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The Fourier spectrum of a multiply periodic system appears complex due to resonances at integer combinations of the 

fundamental frequencies. We show how to "reorder" the peaks in the Fourier spectrum to yield a simpler structure which 

reveals important aspects of the time series which are not clearly seen in the ordinary Fourier transform. As examples, we 

study time series from circle and torus maps, and from experimental data by Gollub and Benson. 

1. Introduction 

Dynamical systems with several fundamental 

frequencies have been the subject of active re- 

search [1-5]. In these systems, the competition of 

several frequencies results in many interesting 

phenomena, including the quasiperiodicity, mode- 

locking, and chaos. One of the most important 

methods for probing multi-frequency systems 

has been spectral analysis [5-7] particularly in 

the analysis of experimental data. The Fourier an- 

alysis yields information about the number and 

values of fundamental frequencies as well as infor- 

mation about the relative importance of various 

harmonics. 

However, as it is often displayed, the Fourier 

spectrum yields little other information. The spec- 

trum is dominated by a few major peaks corre- 

sponding to the fundamental frequencies, but it is 

not easy to understand the organization of the 

strengths of the higher harmonics. In this paper, 

we show how to "reorder" the Fourier spectra to 

view the organization of the spectrum by extend- 

ing the analysis of the two-frequency spectrum as 

discussed in ref. [2] to three or more frequencies. 

*Present address: Mathematical Science Institute, White 
Hall, CorneU University, Ithaca, NY 14853, USA. 

The organization of the paper is as follows. In 

section 2, we briefly review the ordinary Fourier 

spectral analysis of quasiperiodic time series and 

the reordering scheme discussed in ref. [2]. We 

also discuss the relevance of the reordered spec- 

trum to the study of the chaos transition. In 

section 3, examples of time series from maps and 

a hydrodynamic experiment of Gollub and Ben- 

son [6] are analyzed according to our scheme. In 

section 4, we end by discussing several possible 

complications when our analysis is applied to ex- 

perimental data. 

2. Reordering scheme 

2.1. Overview of the ordinary Fourier analysis 

Assume that two fundamental frequencies to 1 

and ~o 2 determine the dynamics of a physical 

system, and that x(t) is a dynamical variable as a 

function of time t. The existence of two indepen- 

dent frequencies implies that we can write 

x ( t ) =  Y'~ a(n ,n ' )e  i(n'~l+"''~2)t, (2.1) 
n,r/t 

where the summation is over all pairs of integers. 

In a convection experiment, x(t) could be, for 

example, a local velocity or temperature of the 

fluid. We obtain a discrete time series, x t=  
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X(2"~/ /¢o2)  , by "strobing" the physical system at 

time intervals corresponding to one of the funda- 

mental frequencies, say ¢02. From eq. (2.1) we see 

that 

Xl= ~ An ez'~ilnp, (2.2) 
?l s - - 0 ~ 3  

where O = ~ol/~o2 and 

A n = ~2 a(n ,  n ' ) .  (2.3) 
n p ~  - - o Q  

We can define the function 

g ( x )  ~ -  2~rixn ( 2 . 4 )  = Ane . 

We say that g(x )  generates x I since x l =  g(lp). 

Provided that x ( t )  is sufficiently smooth, g(x)  

will be analytic. 

We define the spectral amplitude s(~0) of xz to 

be 

1 N - 1  

s ( o : ) =  l i r n  ~ ~2 x , e  2.i,o,. (2.5) 
1=0 

We then have 

s(~o) = lim Sn(I'oq,]), (2.7) 

where [x] indicates the closest integer to x. 

The previous discussion focused on the spectral 

quantities related to time series taken from a 

continuously evolving system. In numerical ex- 

periments, it is easier to work with a mapping " f "  

which generates the discrete time series xz ex- 

plicitly. The "standard" circle map f is defined by 

a sin (2~rx), L , A x )  = x + (2.8) 

where a and ~2 are fixed parameters. The winding 

number p is defined as the average "rotat ion" rate 

of the mapping 

f : A x o ) - X o  
p = p(a ,  ~2) = lim , (2.9) 

n ~  n 

where f "  indicates repeated compositions of f 

with itself. The physical interpretation of p corre- 

sponds to that defined for the continuously evolv- 

ing system. The variable xz is then taken to be 

x l = f l ( x 0 )  - l p -  x o. (2.10) 

Let Pn-(Pn/qn}~=o be a set of rational ap- 

proximants to O such that l i m n ~ ( p J q , ) = p  

with IPn/qn -- Pl > [Pn+l/q,+l -- Pl and qn < qn+l" 

We also choose (Pn/qn } to be optimal, in the 

sense that Iq, p - p , I  < [ r p - p l  for any r < q n .  

