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I. INTRODUCTION

T
HE FOURIER analysis of data has a long history, dat

ing back to Stokes [II and Schuster [2I. for example.

It has been done by means of arithmetical formulas

(Whittaker and Robinson [31. Cooley and Tukey (4», by

means of a mechanical device (Michelson [5 I ), and by means

of real-time fllters (Newton [61. Pupin [7 )) . It has been car
ried out on discrete data , such as monthly rainfall In the Ohio

valley (Moore [81), on continuous data , such as radiated light

(Michelson (5», on vectcr-valued data, such as vertical and

horizontal components of wind speed (Panofsky and McCor·
mick [91), on spatial data , such as satellite photographs (Leese

and Epstein [10», on point processes , such as the times at
which vehicles pass a position on a road (Bartlett [III ), and on
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point processes in space, such as the positions of pine trees in a

field (Bartlett (12)). It has even been carried out on the

logarithm of a Fourier transform (Oppenheim et al. [13 1) and

on the logarithm of a power spectrum estimate (Bogert et al,

[14».
The summary sta tistic examined has been : the Fourier trans

form itself (Stokes [ II). the modulus of the transform
(Schuster [2)), the smoothed modulus squared (Bartl ett

[IS]), the smoothed product of two transforms (Jones (16)),

and the smoothed product of three transforms (Hasselman

et al. [17)).

The summary statistics are evaluated in an attempt to mea
sure population parameters of interest. Foremost among these

parameters is the power spectrum. This parameter was initially

defin ed for real-valued-time phenomena (Wiener [181). In re

cent years it has been defined and shown useful for spatial
series , point processes , and random measures as well. Our de

velopment in this paper is such that the defini tions set down
and mathematics employed are virtually the same for all of

these cases.

Our method of approach to the top ic is to present f'trSt an

extensive discussion of the Fourier analysis of real-valued

discrete-time series emphasizing those aspects that extend di

rectly to the cases of vector-valued series, of continuous spatial

series, of point processes , and fmally of random distributions.

We then present extensions to the processes just Indicated.

Throughout, we indicate aspects of the analysis that are pecu
liar to the particular process under consideration. We also

mention higher order spectra and nonlinear systems. Wold
[191 provides a bibliography of papers on time series analysis

written prio r to 1960 . Brillinger [201 presents a detailed de
scription of the Fourier analysis of vector-valued discrete-time

series.
We now indicate several reasons that suggest why Fourier

analysis has proved so useful in the analysis of time series.
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giving the average level about which the values of the series are
distributed and its auto covariancefunction

III. STATIONARY REAL·VALUED DISCRETE-TIME SERIES

Suppose that we are interested in analyzing T real-valued
measurements made at the equispaced times t = 0, •. . , T - 1.

Suppose that we are prepared to model these measurements by

the corresponding values of a realization of a stationary

discrete-time series X(t), t = 0, ±I, ±2, . . ' . Important param

eters of such a series include its mean,

II. WHY THE FOURIER TRANSFORM?

Several arguments can be advanced as to why the Fourier

transform has proved so useful in the analysis of empirical

functions. For one thing , many experiments of interest have

the property that their essential character is not changed by

moderate translations in time or space. Random functions
produced by such experiments are called stationary. (A defini

tion of this term is given later.) Let us begin by looking for a

class of functions that behave simply under translation. If, for

example, we wish

ret + u) = Cuf(t), t, u = 0, ±l , ±2,···

with C I *" 0, then by recursion

ret) = CI[(t - l) = C,[(t - 2) = ... = Cf[(O)

for t ~ 0 and so ret) =[(0) exp {ad. for Q =In CI. If f(t) is to

be bounded, then Q = iX, for i = ~ and X real . We have been

led to the functions exp {iXt} . Fourier analysis is concerned

with such functions and their linear combinations.

On the other hand, we might note that many of the opera

tions we would like to apply to empirical functions are linear

and translation invariant, that is such that ; if X I (t) ... YI (t)

and X,(t) ... Y,(t) then QIXI(t) + a,X,(t) ... QI Ydt) +
Q, Y,(t) and if X(t) ... Y(t) then X(t - u) ... yet - u). Such op

erations are called linear filters. It follows from these condi-

tions that if X(t) = exp {iXt} YA(t) then

X(t + u) = exp { iXu} X(t) exp {jXt} YA(t) =Y(t +u).

Setting u = t , t = 0 gives YA(t) = exp {iAt} YA(O). In sum

mary , exp {iXt} the complex exponential of frequency X is
carried over into a simple multiple of itself by a linear filter.

A(A) = YA(O) is called the transfer [unction of the filter , If the

function X(t) is a Fourier transform, X(t) =Jexp {jar} x(a)

da, then from the linearity (and some continuity) X(t) ...

Jexp toa A(a) x(a) da . We see that the effect of a linear filter
is easily described for a function that is a Fourier transform.

In the following sections, we will see another reason for deal

ing with the Fourier transforms of empirical functions,

namely, in the case 'that the functions are realizations of a sta

tionary process, the large sample statistical properties of the

transforms are ' simpler than the properties of the functions

themselves.

Finally, we mention that with the discovery of fast Fourier

transform algorithms (Cooley and Tukey [4]), the transforms

may often be computed exceedingly rapidly.

then we can check that

(7)

(6)

otherwise

l a ± X I C ; ; ~

{

I ,
A(a):

0,

with ~ small. Then the variance of the output series yet), of

the filter, is given by

var yet) =eyy(O)

=Jfry(a)dQ

=f IA(a)l'fxx(a) d«

= 4~fxx(X).

In words, the power spectrum of the series X(t) at frequency X

is proportional to the variance of the output of a narrow band.

pass filter of frequency X. In the case that X*" 0, ±211, ±411•• .•

under some regularity conditions. Expression (6), the Ire

quency domain description of linear filtering, is seen to be

much nicer than (5), the time-domain description.

Expressions (4) and (6) may be combined to obtain an inter

pretation of the power spectrum at frequency X. Suppose that

we consider a narrow band-pass filter at frequency X having

transfer function

~

fxx(X) =(211)-1 L cxx(u)exp {-iXu} , -"<X<"
u·-oo

(3)

and , by taking Fourier transforms, that

fry(X) = IA(A)I'fxX<X)

A (X) = L a(u) exp {-iXu}
u

Cyy{u) = L L a(u + II) a(w) cxX<w - II) (5)
u v

Cxx(u) = i" exp {iau} fxx(Q) d« (4)

-"

with well-defined transfer function

to be defined. The parameter f Xx(X) is called the power spec

trum of the series X(t) at frequency X. It is symmetric about 0

and has period 211. The definition (3) may be inverted to ob

tain the representation

of the autocovariance function in terms of the power

spectrum.

If the series X(t) is passed through the linear filter

X(t) ... YU) =L aCt- u) X(u)
u

providing a measure of the degree of dependence of values of

the process Iu I time units apart. (These parameters do not de

pend on t because of the assumed stationarity of the series.)

In many cases of interest the series is mixing, that is, such that

values well separated in time are only weakly dependent in a

formal statistical sense to be described later. Suppose, in par

ticular, that cxx(u) ... 0 sufficiently rapidly as lui ..... for

(I)

(2)

u = 0, ±I ,'"

ex = EX(t)

cxx(u) = cov {X(t + u), X(t)}

= E{[X(t + u) - cx1[X(t) - cxn,
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the mean of tile output series is 0 and the variance of the out

put series is tile same as its mean-squared value. Expression

(7) shows incidentally that the power spectrum is nonnegative.

We mention, in connection with the representation (4) , that

Khintchine [211 shows that for X(t) a stationary discrete time

series with finite second order moments, we necessarily have

cxx(Il) =i" exp {iQII} dFxx(a) (8)
....

where FXxCa) is a monotonic nondeereasing function.

