
Journal o) c Statistical Physics, Vol. 52, Nos. 3/4, 1988

Fourier Acceleration of Iterative Processes
in Disordered Systems

Ghassan George Batrouni 1 and Alex Hansen 2'3

Received October 23, 1987; revision received April 22, 1988

Technical details are given on how to use Fourier acceleration with iterative

processes such as relaxation and conjugate gradient methods. These methods

are often used to solve large linear systems of equations, but become hopelessly

slow very rapidly as the size of the set of equations to be solved increases.

Fourier acceleration is a method designed to alleviate these problems and result

in a very fast algorithm. The method is explained for the Jacobi relaxation and

conjugate gradient methods and is applied to two models: the random resistor

network and the random central-force network. In the first model, acceleration
works very well; in the second, little is gained. We discuss reasons for this. We

also include a discussion of stopping criteria.

KEY W O R D S : Fourier acceleration; critical slowing down; relaxation;
conjugate gradient algorithm; disordered systems.

1. I N T R O D U C T I O N

The necessity to solve large linear systems of equations occurs frequently in
physics. This implicitly involves the inversion of large, sparse matrix
systems. Direct methods, such as Gauss elimination and its sophisticated
variants for sparse matrices, ~) can in some instances be useful, but in
general they require a computational labor (CPU time) more than propor-
tional to the number of equations to solve, N. An alternative approach is to
use iterative (relaxation) methods. (2-51 These methods typically require a

labor of order N per iteration, but the number of iterations needed to

Department of Physics, Boston University, Boston, Massachusetts 02215.
2 Groupe de Physique des Solides de l'l~cole Normale Sup~rieure, F-75231 Paris, France.

3 Present address: Institut fiir Theoretische Physik, Universit~t zu K61n, D-5000 Cologne 41,
Federal Republic of Germany.

747

0022-4715/88/0800-0747506.00/0 �9 1988 Plenum Publishing Corporation

748 Batrouni and Hansen

attain a fixed accuracy grows as a fractional power of N, a problem usually

referred to as critical slowing down. In this paper we describe an algorithm

for speeding up two very different iterative methods, the Jacobi

relaxation (2/ and conjugate gradient methods, ~2'6) by reducing the critical

slowing down. The acceleration algorithm was earlier described in connec-

tion with the Jacobi method by Batrouni et aL (7) This paper is meant to

provide technical details on how to implement the Fourier acceleration

idea (8) in practice, and to elaborate some tricks we have learned while

applying it.

We discuss these relaxation methods and the Fourier acceleration

algorithm in the context of solving transport equations for disordered

media, which forms the basis of a large class of problems of considerable

current interest. 19) Let us point out here that in our experience the con-

jugate gradient method, with or without Fourier acceleration, is the most

efficient iteration method to handle these problems.

We first discuss the two specific models on which we will demonstrate

the Fourier acceleration ideas, the random resistor network 4 and the elastic

central-force network, both in the vicinity of their respective percolation

critical points where the critical slowing down becomes especially severe

due to the underlying fractal geometry of the networks. Next we discuss

how the critical slowing down is related to anomalous diffusion in fractal

geometries, by using the Jacobi relaxation method. We then introduce

Fourier acceleration in connection with the Jacobi method, and finally use

it with the conjugate gradient method.

2. T H E M O D E L S

In order to deal with concrete examples, we will work with two

models used in the study of disordered media: The random resistor
network (11) and the random central-force network. (12'13~ Both of these

models have attracted much recent attention because of their strange

scaling properties in the vicinity of the percolation critical point. Aside

from their interesting physical properties, they also demonstrate clearly the
strengths and the weaknesses of the Fourier acceleration method.

We describe the random resistor model first. Imagine a two-dimen-

sional square lattice of size L (times the lattice constant) in the x direction
and size L + 2 in the y direction (Fig. 1). The lattice is periodic in the x

direction. There are two types of bonds connecting neighboring nodes:

They are either resistors with a unit resistance or infinite resistance. The

4 See ref. 10 for a detailed demonstration of the use of direct matrix methods to find the
current distribution in the random resistor networks.

Fourier Acceleration of Iterative Systems 749

Fig. 1. A random resistor network. Here L is 5, and the lattice is periodic in the horizontal

direction. The solid bonds represent unit resistors present with probability p, and the broken

bonds represent an infinite resistance. A fixed voltage difference is kept between the top and

bottom rows, and the problem is to calculate the currents flowing in the network.

probability of having a unit resistance at a given bond is p and the

probability of having an infinite resistance at that bond is 1 - p . The

horizontal bonds (i.e., in the bonds in the x direction) along the bottom

and top rows have zero resistance. Now, the problem is to create a voltage

difference between the bottom and top row and calculate the resulting

currents flowing through each bond in the network. Let II,. denote the

voltage at the ith node. Then Kirchhoff's equations are

~ aij(V i - Vj)=O (1)
J

where Vj are the voltages at the nearest neighbor nodes to node i, and a, 7 is

1 if there is a unit resistor between nodes i and j, and 0 otherwise. The

index i runs over nodes that do not belong to the top or bot tom rows, that

is, the internal nodes. The index j, however, runs over all nodes. Physically,

this set of equations is only a statement of current conservation at each

node, and they are to be solved with the constraint that the voltages at the

nodes belonging to the upper and lower rows are kept fixed. In order to

write this set of equations as a matrix equation, move all voltages referring

822/52/3-4-15

750 Bat roun i and Hansen

to nodes belonging to the upper and lower rows to the right-hand side of

Eq. (1) (see, e.g., ref. 14, Chapter 6). This equation may then be written as

D o v j = (2)
J

where the indices i and j only run over the internal nodes. The vector Bi is

different from zero only if the node i is connected to a node belonging to

the lower or upper rows through a unit resistor, and in that case it is equal

to the voltage on the upper or lower rows. Bi is a vector with dimension

L a, where d is the dimension of the lattice of the underlying models; here

d = 2. The D o. is a matrix with Lax L a elements corresponding to what is

left of the sum on the left-hand side of Eq. (1). The solution we are seeking

is of course

g j = 2 (D-1)i j Bi (3)
i

Before using the conjugate gradient or any other method to find the

solution Eq. (3), the matrix D o. may be simplified by using some rather

trivial facts, namely that current will not flow in dead arms or disconnected

clusters of resistors. A subroutine that goes through the network after it has

been generated and removes the disconnected clusters save, computer time.

Algorithms also exist which remove the dead arms connected to the

current-carrying backbone. 5 However, these algorithms are rather com-

plicated to implement and CPU time-consuming enough that it is not

obvious that they are useful in this context.