Although the number p can be rational, we are 

more interested in the case where it is irrational. 

For  a given finite time series, we can best ap- 

proximate the Fourier spectrum s(~0) by choosing 

the number of data points used to compute the 

Fourier transform to be q,. We shall denote the 

resultant approximation to s(~o) by s,, which is 

defined by 

1 qn - 1 

Sn(m) = ~ E X, e-2"rriim/qn" 
1=0 

(2.6) 

It is known that the function g which generates x / 

is C~ if both f and its inverse are C~ [1, 2, 8]. 

A typical quasiperiodic spectrum for a standard 

circle map with P = oG = (V~- -- 1) /2  and a = 0.98 

is shown in fig. 1. We have made a log plot of m 

VS [ s 1 7 ( m ) [  2 using the rational approximant, P17 

=-P17/q17 = 2584/4181. This particular choice of 

the rational approximant is from the Farey tree 

algorithm [9, 10]. Note that only left half of the 

spectrum is shown. The spectrum for ! < ~ < 1 

can be obtained by the mirror reflection about 

o: = !. A major peak is seen at w = 1 -  P17 = 

1597/4181. A mirror image peak is located at 

= Px7 = 2584/4181. Another peak is seen at ~0 = 

(2017)1 = 987/4181 where (X)y indicates x mod- 

ulo y. Successive generations of smaller ampli- 

tudes are seen at "resonance" locations of either 
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Fig. 1. The ordinary power spectrum for 4181 cycle elements 

of  the s tandard sine map with a = 0.98 and P = 2584/4181 on 

a log plot. The principal peaks are located at either ~ = (mp) l  
or o~ = 1 - (mp)a for small integers m. 

---- (mPl7) 1 or 1 - ( m p l 7 ) l ,  where rn is a small 

integer. A complex structure results since the 

modular function, (mo)x, is not monotonic in m. 

The relatively sharp peaks and low background 

noise suggests that the spectrum corresponds to 

quasiperiodic regime below the chaos transition 

which is known to occur at a = 1. 

If we had used a higher order rational ap- 

proximant to p, only the small amplitude peaks of 

the spectrum would have been significantly af- 

fected. The dominant peaks are always de- 

termined by low resonances of p. These are stable 

against increasing the order of the rational ap- 

proximation. The use of successively longer time 

series data enables us to obtain a systematic and 

convergent approximation to the Fourier spectrum 

of the quasiperiodic time series [11]. 

0 ¸ 

v 
<o~ 

- 2  = . 

- 2 0 9 0  

Fig. 2. The reordered power spectrum of fig. 1 with p / q  = 
2584/4181 on a log plot. The single peak at the center decays 

roughly exponentially. The flat plateau reflects the precision of 

our computation. 

by 

S n ( m ) = s n ( ( m p n ) q . ) ,  (2.11) 

where as before ~ )qn indicates the modulus with 

respect to q,. The reordering of fig. 1 is shown in 

fig. 2, where we have plotted log ( I gx7 (m) 12) versus 

m with PiT/q17 -- 2584/4181. In contrast to fig. 1, 

only one major peak is seen in the center. This is 

the result of the transformation bringing all the 

low order harmonics of p into the neighborhood 

of the origin. Fig. 2 suggests that the decay of g is 

exponential until it levels off at the limits 

determined by the accuracy of our computation. 

How does the reordered spectrum relate to g(x)? 

By substituting g(lp) for x t and the Fourier series 

for g(lp) into eq. (2.11), we see that 

2.2. Reordered Fourier spectrum 

2.2.1. Two-frequency case 

In the previous section, we have demonstrated 

that s(to) is complicated, but hinted at the 

simplicity of A,, the Fourier transform of g(x) 

which contains the dynamical information. We 

shall now demonstrate the relation between the 

two. Let us define the "reordered" spectrum g,(m) 

1 % - 1  
~ , ( m ) =  ~--~ E e-2~itmp"/q" A~ e2~iHw" 

1~0 k= -o~ 

(2.12) 

This can be reduced to 

o o  

1 ~_, 1 -- e 2"~l(kpq"-mp") (2.13) 
S n ( m )  = -~n k= A k  1 -- e 2"~i(kp-mp"/q.)" 