FxxCX) is called tile spectral measure. Its derivative is tile

power spectrum. Going along with (8), Cramer [221 demon
strated that tile series itself has a Fourier representation

X(t) ={" exp {iat}dZxCa) , t=O,±I, ·· · (9)

....
where Zx(A) is a random function with tile properties ;

EdZxCX) =f/(A) cx dX (10)

cov {dZxCA), dZx{J.I)} "'1l(A- p.)dFxx(X) dp.. (11)

(In these last expressions, if 6(A) is tile Dirac delta function

then 'f/<A) =E 6(X - '21rj) is the Kronecker comb.) Also expres

sion (II) concerns the covariance of two complex-varied vari·

ates, Such a covariance is defined by cov {X, y} =

E{(X - EX) (y- En}.) Expression (9) writes the series X(t)

as a Fourier transform. We can see that if the series X(t) is

passed through a linear filter with transfer function A (X), then

the output series has Fourier representation

f. "exp {iat} A (a) dZx(a), t =0, ±I, ....

....
In Section XV, we will see that the first and second-order rela

tions (10), (11) may be-extended to kth order relations with

the definition of kth order spectra.

IV. THE FINITE FOURIER TRANSFORM

Let the values of the series X(t) be available for t .. 0, I, 2,
... , T - I where T is an integer. The finit« Fourier transform

of this stretch of series is defined to be

T-I

d ~ T ) ( X ) = L X(t)exp HXt}, -oo<X<oo. (12)
toO

A number of interpretations may be given for this variate . For

example, suppose we take a linear filter witll transfer function

concentrated at the frequency X, namely A (a) • 6(a - X). The
corresponding time domain coefficients of this mter are

a(Il)· (2lTf lf A (a) exp {illa} aa

'" (2lT)-1 exp {iuX}, Il =O,:t I, .. . .

The output of this filter is the series

(2lTf' LX(Il) exp { iX<t - u)}:, (2lTf' exp {iAr} d~T)(X) .
u

These remarks show that the finite Fourier transform may be

interpreted as, essentially, the result of narrow band-pass filter

ing the series.

PROCEEDINGS OF THE IEEE, DECEMBER 1974

Before presenting a second interpretation, we flrst remark
that the sample covariance of pairs of values X(t), yet ), t .. 0,

I, . .. , T - I is given by I' E X(t) yet), when the yet) values

have 0 mean . This quantity is a measure of the degree of linear

relationship of the X(r) and Y(r) values. The finite Fourier

transform is essentially, then, tile sample covariance between

the X(r) values and the complex exponential of frequency X.

It provides some measure of the degree of linear relationship

of the series X(r) and phenomena of exact frequency X.

In the case that X.. 0, the finite Fourier transform (12) is

the sample sum. The central limit theorem indicates condi

tions under which a sum of random variables is asymptotically

nonnal as the sample size ¥J0ws to 00. Likewise, there are
theorems indicating that d ~ )(X) is asymptotically normal as

T -+ 00. Before indicating some aspects of these theorems we

set down a definition. A complex-valued variate w is called

complex n0171llZ1 with mean 0 and variance cJl when its real

and imaginary parts are independent normal variates with

mean 0 and variance 0
2 /2. The density function of w is pro

portional to exp {-lwI2 /cJl }. The variate Iwl2 is exponential

with mean 0
2 in this case.

In the case that the series X(r) is stationary, with finite

second-order moments, and mixing (that is, well-separated

values are only weakly dependent) the finite Fourier transfonn

has the following useful asymptotic properties as T -+ 00:

a) d~T)(O) - TcX is asymptotically normal with mean 0 and

variance 2lT1)'xx(0);
b) for X*' 0, ±IT, ±2lT, .• . , d(:P (X) is asymptotically com

plex nonnal with mean 0 and variance 2lT1)'xx(A) ;

c) for I(n, t» I,···,J integers with '1I(T). 2lT/(T)IT-+

X*' 0, ±IT, ±2lT, • •• the variates d~T)(XI (T» , • • • ,

d~T)(AJ(T» are asymptotically independent complex
normals with mean 0 and variance 2lTT!xx(X),

d) for X*' 0, b, ±2lT, .. . and U· TIl and integer, the

variates

u-,
tlxU)(''A, n> L X(u + i ll) exp HAu}, i • 0, ... ,J - I

u-O

are asymptotically. independent complex nonnals with

mean 0 and variance 2lTU!xx(A).

These results are developed in Brillinger [201 . Related re
sults are given in Section XV and proved in the Appendix.

Other references include: Leonov and Shiryaev [231 , Picin

bono [24], Rosenblatt [251, Brillinger [261 Hannan and
Thomson [27] . We have seen that exp {jAr} d~T)(A) may be

interpreted as the result of narrow band-pass filtering the

series X(r). It follows that the preceding result b) is consistent

with the "engineering folk" theorem to the effect that narrow

band-pass noise is approximately Gaussian.

Result a) suggests estimating the mean ex by

T-I

cSr> =r : L XCt)
toO

and approximating the distribution of this estimate by a nor

mal distribution with mean 0 and variance 2lT!Xx(O)/T. Re

sult b) suggests estimating the power spectrum !xxCA) by the

periodogram

(13)

in the case A*' 0, ±2lT, • . ' . We will say more about this sta

tistic later. It is interesting to note, from c) and d) , that
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asymptotically independent statistics with mean 0 and vari
ance proportional to the power spectrum at frequency A may
be obtained by either computing the Fourier transform at
particular distinct frequencies near Aor by computing them at
the frequency A but based on different time domains. We
warn the reader that the results a)-<I) are asymptotic. They
are to be evaluated in the sense that they might prove reason
able approximations in practice when the domain of observa
tion is large and when values of the series well separated in the
domain are only weakly dependent.

On a variety of occasions we will taper the data before com
puting its Fourier transform. This means that we take a data
window .p<n(t) vanishing for t < 0 , t > T - I, and compute the

transform

iP(A) =L.p<n(t) exp HAt} X(t) (14)
I

for selected values of A. One intention of tapering is to reduce
the interference of neighboring frequency components. If

<I>(T)(A) = L .p(T)(t) exp {-iAt}

I

where X~J denotes a chi-squared variate with 2J degrees of
freedom. The variance of the variate (17) is

(18)

if U =TIJ. By choice of J the experimenter can seek to obtain
an estimate of which the sampling fluctuations are small
enough for his needs. From the standpoint of practice , it
seems to be useful to compute the estimate (16) for a number
of values of J. This allows us to tailor the choice of J to the
situation at hand and even to use different values of J for dif

ferent frequency ranges. Result d) suggests our consideration
of the estimate

J-I

rll(A) =r l L (211U)-
l ldiY)(A,M . (19)

J-o

It too will have the asymptotic distribution (17) with variance
(18).

We must note that it is not sensible to take J in (16) and
(19) arbitrarily large as the preceding arguments might have
suggested. It may be seen from (15) that

(15) where

then the Cramer representation (9) shows that (14) may be

written

J" J
Ef}/)(A) = r l L Fr<>!(T)- a)fxx(a)da. (21)

..." J=I

n 2

sin-
2

. A
sm

2

is the Fejer kernel. This kernel, or frequency window, is non

negative, integrates to I, and has most of its mass in the inter
val (-211IT, 2111T). The term in c~ may be neglected for A*' 0,
±211, •.• and T large. From (16) and (20) we now see that

If we are averaging J periodogram values at frequencies 2111T

apart and centered at A, then the bandwidth of the kernel of
(21) will be approximately 411JIT. If J is large and fxx(a)

varies substantially in the interval -211JIT <a - A< 211JjT,

then the value of (21) can be very far from the desiredfxx(A).
In practice we will seek to have J large SO that the estimate is
reasonably stable, but not so large that it has appreciable bias.
This same remark applies to the estimate (19). Panen (28)

constructed a class of estimates such that Erll(A) ....fXX(A)

and var f;ll(A) ....O. These estimates have an asymptotic dis

tribution that is normal, rather than X2
, Rosenblatt [291.

Using the notation preceding these estimates correspond to
having J depend on T in such a way thatJT ....00, but JTIT ....0
asT-+oo.

