � Siamese CNN architecture
The Siamese Convolutional Neural Network (SCNN) has 
two or more identical sub-networks working together to 
generate feature vectors for input images enabling simi-
larity score computation. The whole process is shown in 
Fig. 2. This process aims to learn a similarity model such 
that images of the same class will have embedding that 
contrasts significantly when an image of different classes 
is fed. From the batch of input images, three images 
(triplets) will be randomly sampled: where two images, 
anchor (A) and positive (P), will be from the same class, 
whereas the third image, negative (N), will be from a dif-
ferent class. The SCNN aims to produce embeddings for 
every image in the triplet: A, P, and N so that the distance 
from the anchor image to the positive image becomes 
closer than the anchor to the negative image as depicted 
in Fig. 2.

The triplets (A,  P,  N) will be fed through similarly 
weighted deep ConvNet encoders, which transform 
the triplets into an embedding space Fw(Ia) , Fw(Ip) , 
Fw(I

n) through flattening of the last layer of VGG16. In 
this embedding space, images belonging to the differ-
ent classes are expected to form tightly coupled well-
separated clusters. It is to be noted that the SCNN, 
although depicted as having separate branches, essen-
tially has a single ConvNet encoder that sequentially 
extracts features of A, P, and N images. The L2 distance 
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metric can be used to measure the distance between (A, 
P) and (A, N) pairs as d(A,P) = | |Fw(I

a)− Fw(I
p)| | and 

d(A,N ) = | |Fw(I
a)− Fw(I

n)| |.
The triplet-loss function is used at this stage using the 

d(A,  P) and d(A,  N) to compute the loss of the learned 
model. Finally, The similarity score is transformed into a 
range of 0 to 1 through the cosine similarity measure. the 
similarity of (A,  P) is expected to be larger than that of 
(A, N).

3.2 � Triplet‑loss function
In [10], a new framework was proposed where the tri-
plet-loss function was introduced that leverages the con-
cept of the Siamese network for optimal classification of 
facial images. It performed way better than the conven-
tional contrastive loss function [59] adopted in Siamese 
learning.

This is a loss function-based distance measure that 
needs three inputs. Given A, P, and N images:

If there are m training triplet images, the overall cost 
function for the SCNN would be:

It is easy to satisfy the constraint d(A,P)− d(A,N )+ α . 
Thus, hard triplets are chosen such that 
d(A,P) ≈ d(A,N ) . The ensuing step of Gradient Descent 
will minimise the loss function such that d(x(i), x(j)) is 

(1)L(A,P,N ) = max(d(A,P)− d(A,N )+ α, 0).

(2)J (L(A,P,N )) =

m∑

i=1

L(Ai,Pi,Ni).

less for identical pairs, typically for A and P, and more 
significant for A and N.

3.3 � The ConvNet encoders
We tested the proposed model’s efficacy by using both 
pre-trained and non-trained CNN architectures. This 
will help us determine the SCNN model’s performance 
efficacy under different scenarios, such as the applica-
bility of a very deep ConvNet encoder and its impact on 
the embeddings, the influence of pre-trained weights, 
etc.

3.3.1 � The non‑trained CNN
We considered a simplistic non-trained CNN archi-
tecture having three convolutional layers, two pool-
ing layers, and 2 fully connected (FC) or dense 
layers. The CNN used has a configuration of 
64C7−MP2− 64C3−MP2− 128C3− FC1024 − FC4 ; 
where nCj denotes n convolutional layer with j × j filters, 
MPk indicates a maxpooling layer with k × k kernel, and 
FCn indicates an FC layer with n neurons. In this manner, 
each triplet (A, P, N) is transformed into a k-dimensional 
embedding/feature vector.

3.3.2 � The pre‑trained VGG16 model
The VGG16 model [60] is one of the popular pre-trained 
models used in computer vision problems [42]. Moti-
vated by its success, this architecture has been used in 
our proposed work as a feature extractor for Siamese 
architecture and as a traditional classifier. The VGG16 
architecture is shown in Fig.  3. The three dense layers, 
known as the top layer, will be replaced by one or two 

Fig. 2  The architecture of the Siamese network



Page 6 of 13Hajamohideen et al. Brain Informatics            (2023) 10:5 

dense layers catering to our requirements. When VGG16 
is used as a ConvNet encoder, the Siamese model will use 
a single dense layer to extract a 1-dimensional feature 
vector of length k. When used as a classifier, the top layer 
will be replaced by two dense layers of dimensions 256 
and 4, respectively.