- - 0 0  
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As p J q ,  ~ p, the sum is dominated by the term 

corresponding to m = k and we find 

lim g,(m) ~ A,,. (2.14) 
n ~ o o  

where n = (n x, n 2)' and 

E a(nl,.2, n3). 
n 3 ~  - - O C  

(2.17) 

In the irrational limit q , ~  oo, the reordered 

spectrum is simply equal to the Fourier transform 

of g(x). 

The "quasiperiodic regime" is defined by g(x) 

being C a.  Provided a single upper bound exists 

for all derivatives of g(x), A,, must then decay 

faster than any power of m for large m [2]. This is 

certainly the case for the spectrum in figs. 1 and 2. 

It  is well known that circle map in eq. (2.8) 

undergoes a transition to chaos at a = 1, when the 

inverse map  becomes singular. The function g(x) 

remains continuous, but is nowhere continuously 

differentiable. The Fourier amplitudes of g(x) will 

then decay only as fast as constant/re.  This sharp 

difference between the behavior of the high 

harmonics can be easily seen in the reordered 

spectrum and may be used as a guide to determine 

chaos onset in a more complicated system. 

2.2.2. Three-frequency case 

Let us now assume that x(t) is a dynamical 

variable of a system with three fundamental 

frequencies (ol, to 2 and (o 3. We can therefore write 

x ( t )  = ~_, a(nl,  n2, n s ) e  2~i"'''~t, (2.15) 

n 1 , F / 2  , n 3  

where n '  = ( n  D n2,  n3)  and to = (o,)1, 002, ~°3)- 

Analogous to the definitions in the previous 

section, we define the discrete time series {xt)  as 

the values of x(t)  obtained by strobing x(t) at 

discrete t ime intervals corresponding to a funda- 

mental  period, say 2'~/603, so that x I = x(2~rl/to3). 

We define the pair of reduced frequencies to be 

P = (Pl, 02) = (tol/~3, ~02/¢03)- According to this 

definition x I is given by 

x, = E A(nl ,  nz) ez~it"'p, (2.16) 

n 1 ~ n 2 

This is of course a simple extension of the 

manipulations in the previous section. 

If the " fundamenta l"  frequencies ~01, o) 2 are 

actually not irrational multiples of each other, and 

we can find integers p, q and r so that P =  

(p / r ,q / r ) ,  it is easy to see that xt=xt+ ~. 

However, if the fundamental frequencies are 

irrational multiples of each other, we can still 

define simultaneous rational approximants p, = 

(PJG,  q, /G) so that r,+ 1 > r, and 

l im.  ~oo IP. - Pl = 0 

and 

I ( P , , q , ) - r . P [  > I(p,+a,q,+a)-r,+lol.  

For a typical dynamical system, the integers r, 

then determine "close returns" of the dynamical 

system, i.e. there is an integer n "  so that if n '  > n ", 

I x l + ~ . -  xil > I x t + r . , - x / I .  (Note  that this 

statement is considerably weaker than for the 

circle map, where n "  = n.) Let us assume that we 

have the time series x l for a dynamical system 

with three incommensurate frequencies. We then 

compute the ordinary discrete Fourier transform, 

truncating the data to length i",: 

r . - 1  

1 ~ xte_2~.il,,/~° ' (2.18) 
s ° ( m )  = 7 .  ,=0 

where 0 < m < r,. We would now like to relate 

s,(m) to A(n) as defined in eq. (2.17). This is 

considerably more complicated than in the two- 

frequency problem since s,(m) is determined by a 

single integer while A(n) is determined by an 

integer pair. But it turns out that we can proceed 

with a method very similar to that used in the 

two-frequency problem. We define the "reordered" 
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spectrum as follows: 

.~,,(m) = s,,( (m "P.)r.), (2.19) 

where m = (rn 1, m2) and p ,  = (p, ,  q,) are integers. 

Thus, the "reordered" spectrum is a function of 

two integers, whereas the ordinary Fourier ampli- 

tude is determined by a single integer. 