Let us now describe the second model we use, the random central-

force network. In this case we use a square lattice with one diagonal direc-

tion present (Fig. 2). This is a distorted version of the triangular lattice

used in refs. 12 and 13, but the critical properties of this lattice are the

same as in the usual triangular lattice. The reason for this choice of lattice

is that it is easier to see the connection between this model and the random

resistor network in this case. The two types of resistors in the random

resistor network are replaced in this model by two types of central-force

springs, i.e., springs which are free to rotate about the nodes. This

corresponds to the forces on each spring in the network always pointing

along the axis of the spring; there are no angular forces. A given bond has

5 A general and efficient algorithm to identify the current-carrying subset of bonds is the
"burning algorithm" of Herrmann et al. 115) A more efficient but less general method (being
restricted to two dimensions) is given in Roux and Hansen316) Methods which are well
known in the computer science literature are given in Aho et aL 07) We have not tested how

their efficiency compares to the methods of Herrmann et al., and Roux and Hansen.

Fourier Acceleration of Iterative Systems 751

%

, , , , , ~ ,

Fig. 2. A random central-force network. Here L is 5, and the lattice is periodic in the
horizontal direction. The solid bonds represent springs with unit spring constants present with
probability p, and the broken bonds represent infinitely soft springs present with probability
1 - p. The forces on each bond are always in the direction of the bond. A fixed displacement
between the top and bottom rows is kept, and the problem is to calculate the forces carried by
each bond in the network. Notice how difficult it is to determine whether this configuration is
rigid or not in comparison to determining whether the configuration in Fig. 1 conducts or not.

e i ther a finite spr ing cons tan t (i.e., unit spr ing cons tan t in the x or y direc-

tions, or a spr ing cons tan t equal to 1 / x ~ a long the d i agona l) with

p robab i l i t y p, or zero spr ing cons tan t with p robab i l i t y 1 - p . The p rob l e m

is now to impose a given d i sp lacement between the top and b o t t o m rows

by pull ing, pushing, or shear ing the t op row relat ive to the b o t t o m row

and calculate the resul t ing forces in the ne twork . W e define R i as the

d i sp lacement of the i th node and a U as the r ig idi ty mat r ix of the b o n d

between nodes i and j . The set of (t inear ized) equa t ions descr ib ing the

ba lanc ing of the forces in the ne twork , and which co r r e spond to the

Ki rchhof f equa t ions (1) in the r a n d o m res is tor ne twork , are

 ij(R,- Rj) = 0 (4)
J

Let us now write these equa t ions in c o m p o n e n t form and with a small

genera l iza t ion : The d i agona l forms an angle ~ = 45 ~ with the x axis, but for

752 Batrouni and Hansen

later use we will write ~ explicitly in these equations. The neighboring node

to node i in the positive x direction is denoted il, and the other neigh-

boring nodes in anticlockwise manner are successively denoted /2, /4, i8,

i16, and i32. Let us remark here that we are keeping the notation close to

the one that is natural on the computer. The positive x direction is denoted

direction 1. Then follows in anticlockwise manner direction 2, the positive

diagonal direction, direction 4, the positive y direction, direction 8, the
negative x direction, direction 16, the negative diagonal direction, and

direction 32, the negative y direction. In this way, the bond structure of the

lattice may be packed in a very compact manner as the sum of the direc-

tions where there are bonds from each node. Let a(i) denote the array con-

taining these sums. Then, for example, the logical operation (a(i).and.4)

will be true if there is a bond between node i and its neighbor in the

positive y direction, and false if not. In the notation of Eq. (5), we have

~ri.i4 = (~r(i).and.4)/4. Thus, we have

ai , i l (X i - - X i l) "~ 0"i, i2 ['COS 2 0~ (X i - - X i2) "~- sin c~ cos c~ (Yi - Yi2)]

AV G i, i 8 (X i - - Xi8) -~- G i, i l 6 [C O S 20~ (X i - - Xi16)

+ sin cz cos ~ (y~ - Yi16)] = 0 (5 a)

ai, g2[sin 7 cos ~ (x~- x~2) + sin 2 ~ (Y i - Yi2)] + r i4(Yi- Yi4)

q- 0"i, i16 [s i n c(c o s ~ (X i - - Xi16) -t- sin 2 c~ (Y i - Yi16)]

q- (7i, i32(Yi- Yi32) = 0 (5 b)

As in the random resistor network problem, we move everything that has

to do with the fixed top and bottom row to the right-hand side of Eq. (4),
or in component form, of Eqs. (5a) and (5b). This leads to a matrix

equation corresponding to Eq. (2) in the random resistor problem,

~ Di, j R j = B i (6)
J

The only difference between this equation and Eq. (2) is that the element

Di.j is a 2 • 2 matrix here, and the vector components Ri and B~ are them-

selves two-component vectors. The total number of elements in the matrix
D~,j to be inverted is thus (2L)dx (2L) d. As in the previous model, it is

efficient to have a subroutine remove disconnected clusters after the lattice

has been generated. However, unlike the random resistor network, there is
no geometric method to determine which bonds belonging to the cluster
spanning the lattice from bottom to top row will carry a nonzero force
(thus defining the force-carrying backbone). (12)

Fourier Acceleration of Iterative Systems 753

It is possible to interpret the central-force elastic network in terms of

two interacting random resistor networks. Suppose that in the elastic
network we impose a displacement of the top row which is an equal
mixture of shear and compression, i.e., equal in the x and y directions.
Now, in the limit c~--, 90 ~ Eq. (5a) reduces to

Gi, il(Xi--Xil)~-(li, i2(Xi--Xl2)'~ffi, i8(Xi--Xi8)-~ffi, il6(Xi--Xil6)'~-O (7a)

which is identical to the Kirchhoff equations for a square random resistor
network, where the two directions are given by the old x direction (i.e., the

1 and 8 directions) and by the direction of the diagonal (i.e., the 2 and 16
directions), and where the x coordinate is to be interpreted as the potential.
Equation (5b) becomes

a,,~4(Y,- Yi4) + a~,,32(Y~- Y~32) = 0

which can be interpreted as the equation for L one-dimensional random
resistor networks in which the y coordinate is to be interpreted as a poten-
tial. In the same way, in the limit e ~ 0 ~ Eq. (5b) reduces to

ffi, i 2 (Y i - Yi2) -t- Gi, i4(Y i -- Yi4) + ffi, i16(Yi - Yi16) + ~ri, i32(Yi - Yi32) = 0 (7b)

which may be interpreted as the Kirchhoff equations for a square random
resistor network, where the two directions are given by the old y direction
(i.e., the 4 and 32 directions) and by the direction of the diagonal (i.e., the 2
and 16 directions), and where the y coordinate acts as the potential.
Equation (5a) describes in this limit L one-dimensional random resistor
networks. At intermediate values for the angle c~, the set of equations (5a)
and (5b) may be interpreted as two coupled anisotropic random resistor
networks where the two potentials are given by the x and y coordinates.
The term "anisotropic" refers to the factors cosZe and sin2 c~ that can be
thought of as rescaling the resistors in the 2 and 16 directions. The terms
proportional to sin e cos ~ play the role of interaction terms between the
two random resistor networks.