The overall process involved in the triplet-loss-based 
SCNN training and subsequent classification of AD can 
be outlined in Fig. 4.

4 � Experimental results
This section presents a series of experiments to corrobo-
rate Siamese architecture’s efficacy using two publicly 
available databases: the Open Access Series of Imaging 
Studies (OASIS) [11] and the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) [61] dataset.

The OASIS-3 dataset [11] categorises the brain MRI 
images into four classes based on clinical dementia rat-
ing (CDR). There were 755 participants with no history 
of dementia (CN), and 622 individuals participated with 
various stages of dementia in the age group ranging from 
42–95 years. Four CDR scores are considered in forming 

Fig. 3  The architecture of the VGG16 model used as ConvNet encoder

Fig. 4  The training and testing phases
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this database: 0, 0.5, 1.0, and 2.0. The CDR score of 0 indi-
cates No Dementia, 0.5 indicates Very Mild Dementia, 
1.0 indicates Mild-Dementia, and 2.0 indicates Moderate 
Dementia. The number of samples in CDR-0, CDR-0.5, 
CDR-1, and CDR-2.0 is 3200, 2240, 896, and 64 images. 
Using this dataset, the 4-way classification can be per-
formed based on the CDR rating (CDR-0 vs CDR-0.5 vs 
CDR-1 vs CDR-2).

The ADNI dataset was acquired from three phases: 
ADNI-1, ADNI GO and ADNI 2. The study group’s ages 
ranged from 50–65 years. We used the MPRAGE base-
line 1.5T T1-weighted MRI images in the axial plane with 
a pixel dimension of 2048× 2048 from the sagittal slices. 
The images were resized to 64 × 64 in our experiments. 
The dataset contains images from 162 participants, out 
of which 37 are AD patients, 12 are cognitively normal 
(CN), 53 are considered to have mild-cognitive impair-
ment (MCI), and 60 are in the Early MCI stage (EMCI). 
The collected samples include 739 MRIs having AD, 157 
MRIs representing CN cases, 717 images having mild 
cognitive impairment (MCI), and 1446 having early MCI 
(EMCI) conditions. Using this dataset, the 4-way classi-
fication of an MRI image is done (AD vs MCI vs EMCI 
vs CN). Each participant has multiple samples collected 
at various intervals of time. Sample images from these 
two datasets are shown in Fig.  5. As OASIS is already 
preprocessed (such as bias correction, skull-stripping, 
etc.), we did not perform any additional preprocessing 
for this dataset. Also, as deep learning models are known 
to learn in an end-to-end manner, it does not necessitate 
a preprocessing step compared to conventional machine 
learning models. Hence, we have not performed any pre-
processing of these images. The images used in the exper-
iments were in grayscale TIFF format.

Three different performance metrics are used, namely, 
Accuracy, Specificity, and Sensitivity. The accuracy (Eq. 3) 
is a ratio of correctly classified MRIs to the total MRIs 

available in the dataset. Sensitivity (or Recall) refers to 
the number of times the model correctly predicts the 
MRI as a positive case out of total positive cases (Eq. 4). 
The Sensitivity is also called True Positive Rate (TPR), 
using which False Negative Rate (FNR) can be inferred as 
1-sensitivity. The Specificity measures the model’s ability 
to rightly classify an MRI with a negative case among the 
total number of negative cases (Eq. 5). Specificity is also 
known as True Negative Rate (TNR). This measure also 
helps to discover the false positive rate (FPR) as 1-speci-
ficity. It is to be noted that all reported metrics are aver-
aged with the one vs all strategy.

The hyperparameters used in our experimentation are 
shown in Table 1. Unless mentioned explicitly, the values 

(3)Accuracy =
TP+ TN

TP+ TN + FP+ FN
,

(4)Sensitivity =
TP

TP+ FN
,

(5)Specificity =
TN

TN + FP
.

Fig. 5  Sample images from datasets: ADNI (top-row) and OASIS (bottom-row)

Table 1  Hyperparameter values used in the architecture

Hyperparameter Value

Embedding size 16

Loss function Triplet-loss 
(Refer Eq. 2)

Batch size 128

Epochs 250

Activation function ReLU

Optimizer Adam

Learning rate 0.00001



Page 8 of 13Hajamohideen et al. Brain Informatics            (2023) 10:5 

of the hyperparameters referred to in this article conform 
to this table.