Estimates of the power spectrum have proved useful ; i) as
simple descriptive statistics, ii) in informal testing and discrim
ination, iii) in the estimation of unknown parameters, and Iv)

in the search for hidden periodicities . As an example of i), we
mention their use in the description of the color of an object,
Wright [301 . In connection with ii) we mention the estima
tion of the spectrum of the seismic record of an event in at
tempt to see if the event was an earthquake or a nuclear explo-

EI¥)(A) = i"F r<A - a) f Xx(a) da +F r<A) c~ (20)
-e

(17)

(16)
J

rll(A) =r l
L I§cT)(>!(T»
J-I

will be distributed asymptotically as the average of J indepen
dent exponential variates having mean f XX(A). That is, it will
be distributed as

V. EsrIMATION OF THE PoWER SPECTRUM

In the previous section, we mentioned the periodogram ,
I.Vl(A), as a possible estimate of the power spectrumfXX(A)
in the case that A*' 0, ±211, .• '. If result b) holds true, then
I¥l(A), being a continuous function of ,fp(A), will be dis

tributed asymptotically as Iw1
2

, where w is a complex normal

variate with mean 0 and variance fXx<A). That is I¥l(A) will

be distributed asymptotically as an exponential variate with
mean fXX(A). From the practical standpoint this is interest
ing, but not satisfactory. It suggests that no matter how large

the sample size T is, the variate I¥J!.A) will tend to be dis
tributed about fxx(A) with an appreciable scatter. Luckily,
results c) and d) suggest means around this difficulty. Follow
ing c), the variates I¥l(>!(T», i =I, . . . ,J are distributed
asymptotically as independent exponential variates with mean
f XX(A) . Their average

From what we have just said, we will want to choose .p(T)(t)

SO that <I>(T)(a) is concentrated near a = 0, ±211, • . '. (One

convenient choice of .p(T)(t) takes the form .p(tIT) where
<p(u) = 0 for u < 0, u .. I.) The asymptotic effect of tapering
may be seen to be to replace the variance in b) by
211 ~ .p<n(t)2fxx(A).

Hannan and Thomson [27] investigate the asymptotic dis
tribution of the Fourier transform of tapered data in a case
where f X X(A) depends on T in a particular manner . The hope
is to obtain better approximations to the distribution.
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sion, Carpenter (31), Lampert et al. [32]. In case ill), we

mention that Munlc and MacDonald [33] derived estimates of
the fundamental parameters of the rotation of the Earth from

the periodograrn. Turning to iv), we remind the reader that
the original problem that led to the definition of the power

spectrum, was that of the search for hidden periodicities. As a

modern example, we mention the examination of spectral es
tintates for the periods of the fundamental vibrations of the

Earth, MacDonald and Ness [34] .

VI. OTHER ESTIMATES OF THE POWER SPECTRUM

We begin by mentioning minor modifications that can be

made to the estimates of Section V. The periodograms of (16)

may be computed at frequencies other than those of the form

2rrs/T, S an integer, and they may be weighted unequally. The
periodograms of the estimate (19) may be based on overlap

ping stretches of data . The asymptotic distributions are not so

simple when these modifications are made, but the estimate is

often improved. The estimate (19) has another interpretation.

We saw in Section IV that exp {iXt} dCf>(X,j) might be inter

preted as the output of a narrow band-pass filter centered at X.

This suggests that (19) is essentially the first power spectral

estimate widely employed in practice, the average of the

squared output of a narrow band-pass filter (Wegel and Moore

[35]). We next tum to a discussion of some spectral estimates

of quite different character.

We saw in Section III that if the series X(t) was passed
through a linear filter with transfer function A (X), then the

output series Y(t) had power spectrum given by !yy(X) '"
IA(X>l 2!xx(X). In Section V, we saw that the estimates (16) ,
(19) could have substantial bias were there appreciable varia

tion in the value of the population power spectrum. These reo

marks suggest a means of constructing an improved estimate,
namely : we use our knowledge of the situation at hand to de

vise a filter, with transfer function A(X), such that the output

series Y(t) has spectrum nearer to being constant. We then

estimate the power spectrum of the r.t1~ered series in the man
ner of Section V and take IA(X)r2.rl'fO.) as our estimate of

fX X(X) . This procedure is called spectral estimation by pre
whitening and is due to Tukey (see Panofsky and McCormick

[9]). We mention that in many situations we will be content

to just examine .tV't(X). This would be necessary were

A(X) '" O.
One useful means of determining an A (X) is to fit an auto

regressive scheme to the data by least squares. That is, for
some K , choose ~(I), ... , ~ ( K ) to minimize

L [X(t) + a( I) X(t - I) + .. . + a(K) X(t - K)I'

where the summation extends over the available data. In this
case A(X) '" I +~(I) exp {-IX} + •. . +~(K) exp {-I>-K}. An

algorithm for efficient computation of the ~(u) is given in

Wiener [36, p. 136]. This procedure should prove especially

effective when the series X(t) is near to being an autoregressive

scheme of order K. Related procedures are discussed in
Grenander and Rosenblatt [37, p. 270J, Parzen [38], Lacoss
[39] , and Burg [40 1. Berk [41] d~sses the asymptotic dis
tribution of the estimate IA(X)r'(2rrT)-1 1: [X(t) +

?(I) X(t - I) + . .. + :1:(K) X(t - K)12
• Its asymptotic variance

is shown to be (18) with U'" 2K.
Pisarenko [42) has proposed a broad class of estimates in

eluding the high resolution estimate of Capon [43] as a par

ticular case. Suppose £ is an estimate of the covariance matrix

PROCEEDINGS OF THE IEEE , DECEMBER 1974

of the variate

[
X?)J
X(U)

determined from the sample values X(O), . .. , X(T - I) . Sup

pose Iiu. cr", u '" I , .. . , U are the latent roots and vectors of

i . Suppose H(JJ), 0 <JJ<.., is a strictly monotonic function

with inverse h(·). Pisarenko proposed the estimate

h(£ H(~)(2rrUrl l i. Quiexp {-IXj},I'). (22)
u-l ,-I

He presents an argument indicating that the asymptotic vari·

ance of this estimate is also (18). The hope is that it is less

biased. Its character is that of a nonlinear average of periodo

gram values in contrast to the simple average of (16) and (19).

The estimates (16) and (19) essentially correspond to the case

H(JJ) '" JJ. The high resolution estimate of Capon [43 ) corre

sponds to H(Il) '" JJ-1•

The autoregressive estimate, the high-resolution estimate and

the Pisarenlco estimates are not likely to be better than an

ordinary spectral estimate involving steps of pre whitening,

tapering, naive spectral estimation and recoloring. They are

probably better than a naive spectral estimate for a series that

is a sum of sine waves and noise.

VII. FINITE PARAMETER MODELS

Sometimes a situation arises in which we feel that the fonn

of the power spectrum is known except for the value of a finite

dimensional parameter O. For example existing theory may

suggest that the series X(t) is generated by the mixed moving

average autoregressive scheme

X(t)+a(l)X(t- 1)+ "'+a(K)X(t-K)"'E(t)+b(l)E(t-1)

+ .. . + b(L)E(t - L) (23)

where U, V are nonnegative integers and E(t) is a series of

independent variates with mean 0 and variance a'. The power

spectrum of this series is

a2 \I + b(l) exp {-iN + + b(L) exp {- iXL}I'

fxx(X ;O)'" 2rr II + a(l) exp {-IX} + +a(K) exp {-iXK} I'

(24)

with 0 '" a2, a( I) , . .. , a(K ), b(l),' ... b(L). A number of

procedures have been suggested for estimating the parameters

of the model (23), see Hannan (44) and Anderson [45], for

example.
The following procedure is useful in situations more general

than the above. It is a slight modification of a procedure of

Whittle [461 . Choose as an estimate of e the value that

maximizes

o<rlT/2 fxx(2;S ;of exp {-I-We;S)fxxC;S;orl

(25)

Expression (25) is the likelihood corresponding to the assump

tion that the periodograrn values I-W(21rs/T) ,0 <S< T/2. are
independent exponential variates with means !xx(21rs/T;0),
0< S < T/2, respectively. Under regularity conditions we can

show that this estimate, fJ, is asymptotically normal with mean
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o and covariance matrix 271'r l
"C

1(A + B)A-
1 where ; if

'i1fxxCI..; 0) is the gradient vector with respect to 0 and Ixxxx
the 4th order cumulant spectrum (see Section XV)

A = 1" Vfxx(a ; 0)' 'i1fxx(a; O)fxx(a ;or2
d«

o

B =If i" vtxx(a; 8) . vtxx«3; O)fxx(a ; Or
2fxx«3

; Or2

.txxxxw. - u, -fJ) aa dfJ.