Both of these models exhibit critical behavior when p, the probability
that a resistor or a spring is present, is in the vicinity of Pc, the percolation
critical point (see ref. 19 for a general introduction to this field). The ran-
dom resistor network will conduct in the thermodynamic limit (L ~ oe) if
P > Pc (= l/2 for the square lattice used here), and will not conduct if
P ~< Pc. The elastic central-force network will be rigid (i.e., have a nonzero
elastic modulus) in the thermodynamic limit only if p > Pc (=0.642 __+ 0.002
for the square lattice with one diagonal used here(13~). At Pc the current-
carrying backbone in the random resistor network and the force-carrying

754 Batrouni and Hansen

backbone in the elastic central-force network will be fractal. This means

that the number of bonds N8 in the backbone scales with some nontrivial

exponent, the fractal dimension dB, with respect to the size of the lattice

L: NeocL ~B. For the random resistor network one finds (2~ de = 1.62 -t-_ 0.02,

and for the elastic central-force network one finds ~13) d e = 1.64 ___ 0.03. The

backbone, as already mentioned, is a subset of bonds belonging to the

"incipient infinite cluster." Note that the incipient infinite cluster also

contains dead arms (i.e., bonds not carrying any current or force). This

incipient infinite cluster also turns out to be fractal, i.e., the number of

bonds belonging to it scales as NocL ds, where for the random resistor

network d r = 91/48 ~ 1.90. (19) The fractal dimension of the incipient infinite

cluster in the central-force network is not known, but presumably it is not

very different from that of the random resistor network. The question of

whether the central-force network and the random resistor network are in

the same univerality class is still controversial, and it is possible that the

dimension of the incipient infinite cluster in the two models is different. It

turns out that diffusive processes are anomalously slow on fractal struc-

tures such as these(2~): the rms distance from the starting point for a free

random walker on such structures gows as taw, where the random-walk

dimension dw~>2. For the random resistor network one has (22)

dw=2.87-t-0.05 for walks on the incipient infinite cluster. The

corresponding dw for the elastic central-force network is 5.0_+ 0.1. (23) The

random-walk dimension of the backbone in the random-resistor network is

smaller than that of the incipient infinite cluster itself, but in such a way

that the difference d ~ - d F is invariant whether the two exponents dw and d I
are calculated from the backbone or the incipient infinite cluster. (24) Thus,

on the backbone of the random resistor network, dw = 2.59 + 0.05.
We will assume in the following discussion that we are close to or at

Pc whenever we refer to the two models.

3. THE JACOBI RELAXATION METHOD

AND ITS ACCELERATION

The general idea behind the iterative methods used to solve equations

such as Eqs. (2) and (6) is to guess an initial distribution V ~ (or R ~ and

then approach the solution V~ = V i by repeated use of some set of
operations V~+I= I(V~). Each iteration will typically require of the order

of L a operations. (If the backbone has been isolated by some method, it is
possible to do with only L aB operations per iteration.) The number of

iterations needed to find the solution to within some desired accuracy will
also scale with some power of L; this is known as critical slowing down.

This power is related to the random walk dimension dw. This connection is

Fourier Acceleration of Iterative Systems 755

most easily understood in connection with the Jacobi relaxation method, (2)
which we now discuss in the context of the random resistor network. This
method can be understood directly in terms of physical processes: Assume
that each node in the random resistor network is connected to a common
ground through capacitors C. The Kirchhoff equations (1) and (2) then

become

c dVi/dt = Y. V , - Vj) = Y. Do V j - 8, (8)
J J

with 1Lhe same boundary conditions as in Eq. (I). Suppose now that we
charge the capacitors and then let the system evolve in time according to
Eq. (8). The capacitors will discharge themselves, and as t--+ co, a steady
state dVjdt = 0 is reached which is the solution to the original problem,
Eq. (1). Numerically, this can be done by a simple Euler time-stepping
procedure,

' = vT + Y vT)
J

where e is the size of the time step (divided by C). Equation (9) constitutes
the Jacobi method. Notice that Eq. (8) is formally identical to a diffusion
equation on a geometrically equivalent network to the random resistor
network, and where the matrix D o acts as the diffusion kernel. Thus, in
light of the above discussion of the scaling of time scales associated with
diffusive processes on fractals, one expects the time scale governing Eq. (8)
to scale with the random walk exponent d~. This means that in order to
bring nodes a distance ~ apart into mutual equilibrium, a time toc~ d~ is
needed. Thus, in order to reach the steady-state distribution of voltages
given by Eq. (1) to within a given accuracy, one needs NocL a" iterations.
This is an example of (severe) critical slowing down. Physically, what is
happening is that the large-scale structures of the network evolve much
slowly than the small-scale structures.

One way to speed up the relaxation process of Eq. (8) would be to
choose a larger time step e. However, there is an upper limit to the size of
for the iteration process to remain numerically stable. This limit is propor-
tonal to the convergence time for the fastest developing components of the
voltage distribution. Therefore, the largest possible e is very small com-
pared to the convergence time for the slowest developing components.

The idea behind the Fourier acceleration method when utilized in con-
nection with the Jacobi scheme is to choose a scale-dependent time step 8~j

756 Batrouni and Hansen

in such a way that each length scale in the problem evolves with the same
speed in Eq. (8), in the numerical analysis literature this is known as
preconditioning. (2) A perfect choice for such a time step would of course be
(D-1)(j, all scales would then evolve equally fast by reaching the solution,
Eq. (3), in one time step. Unfortunately, this is not practical as it requires
previous knowledge of the solution. However, O'Shaughnessy and
Procaccia 125) have suggested an ensemble-averaged form for (D-~)u,

(10)

where [i- j[is the Euclidean distance between the nodes i and j. Notice

that the exponent here, d w - d j , is independent of whether these quantities
refer to the backbone or the incipient infinite cluster of the random resistor
network, as pointed out at the end of Section 2. For a given realization of a
network, ((D-l) i j) is nonzero for all nodes whether they belong to the
incipient infinite cluster or not. It turns out that Eq. (10) is an excellent
choice for the time step (3) e0, i.e., e~= l i - j [d~-de. Thus, Eq. (9) becomes

Vm+l= vm+ ~'ein(~D,,jV'f--B,,), , (11)

where the sum 52' runs only over nodes belonging to the incipient infinite
cluster. The restriction of the sum over n in this equation is important. The
reason for this is that Eq. (11) without the restriction in the sum over n
finds the solution to the following equation:

This equation has the same solution Vi as Eq. (2) only if they span an
Ld-dimensional vector space. But this cannot be so, since only a subset L d~

of the nodes belongs to the incipient infinite cluster. They only span an
L+-dimensional vector space. Thus, only by restricting the sum in Eqs. (1 1)
and (12) to the nodes that belong to the incipient infinite cluster will
one have that Z'nein(ZjDnjV~-Bn)=O has the same solution as
(Zj DuV'~- Bi)=O.

