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Fourier analyses: A mathematical
and geometric explanation
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Fourier analyses are used in electrophysiological research to reduce EEG data to an inter
pretable, analyzable form. This article outlines the mathematical similarities and differences
bet~een. Fourier transf~rms and fast Fourier tra?sforms. A geometric explanation of the
application of fast Founer transforms and a Founer series to theta-band EEG data is also
included in this article.

OPTICAL SPECTRUM

Figure I. Diagram of white light being transformed by
prism into color spectrum.

uses one of two types of Fourier analyses. A Fourier
analysis permits an investigator to take the voltage
changes that he observed (and recorded) over time and
convert these data into usable, analyzable information.
That is, a Fourier analysis of data permits an investi
gator to analyze the original voltage vs. time data in
terms of the underlying frequency with which the
electrical activity is observed to have occurred under
the particular experimental conditions (Walther, 1963).
The use of a Fourier analysis in brain research is analo
gous to the use of a prism in optical research. In optical
research, the investigator is interested in analyzing light
that is emanating from a source, in order to be able to
make some statements about what was happening within
the body from which the light originated. To analyze
the beam of light, the investigator focuses it on a prism.
As is shown in Figure 1, the prism bends the beam of
light, breaks it down into its component parts (colors),
and displays the colors either on film or on a screen.
The investigator then can examine the film or screen to
determine which colors are present and in what quantities
each color of light is present. Light is a physical phenom
enon that conforms to the properties of waves. Each
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HYPOTHETICAL EXAMPLES

Let us further assume that a neurophysiological
investigator is interested in the number of neurons
firing at any time (voltage) and the frequency with
which the neurons fire (voltage changes per unit time).
To obtain this information, the investigator usually
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There has been renewed interest in time-series analysis
of late (Benignus & Muller, 1982; Bremner, Yost, &
McKenzie, 1982; Glass, Wilson, & Gottman, 1975).
This is because time-series analysis has a broad applica
tion from social research to neuropsychology to astron
omy. As an example of time-series analysis, we will
describe the application of the fast Fourier transform
(FFT) equation to EEG data using both a mathematical
approach and a geometric approach.

Investigators involved in neuropsychological research
have for many years been involved in the analysis of
electrical activity of animals' brains. In this research,
they place an electrode or electrodes as close as possible
to the part of the brain that they are interested in
investigating. These electrodes are simply small stainless
steel wires that are attached to selected filters and
amplifiers. When the neurons in the part of the brain
being monitored fire, they induce a voltage in the
electrodes. This induced voltage is then filtered, ampli
fied, and recorded on a tape recorder. More specifically,
a recording is made of the changing voltage of the
induced current over the time period that the induced
current is in existence. Let us assume that the greater
the number of neurons firing at anyone time in the
vicinity of an electrode, the higher is the voltage, and
that the fewer the number of neurons firing at anyone
time in the vicinity of an electrode, the lower is the
voltage. Typically, the short-term result of a neuro
psychological experiment is a series of tape recordings of
changing voltages over time or different brain locations
for different treatment conditions.
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color of light has a given frequency. and two or more
colors of light emanating from a single source can be
separated from each other by using a prism. By examin
ing the frequencies and intensities of light after they
have been separated by a prism, an investigator in the
field of optics can often make or draw inferences about
what was happening within a body from which the beam
of light originated. A beam of light in optical research
is analogous to the voltage recording in electrophysio
logical research. Similarly, the prism in the optical
research is analogous to the Fourier analysis. The Fourier
analysis is a mathematical method of separating the
voltage vs. time data to frequency data. The objective
of this type of research is to draw inferences about
what is happening in the brain by analyzing the fre
quency data. In the remainder of this article, we will
describe how Fourier analysis is used in electrophysio
logical research.

Figure 2. Schemata representing the reductionin calculations
for the FFT overthe FT where N = 4 =2' .

manner as to minimize the number of multiplications
and additions. For N = 2T , Wnk is factored into r N by N
matrices. The example in Figure 2 for the case in which
N =4 =22 illustrates the procedure and the reduction
in the number of required calculations.