We may carry out the maximization of (25) by a number of
computer algorithms, see the discussion in Chambers [47) . In

[48] , we used the method of scoring. Other papers investi
gating estimates of this type are Whittle [49], Walker [50],

and Dzaparidze [5 I).
The power spectrum itself may now be estimated by

fxx(X; ~ ) . This estimate will be asymptotically normal with
mean fxx(X; 0) and variance 21Tr l Vfxx(X ; 0)'A-1(A + B) .

A-1Vfxx (X; 0) following the preceding asymptotic normal dis
tribution for O. In the case that we model the series by an

autoregressive scheme and proceed in the same way, the esti
mate fxx(X ; §) has the character of the autoregressive estimate

of the previous section .

VIII. LINEAR MODELS

In some circumstances we may find ourselves considering a
linear time invariant model of the form

~

X(I) = Il + L a(l- u)S(u) + £(1) (26)
101---

where the values X(t) , S(I), 1- 0, I , " . , T - I are given, £(1)

is an unknown stationary error series with mean 0 and power
spectrum fu(X) , the a(u) are unknown coefficients.jz is an un
known parameter, and S(I) is a fixed funct ion. For example ,

we might consider the linear trend model

X(I) = Il -rat + £(1)

with Il and a unknown, and be interested in estimatingf••(X).
Or we might have taken S(I) to be the input series to a linear
filter with unknown impulse-response function a(u), u = 0,
±I, . . . in an attempt to identify the system , that is, to estimate
the transfer function A(X) =1: a(u) exp {-IXu} and the a(u).

The model (26) for the series X(I) differs in an important way
from the previous models of this paper. The series X(I) is not

generally stationary, because EX(I) - Il + 1:a(1 - u)S(u).

Estimates of the preceding parameters may be constructed

as follows: define

T-I
d~P(X) = L X(I) exp {-IXI}

t-o

with similar definitions for 4T)(X), dr)(X). Then (26) leads

to the approximate relationship

T-I
drp(X)':J.l L exp{-iXI }+A(X)4T)(X)+d~T)(X) . (27)

t=O

Suppose XI(T), .. . , '>J(T),: Xare as in Section IV. Then

df[>('>J(T»,: A(X)4T)('>J(T» + d~T><'>J(T» (28)

1633

for i = I, . . ' ,1. Following b) of Section IV, the df)o!(T»

are, for large T, approximately independent complex normal
variates with mean 0 and variance 21TTfee(X) . The approximate

model (28) is seen to take the form of linear regression. The
results of linear least-squares theory now suggest our considera

tion of the estimates ,

(2 9)

and

where

J ---

fJ.P(X) =r: L (21TTfI dY)('>J(T»d§[>('>J(T»
I-I

with similar definitions for rJ!s) , rJ!i ,rg) . The impulse re
sponse could be estimated by an expression such as

P-I (271'P) {-121TPU}a(T)(u)=p-1 k A(T) P exp -p-

for some integer P. In some circumstances it may be appro

priate to taper the data prior to computing the Fourier trans
form. In others it might make sense to base the Fourier
transforms on disjoint stretches of data in the manner of d) of

Section IV.
Under regularity conditions the estimate A(T)(X) may be

shown to be asymptotically complex normal with mean A (X)

and variance r1f•• (X)rg)(Xrl (see (20)). The degree of fit

of the model (26) at frequency X may be measured by the

sample coherence function

IRfl(X)!2 = 1rJ!s)(X)12/[rg)(X)rJ!i(X)]

satisfying

This function provides a time series analog of the squared

coefficient of correlation of two variates (see Koopmans
[52] ).

The procedure of prefiltering is often essential in the estima
tion of the parameters of the model (26 ). Consider a common
relationship in which the series X(I) is essentially a delayed

version of the series S(I), namely

X(I) = as(1 - e) + £(1)

for some u, In this case

A(X) =a exp {-IXv} ,

drfl('>J(T» =a exp {-O!(T)v}df)('>J(T» + dV)O!(T»

and

rJ!s)(X) =«r' L exp {-O!(T)v}IJP('>J(T»
I

If v is large, the complex exponential fluctuates rapidly about
o as i changes and the first term on the right-hand side of (30)
may be near 0 instead of the desired a exp {- iXv}rgl(X). A
useful prefiltering for this situation is to estimate v by G, the
lag that maximizes the magnitude of the sample cross-covari
ance function , and then to carry out the spectral computations
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Let

and the spectral density matrix

the aurocovariance [unction

«x = EX(t)

(33)hy(X) = A (X)!xx(X)A(X)' .

yet) = fexp {i<a, t}}A(a) dZx{a).

X{t) = Jexp {j(a, t}} dZx(a)

where ·Zx(X) is an r vector-valued random function with the
properties

As in Section lll, expressions (32) and (33) may be combined

to see that the entry in row j, column k of the matrix [xx(X)

may be interpreted as the covariance of the series resulting

from passing the jth and kth components of X(t) through nar

row band-pass filters with transfer functionsA(a) = 0(£1 - X).
The series has a Cramer representation

denote the transfer function of this filter. Then the spectral
density matrix of the series Y(t) may be seen to be

A(X) " Ja(u) exp {-i(X , u}} du

in the case that the integral exists . (The integral will exist

when well-separated values of the series are sufficiently weakly

dependent.) The inverse of the relationship (31) is

cxx(u) = Jexp {i(X, al}!xx(a) da. (32)

X(r) -+ yet) =faCt - u)X(u) du

be a linear filter carrying the r vector-valued series X(r) into
the s vector-valued series Y(r). Let

The limits of integrals will be from -00 to 00 , unless indicated
otherwise.

We will proceed by paralleling the development of Sections

III and IV. Suppose that we are interested in analyzing mea

surements made simultaneously on r series of interest at loca

tion t , for all locations in some subset of the hypercube

o < t" ... , tP < T. Suppose that we are prepared to model

the measurements by the corresponding values of a realization

of an r vector-valued stationary continuous spatial series X(t) ,

t E RP. We define the mean

!xx(X) = (2rrfPfexp {-i(X,u}}cxx(u)du, XERP (31)

cxx(u) = cov {X(t + u) , X(t)}

E dZx{X) = o(X)cx dX

cov {dZx(X), dZx(IJ.)} = o(X - 1J.)!xx(X) ax du .

If yet) is the filtered version of X(t), then it has Cramer
representation

X{t) m IJ. + P, sin (Olt +£1,) + ... + PK sin (OKt + aK) + e(t)

with IJ., P, , O. ,£11 , ... ,PK, OK, O'K unknown. The estimation

of these unknowns and [••0..) is considered in Whittle [49] .

It allows us to handle hidden periodicities.

IX. VECTOR-VALUED CONTINUOUS SPATIAL SERIES

In this sect ion we move on from a consideration of real

valued discrete time series to series with a more complicated do

main , namely p-dimensional Euclidean space , and with a more

complicated range, namely r-dimensional Euclidean space. This

step will allow us to consider data such as: that received by an

array of antennas or seismometers, picture or TV, holographic,
turbulent field .