Each iteration of Eq. (1 1) requires a minimum of L a: x L dl operations
as compared to L+ for Eq. (9). If the choice we have made for the time step
ei, is able to remove the critical slowing down completely so that the num-
ber of iterations necessary to reach a given accuracy does not scale with L,
one will have to compare LzO(~L 3'8, or L 3"2 if the backbone has been
extracted) operations [Eq. (11)] to L df+dw (~ L 4"8, o r , .~L 4"2 for the

backbone) operations [Eq. (9)] to judge whether this method is useful or

Fourier Acceleration of Iterative Systems 757

not. We have apparently gained at best a little more than one power of L if

the critical slowing down is completely removed (in practice it is never

completely removed), but it is possible to do much better by invoking

Fourier transforms. The reason for this is the convolution theorem. Let

Ai, j = Ai_j be an (Lax La)-dimensional matrix, and let B~ be a vector with

L d components, both defined on the incipient infinite cluster. We define the

(d-dimensional) Fourier transforms of these quantities as follows:

and

a~ = F(A)k = ~ ei(~J~+k~'+~Aj (13a)

J

bk = F(B)k = ~ e '(k'jx + ~+)B i (13b)
J

where the sum over j runs over both the x and y components of it Jx and

jy (assuming that d = 2), and k is the wave vector. Convolution is defined

a s (A * B)i = ~ j A i_ jB j , and the convolution theorem states that

F(A �9 B), = F(A)~ F(B)~ (14)

We see that one sum over the nodes of the lattice has been saved by doing

the Fourier transforms before the product of the matrix and the vector. In

other words, direct computation of the convolution (A * B)i will need

L+x L+ operations, while computing it as F I(F(A)F(B)) takes work of

order L a log L when using fast-Fourier transform algorithms. (26) Thus, the

introduction of the fast-Fourier transforms makes the algorithm much

more efficient. Now, in Eq. (11) we see that the costly part of each iteration

is caused by a sum such as the one occurring on the left-hand side of Eq.

(14); identify eij= [i - j] d"-dy with Ai, j and Z j D o V ~ - B i) with Bi. It would

therefore be very efficient if this sum could be done in Fourier space. There

is only one problem: The sum is restricted to the conducting incipient

infinite cluster, so how can one do Fourier transforms on something as

irregular as an incipient infinite cluster? This obstacle is circumvented in

the following manner: Lift the restriction on the sum over n in Eq. (11)

to get

Furthermore, let i run over all nodes in the network whether they belong

to the incipient infinite cluster or not. This equation will relax to a set of Vi

which are different than the voltages given by the Kirchhoff equations (2),

as explained after Eq. (11). However, suppose now that we are just starting

758 Batrouni and Hansen

the iteration process, m = 0, and we have chosen all voltages not on the
incipient infinite cluster to be zero as initial condition. Then Eq. (15) will
update the nodes belonging to the incipient infinite cluster correctly, while
those not on it will be updated according to

= e,, D , j V ~ (16)
n

The restriction on n does not make any difference during this iteration,
since the nodes outside the incipient infinite cluster have zero voltage. It is
during the second iteration that nodes on the incipient infinite cluster are
affected by the lifting of the restriction on the sum. During this iteration,
the nonzero voltages on the nodes outside the incipient infinite cluster that
developed during the first iteration will affect the development of the
voltages of the nodes on the incipient infinite cluster. The remedy for this
problem is simple. Use Eq. (15) to iterate the system, but after each
iteration sweep through the lattice reinitialize all nodes outside the
incipient infinite cluster back to zero. We can now use the convolution
theorem on Eq. (15). The Fourier transform of ~0 is

ek=k--d+dl dw (17)

and Eq. (15) becomes

where F i denotes an inverse Fourier transform. In words, what we do is
the following: We Fourier transform Z j Dkj V ~ - Bk and multiply it by Eq.
(17). Then, this product is inversely Fourier transformed again, and added
only to the nodes belonging to the incipient infinite cluster. In this way,
each iteration will require 2L a log L operations and /f the critical slowing
down has been removed completely, this will also be the scaling of the
entire relaxation process with respect to the lattice size L. Thus, ideally one
should compare L 2 log L operations t o t 48, o r Z 42 if the backbone has
been identified, for the unaccelerated Jacobi relaxation method on the two-
dimensional random resistor network. How well this works out in practice
is given in ref. 7, where the backbone was identified before the Jacobi
relaxation procedure was attempted. There it was found that the critical
slowing down was reduced from 2.59 to 1.2 and the CPU time scaled as
L 3'2 log L as compared to L 4"2 for the unaccelerated algorithm. (The boun-
dary conditions in this work were slightly different from those depicted in
Fig. 1: Instead of bus bars at the lower and upper edges of the network,

Fourier Acceleration of Iterative Systems 759

only one node at the upper edge and one node at the lower edge were
connected to the exterior current source.) Note that since e~ is needed every
iteration, we compute it once at the beginning, and store it in an array.
This saves a lot of time.

