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The popularity of the assumption of stages in models of the reaction time
process and the availability of fast and efficient means of computing
approximations to the Fourier transform makes the Fourier analysis of reaction
time data attractive. This paper indicates some problems associated with such
analyses and suggests convenient ways to overcome some of the difficulties.

Transforms, such as the Fourier
transform, are useful whenever one
thinks the reaction process is
composed of stages. Consider the
following simple model from Green
and Luce (1971). The model assumed
that the reaction time distribution
reflects two separate and independent
stages. One stage is the sensory
decision process and represents the
time taken to process the stimulus
until a decision is reached. The second
stage is a residual stage; it represents
all delays, both fixed and variable,
other than those associated with the
sensory decision stage.

The critical assumption is that the
resulting reaction times can be
described as a convolution of the two
stages, that is,

f(t) = .1;;'"s(r)r(t - T)dT (1)

Given a knowledge of one process,
say R( w ), one could divide the
transform of the obtained reaction
time, F( w), and thereby obtain S(w).
Taking the inverse transform of S(w )
would yield s(t). In effect, this
procedure removes r(t) from f(t) and
allows one to isolate s(t). As with most
such schemes, there are lots of pitfalls,
but the goal is certainly tantalizing.

Background
The stage assumption is a popular

one in modem investigations of
reaction time processes. Sternberg
(1964, 1969) has written an extremely
thorough and perceptive analysis of
the various stage models. The
assumption that the final distribution
can be written as a convolution of the
stages is strong, but not uncommon.
This paper deals only with two stages,

but multistage models could be
reduced to a two-stage process by
isolating one stage and lumping all the
rest together as a remainder. Once the
isolated stage is removed, another
stage is separated from the remainder,
and so forth. The principles are the
same for multistage as for two-stage
mode Is, although the estimation
problems are worse, and they are bad
enough with only two stages.

In the application discussed, the
theory outlined in Green and Luce
(1971) is used to specify that the
sensory decision process, sit), is
exponential in form. The form of the
residual process is completely
unknown. In this case, the information
about s(t ) can be used to specify the
Fourier transform, S(w). An estimate
of the Fourier transform F(w) can be
obtained from the reaction time
histogram. By dividing the estimate of
F( w ) by S(w), one obtains R( w), and
by inverting, an estimate of r(t), the
residual process. Were r(t) the same for
many different experiments using
different stimuli, one would gain some
confidence both in the Fourier
transform method itself and the
assumptions about the form of sit).

F(w)=S(w)R(w) (2)
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Fig. 1. Examples of Fourier representation of 8-point (top) and 32-point
(bottom) time functions. The coefficients of the sine and cosine series are
represented on the right. Note the coefficients for the four common frequencies
are the same in both the 8-point and the 32-point examples.
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Converting a convolution, Eq. 1, to a
multiplication, Eq. 2, is the basic
property of most classical transforms.

where capital
represent the
corresponding
example,

where f(t) is the reaction time density,
sit) the density of the sensory decision
latencies, and r( t) the density of the
residual latencies. If one could obtain
the Fourier transforms of r(t), sit),
and f(t), then in the transform
domain,
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Fig. 2. The waveform associated with the Fourier series representation of a
unit square wave. The number of terms in the series is indicated by the
waveform. Note the overshoot of the value 1 at the point of discontinuity.

This paper is one of method and
describes how a particularly efficient
program, the fast Fourier transform
(FFT), may be used to analyze the
reaction time distribution. Although
such an application may appear to be
straightforward, there are, in fact,
several rather subtle features, both in
execution and in interpreting the
results of such application. The main
technical problem is that a reaction
time distribution is most naturally
estimated as a histogram, and the
discontinuities of the histogram create
rather severe problems in the
convergence of a discrete
approximation to Fourier transform.