Provided we set down our notation judiciously, the changes
involved are not dramatic. The notation that we shall adopt

includes the following: boldface letters such as X, a, A will

denote vectors and matrices. A' will denote the transpose of a

matrix A, tr A will denote its trace, det A will denote its de

terminant. EX will denote the vector whose entries are the

expected values of the corresponding entries of the vector

valued variate X . cov {X, Y} = E{(X - EXXY - EY)'} will

denote the covariance matrix of the two vector-valued variates

X, Y (that may have complex entries). t, u, X will lie in p

dimensional Euclidean space, RP, with

t " o. .... , tp) dt =dt, ... dt p

u " (UI, •• • , up) du = du• . . . dup

X= (XI> • • . , Xp) dX = dX, . .. dXp

(X, t) = X,r, + + Xptp

(X, u) =X'u, + + Xpup

lui =(ur + + u~)1/2

IXI= (Xf + + X~)1/2.

on the data X(t) , set - IJ), see Akaike and Yamanouchi [53]

and Tick [54 J. In general , one should prefilter the X(t) series

or the Set) series or both, so that the relationship between the

filtered series is as near to being instantaneous as is possi ble.

The most important use of the calculations we have described

is in the identification of linear systems. It used to be the case

that the transfer function of a linear system was estimated by

probing the system with pure sine waves in a succession of
experiments. Expression (29) shows , howe ver, that we can

estimate the transfer function , for all X, by simply employing

a single input series Set) such that f ~ P ( X ) " * o.
In some situations we may have reason to believe that the

system (26) is realizable that is a(u) = 0 for u < O. The factor

ization techniques of Wiener (36) may be paralleled on the
data in order to obtain estimates of A(X), a(u) appropriate to

this case, see Bhansali [55]. In Sect ion IX, we will discuss a

model like (26), but for the case of stochastic Set).

Another useful linear model is

X(t) =Od'. (t) + . . . + 0K'h:{t) + e(t)

with If;" (r), .. . ,'h:{t) given functions and 01>"', OK un

known. The estimation of these unknowns and fuCA) is con

sidered in Hannan [44 J and Anderson [45]. This model

allows us to handle trends and seasonal effects.
Yet another useful model is
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We tum to a discussion of useful computations when values

of the series X(t) are available for t in some subset of the
hypercube 0 < t, ,' .. , tp < T. Let ¢(T)(t) be a data window

whose support (that is the region of locations where ¢(T)~ *"
0) is the region of observation of X(t) . (We might take ¢( (t)

of the form ¢(tlT) where ¢(t) .. 0 outside 0 < t.. . . . , tp < I.)

We consider the Fourier transform

Result a') suggests estimating the mean ex by

(35)

Result b') suggests the consideration of the periodogram matrix

as an estimate of fxx(X) when X*" O. From b') its asymptotic

distribution is complex Wishart with I degree of freedom and

parameter fxx(X). This estimate is often inappropriate because
of its instability and singularity. Result c') suggests the con

sideration of the estimate

(37)ff)(X) = r l t 1f)(>I(T»

where J is chosen large enough to obtain acceptable stability,

but not so large that the estimate becomes overly biased .

From c') the asymptotic distribution of the estimate (37) is

complex Wishart with J degrees of freedom and parameter

fxx(X) . In the case J .. I this asymptotic distribution is that

of fxx(X)x~JI2J. Result d') suggests the consideration of the

periodogram matrices

drpC>") =fX(t)¢(T)(t) exp {-I(X, t)} dt

based on the observed sample values.
Before indicating an approximate large sample distribution

for d;P(X), we must first define the complex multivariate

normal distribution and the complex Wishart distribution. We

say that a vector-valued variate X, with complex entries, is

multivariate complex normal with mean 0 and covariance

matrix 1: when it has probability density proportional to

exp {-XT1;""" I X}. We shall say that a matrix-valued variate is

complex Wishart with n degrees of freedom and parameter 1:
when it has the form X,X{ +... + XnX,r, where XI, . . . , Xn
are independent multivariate complex normal variates with

mean 0 and covariance matrix 1:. In the one dimensional case,

the complex Wishart with n degrees of freedom is a multiple of

a chi-squared variate with 2n degrees of freedom.
In the case that well-separated values of the series X(t) are

only weakly dependent, the d;P(X) have useful asymptotic

properties as T -+ 00. These include:

a') d;P(O) is asymptotically multivariate normal with mean
j¢(T)(t)dtex and covariance matrix (21ft f ¢(T)(t)2 dtfxx(O);

b') for X*" 0, dnX) is asymptotically multivariate complex

normal with mean 0 and covariance matrix

(39)

(21ftf ¢(T)(t)2 dt fxx(X);

c') for >I(T) -+ X *" 0, with >I(T) - XIe(T) not tending to 0

too raj,idly• I <t < k < J, the variates d¥)(AI(T».· . . ,
dJrT)(X (T» are asymptotically independent multivariate com

plex normal with mean 0 and covariance matrix

(21ftf ¢(T)(t)2 dt fxx(X);

d') if ¢f)(t)¢f)(t) =O. for all r, I <I <k <J, and UX*"O
the variates

dl)(x,n =fX(t)¢f)(t) exp H(X. tl}dt (34)

1.. I, . .. , J are asymptotically independent multivariate com

plex normal with mean 0 and respective covariance matrices
(21ft H(T)(t.n2dtfxx(X),; = I.···,J.

Specific conditions under which these results hold are given
in Section XV. A proof is given in the Appendix.

Results a'), b') are forms of the central limit theorem. In
result d') the Fourier transforms are based on values of X(t)

over disjoint domains . It is interesting to note, from c') and

d') that asymptotically independent statistics may be obtained

by either taking the Fourier transform at distinct frequencies

or at the same frequency, but over disjoint domains.

I .. I, • • . •J as estimates of fxx(X), X*" O. The estimate

J

f¥l(X) .. r l "EJf)(A.;)
/-1

will have as asymptotic distribution r ' times a complex

Wishart with J degrees of freedom and parameter fxx(X) fol

lowing result d'). We could clearly modify the estimates (37).

(39) by using a finer spacing of frequencies and by averaging

periodograrns based on data over nondisjoint domains. The

exact asymptotic distributions will not be so simple in these

cases.

The method of fitting finite parameter models, described in

Section VII, extends directly to this vector-valued situation.

Result b') suggests the replacement of the likelihood function

(25) by

n det txx (2;S;8r
0<,,<8/

. exp {-tr4~e;S)fxxe;S;8r} (40)

in this new case for some large values SI • . . . ,Sp such that

there is little power left beyond the cutoff frequency

(21fStIT• . . . , 21fSpIT). Suppose that e is the value of 8

leading to the maximum of (40). Under regularity conditions,
we can show that eis asymptotically normal with mean 8 and

covariance matrix 2'1l'T-IA- t(A + B)A-I where if A/Ie,B/1e are
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' drxdll

row t, column k of A, B

for some s vector IJ and some s X r matrix-valued function

a(u). The model says that the average level of the series X(t)

at position t, given the series S(t), is a linear filtered version of

the series Set). If (41) is a stationary series and if A(A) is the

transfer function of the fIltera(u), then (42) implies (51)

. 1(p-1)/'l(lAlluDfxx(A) diA l.

The simplified character of fxx(A) in the isotropic case makes
its estimation and display much simpler. We can estimate it

by an expression such as

• dAn+1 • • • dA p •

We see that we obtain the spectral density of the marginal
process by integrating the complete spectra! density. The same

(271)....J..JCXx(UI>.•. , u", 0, •. . , 0)

. exp {-i(AIUl + . . . + Anu,,)} dUI' • • du"

=J.Jfxx<1I.t,· . " An , An+!, ' .. ,Ap )

CXx<u) = (271)P/'lluj(1-p )/1 l~ IAIP/2

o

X. ADDITIONAL REsULTS IN THE SPATIAL SERIES CASE

The results of the previous section have not taken any essen

tial notice of the fact that the argument t of the random func

tion under consideration is multidimensional. We now indicate

some new results pertinent to the multidimensional character.