Let us now leave the random resistor network in order to discuss the
elastic central-force problem. The corresponding equation for this problem
toEq . (l l) i s

, ,9,

and tile connection between this equation and Eq. (6) should be evident.
But the problem is now how to choose the space-dependent time step e0.
There exists no equivalent to the O'Shaughnessy and Procaccia average
Eq. (10). We will therefore make a guess here. First, we notice that the
trick we used to lift the restriction on the sum in Eq. (11) can be used here

also, we reinitialize all nodes not belonging to the connected cluster of
springs to zero between each iteration. (We are avoiding the word

"backbone" here since there is no procedure to determine which springs
will carry a force within the cluster that will contain the rigid backbone.)
We can then Fourier transform both components of the displacements R~
to get

The most general form of the Fourier transform of the average of the
kernel D~, (Dk.o), is

(D) = f (k)[1 + g(k)k | k/Ikl 2] (21)

where the symbol | denotes dyadic multiplication. In a full lattice, i.e.,
p = 1, f (k) is k:, and g(k) is always less than 1, as a result of the Poisson
ratio always being less than 1. Now, the Fourier transform of the space-
dependent time step e a may be chosen as the inverse of Eq. (21) as was
done for the random resistor network:

a, = f (k) - l { 1 - [g(k) / (1 + g(k)] k | k/lkf 2 } (22)

We notice that whatever the function g(k) is, the term proportional to
k | 2 in Eq. (22) that makes a, not diagonal is never greater than 1.
Thus, the off-diagonal term in Eq. (22) is always smaller than or, at worst
equal to, the diagonal term proportional to 1. Since this off-diagonal term
will result in L U x L a operations in Eq. (20), as compared to L a for the

760 Batrouni and Hansen

diagonal term, we will need to ignore it. Furthermore, we assume that the

function f (k) is a power law in k, as was done in the random resistor

network:

ek = lk -~ (23)

where /~ is some exponent to be determined by trial and error, i.e., by

finding the fl that works best. The Fourier-accelerated Jacobi relaxation

algorithm for the elastic central-force network is then given by

where the nodes not belonging to the connected cluster of springs are

reinitialized to zero. The exponent fl that seems to work best is 2.2. Let us

here emphasize that one may choose anything for the function ek; the

correct solution will be found. The problem is to choose one that reduces

the computer time needed.

4. T H E C O N J U G A T E G R A D I E N T M E T H O D A N D ITS

F O U R I E R A C C E L E R A T I O N

We are now at the point where it is natural to describe the conjugate

gradient method. The most efficient version of this method for the two

problems we are discussing here is the one invented by Hestenes and

Stiefel. (27) Excellent discussions of this method are found in refs. 2 and 6;

thus, we will only briefly sketch it here. As usual, we start by discussing the

random resistor network. The idea behind the conjugate gradient method is

to minimize a function

H(V m) = ~ ~ (V'~ Dkj V~')/2 - ~ V"~ Bk (25)
k j k

The minimum found is the solution to the Kirchhoff equations, Eq. (3). In

order to make it easier to grasp the workings of the conjugate gradient
method, it is customary to first outline the steepest descent method. (2'6'14)

Here one constructs a series of voltage vectors V m by a succession of one-

dimensional minimizations along the direction of the local gradient,

H(V m + 1) = min H(V m + ur m) (26)
u

where - rT ' is the local gradient,

r m = - ~ H (Vm)/~? V'7 (27)

Fourier Acceleration of Iterative Systems 761

The convergence of this method is forbiddingly slow if the contours of con-

stant H are highly elliptical rather than circular, which will be the case if

the ratio of the largest and smallest eigenvalues of D is large, a situation

which is typical. The reason for this is that the gradient at the (m + 1)th

iteration will be orthogonal to the gradient at the mth iteration as a result

of the one-dimensional minimalizations along each new gradient direction.

Thus, one is trying to approach the minimum of a highly elliptical valley,

i.e., the minimum of the function H, by a path consisting of steps at right

angles, and this results in the need for many steps, or iterations. However,

notice that if the function H describes a circular valley, this method will

converge in a maximum of L J steps.

The problem of stepping at right angles in the steepest descent method

is caused by using the gradient directions - r m as directions in which

one searches for the new minimum. This suggests that one should use a

different set of search directions p~. The ideal choice of these new search

directions would be such that at the (m + 1)th step one finds the minimum

of the function H over the subspace spanned by the search vectors already
constructed, pO, p~, p~ pro:

H(Vm+I)= min H(V) (28)
space spanned by p~,..., p~n

This is a minimalization over an (m + 1)-dimensional space, and thus too

complicated for a practical numerical method. However, if one could
construct a set of search vectors pO, p~, p2,..., pm with the property that the

one-dimensional minimalization

H(V'[+ 1) = rain H(V'[+ up'[) (29)
u

also solves the (m + 1)-dimensional minimalization problem, Eq. (28), one

would have an effective procedure with the same convergence properties as

the steepest descent method in a circular valley. Such a procedure to

construct effectively such a set of search vectors exists, and is called the

conjugate gradient method. The search vectors constructed in this method

are mutually conjugate with respect to Do , i.e., they obey the property

Z 2 P~Di.jP) -- 0 for k ~ 1 (30)
i j

This property has given the conjugate gradient method its name. These

vectors turn out to be linear combinations of the gradient vectors r m con-

structed for each V'[. These gradient vectors are as, in the steepest descent

method, mutually orthogonal,

Zr~r~=O for k ~ t (31)
i

762 Batrouni and Hansen

Another way of understanding how the conjugate gradient method works

is to notice that the vectors Pi play the role of the vectors ri in the steepest

descent method, but in a different metric Di.j [see Eq. (30)]. In this metric,

the quadratic form (25) a lways describes a circular valley. Thus, the

conjugate gradient method is basically the steepest descent method in a

different metric chosen so that the search for the minimum is done in a

circular valley. Thus, the maximum number of iterations necessary to find

the minimum by the conjugate gradient method (ignoring roundoff errors)

is, as for the steepest descent method in a circular valley, equal to the

number of dimensions of the space of voltages, and this is L d.

One should note that the property of exac t convergence in a

maximum of L d steps is not true in practice, due to roundoff errors.

Another point is that even if this property was true, L a iterations could be

too many to tolerate. So the value of the conjugate gradient method is not

the finite-termination property, but rather that it is a good i terative

procedure, i.e., one stops well before L a iterations. It can be shown that its

critical slowing down is never worse than the square root of the

corresponding Jacobi procedure. (2)

Let us now present the algorithm itself, i.e., how to implement the

minimalization of Eq. (29) in practice. (For a detailed derivation, see sec-

tion 10.2 of ref. 2.) Start by choosing some initial set of voltages V ~

Calculate
pO = r o = B i - Z Di.j V ~ (32)

J

If it turns out that pO = 0 (for all i of course), the initial guess was in fact

the correct solution. Otherwise, for m = 1, 2 compute

V7 +1 V, + " " (34) �9 = m a Pi

rT+, =rT_amZ D ,,jpjm (35)
J

and
p7 '+l = r m+~ + b m p ~ ' (37)

The natural error criterion is the norm of r m. Let e be the desired accuracy.

Then stop the iteration of Eqs. (33)-(37) when

Fourier Acceleration of Iterative Systems 763

It is necessary to store four vectors, each with N components, namely V~ ~,
r m, p~, and 52jDi, jp~ during the iteration of these equations. We notice
here in passing that when implementing this scheme in practice, it is very
useful to test if the orthogonality relations (30) and (32) are fulfilled. This
is a quick method to check whether the conjugate gradient method
functions properly. Let us mention here that we noticed a case where the
conjugate gradient method seemingly functioned properly, finding the
correct solution to the Kirchhoff equations. But when testing the properties
of Eqs. (31) and (32), it became clear that there was a bug in the program.
When this bug was identified and removed, the speed of the convergence of
the method went up by a factor of 5.