TRANSFORMS OF HISTOGRAMS
Fast Fourier Analysis

Calculating the Fourier transform of
reaction time data, except on a very
limited set of data, would have been
unthinkable a decade ago. Using the
then available approximation
techniques, the cost was proportional
to the square of the number of data
points, and this simply made
calculation too expensive, even on the
fastest machines. In 1965 a
computational scheme suggested by
Cooley and Tukey (1956) yielded
computational time proportional to
n log n rather than n 2 and made
routine calculation of Fourier
transforms possible. The programs
employing this efficient computational
algorithm are known as the fast
Fourier transform (FFT) programs and
are available at all computation

are often contaminated with simple
anticipations and time estimates as well
as reaction to the primary stimulus
(Snodgrass, Luce, & Galanter, 1967).
The resulting distribution of reaction
time judgments is therefore a
composite of different distributions
such as those suggested by the fast
guess models of OIlman (1966) and
Yellott (1967). The Fourier analysis
suggested in this paper will not aid in
separating composite distributions.
Instead, various experimental controls
must be exercised to avoid the
contaminating influence of a mixture
of processes. Only if the data are
reasonably pure is the application of
Fourier analysis likely to help in
understanding the stages of the
process.

Another general problem that
hinders a more extensive exploitation
of reaction time data is that the motor
side is poorly understood. The exact
physical details of the reaction button
can contribute delays of 50 to
150 msec. Standardized apparatus has
not been adopted, and it is well
known, therefore, that one can expect
constant differences in mean reaction
times from one laboratory to the next.
Thus, only relative differences
between conditions run within the
same experiment can be trusted, and
this severely limits the usefulness of
reaction time as an experimental
technique. One possible contribution
of the present technique might be to
provide some information about the
motor as opposed to the sensory
decision processes. Thus it might be
possible to correct for such mundane
items as the travel time of the button
and make possible the direct
comparison of reaction times taken in
different laboratories. In any case, for
the purposes of this paper, we assume
that f(t) can only be estimated by a
histogram and that one wishes to
transform f(t) to obtain F( w ).
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Thus some form of smoothing must be
used to obtain sensible results. A
convenient way to accomplish this
smoothing and some implications of
this procedure is the main topic of this
paper.

A few preliminary comments on the
relation of this approach to the general
problem of the analysis of reaction
time data may be of interest. While
latency data should provide very clear
evidence about the nature of the
processing mechanism, this promise is
largely unfulfilled. In the case of
simple reaction time, there appear to
be two basic problems.

First, even simple reaction time data
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Table 1
Fast Fourier Analysis of Unit Square Wave

g(x)
+1 o .;; x < 7T
-1 7T<x<27T

g(x) =.! (sin x + 1/3 sin 3x + 1/5 sin 5x ... )
i

Entry is magnitude times 7T/4

64 Point Analysis 256 Point Analysis

Error Error
Frequency Sine Cosine (Sine) Sine Cosine (Sine)

D.C. 0 0 0 0
fo .9992 .0491 .01% 1.000 .0122 0%

2fo 0 0 0 0
3f o .3309 .0491 0.7% .3332 .0122 0.05%
4f o 0 0 0 0
5f o .1960 .0491 2.0% .1998 .0122 0.13%
6f o 0 0 0 0
7fo .1372 .0491 4.0% .1425 .0122 0.25%
8fo 0 0 0 0
9fo .1038 .0491 6.6% .1107 .0122 0.4%

10fo 0 0 0 0
llfo .0819 .0491 9.9% .0904 .0122 0.6%
etc.
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4,000
rather
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increases, this overshoot does not
diminish, even though the total area of
the error approaches zero. Increasing
the number of terms in the series
improves the mean square error but
the failure of convergence in the abso
lute sense, or Gibb's phenomena, is
evident in Fig. 2. Normally, we are not
using a series approximation of a time
function but rather the converse. We
generally have a time function, the
reaction time distribution, specified at
a set of evenly spaced values of time,
and we wish to calculate the series that
approximates that time waveform. The
approximation error then occurs in the
frequency rather than the time
domain.