Note that the original procedure requires N2 multi
plications and N(N -- 1) additions (16 and 12, respec
tively, for the example), whereas in the second pro
cedure. after factoring, each step requires N/2 multi
plications and N additions for a total of Nr/2 multipli
cations and Nr additions (4 and 8 for the example).
This results in a considerable savings in computer time
over the calculations required in the FT.

MATHEMATICAL REPRESENTATION
OF FT ANDFFT

The Fourier analysis is carried out in two ways. The
Fourier transform (FT) is used to convert mathematical
models of voltage vs. time data into frequency data.
The FFT is a computation algorithm for the FT and is
used to economically convert empirical voltage vs. time
models into frequency data. Whereas the FT deals with
frequency as a continuous variable, the FFT deals with
frequency as a discrete or integer variable. By dealing
with frequency as a discrete variable, the data can be
coded for analysis into a digital computer (Brigham,
1974). The FFT algorithm greatly reduces the number
of calculations and the amount of storage needed to
complete the analysis, while the results of the analysis
continue to validly represent the electrophysiological
activity of the brain. The equation for the FT is:
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where h(t) is the model of voltage vs. time, j =-1, and
e and tt are constants. Similarly, the equation for the
discrete FT is:

N-l
H(fn) = 1: h(tk)e-j2rrfntk, n = 0,1, ... , N - 1,

k=O

where h(td is the voltage at time tk, H(fn) is the inten
sity at frequency fn, N is the number of points sampled,
j =yCT, and e and 1r are constants. This can be written
in matrix form as:

where wnk is an N by N matrix with the element in the
n.k position, Wn,k = (e-j2rr/n)nk. The FFT is a pro
cedure for factoring the N by N matrix wnk in such a

GEOMETRIC REPRESENTATION OF FFT

In our electrophysiological experimentations, we find
that an FFT fits our research needs, computer capacity,
and time constraints better than an FT. The FFT in and
of itself does not yield information that is directly usable
and analyzable. It is the Fourier spectrum (FS) that is
obtained from the FFT that ultimately yields usable
data (Blackman & Tukey, 1959; Nussbaumer, 1981).
The FS is a breakdown of the power in the original
data into its individual spectra or component parts. As
in the optical analogy presented earlier, the beam
of light is of a known total intensity, but until it is
broken into its individual parts (colors), there is no
direct way of telling which colors are present or how
much of each color is present. The FFT takes the
voltage vs. time data and transforms them into the
aggregate of all the frequencies found in the data.
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Figure 4. An analog of the numerical output of the FFT.
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The FS, which is derived from the FFT, indicates
the amount of each frequency that is present in the
aggregate of the data (Bracewell, 1978).

As an example of the application of FFT and FS to
electrophysiological research, suppose that we took a
l-sec sample of EEG data (voltage vs. time) from a
sleeping and dreaming subject as shown in Figure 3. Let
us assume that these data were gathered using an
algorithm in which 256 data points were sampled each
second. These data resemble what an investigator often
obtains as theta-band data. Before these data can be
submitted to a Fourier analysis, the data must first be
converted from analog data to digital data (A/D conver
sion). This can be done using any of a number of differ
ent computer programs. If the digital data were sub
mitted to an FFT, then the aggregate or total power of
the neurons that fired in the time period could be
obtained. If these data were further broken down using
an FS, then an investigator would be able to tell the
amount of the total power that is attributable to each of
the I-Hz frequency bands. Figures 3, 4, and 5 are a
series of graphs that give a geometric representation of
how an FS is performed. Initially, a computer program
is used to measure the amplitude of the wave that was
obtained as the l-sec sample of data. These are the
256 digital values that are obtained from the AID
conversion. These values are actually the lengths of the
vertical lines that are labeled 1, 2, 3, 4 through 256 in
the portion of Figure 3 labeled "Analog Signal."
Approximately half of these 256 values are positive, and

ANALOG SIGNAL AND STANDARD WAVE FORMS
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Figure 5. Typical representation of the Fourier spectra of
the FFT output represented in Figure 4.