The batch size used in our experiment was 128. We 
chose 64 hard triplets, and the remaining 64 were cho-
sen randomly. We randomly selected 200 samples from 

our dataset for every batch and extracted embeddings 
using the VGG16 ConvNet encoder. We then computed 
the distance vectors as d(A,P)− d(A,N ) and chose the 
hard triplets such that d(A,P) ≈ d(A,N ) . The train and 
test samples are drawn in this manner for mentioned 
number of epochs (see Table  1) in order to train the 
Siamese architecture. A few sample triplets chosen in 
this manner are shown in Fig. 6.

One of the influential hyperparameters in this study is 
the size of the embedding feature vector. To determine 
this, we ran a series of experiments by varying the length 
of the embedding size from 23 to 27 in steps of power of 2. 
We empirically fixed the embedding length to be 16. The 
experiments determined that the length of the embed-
ding vector did not impact the model’s convergence or 
the loss value. The value k = 16 yielded optimal perfor-
mance; hence, we fixed this value for embedding size for 
the rest of our experiments.

The implementation was carried out in Python 3.7.10 
using Keras deep learning API. The model was trained 
using Intel i7 1.6 GHz CPU having 16 GB RAM sup-
ported by a GPU card (NVidia GeForce MX330). We also 
utilised EarlyStopping Keras callback to avoid overfitting 
the model.

The model was trained for 250 epochs without the 
EarlyStopping Keras callback to get a holistic view of Fig. 6  Examples of triplets formation

Fig. 7  Model learning for 250 epochs (A) along with the means of the anchor-positive and anchor-negative learning (B)
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the overall similarity model learning using the Siamese 
architecture. The training loss and validation accuracy 
plot are shown in Fig. 7A. We can observe that training 
loss converged around the 15th epoch, but the validation 
accuracy fluctuated before becoming steadier around 
the 170th epoch. This is because the validation accuracy 
represents the accuracy obtained for similarity learning 
using a batch of images during each training epoch. The 
model fluctuates with test accuracy on random images 
before learning useful patterns around the 170th epoch. 
Figure 7B shows the relation between the anchor-positive 
(AP) score and anchor-negative (AN) score. The AP score 
is the mean distance between all the anchor and posi-
tive images; the AN score is the mean distance computed 
between all anchor-negative pairs. It was calculated dur-
ing the initial training of the model for 250 epochs. The 
model’s ability to distinguish similar and dissimilar pairs 
of images is evident in the mean distance computed at 
each epoch of the experiment.

After this similarity model learning, we tested with a 
batch of test triplets. We measured the distance between 

the anchor and positive images, and thresholding was 
carried out to classify them as belonging to the same or 
different classes. We did a similar computation between 
the anchor and negative images. Figure  8 depicts the 
confusion matrix thus obtained after evaluating with the 
true labels. This initial set of experiments was carried 
out to test the model convergence in classifying AD MRI 
images.

The experimental findings of the proposed model are 
shown in Tables 2 and 3. The confusion matrices for the 
best-performing models from this experiment are shown 
in Fig. 9. Some important observations from this experi-
ment are: 

1.	 The proposed model for the 4-way classification of 
AD achieves overall good recognition accuracy con-
sidering the limited samples and class imbalance in 
the dataset we considered. This is the true benefit of 
using Siamese architecture. The usage of the triplet-
loss function further enhances the class separability 
among the four classes where samples of some classes 
have finer distinctive features (for instance, CDR-0.5 
and CDR-1.0, CN and EMCI, AD and MCI).

2.	 Although the deep ConvNet models are known to 
perform well, their performance on test data is lesser 
than the basic ConvNet encoder we proposed. This 
may be due to using pre-trained weights in the frozen 
layers. Setting those layers to a trainable option with 
an empirically determined learning rate would prob-
ably yield the best results [68].