It is tempting to let m be all pairs of integers 

between 0 and % However, these r, 2 choices are 

not independent, since there are in fact r, solutions 

to (m "P,)r. = 0 in the r, by r, square. We can 

think of Z 2, the space of integer pairs, as defining 

a "reciprocal" space, with the solutions m of 

(m "P,)r, = 0 defining a Bravais lattice. This is 

illustrated in fig. 3, for the case (p, ,q , ,  r , ) =  

(4, 5,7). The 7 x 7 lattice of integers in fig. 3 

represent the values of (4m 1+ 5m2) 7 for 0 <  

ml, m 2 < 7. Basis vectors of the Bravais lattice for 

this example are chosen to be b 0 = (4,1) and b~ = 

(1,2) which are represented by arrows in fig. 3. 

The "fundamental  domain" of the Bravals lattice 

is determined by the parallelopiped defined by 

these basis vectors. There is a 1 : 1 correspondence 

between each element in the fundamental domain 

and each independent spectral amplitude. Note 

that the vectors obey [b0Xbl[ = 7 =1", as they 

m 
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6 
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1 

6 3 0 4 1 

1 5 2 6 3 

3 0 4 1 5 

3 0 / 4 1 5 

5 ~ ~ ~  o 4 

0 4 1 5 2 6 

0 ml  6 

Fig. 3. The reciprocal lattice for (p ,  q, r ) =  (4,5,7) is shown. 

The  7 " 7 lattice of  integers represents the value of (4m 1 + 

5m2)  7 for 0 <  m 1, m= < 7. Two arrows represent the basis 

vectors of  the reciprocal lattice. 

must in order for the fundamental domain 

determined by the Bravais lattice to define the 

correct number of independent amplitudes. Thus, 

the reordered spectrum is naturally viewed as a 

function of two integers in the fundamental 

domain. 

What can we learn by looking at g,(m) rather 

than s , (m)?  From eq. (2.16), we define the func- 

tion 

g(Ol, O2) = Y', A(nl ,  n2)e z<("A+"2°2). (2.20) 
nl, n2 

According to this definition, x l =  g((lo)l) where 

((xl, x2))1 = ((x1)1,(x2)l).  Thus, again we say 

that g(01, 02) generates the dynamics of x t. We 

know from previous work, both from conventional 

rigorous methods [8] and from RG methods [4] 

that for at least a mapping with sufficiently weak 

nonlinearity, g(01, 02) will be a C~ function of 01 
and 02. Therefore, we expect A (n 1, n 2) to decay 

with an increasing modulus in n = (n 1, n2) 

sufficiently rapidly to allow all derivatives of 

g(O 1, 02) to exist. These arguments show that A(n) 
will be a function strongly peaked near the origin 

and decaying faster than any power law with 

increasing radius in n. As for the 2-frequency 

problem, A(n) is essentially the reordered spec- 

trum. We shall now relate A(n) to g,(m). 
By the definition of g 

A(, . )  = £e-2 i"'g(O)d20, (2.21) 

where 0 =  (01,02). Since (lp) a covers the unit 

square uniformly, 

r n -1  

1 y,  e_2~ril#.mg((lPn)l) 
. 4 ( . , ) -  7. ,=o 

G-1 
1 ~ X! e -2~ilk/r., 
r .  t = o  

where k = ( m - ( p , ,  q,))r,. Hence 

A ( m )  = lim g , (m) .  
n ----~ o o  

(2.22) 

(2.23) 



This shows that the "reordered" spectrum should 

be strongly peaked near the origin, and decay 

quickly as a function of Iml. 

3. Numerical analysis of the reordered Fourier 

spectrum 

< t o  

v 
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-2090 
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3.1. Circle maps 

As a numerical example, we study the "stan- 

dard" sine map introduced in section 2.2.1: 

a sin(2~rx.), (3.1) X.+ l = f~ ,a(  x . )  = x .  + $2 - ~-~ 

using the golden mean winding number, p = a~ = 

( v ~ - -  1)/2.  The critical value of " a "  when dy- 

namics changes from quasiperiodic to chaotic is 

known to be 1. The ordinary power spectrum of 

4181 cycle elements of the critical sine map (a = 1) 

with p = 2584/4181 is shown in fig. 4. Except for 

the overall rise of the noise, it is difficult to see a 

qualitative change of the spectrum from the sub- 

critical case (a  = 0.98) in fig. 1. 