It is basically no different to solve the elastic central-force problem
from the random resistor problem with the conjugate gradient method. The
problem now is to minimize the function

(39)

This is done by an equivalent set of equations to Eqs. (32)-(37). In order
to save the reader some time, we explicitly give the equations to be iterated
here. Start by choosing some initial set of displacements Re ~ Calculate

p O = r o = B , - ~ . Di, j" R ~ (40)
J

(We are explicitly marking the "dot" products of the two-component
vectors constituting the components of the vectors over the entire lattice.)
If pO=0, the initial guess was the solution. Otherwise, for m = 1, 2,...,
compute

am = I~' rT'" r~)/(~ ~ p7 " Di'k ~ p ~) - i (41)

�9 = m , - m (4 2) R m+l R i + a Pi

r m+l. =rim __ a m Z Di , j " P2 (43)
J

b m = (~ r 7 '+~ " r ira+ 1) / (y z r)m �9 r j ') (44)

and

pm+l ,,+1 ,,, m (45) = r ~ + b Pi

764 Batrouni and Hansen

As an error criterion, we may choose in this case

 46,

We would like to raise one word of caution at this point. If the x and y
axes of the elastic problem are chosen not to be orthogonal (such as when
dealing with a triangular lattice instead of a square one with one diagonal),
care must be taken to incorporate this nonorthogonality when performing
"dot" products. This may seem a rather obvious point, but it is a fact that
may be hidden when trying to pack these vectors as efficiently as possible
into the memory of the computer. [We speak here from (unpleasant)
experience.]

We now turn to the problem of Fourier accelerating this algorithm.
Let us point out here that this technique is a special case of what is known
in the computer-science literature as preconditioning the conjugate gradient
method (see, e.g., Section 10.3 of ref. 2 and ref. 28). As the "philosophy" of
the conjugate gradient method differs from the Jacobi method, so does the
"philosophy" of Fourier acceleration of the two methods. Fourier
acceleration of the conjugate gradient method will not reduce the number
of iterations needed to reach the exact solution. Its aim is, however, to
reduce the number of iterations needed to get close enough to the exact
solution for one's purpose. The conjugate gradient method proceeds by
picking a sequence of directions that eventually leads to the solution.
Fourier acceleration will make the conjugate gradient method pick a
different sequence, which (hopefully) will lead to the vicinity of the exact

solution much faster.
As usual we start with the random resistor network. The idea is to

solve an equivalent matrix problem to Eq. (2) in Fourier space(Z9):

where

and

_D~_Vj = _B i (47)
J

_Dkt = (x /~) F(D~,F- I(X/~))

B-K = (~/~k) F(Bk)

(48)

(49)

V k = F - l((~/g~)_Vk) (50)

~k is the Fourier transform of the space-dependent time step defined in Eq.
(17). The optimum 7 is curiously not equal to 1, which is the optimum

Fourier Acceleration of Iterative Systems 765

choice when using the Jacobi relaxation method; the optimum choice here

seems to be 0.5. The reason for this, or rather, why y = 1 is not the best

choice, lies in the critical slowing down properties of the conjugate gradient

method being very different from those of the Jacobi method. These

properties are very complicated and at this time not well understood. The

reason for working in Fourier space is the same as for the Jacobi method:

in Fourier space, ek is diagonal, thus greatly reducing the number of

operations necessary per iteration for the matrix multiplications.

The conjugate gradient algorithm itself, Eqs. (32)-(37), is modified in

the following manner: Start with Eq. (32),

p ~ 1 7 6
J

As before, if pO = 0, we have found the solution at the initial guess. If not,
calculate

0 y" _pO =r_k _= (X/ek) F(pO) (51)

We can now start the iteration process. For m = 1, 2 compute the vector

p m = F - l ((x / e ~) l _p~n) (52)

Then form the vector

I ", l /

The rest now follows Eqs. (33) (37) closely:

= _p; _ ; , ._pm (5 4)

/ I x l

_v~ +1 = y~, +_a m _Pkm (55)

_F~n + 1 __ m - - a m Z _D m (5 6) - r k _ k,;_P;
l

bm ~- (k~ ..F~n + l_F~n + 1) / (Z _F~n,~) (5 7)

l

and
p ~ n + 1 __ m + l rn m
_ -_r k +_b _Pk (58)

We take as an error criterion

i

(59)

822/52/3-4-16

766 Batrouni and Hansen

which makes it identical to the one used for the unaccelerated conjugate
gradient method, Eq. (38). When the error criterion, Eq. (59), is satisfied,
V~ is converted into the solution V7 by Eq. (50).

We see that the number of operations per iteration has increased by
3L J [-for the multiplications by (~/e~) in Eqs. (52), (53), and (59)] and by

2LdlogL [for the two FFTs in Eqs. (52) and (53)]. The number of
iterations necessary to reach a given accuracy, however, has been
drastically reduced. The comparison between runs made with and without
Fourier acceleration of the conjugate gradient method on the same ensem-
ble of random resistor networks is shown in Table I. The number of
operations per iteration for the Fourier-accelerated conjugate gradient
method scales as L 2 log L. If the critical slowing down was completely
removed (which it in practice never will be), this would also be the scaling
of the number of operations necessary to reach a given accuracy. Without
Fourier acceleration the number of operations scales as L ee x Law/2~ L 33.

How this works out in practice for the random resistor network without
identifying the backbone is shown in Table I. The critical slowing down is
reduced from L 15 to L L~ and thus one finds that the total number of

operations scales as L 3~ log L. In Fig. 3 we show the development of the
error criterion, Eq. (38) or (59), for a 32 x 32 lattice with and without
Fourier acceleration. In ref. 30 the conjugate gradient method was tested
with and without Fourier acceleration on the backbone of the random
resistor network. In this case the critical slowing down was reduced from
L 13 to L ~ Thus, in this case the total number of operations scales as

L z31og L with Fourier acceleration versus Z 2'9 without Fourier
acceleration. (The boundary conditions differed in this case from those

Table I. The Average Number of Iterations to Relax

Random Resistor Networks of Sizes L =16, 32, and

64 wi th and wi thout Fourier Acceleration to wi th in

Machine Precision, E--10 -1~ Defined in Eqs. (38)

and (59), by the Conjugate Gradient Method a

L CG FaCG

16 161 91

32 455 185

64 1287 392

a Ten lattices of each size were generated. CG, Conjugate
gradient method; FaCG, Fourier-accelerated conjugate
gradient method.