3.	 Inspired by the success of the VGG16 model in solv-
ing many computer vision problems, we leveraged 
the pre-trained VGG16 model as a traditional clas-
sifier for the 4-way classification of the AD. Firstly, 
the input samples were resized to 64 × 64 × 3 to be 
compatible with its architecture. The VGG16 model 

Fig. 8  Confusion matrix of the similarity learning

Table 2  Results of proposed models on the OASIS dataset

Models Sensitivity Specificity 1-Sensitivity 1-Specificity Accuracy

Siamese CNN 0.9390 0.9561 0.0609 0.0439 0.9385

Siamese CNN with VGG16 0.9216 0.970 0.0784 0.029 0.9217

VGG16 (as classifier) 0.903 0.960 0.186 0.129 0.9020

Table 3  Results of proposed models on the ADNI dataset

Models Sensitivity Specificity 1-Sensitivity 1-Specificity Accuracy

Siamese CNN 0.9179 0.9383 0.0821 0.0670 0.9183

Siamese CNN with VGG16 0.950 0.853 0.146 0.0490 0.8531

VGG16 (as classifier) 0.963 0.891 0.108 0.0390 0.8900
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was trained using the ImageNet weights and without 
the top layer. We added two dense layers, the final 
layer being the output 4-neuron layer, to classify the 
AD. The results of this model are not better than the 
proposed Siamese-based one. There could be many 
reasons for this, but the main point here is that we 
have insufficient samples to train the model. The 
reasonable accuracy it obtained was probably due to 
the immense training the model initially underwent 
for the ImageNet competition. Those convolutional 
kernels could have contributed to the accuracy. This 
gives further scope for future avenues.

Finally, Table  4 compares the results obtained with 
existing models based on machine learning and deep 
learning techniques. The following main observations are 
made from this comparative study: 

1.	 The proposed models achieved better or comparable 
accuracy with most existing methods. In addition, 

there is an inherent advantage of better generalisa-
tion with limited training samples in the case of pro-
posed models.

2.	 Two of the existing methods [66, 67] obtained higher 
accuracy than the proposed method, emphasising 
that there is scope for improvement with the pro-
posed model. However, the existing approaches uti-
lised the ADNI dataset [67] which differs from the 
collection we considered in this study. Similar rea-
soning holds good for the approach proposed by Ruiz 
et al. [8] that has lower recognition rate compared to 
other models.

5 � Conclusion
Inspired by the success of Siamese architecture in the 
diagnosis of Covid-19 using chest X-ray images [42], 
in this study, we presented the applicability of Sia-
mese architecture using the triplet-loss function for the 
4-way classification of AD using the MRI images. The 

Table 4  Comparative study with existing methods

Bold indicates the value obtained for proposed model

Method Dataset Accuracy (%) Remark

Ensemble of deep neural network [62] OASIS 93.18 4-way classification. Custom CNNs used in the Ensemble

Transfer Learning using AlexNet [63] OASIS 92.85 4-way classification

Ensemble of 2 SVMs [64] OASIS 69.1 For binary classification accuracy 93.2%

Ensemble of 5 transfer learning [64] OASIS 70.6 For binary classification accuracy 90.2%

SVM [65] OASIS 77.0 For binary classification accuracy 97.0%

Multi-kernel SVM [66] ADNI 93.2 This work discusses various ML techniques

SVM and CNN [67] ADNI 96.0 3-way classification for predetection of AD through AD vs MCI vs CN.

3D Ensemble of DenseNet [8] ADNI 83.33 4-way classification

Proposed model OASIS 93.85 4-way classification

Proposed model ADNI 91.83 4-way classification

Fig. 9  Confusion matrices obtained using the ADNI dataset (A) and the OASIS dataset (B)
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Alzheimer’s disease classification falls under the data-
scarce domain, where getting sufficient training sam-
ples to train a conventional neural network adequately 
may not be practical. The work presented in this arti-
cle demonstrated that a Deep Siamese architecture 
could alleviate this limited data problem typical in most 
medical domains. We used the triplet-loss function to 
calibrate the Siamese architecture in contrast to the 
contrastive loss function applied [42]. The model was 
tested using the OASIS and ADNI datasets, resulting in 
an accuracy of 93.85% and 91.83%, respectively.

In the future, we can do several extensions from the 
proposed work; a few prominent ones are mentioned 
below: 

1.	 We utilised the VGG16 deep architecture to obtain 
the input samples’ embeddings. One can conduct 
a thorough performance evaluation using various 
pre-trained networks such as GoogleNet, AlexNet, 
ResNet and its variants, etc., to determine how well 
the Siamese model generalises in the 4-way classifica-
tion of AD.

2.	 We have used axial planes of MRI images from the 
ADNI dataset. It would be interesting to see the 
fusion of information from sagittal and coronal 
planes in modelling the similarity.

The Siamese architecture using the triplet-loss function 
is yet to see broader applicability in AD classification. 
Our work presented here will serve as good reference 
material for many such results in the future.
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