To illustrate this problem, we
reverse the problem just considered
and calculate the transform of a simple
square wave specified at a finite
number of points. The first half of the
square wave has a value of +1, whereas
the last half of the square wave has a
value of -1. Table 1 gives the FFT
analysis for such a square wave defined
by either 64 or 256 input terms. The
sine coefficients of the odd harmonics
approximate the series, 1, 1/3, 1/5,
1/7, 1/9, with better accuracy as the
number of input terms increases. Note,
however, that there is also a constant
magnitude in the odd harmonics of the
cosine series. The cosine terms
correspond to a constant amplitude
pulse train alternating in sign at the
discontinuities of the square wave
(plus on a transition from -1 to +1,
negative on a transition from +1 to
-1).
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Unfortunately this does not guarantee
absolute convergence, that is, it does
not guarantee that the error itself will
approach zero. In fact, the value of
e(t) at a discontinuity in f approaches
a definite nonzero number. This
anomalous behavior is usually referred
to as Gibb's phenomena. It is
illustrated in a simple example, namely
a unit square wave, in Fig. 2. Near the
value of the discontinuity, f'(t,n)
overshoots or undershoots f(t) by a
considerable amount. But as n

centers. Today, calculation
transform involving 2,000 or
data points takes 10 sec or so
than many minutes.

Since we are calculating a discrete
approximation to the transform, we
can view the program very simply as
calculating the coefficients in a series
approximation to the reaction time
distribution using the sine and cosine
functions. If we start with n points on
the histogram, we end with n/2
coefficients for the sine and n/2
coefficients for the cosine terms, as
shown in the top part of Fig. 1.
Normally one adds a number of zeros
at the end of the histogram both
because the best estimate of the
probability of a reaction in that region
is zero and because such a procedure
contribu tes to better frequency
resolution by increasing the density of
the frequency components. This is
illustrated in the bottom portion of
Fig. 1. The FFT programs require that
the number of input points equal some
power of 2; hence, enough zeros are
added to increase n to some
convenient number such as 4,096. For
further information on FFT, an
extensive discussion is contained in a
special IEEE (1967) volume.

Convergence and Gibb's Phenomena
Let f(t) be the original histogram

and f'(t,n) be the series approximation
obtained by using n terms. The
notation emphasizes that the
approximation depends on a finite
number of terms, n. The function
f'(t,n) is an approximation in the mean
squared sense; if

f(t) - f'(t,n) = e(t)

then

Fig. 3. Straightforward application of the Fourier analysis technique to data
from single Ss (N =10,020). See Green & Luce (1971) for details of experiment.
Parameters are "It =0.5, v =0.065, IJ =8.2, R_"It =0.81.
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Fig. 5. Estimated ret) for same S and similar condition as used for Fig. 3. The
original reaction time distribution based on 2,145 observations. Parameters are
A = 2.0, v = 0.96, IJ = 1004, R_A = 0.59.

d(T) =0.54 + 0.46 cos 'IT TIT m (3)
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transform process, and this is both
time-consuming and expensive.
Ideally, we would prefer to average the
final result, r(t), rather than the input,
f(t). Then the transform programs are
used once. Any change in smoothing
windows would involve the final
averaging used to estimate ret). The
next section outlines how this trick
can be accomplished.

Impulse Analysis
We wish to smooth r(t) and obtain

the same results as if we had smoothed
f(t). Since f(t) is a linear function of
ret), this is possible as long as no
spurious elements are introduced in
calculating r from f. However, this is
exactly what happens when we
transform a finite approximation of
S(w). The time waveform, set), will
contain errors at the discontinuities in
s(t) just as the square wave did (see
Fig. 2). No matter how many terms we
employ in approximating the
transform S(w), the transform of this
approximation would not exactly
equal set).

However, since the theory specifies
both set) and S(w), our goal can be
achieved by the following trick. We
calculate S(w) by asking the computer
to transform set). Then set) will be
exactly correct at all the sample points
and S(w) will contain all the errors
associated with convergence problems,
just as our transform of the square
wave did (Table 1). Call the
approximation calculated in this way
S'(w). The procedure then is to

\
~

\ .~.
o 0.8

II E (SEC.)

a

I

a
a

o

a
WN
o
:=>
f-o......
~

CL
1:0
cr::~

-O.i-0.8

Analysis of Reaction Time Data
For illustration, consider some data

collected by Green and Luce (1971)
and the analysis of that data in terms
of the theory mentioned earlier.
Briefly, the theory asserts that the
reaction time distribution f(t) is the
result of the convolution of ret), an
unknown distribution, with s(t). The
form of set) is essentially exponential,
and the parameter of the exponential
distribution is presumably related to
signal intensity. Thus, if we transform
f(t) by numerical techniques, we can
solve for R( w ). The transform of R( w )
then gives us an estimate of r( t).