Four ie r Acce le ra t ion of I tera t ive Systems 767

10 -2

Z
o
R: lO*
W p.
Qr
ro
m 10-6

0

u,I
10-6

10- ~

L I I r ~ , , i

0 100 200 300

ITERATIONS

Fig. 3. The development of the error criterion e, Eq. (38) or (59), for a 32 x 32 random

resistor network lattice with and without Fourier acceleration of the conjugate gradient

method.

depicted in Fig. 1: only one node at the upper edge and one node at the
lower edges were connected to the exterior current source.)

We now turn to Fourier accelerating the conjugate gradient method
when used to relax the elastic central-force network. This is done in essen-
tially the same way as for the random resistor network; one solves an
equivalent problem in Fourier space (we present the equations explicitly
even though they are very similar to those for the random resistor
network):

y' D_ ~_Rj = _13, (60)
J

w h e r e

and

D_kl = (~fe~) F(DktF 1(x/e)'))

_B k = (~/ey,) V(Bk)

(61)

(62)

Rk = F 1((x/e~)_R~) (63)

The equations constituting the conjugate gradient methods are implemen-
ted[in the following way: Start with Eq. (32),

p ~ D i j . R~
J

Batrouni and Hansen

a'=(~r,.r~')/(~p~".D,...p m) (67)

m m (6 8) -R~+I = 8 ~ ' + - a _Pc

r~n +1 = r r~ -- am Z D~k,l ~ P~ (6 9)

I

o--(,.,+ r,+
\k

and

p ~ + l _ m+l rn m (71)
_ - r k + b _Pk

An error criterion identical to the one used in Eq. (46) for the un-

accelerated conjugate gradient method is

When the error criterion (72) is satisfied, _R~' is converted into the solution

R m by using Eq. (63).
We found that 7 = 0.7 gave the best results. However, as can be seen in

Table II, the results are not as good as the random resistor case. See also
Fig. 4, which shows the development of the error criterion, Eq. (46) or

(72), for a 32 x 32 random elastic central-force network with and without

Fourier acceleration. We find that the number of iterations necessary to
relax the system to a within a given accuracy scales as L 2. The reason for

this meager result is that the elastic central-force network behaves as two
coupled random resistor networks, as discussed earlier. We are trying to

768

If po_ 0, R ~ is the solution. If not, calculate

_po = r o = (~,/~) F(pO) (64)

We can now start the iteration process. For m = 1, 2 compute the vector

P m = F l ((~ /e~) Ip7 ') (65)

Then form the vector

~ D_ k.," _pT' = (~/ey,) F (~ Dk.z" pT') , (66,

The rest now follows Eqs. (41)-(45) closely:

Fourier Acceleration of Iterative Systems 769

Table II. The Average Number of Iterations

Necessary to Relax Random Elastic Central-Force

Networks of Sizes L = 1 6 , 32, and 64 wi th and

wi thout Fourier Acceleration to wi th in Machine

Precision, e = 1 0 -1~ Defined in Eqs. (46) and (72),

by the Conjugate Gradient Method"

L CG FaCG

16 285 201

32 1076 677

64 4565 2817

a Ten lattices of each size were generated. CG, Conjugate

gradient method; FaCG, Fourier-accelerated conjugate

gradient method.

accelerate the relaxation of these two coupled networks by utilizing the
average of the inverse diffusion kernel for each of them, ((D-1)i,:). This
does not work very well, since the coupling between the networks is com-
pletely left out of the acceleration function. A better approach may be to
accelerate this system as a single interacting theory rather than two free

10 -2

•10
-4

u,l

ro 10 -e

n-
O
r162
(Z
uJ 10 ~

[, ' , ' i i

NO FFT

, I I

500 1000

ITERATION

Fig. 4. The development of the error criterion e, Eq. (46) or (72), for a 32 x 32 random

elastic central-force network with and without Fourier acceleration of the conjugate gradient
method.

770 Batrouni and Hansen

ones. One possibility is to use a more complicated accelerating function ek,
but the possible chices are limited; it is important that it is diagonal in
order to avoid too many operations to perform the necessary matrix mul-
tiplications. The situation is the same as for the use of this technique in lat-
tice gauge theory(81: If one uses a free Green's function as an accelerating
function, and the system one is trying to accelerate is strongly interacting,
good results are not always obtainable. We should point out that in all
cases we have examined, Fourier acceleration succeeded in substantially
decreasing the number of iterations needed for convergence. However, the
savings in CPU time (which is what counts) have not always been large.
One reason for this is that saving a few iterations will be worthwhile only if
the CPU time per iteration is large. If this is not so, the overhead in perfor-
ming the FFTs could be more than the time saved by saving only a few
iterations. As an example, we found that for the random resistor network,
the Fourier-accelerated conjugate gradient method takes about 1.5 times as
much CPU time per iteration as the unaccelerated one. So, if the
accelerated conjugate gradient method needs 2/3 of the number of
iterations needed by the conjugate gradient method, the CPU time would
be the same in both methods. To save CPU time, the accelerated conjugate
gradient method should cut the number of iterations down to less than 2/3
that of the conjugate gradient method (which it does by a large margin).

5. STOPPING CRITERIA

We end this paper by a short discussion of criteria for when an
iteration procedure has found an acceptable solution. This very important
question is closely related to the problem of critical slowing down. We
discuss it using the random resistor network as a practical example.
Figure 5 shows the convergence of the Euclidean norm of the voltage
vector in the Jacobi method without Fourier acceleration,

vm=[~i (vm)2]l/2 (73)

A~n+ I = ~m+ I/V m (74)

6,.+1 = (V~ + l - G") 2

Specifically, we plotted

where

(75)

101

Z
o_

l-

iv-

O
g~

10 4

10 -=
, i I r J I I I I I

5 0 0 0 10000 15000

ITERATION

I

0

Fourier Acceleration of Iterative Systems 771

Fig 5. A plot of A' as defined in Eq. (74) and A as defined in Eq. (79) versus iteration

number for an L = 8 size random central-force network when using the Jacobi relaxation

method. The convergence of the iteration method is geometric; we estimate ;t to be 0.9997.

is the norm of the change of the voltage vector from iteration to iteration.
The convergence is clearly geometric (the signal of this is the straight line
in the semilog plot in Fig. 5), which is to say that the voltage vector is
approaching the solution (m = oe) as a geometric series:

V m = V ~ + Ci2 m (76)

where V~ is the exact solution and 2 ~< 1 is the convergence rate. The worse
the critical slowing down in the system, the closer 2 is to 1; in Fig. 5 we
have 2 = 0.9997. This is a dangerous situation, making the ~' defined in
Eq. (74) unacceptable as an error criterion. To understand this, combine
Eqs. (74)-(76) to get

Am+l= C [2 " (1 - 2) [/ V " = c 2 m (1 - 2) / V m (77)

Let us now introduce the "true" error, namely the norm of the distance
between the correct solution V,. ~ and VT',

772 Batrouni and Hansen

Now, combining this equation with Eq. (76) (assuming that there is
geometric convergence), we get

 m+l

Now, comparing Eqs. (77) and (79), we see that using Am as an error
criterion, underestimates the true error A m by an amount 1 - 2, and when
critical slowing down is present, this is a very small factor, often of the
order 10 .3 or smaller for the systems we are discussing here, as can be seen
in Fig. 5. Thus, when critical slowing down is present and the convergence
is geometric, one has to use the true error Am rather than A" as an error
criterion. It is therefore important to find a way to express Am by quantities
known at a certain iteration without knowledge of the correct solution. This
is accomplished by approximating it by the following formula(29):

Am+l =ZJ~n+l/I 1-(~m/(~m+ll (80)

The idea behind this equation is that when the geometric convergence sets
in, C~m/6m+ 1 = 2 and thus the factor 1 - 2 in Eq. (77.) is canceled. It is d m

given in Eq. (80) that is plotted in Fig. 5.

The stopping criterion a we have used in the conjugate gradient
method [see Eqs. (38), (46), (59), and (72)] differs slightly from A' defined
in Eq. (74): it is the norm of the residual vector r t = B i - Z j D i j V j .

However, the problems discussed above will also be present with this stop-
ping criterion. There is geometric convergence also in the conjugate
gradient method, even if the convergence is quite noisy, as can be seen in
Figs. 3 and 4. However, if we estimate the convergence factor 2 from these
figures, we find 2=0.87 for the random resistor network (Fig. 3) and
2=0.97 for the random central-force network (Fig. 4). Thus, the error
criterion a gives a correct estimate of the true error for these runs.

ACKNOWLEDGMENTS

We thank G. R. Katz, G. P. Lepage, M. Nelkin, and J. Vannimeus for
numerous useful discussions on this subject. S. Roux deserves special
thanks for his many excellent suggestions on how to implement these ideas
in the most efficient way. We also thank H. J. Herrmann and D. Stauffer
for urging us to write something (hopefully) readable ("or at least detailed
enough to be useful") on this subject. The computatins were done at the
l~cole Normale Sup6rieure on an FPS-164 computer supported by GRECO
70 (Exp6rimentation Num6rique), and on an IBM 3090 at IBM Bergen
Scientific Center; A.H. is grateful for the hospitality shown there. The
authors acknowledge support from the NSF (G.G.B.) and from CEN-
Saclay through a Joliot-Curie Fellowship (A.H.).

Fourier Acceleration of Iterative Systems 773

R E F E R E N C E S

1. G. Forsythe and C. B. Moler, Computer Solutions of Linear Algebraic Systems (Prentice-
Hall, Englewood Cliffs, New Jersey, 1967); J. A. George, SlAM J. Numerical Analysis

10:345 (1973); A. J. Hoffman, N. S. Martin, and D. J. Rose, SIAM J. Numerical Analysis

10:364 (1973).
2. G. H. Golub and C. F. van Loan, Matrix Computations (North Oxford, London, 1986).
3. R. S. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, New Jersey,

1962).
4. D. M. Young, Iterative Solutions of Large Linear Systems (Academic Press, New York,

1971).
5. L. A. Hagelman and D. M. Young, Applied Iterative Methods (Academic Press,

New York, 1981).
6. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York,

1980), p. 572.
7. G. G. Batrouni, A. Hansen, and M. Nelkin, Phys. Rev. Lett. 57:1336 (1986).
8. G. Parisi, in Progress in Gauge Field Theory, G. 't Hooft et al., eds. (Plenum Press,

New York, 1984); G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B. Svetitsky,
and K. Wilson, Phys. Rev. D 32:2736 (1985).

9. H. E. Stanley and N. Ostrowsky, eds., On Growth and Form (Martinus Nijhoff, Boston,
1986).

10. S. Kirkpatrick, in Ill-Condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds.
(North-Holland, Amsterdam, 1979).

11. R. Rammal, C. Tannous, P. Breton, and A.-M. S. Tremblay, Phys. Rev. Lett. 54:1718
(1985); L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B 31:4725 (t985).

12. S. Feng and P. N. Sen, Phys. Rev. Lett. 52:216 (1984); A. R. Day, R. R. Tremblay, and
A.-M. S. Tremblay, Phys. Rev. Lett. 56:2501 (1986).

13. A. Hansen and S. Roux, preprint.
14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes

(Cambridge University Press, Cambridge, 1986).
15. H. J. Herrmann, D, C. Hong, and H. E. Stanley, J. Phys. A 17:L261 (1984).
16. S. Roux and A. Hansen, J. Phys. A 20:L1281 (1987).
17. A. Aho, J. Hopcroft, and R. Ullman, The Design and Analysis of Computer Algorithms

(Addison-Wesley, Reading, Massachusetts, 1974).
18. J. Hopcroft and R. E. Tarjan, Commun. ACM (Algorithm 447) 16:372 (1973).
19. D. Stauffer, Introduction to Percolation Theory (Francis and Taylor, London, 1985).
20. H. J. Herrmann and H. E. Stanley, Phys. Rev. Lett. 53:1121 (1984).
21. R. Rammal and G. Toulouse, J. Phys. Lett. (Paris) 44:L13 (1983).
22. S. Havlin, D. Movshovitz, B. Trus, and G. H. Weiss, 3. Phys. A 18:L719 (1985).
23. S. Roux and A. Hansen, J. Phys. (Paris) 49:897 (1988).
24. H. E. Stanley and A. Coniglio, Phys. Rev. B 29:522 (1984).
25. B. O'Shaughnessy and I. Procaccia, Phys. Rev. Lett. 54:455 (1985).
26. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes

(Cambridge University Press, Cambridge, 1986), Chapter 12.
27. M. R. Hestenes and E. Stiefel, Nat. Bur. Stand. J. Res. 49:409 (1952).
28. P. Concus, G. H. Golub, and D. P. O'Leary, in Sparse Matrix Computations, J. R. Bunch

and D. J. Rose, eds. (Academic Press, New York, 1976).
29. G. R. Katz, Ph.D. thesis, Cornell University, Ithaca, New York (1986).
30. A. Hansen, Ph.D. thesis, Cornell University, Ithaca, New York (1986).