In some situations, we may be prepared to assume that the

series X(t) , t E RP, is isotropic, that is the autocovariance

function cxx(u) = COy {X(I + u),X(t)} is a function of lu i only .

In this case the spectral density matrix fxx(A) is also rotation

ally symmetric, depending only on 111.1 . In fact (see in Bochner

and Chandrasekharan [58, p. 69)

fxx(A) =(271fP!2IAI(1-p)!2 1~ lulP/2

o

•1(p-1)/'l (IAllul)cxx(u) dlul (50)

where I/I;(t) is the Bessel function of the first kind of order k.

The relationship (50) may be inverted as follows,

r l i: Il1]o!(T)
j-I

where the >.I(T) are distinct, but with I>.I(T)I near 111.1. There

are many more )./(n with I)./(nl near 111.1 than there are )./(n

with >.I(T) near A. It follows that we generally obtain a much
better estimate of the spectrum in this case over the estimate in

the general case. Also the number of >.I(T) with I>.I(T)I near 111.1
increases as 111.1increases . If follows that the estimate formed

will generally be more stable for the frequencies with [AI large.

Examples of power spectra estimated in this manner may be

found in Mannos [59].

Another different thing that can occur in the general p

dimensional case is the definition of marginal processes and

marginal spectra. We are presently considering processes
X(rl> .. . , tp). Suppose that for some n, 1 ... n < p, we are

interested in the process with t"+I' . .. , tp flxed, say at 0, ... ,

0. By inspection we see that the marginal process X(r!> ... , I" ,

0, . .. ,0) has autocovariance function cxx(u!> ..• , u" , 0 , . . . ,

0). The spectral density matrix of the marginal process is,

therefore,

(42)

(41)

(43)

(44)

[
s et )]

X(t)

E{X(t)IS(u), u ERP} =IJ + ja(t - u)S(u) du

e(r) = X(t) - IJ - ja(t - u)S(u) du

satisfying a linear model of the form

Cx =IJ + A(O)cS

fxSO\) =A(A)fss(A).

If we define the error series £(t) by

with C.bj(rx) the entry in row a column b of

f(rxr1 a ~ ~ ~ ) f(rxf1 .

I

In a number of situations we find ourselves led to consider
an (r + r) vector-valued series,

then the degree of fit of the model (42) may be measured by

the error spectral density

f..,(A) =fxx(A) - fxs(A)fss(Ar1fsx(A). (45)

The relationships (43)-{45) suggest the estimates

A (T)(A) = f.@(A)fJsT)(Ar l (46)

IJ(T) = c1n - A(T)(O)ciT) (47)

f ~ P ( A ) - f11](A) - f.@(A)fJsT)(Af1fJJ?(A) (48)

respectively. The asymptotic distributions of these statistics
are given in [26).

If there is a possibility that the matrix f . ~ p ( A ) might become
nearly singular , then we would be better off replacing the esti

mate (46) by a frequency domain analog of the ridge regression

estimate (Hoerl and Kennard [56), Hunt [57), such as

f!;cA)[f~'p(A) +uri (49)

for some k > 0 and I the identity matrix. This estimate in
troduces further bias, over what was already present, but it is

hoped that its increased stability more than accounts for this .
In some circumstances we might choose k to depend on Aand

to be matrix-valued.
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remar k applies to the Cramer representation for

X(tl> ' .. . i«, 0,' . . ,0) =J.Jexp {i(t,X1+ . .. + tnXn)}

Vector-valued series with multidimensional domain are dis

cussed in Hannan (44) and Brillinger [26] .

XI. ADDITIONAL RESULTS IN THE VECTOR CASE

In the case that the series X(t) is r vector-valued with r > I,

we can describe analogs of the classical procedures of multi

variate analysis including for example ; i) partial correlation,

ti) principal component analysis, iii) canonical correlation anal

ysis, iv) cluster analysis, v) discrintinant analysis, vi) multi

variate analysis of variance, and vii) simultaneous equations.

These analogs proceed from c') or d') of earlier section. The

procedures listed are often developed for samples from multi

variate normal distributions. We obtain the time series pro

cedure by identifying the d¥>O!(T», I = I, . . . , J or d¥>O" j),
I = 0, .. . ,J - I with independent multivariate normals having

mean 0 and covariance matrix (21ft f !fl(T>(t)2 dt fxx(X) and

substituting into the formulas developed for the classical situa

tion . For example, stationary time series analogs of correlation

coefficients are provided by the

Rjk(X) =lik(X)/.,ffiJ(X)!kk(X)

- cov {dfT)(X), df>(X)}/'Ivar d?>(X) var df>(X)

the coherency at frequency X of the Ith component with the

kth component of X(t), where lik(X) is the entry in row I,
column k of !xx(X) and d?>O') is the entry in row I of d¥>(X)
for I, k = I ," ' , r. The parameter R/k(X) satisfies 0 .;;

IRjkO.)1 .;; I and is seen to provide a measure of the degree of

linear relationship of the series X/(t) with the series Xk(t) at

frequency X. Its modulus squared, lRik(X)12 , is called the

coherence . It may be estimated by

Rfr(X) = !/{>(X) /V!f>(h)~P(X)

where r/J>(X) is an estimate of !;k(X),
As time series papers on corresponding multivariate topics,

we mention in case i) Tick [601, Granger [611, Goodman

[621, Bendat and Piersol [631, Groves and Hannan (64) , and

Gersch (65) ; in case ii) Goodman [66] , Brillinger [67] , [20J,

and Priestley et al. [68]; in case iii) Brillinger [671, [201,

Miyata [691, and Priestley et al. (68);in case iv) Ligett [70];

in case v) Brillinger (20); in case vi) Brillinger (71) ; in case

vii) Brillinger and Hatanaka (72) , and Hannan and Terrell (73) .

Instead of reviewing each of the time series analogs we con

tent ourselves by indicating a form of discrintinant analysis

that can be carried out in the time series situation. Suppose
that a segment of the r vector-valued series X(t) is available

and that its spectral density matrix may be anyone of !,(X),

i = 1, ' " ,I. Suppose that we wish to construct a rule for
assigning X(t) to one of the !t(X).

In the case of a variate U coming from one of I multivariate
normal populations with mean 0 and covariance matrix 2:/,
i = 1 ••• ' Qr n tn m n n rHcr";1"n lnAt;nn nT'nrp"h,,.p i ll; tn i1pfinp Q

'637

discriminant score

-t log det 2:;- t u"2:i 1U

for the i th population and then to assign the observation U to

the population for which the discrintinant score has the highest
value (see Rao [74, p. 488]). The discriminant score is essen

tially the logarithm of the probability density of the i tlt

population.

Result 2) suggests a time series analog for this procedure . If

tlte srctral density of the series X(t) is !t(X), the log density

of dk >(X) is essentially

-Iog det Ji(X) - tr IJl)(X)!t(Xr'. (52)

This provides a discrintinant score for each frequency X. A

more stable score would be provided by the smoothed version

-r' log det [,(X) - tr fJl)(X)!/(Xr l

with fJlji(X) given by (37) or (39). These scores could be

plotted against X for i = I, " ',I in order to carry out the

required discrintination. In the case that tlte Ji(X) are unknown,

tlteir values could be replaced by estimates in (52).

XII. ADDITIONAL RESULTS IN THE CONTINUOUS CASE

In Section IX, we changed to a continuous domain in con

trast to the discrete domain we began with in Section III. In

many problems, we must deal with both sorts of domains,

because while the phenomenon of interest may correspond to

a continuous domain, observational and computational con

siderations may force us to deal witlt the values of tlte process

for a discrete domain. This occurrence gives rise to the com

plication of aliasing. Let Z denote tlte set of integers, Z =

0, ±I, . . '. Suppose X(t) , t E RP, is a stationary continuous

spatial series with spectral density matrix fxx(X) and Cramer

representation

X(t) =fexp {j(a, t)} dZx(a).