Going through the steps outlined
above produces Fig. 3. This
irregularity reflects various problems
of convergence. We can, as we might
expect, improve the appearance of the
result by smoothing f(t) before we
transform it. The problem with this
approach is that for each smoothing
window we have to repeat the entire

where T = ke t, k = 0, ±1, ±2, 000 +m,
and 6 t =Trn [m. The number of points
(2m + 1) can be varied by the E to
achieve the amount of smoothing
desired. The more one smooths, the
more one suppresses the convergence
problems discussed earlier. But
smoothing blurs time, for it renders
similar two events in time that were
formerly distinct. Let us now illustrate
one application of the analysis of
reaction time data.

o. .e
TI (SEC.l

Unfortunately, a histogram of
reaction times may have as many
discontinuities as class boundaries, and
therefore some means of suppressing
these discontinuities is needed.
Fortunately, simple sliding averages
provide a simple and effective way to
avoid many problems. Suppose we
simply replace our input with the
average of adjacent points. We also
average the first and last point since
the waveform is, in effect, periodic for
the purpose of Fourier series analysis.
Thus an input of eight points would
read 0, +1, +1, +1, 0, -1, -1, -1. The
FFT analysis of such a smoothed
square wave is the same as that shown
in Table 1, except that the cosine
terms vanish. The sine term remains
the same. This simple experiment
motivates us to consider more
sophisticated forms of smoothing.

Smoothing to Avoid Discontinuities
The value of smoothing

discontinuous functions such as square
waves is obvious. In effect, smoothing,
or sliding, averages are a convolution
of the input data with some
"averaging" function. A variety of
smoothing functions, usually called
"windows" in the literature, have been
proposed. They have different
strengths and weaknesses and some
comparative analysis is available
(Blackman & Tukey, 1958). The
material that follows used a Hamming
window. This window performs a
weighted running average on the values
at successive intervals in time. The
weights are given by the following
formula:

Fig. 4. Same data as that shown in
Fig. 3, except 21·point Hamming
window shown to right of graph used
to smooth data.
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transform f(t), solve for R(w) using
S'( w), and transform the result to
obtain ret). Smoothing r(t) now
produces exactly the same results as
smoothing f(t). In effect, we have
swept all our worst convergence
problems into the frequency domain.

Figure 4 shows the result of
Hamming Fig. 3 with a 21-point
window. The actual values used in the
window are displayed on the right side
of Fig. 4, so that one can judge what
variation is possible and significant.

The general shape of r( t ), as
estimated in Fig. 4, has been
replicated. In the course of another
experiment, the same S was observed
under similar circumstances for 2,000
observations. Figure 5 shows the r(t)
estimated in that experiment. Both
figures show negative loops, which are
theoretically impossible. One must not
expect to much stability in r(t),
however, since it is a linear transform
of a histogram and the estimates of the
various cells of the histogram are not
very stable. The average, of course,
contributes both to the stability and
the smoothness of ret), since it makes
successive points highly correlated.

CONCLUSIONS AND SUMMARY
The obtained estimate ret) is not

unreasonable, although several features
of the distribution tell us that the

theory is wrong in detail. First, the
negative loops between 500 and
700 msec are impossible. They are a
consistent feature of other analyses of
similar data performed on this Sand
other Ss in similar experiments. As
yet, we have not been able to
determine exactly what feature of the
model is at fault. Second, according to
our theory, if the signal level were
increased, the exponential wait for the
signal should be negligible. Thus at
large signal-to-noise ratios, we would
expect that f(t) should become r( t).
This does not happen. Although f(t)
resembles the distribution shown in
Fig. 4, the entire distribution of
responses is about 150 msec quicker.

Despite this failure, the Fourier
technique appears to be useful in the
analysis of reaction time data and will
undoubtedly be used in future
investigations. Although other, more
fundamental, solutions to the
convergence problem may be
developed, the present technique is
convenient and efficient and does aid
in a more detailed analysis of the
reaction time process.
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