Figure 3. Geometric (pictorial) representation of the opera
tions of the FFT for breaking a complex wave into its com
ponent parts.
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the other half are negative. Some of the values are or will
approach zero. In actuality, this is a vector of 256
scores and would be recorded in Figure 4 in the column
headed "Digitized Value." Once the digitized values of a
sample wave are obtained, a set of amplitudes for a
series of standard waves must be obtained. In the lower
portion of Figure 3 are samples of I-Hz, 2-Hz, through
K-Hz standard waves. The choice of the number of
standard waves and their wavelengths is a function of
the particular study that an investigator is conducting.
Once the decision has been made as to which of the
I-Hz bands an investigator is interested in, the ampli
tude of the waves is found for each of the 256 data
points. The sampling procedure used with each of these
standard waves is identical to that which was carried out
on the sample wave. The standard waves are constructed
in integer frequencies, so that the amplitude of anyone
standard wave is orthogonal to or independent of all the
other standard waves. If, as in our geometric example,
we are interested in the first through the fifth I-Hz
bands, then the 256 amplitudes of each of these stan
dard waves would be placed in the appropriate columns
of Figure 4. The data that would normally appear in
Figure 4 are still expressed as a time-dependent function.
The process of transforming the sample wave data of a



time-dependent to a frequency-dependent function can
be viewed as a type of correlational procedure. The
procedure is one of finding the proportion of the vari
ance of the sample wave that can be accounted for by
each of the standard waves. If an investigator is inter
ested in five I-Hz frequencies, then he calculates five
coefficients. Each coefficient indicates the power
(voltage squared) at each of the five frequencies for the
I sec for which the data were sampled. The power at
each frequency is analogous to the correlation between
the 256 data points from the sample waves and the
256 data points for each of the standard waves. Another
way of describing this process is to state that the power
at each frequency is a mathematical expression of how
well the standard waves for each frequency fit the
sample wave. The better the standard wave fits the
sample wave, the higher the coefficient and the higher
the power. The converse of this relationship also holds.
That is, the poorer the fit of a standard wave is to the
sample wave, the lower the power.

A histogram of the power at each of the frequencies
for the sample wave is shown in Figure 5. Note that
most of the power of the sample wave is at 5 Hz and
that the original sample wave basically resembled theta
wave data, of which 4 Hz or 5 Hz is the dominant
frequency. Since the standard waves were constructed
to be orthogonal or independent, the power at each of
the I-Hz frequency bands is also orthogonal or inde
pendent.

SUMMARY

In our example, we started with an analog signal,
converted it to a digital signal, and used an FFT and FS
to reduce the data to the amount of power observed at
each of a number of frequencies. This process is also
reversible, and an investigator can take the data from the
power of each of a number of frequencies and find the
total power that was put out by the individual at the
time that the individual's EEG data were gathered.

Along with the fact that the numeric values for each
of the bands of an FS that are obtained are informative,
they have another desirable characteristic. As a result
of the mathematical algorithm that is used in deriving
the data, the data are orthogonal or independent. This
means that the amount of power in anyone of the
spectral bands is independent of the amount of power in
anyone or more of the other spectral bands. Another
way of describing this is to say that there is no correla
tion among the data in any of the spectral bands. This
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means that, should an investigator be interested in the
power in more than one of the spectral bands, the data
will easily lend themselves to multivariate statistical
analysis (Bremner et al. 1982). Although a multivariate
statistical approach does not require that the criterion
variables be independent, having them be orthogonal
does make for a much cleaner statistical analysis.

There is a vast amount of hardware and software
that is commercially available today that can be used in
electrophysiological research. This includes many
different computer programs to perform AID conver
sions, FFT, and FS (Eddy & Bremner, 1983). It has been
our finding that most investigators have their "favorite"
program. "Favorite" is typically defined as the program
that is available, and the one that the investigator knows
how to run. Some run more efficiently than others, and
some give output that is more complete and easily
interpreted than others, but an investigator should have
little trouble finding usable software (Eddy & Bremner,
1983). The decision as to which FFT and FS program to
purchase and use is a critical one. If an investigator
chooses and implants a program that is easily run, that
operates efficiently, that operates effectively, and that
gives the appropriate output, then his research will
move along very smoothly. If any of these four criteria
are not met, then his research will become more difficult
to conduct than it should be.
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