Suppose X(t) is observable only for t E Zp. For these values

oft

X(t) =J exp {i(a, t)} L dZx(a + 2ltj).
(-IT,lTf ie zP

This is the Cramer representation of a discrete series with

spectral density matrix

L fxx(X + 2lfj).
/ezp

We see that if the series X(t) is observable only for t E ZP, tlten

tltere is no way of untangling tlte frequencies

X+2ltj,/EZP.

These frequencies are called tlte aliases of tlte fundamental
frequency X.

XIII. STATIONARY POINT PROCESSES

A variety of problems, such as tltose of traffic systems ,

queues, nerve pulses , shot noise, impulse noise, and micro

scopic theory of gases lead us to data tltat has tlte character of
times or positions in space at which certain events have oc
r UM"Pn W,. hi'"" nnw tn i nciirJlt inp' hnw t h,. fnnnn b < WP. hAV"
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We may compute Fourier transforms for different domains in
which case we define

q>(A, I ) " J4>y>U) exp {- i(A, tl}dX ( t). (61)

sx is called the mean intensity of the process ,

dCxx(u) dt =cov {dX(t +u) , dX(t )} (54)

I x x C ~ ) " (2ttfP Jexp {-i(A, ul} dCxx(u) (55)

It follows that

_
d C . . J . / : . : : . k (. . : . . . U . . : . . . ) _ + ~ C J ! . . . C : . : : . k _ d _ u =Pr [event of sort I in

ck (t + U, t + U + du] given an event
of sort k in (r, t + dtll . (62)

In the case that the processes Xj(t) and X k(t) are independent ,
expression (62 ) is equal to cjdu .

If the derivative Cjk(U ) .. dCjk (u )/du exists for u ~ 0 it is
called the cross-covariance density of the two processes in the
case I ~ k and the autocovariance density in the case I " k, For

many processes

dCI/(u) =cj6 (u) du + cl/(u) du

and so the power spectrum of the process Xj (t ) is given by

fl/(A) • (2tt)-P [ cJ+Jexp {-i (A, ul}cl/(u) dul
For a Poisson process cl/(u) = 0 and so IXX(A) =(2tt)-Pex .

The parameter (2tt)Plxx(0)/cx is useful in the classification
of real-valued point processes . From 1)

var X(T, .. . , T) - (2tt)pTPfxx(0).

It follows that, for large T, (2tt)Pfxx(0)/cx is the rat io of the
variance of the number of points in the hypercube (0, T]P for
the process XU) to the variance of the number of points in the
same hypercube for a Poisson process with the same intensity
«x- For this reason we say that the process X(t) is under

dispersed or clustered if the ratio is greater than I and over

dispersed if the ratio is less than I .
The estimation procedure described in Section XI for models

with a finite number of parameters is especially useful in the

The change in going from the case of spatial series to the
case of point processes is seen to be the replacement of X(t ) dt

by dX(t ). In the case that well-separated incre:ne~ts of the
process are only weakly dependent, the results a )-d) of Sec
tion IX hold without further redefinition .

References to the theory of stationary point processes in
clude : Cox and Lewis [75], Brillinger [761. Daley and Vere
Jones [771, and Fisher [78]. We remark that the material of
this section applies equally to the case in which dX(t) is a
general stat ionary random measure, for example with p, r » I ,
we might take dX(t ) to be the amount of energy released by

earthquakes in the time interval (t, t + dt) . In the next section
we indicate some results that do take note of the specific
character of a point process .

XIV. NEW THINGS IN TIlE POINT PROCESS CASE

In the case of a point process, the parameters ex, Cxx(u)

have interpretations further to their definitions (53), (54).

Suppose that the process is orderly, that is the probability that
a small region contains more than one point is very small.

Then , for small dt

Cjdt » E dXlr),;, Pr (there is an event of type I in (t, t +dt]].

It follows that Cj may be interpreted as the intensity with

which points of type i are occurring. Likewise, for u ~ 0

dCjlc(u) dt = cov {dXjU + u) , dXk(t)}

'" Pr [there is an event of type I in
( r + U, t + u +du] and an event of type k in

(r , t +dtlJ - CJCk dt du o

(53)

(60)

(59)

ex dt = E dX(t)

de(t) " dX(t) - [Jl +JaU - u) dS(U)]dt.

We next indicate some statistics that it is useful to calculate
when the process X(f) has been observed over some region.

The Fourier transform is now

dfl(A) "J 4>(T)(r)exp {-i(A, tl}dX(t)

for the data window 4>(T)(t)whose support corresponds to the

domain of observation. If r " I and points occur at the posi
tions 1'1, 1'2, • • • , then this last has the form

1jl(Tl(TI) exp {-.o, TIl} + Ijl(T)(1'2) exp {-i(A, T2l} + ... .

... [exp {i~ptp} - I]
lAp

• dZX(A.. . . • , Ap ) (56)

dX(t) cJ exp {i<A, t>}dZX(A) dt (57)

E{dX(t)!S(u) , u ERl'} c [Jl +JaCt - U)dS(U)] dt , (58)

This last refers to an (r + s) vector-valued point process. It
says that the instantaneous intensity of the series X(t ) at posi

tion t, given the location of all the points of the process S(u),

is a linear trans1ation invariant function of the process S(u) .

The locations of the points of X(t) are affected by where the
points of S(u) are located. We may define here a stationary

random measure de(t) by

presented so far in this paper must be modified to apply to
data of this new character.

Suppose that we are recording the positions in p-dimensional

Euclidean space at which events of r distinct types occur. For

f = I , · · ·, r let X~t) = X ~t .. · · " tp ) denote the number of
events of the I th type that occur in the hypercube (0, tl] X
... X (0, tp I. Let dX~r) denote the number that occur in the

small hypercube (t .. t , + dtt! X . .. X (tp , tp +dtp I. Suppose
that joint distributions of variates such as dX(tll, . . . , dX (l ' )

are unaffected by simple trans1ation of t l
, . . • t , we then say

that X(t) is a stationary point process .

Stationary point process analogs of definitions set down

previously include
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for some nonnegative integer k, and finally Zx(A) is a random

function satisfying

where «x is an r vector, exx( ') is an r X r matrix of tempered

distributions, FXX (X) is a nonnegative matrix-valued measure

satisfying

E dZx(X) = Ii0..) eXdA (68)

cov {dZx(X), dZx(,u)}= Ii (A- j.I) dFxx(A) du. (69)

The spatial series of Section IX is a random Schwartz dis

tribution corresponding to the functional

BRlLLINGER: FOURlER ANALYSIS OF STATIONARY PROCESSES

point process case as, typically, convenient time domain

estimation procedures do not exist at all. Results of applying

such a procedure are indicated in [79].

XV. STATIONARY RANDOM ScHWARTZ DiSTRIBUTIONS

In this section, we present the theory of Schwartz distribu

tions (or generalized functions) needed to develop properties

of the Fourier transforms of random Schwartz distributions.

These last are important as they contain the processes dis

cussed so far in this paper as particular cases. In add ition they

contain other interesting processes as particular cases, such as
processes whose components are a combination of the processes

discussed so far and such as the processes with stationary in

crements that are useful in the study of turbulence, see

Yaglom [801. A further advantage of this abstract approach is
that the assumptions needed to develop results are cut back to

essentials. References to the theory of Schwartz distributions

include Schwartz [81] and Papoulis [82] .

Let :D denote the space of infinitely differentiable functions

on RP with compact support. Let S denote the space of in

finitely differentiable functions on RP with rapid decrease,

that is such that if ¢(q)(t) denotes a derivative of order q then

lim (I + I tl)n¢(q)(t) ..... 0 for all n, q.
Itl--

and

cov { X (¢), XCVi)} = cxx(¢ • Vi1

=J«I>(-a)'I' (-a) dFxx(a)

X(¢) =J«I> (-a) dZx(a)

fO + Ia I)-I: dFXX(a) < ee

1639

(64)

(65)

(66)

(67)

A continuous linear functional on :D is called a Schwartz dis

tribution or generalized function. The Dirac delta function

that we have been using throughout the paper is an example.