The reordered power spectrum on a log plot is 

obtained by plotting m versus log ( I£(m) 12), where 

£(m) = s((2584m)4181) is shown in fig. 5. Note the 

dramatic difference between the critical reordered 

power spectrum and the subcritical one shown in 

ol 

m 

2090 

i 

Fig. 5. The reordered power spectrum of fig. 4 on a log plot as 

in fig. 2. Note that the overall background noise has risen. This 

noise comes from the approach to chaos in the dynamics, not 

from computational error. 
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-2090 2090 
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Fig. 6. The power spectrum of fig. 5 after being multiplied by 

m 2 is shown. Note that almost all the major peaks are of 

comparable heights, which suggests £(m) = 1/m.  

C 

u o  
D 

v 

o 
F 

-25 

0 1/2 

O9 

Fig. 4. Similarly to fig. 1, the ordinary power spectrum of the 

critical sine map at a = 1 is shown. 

fig. 2. For the subcritical spectrum, the peak 

around the center of the reordered power spec- 

trum decays roughly exponentially in m. At criti- 

cality, the central peak decays algebraically in m. 

In order to determine the critical behavior, the 

reordered power spectrum is rescaled by m. The 

plot of m versus log(m21£(m)l  2) in fig. 6 suggests 

that I£(m)] -- 1 / m .  The sharp crossover between 

two spectra could, in principle, be used to de- 

termine the critical value of a nonlinear parameter 

of the given dynamical system. 
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3.2. Torus maps 

For three-frequency systems, "strongly coupled" 

torus maps are used for our numerical analysis: 

x o ÷ l )  = 
Yn+ l 

= ( x .  + I2 x - 2-~ sin (2~ry.) ] 

l y n "4- ~'~y-- ~ sin (2~X,) ] ' 

(3.2) 

where J2 = (I2x, ~ ' ~ y )  is a vector of fixed parameters 

which determines the rotation rate, p, and " a "  

controls the nonlinearity of the system. We will 

choose p to be the "spiral mean", Ps = (1/r2 '  l /T) ,  

where ~" satisfies '7" 3 ~--- '7" "-[- 1, '1" = 1.3268 . . . .  For 

this choice of p, the critical value of " a "  above 

which the Jacobian of the highly iterated map 

becomes singular is known to be a c =  0.882 _+ 

0.003 [4]. 

The ordinary power spectrum for 5842 cycle 

elements of a subcritical torus map with p = 

(3329/5842, 4410/5842) is shown in fig. 7 for a = 

0.7. The time series used for the Fourier transform 

is chosen to be the modulus of x t, where x t = 

f t ( x 0 ) -  l p -  x 0. x 0 is a member of maximally 

stable 5841 cycles. Two major peaks are seen at 

tol = 1513/5842 and to2 = 1432/5842. The corre- 

v 

O 

-30 
0 1/2 

OA 

Fig. 7. The ordinary (subcdtical) power spectrum for 5842 

cycle elements of  a strongly coupled torus map with a = 0.7 

and  p = (3329/5842, 4410/5842) on a log plot. 

sponding peaks for to > ! are at to~ = 3329/5842 

and to~ = 4410/5842. 

The fundamental domain of the reordered spec- 

trum in the reciprocal lattice is defined by two 

basis v e c t o r s  b 1 = ( - 56 ,  33) and b z = (26, 89). Two 

vectors reciprocal to the reciprocal lattice are given 

b y  k 1 - -  ( 89 ,  - 33)/5842 and k 2 = ( -  26, 56)/5842. 

In order to better determine the change of the 

spectrum near the criticality, the reordered power 

spectrum is rescaled by a factor rs(m ) which mea- 

sures a distance from an origin to m. Our choice is 

rs(m ) = ( a l ( m )  2 + a2(m)2) 1/2, where a i ( m  ) = k i • 

m - [ k i ' m  ] for i =  1,2. [x] denotes the largest 

integer less than or equal to x. If ai(m ) > ! then 

ai(m ) = 1 -  ai(m ). The function rs is chosen to 

satisfy the periodic boundary conditions on the 

Brillouin zone boundaries. Fig. 8 shows the 

plot of m versus (rs(m)l~(m)[) 2, where ~ ( m ) =  

s ( (m"  (3329, 4410))5842 ). Instead of the Brillouin 

zone, the region around the origin roughly equiv- 

alent to the area of the first Brillouin zone is 

chosen to be the domain of m due to limitation of 

the graphic software available to us. The existence 

of a peak structure around the origin decaying 

rapidly in I ml suggests that the map is subcritical. 

The reordered power spectra corresponding to 

higher values of a, a = 0.85 and a = a c --- 0.882, 

are shown in fig. 9 and fig. 10, respectively. Note 

that small peaks near the left corners of the figs. 9 

Fig. 8. The reordered power spectrum of fig. 7 with 

(p/r,  q / r )= (3329/5842, 4410/5842) is shown after rescaling 

by r s. The function r s is roughly proportional to the distance of 

a Fourier peak from the origin. The domain of m is roughly 

the size of the first Brillouin zone. Actual values of peaks are 

not  shown since we are interested only in the relative strength 

of peaks. 
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-38 -.38 

Fig. 9. The reorde red  power  spect rum for a = 0.85 as in  fig 8. 

N o t e  the appea rance  of smal l  peaks  a round  the left  corner  due 

to noise  in  t ime  series. 

(% (rn) I .~ (m) l)2 

-SU -5~3 

Fig. 10. The  cr i t ica l  reordered power  spec t rum for a = a c - 

0.882 as in  fig. 8. 

and 10 grow rapidly as " a "  increases. At critical- 

ity shown in fig. 10, these peaks become compara- 

ble to the main peaks around the center suggesting 

Ig(m)[ = 1 / [ m [ ,  and that the function g(x) is 

not continuously differentiable. 

3.3. Experimental time series 

Although we do not intend to present an ex- 

haustive analysis of the time series of experimental 

systems, we would like to demonstrate that the 

reordering scheme also works for experimental 

data with noise and other non-ideal factors. 

We study as an example a time series obtained 

from the Rayleigh-Brnard convection experiment 

of Gollub and Benson [6]. Though there are many 

qualitatively different types of time dependent 

states of a convective flow depending on experi- 

mental configurations, we investigate only one 

quasiperiodic state with two incommensurate fre- 

quencies [12] whose configuration corresponds to 

fig. 8(b) of ref. [6]. We refer the readers to ref. [6] 

for details on the experiment. 

Here the time series represent the local velocity 

of a convecting fluid in a box measured at evenly 

spaced time intervals. The ordinary power spec- 

trum of time series of this quasiperiodic state is 

shown in fig. 11. All peaks are integral combina- 

tions of two fundamental peaks at 031 = 0.04624 

and 032 = 0.12582. The subjective error bar for the 

values of 03 is 5 x 1 0  - 6 .  There are two major 

peaks for 03 > ! corresponding to the reflection 

about 03 = ! of peaks at 031 and 032- The values of 

03 for these mirror peaks are used to form a 

2-d winding vector, p = (0.95376, 0.87418). The si- 

multaneous rational approximation to # can be 

conveniently done by the generalized Farey tree 

algorithm [13]. The 33rd simultaneous Farey ra- 

t ional  approximant ,  ( p / r , q / r ) =  (743/779,  

681/779),  is used to generate the reordered spec- 

trum. 

The fundamental domain is defined by two 

basis vectors b 1 = ( - 3,17) and b 2 = (43,16). Two 

vectors reciprocal to the reciprocal lattice are k 1 = 

(16, - 17)/779 and k 2 = ( - 4 3 ,  - 3)/779. The re- 

I 

,° i 

t n  

o~ 

-5 

o I/2 
CO 

Fig. 11. The o rd inary  power  spec t rum of a t ime series f rom 

the convect ion  exper iment  of Gol lub  and Benson. Two major  

peaks  are seen at  ~0 = 0.04624 and  ~o = 0,12582. 
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( r s (m) I ~ (m) I )Z 

rrl 2 fil 1 
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Fig. 12. The reordered power spectrum of fig. 11 with 

(p / r ,  q/r) =~ (743/779, 681/779) after rescaling by r s. 

scaling function r s of Fourier amplitudes is the 

same as one used in the previous section. Fig. 12 

shows the plot of m versus (rs(m)l~(m)]) 2, where 

g(m) = s((m" (743,681))779). As before the region 

around the origin roughly equivalent to the area of 

the first Brillouin zone is chosen to be the domain 

of m. The existence of the single peak at the 

center confirms that there are only two indepen- 

dent modes in the experimental system. The decay 

of a peak at the center even after rescaling sug- 

gests that the system is subcritical. The small 

ripples away from the center is the indication of 

the existence of a small noise in the experimental 

time series. 

4. Discussions and conclusions 

Though there is virtually no limit to the accu- 

racy with which we can analyze the reordered 

spectra for cycle elements of maps, the analysis of 

the experimental time series involves several com- 

plications. 

First, the fundamental frequencies of the experi- 

mental time series cannot be determined with the 

arbitrary precision. For example, the drift of the 

fundamental frequencies can cause an uncertainty 

in determining the fundamental frequencies, 

broadening the fundamental peaks in the Fourier 

spectrum. If the denominator of a rational ap- 

proximant to a set of fundamental frequencies 

chosen for reordering is too large, peaks on the 

shoulders of the major peaks may be mapped 

away from the origin by the reordering transfor- 

mation. Therefore relatively strong peaks should 

appear away from the origin in the reordered 

spectrum. Choosing the rational approximant with 

a sufficiently small denominator can reduce these 

side peaks. On the other hand, the denominator of 

the rational approximant cannot be too small in 

order for the resulting reordered spectrum to con- 

tain enough sharp harmonics to determine the 

decay property of the central peak structure. Our 

example of the experimental time series in section 

3.3 shows that the drift is small enough to enable 

us to pick a rational approximant satisfying the 

above criteria. 

Though less serious it may appear, the finiteness 

of the experimental time series also may hinder 

the reordering analysis. If the number of time 

series used for the Fourier spectrum is N the naive 

estimate of the maximal uncertainty for the funda- 

mental frequencies is 1/N. It is known, however, 

that the fundamental frequencies can be more 

accurately determined by interpolating several 

Fourier amplitudes around the major peak to ob- 

tain the frequency corresponding to the maximum 

amplitude. Since the discontinuity of time series at 

the ends of sampling interval usually leads to the 

less accurate amplitudes for the Fourier peaks, it 

is necessary to modulate the time series by a 

smooth function, called a window function, 

vanishing at the initial and final times to obtain 

the spectrum closer to the true spectrum [14]. The 

accuracy of a few parts in a million can be achieved 

by this method when time series with roughly 2000 

data points is used, which appears to be sufficient 

to separate quasiperiodic dynamics from chaotic 

one. 

Another complication for the experimental time 

series is the presence of external noise. If time 

series contain random noise, the ordinary spec- 

trum will exhibit the background noisy peaks with 

uniform strength. The reordered spectrum rescaled 

by [ ~ ( m ) [  2----> [ml2lg(m)[ 2 will show the back- 

ground noisy peaks whose envelope grows 

quadratically in I m I. However, the reordered spec- 
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trum for the time series at the chaos onset, if 

rescaled, should show almost uniformly strong 

peaks regardless of the distance from the origin. 

Therefore, as long as the noise is reasonably small, 

the noise peaks will be relatively small near the 

origin and will not interfere with the observation 

of the central peak structure near origin in de- 

termining the chaos onset. The numerical study 

suggests that the incorporation of the random 

noise does not destroy the main feature of the 

reordered spectrum even when the strength of 

noise is about 10 percent of the signal amphtude. 

How well does our reordering analysis work in 

determining the critical parameter values for the 

chaos transition? We do not necessarily expect 

that the reordering spectral analysis would work 

better than the numerical determination of the 

criticality as discussed in ref. [13]. The latter is 

computationally easier for time series from map- 

pings. For experimental time series, however, the 

reordered spectral analysis may determine the 

criticality better than the ordinary Fourier analy- 

sis since the former enables us to separate the 

noise effect from the true dynamics of time series 

at the chaos onset. Moreover, the observation of 

the growth of a single peak or a couple of peaks in 

the reordered spectrum is easier and more control- 

lable than the conventional method of the minimi- 

zation of the sum of differences of the actual peak 

positions and fitted ones from the low order com- 

binations of fundamental frequencies [6]. Without 

an extensive analysis of the experimental data, 

however, our answer is qualitative at best. 

We have shown how to reorder spectral data 

from the time series to give information about 

quasiperiodic and chaotic behavior of the underly- 

ing dynamics. Though only two or three frequency 

systems are studied in this paper, the reordering 

scheme can be also applied to systems with more 

than three fundamental frequencies, provided we 

use sensible simultaneous rational approximation 

schemes. It is our hope that future investigations 

will find this method particularly useful in probing 

the properties of the multi-frequency dynamical 

systems, and we believe that it can be a useful 

experimental tool as well as theoretical one. 
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