A continuous linear functional on :D is called a tempered

distribution .

Suppose now that a random experiment is being carried out,

the possible results of which are continuous linear maps X
from :D to L 2 (P), the space of square integrable functions for a

probability measure P. Suppose that r of these maps are col

lected into an r vector, X(¢). We call X(¢) an r vector-valued

random Scnwarrz distribution . It is possible to talk about

things such as E X(¢) , cov { X (¢ ), X(1/I)} in this case. An im

portant family of transformations on :D consists of the shifts
S" defined by S"1>(t) = 1>(t + u), t , u E RP. The random

Schwartz distribution is called wide-sense stationary when

E X(S"¢) = E X(¢)

cov {X(S"¢), X(S"1/J)} =cov {X(¢), X(1/J)}

for all u E RP and ¢, 1/1 E:D. It is called strictly stationary

When all the distributions of finite numbers of values are in
variant under the shifts.

Let us denote the convolution of two functions ¢, 1/1 E:D by

¢ • Vi(t) =f1>(t- u) ~ du

and the Fourier transform of a function in S by the corre
sponding capital letter

«I>(X)=f<fl(u) exp {-i (X, u)} du

X(¢) =fX(t)1>(t) dt

for ¢ E :D. The representations indicated in that section may

be deduced from the results of Theorem I. It may be shown
that Ieof (67) may be taken to be 0 for this case.

The stationary point process of Section XiI is likewise a
random Schwartz distribution corresponding to the functional

X(¢) =f ¢(t) dX(t)

for ¢ E :D . The representations of Section XII may be deduced
from Theorem I. It may be shown that Ie of (67) may be

taken to be 2 for this case.

Gelfand and Vilenkin [84] is a general reference to the

theory of random Schwartz distributions. Theorem I is

proved there.

A linear model that extends those of (42) and (58) to the

present situation is one in which the (r + s) vector-valued sta

tionary random Schwartz distribution

[

S(¢)]

X(¢)

satisfies

E {X(¢) IS(Vi),1/JE :D }= j.IJ<fl(t)dt + S(¢ • a)

= j.L«I>(O) +f«I>(-a)A(a)dZs(a). (70)

(63) suggesting that the system may be identified if the spectral
density may be estimated. We next set down a mixing assump-

In the case that the spectral measure is differentiable this last
implies that

then we can set down the following Theorem.

Theorem 1: (Ito [83J, Yaglom [80].) If X(¢), ¢ E:D is a

wide-sense stationary random Schwartz distribution, then

E X(¢) = exf <fl(t)dt

fxs(A) =.4. (A)fss(A) (71)
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tion, before constructing such an estimate and determining its
asymptotic properties.

Given k variates XI, ...• X" let cum { X I •. . . ,X,,} denote

their joint cumulant or semi-invariant. Cumulants are defined
and discussed in Kendall and Stuart [85] and Brillinger [20].

They are the elementary functions of the moments of the
variates that vanish when the variates are independent. As

such they provide measures of the degree of dependence of
variates. We will make use of

Assumption 1. X(ifl) is a stationary random Schwartz dis

tribution with the property that for ifl l. · · .• ifl" E S and
al ,··· ,Qk = 1,'" ,r;k= 2, 3, ' " I

cum {X
G1
(~d," .• XG,,(cjl,,)} =r.J4>1 (-a

l)
.. .

. 4>"_l(-at-l)4>,,(a l + .. . +at-l)

. !G""G,,(a l, ' ..• at-I) da l . .. da"-I (72)

with

(I + Ia l I)-m, . . . (I + Iat-I n-m"-I I!G,'''G"

. (a l, '" •at-I) I<L"

for some finite mi •...• m"_1>L".
In the case that the spectral measure Pxx (A)is differentiable.

relation (65) corresponds to the case k = 2 of (72). The char

acter of Assumption I is one of limiting the size of the cumu
lants of the functionals of the process X(~) . It will be shown
that it is a form of weak dependence requirement, for func

tionals of the process that are far apart in t , in the Appendix.
The function f

G,
' '' G'' (). I, .. . ,)." -1) appearing in (72) is called

a cumulant spectrum of order k, see Brillinger [86] and the
references therein . From (66) we see that it is also given by

cum {dZG, (AI) • . . . , dZ
G
,,( )." ) } = 6 (AI + ... + ).")

·!G, ...G,,().I , ... • )."-l)d).1 · ··dA". (73)

The fact that it only depends on k - I arguments results from

the assumed stationarity of the process.
Let ifl(Tl(t) = ~tIT) with ifl E ~. As an analog of the Fourier

transforms of Sections IX and XII we now define

dfl(A)=X(exp {-i(A, ')}cjl(Tl) (74)

for the stationary random Schwartz distribution X(cjl). We can
now state the following theorem.

Theorem 2: If Assumption I is satisfied, if dfl().) is given
by (74) and if T I>I(n - A"(n I ..... "", I .;; j < k <. J, then

1}-4) of Section IX hold.

This theorem is proved in the Appendix . It provides a justi
fication for the estimation procedures suggested in the paper

and for the large sample approximations suggested for the dis

tributions of the estimates.
We end this section by mentioning that a point process with

events at positions T", k = I,'" may be represented by the
generalized function

the sampled function of Section III may be represented by the
generalized function

L XU)6(t- j)

j---
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and that a point process with associated variate S may be
represented by

see Beutler and Leneman [87] . Matheron [92] discusses the

use of random Schwartz distributions in the smoothing of maps.

XVI. HIGHER ORDER SPECTRA AND NONLINEAR SYSTEMS

In the previous section we have introduced the higher order

cumulant spectra of stationary random Schwartz distributions.
In this section we will briefly discuss the use of such spectra

and how they may be estimated.

In the case that the process under consideration is Gaussian.
the cumulant spectra of order greater than two are identically

O. In the non-Gaussian case, the higher order spectra provide
us with important information concerning the distribution of

the process. For example were the process real-valued Poisson
on the line with intensity «s, then the cumulant spectrum of
order k would be constant equal to CN(21T)1-". Were the

process the result of passing a series of independent identically
distributed variates through a filter with transfer function

A(A), then the cumulant spectrum of order k would be pro
portional to

A(Al ) .. . A(A"-I)A (-AI - .. . _)."-1).

Such hypotheses might be checked by estimating higher cumu
lant spectra.

An important use of higher order spectra is in the identifica
tion of polynomial systems such as those discussed in
Wiener [88] and Brillinger [86] and Halme [89]. Tick [90]

shows that if Set) is a stationary real-valued Gaussian series. if
E(t) is an independent stationary series and if the series X(t)

is given by

X(t) = /J +f aCt- u)S(u) du

+11 bet - u. t - u)S(u)S(u) du du +E(t) (75)

then

tWA) = A(- A)!ss().)

!ssx()../J) =28(-)., -/J)!SS(A)!ss{IJ)

where

A(A)= fa(u)exp {-iXu}du

B(A./J)=II b(u. e) exp {-i(Xu + IJU)} du d»

and !ssx<A, IJ) is a third-order cumulant spectrum. It follows
that both the linear transfer function A()') and the bitransfer
function B(A, /J) of the system may be estimated. from
estimates of second- and third-order spectra, following the
probing of the system by a single Gaussian series. References
to the identification of systems of order greater than 2. and
to the case of non-Gaussian Set) are given in [861 .

We turn to the problem of constructing an estimate of a kth

order cumulant spectrum. In the course of the proof of
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Theorem 2 given in the Appendix. we will see that

· (-a l
- ••. -a"-I - X")f., ....,,(a l ••••• a"-I)

· da l • •• da"-I

· dfll . .. dfl"-I [., .... ,..<X I , . •. • X"-I),

for Xl + +X" = 0

for Xl + +Xk *' O.

=TPJ- .J<1>1 «31) ••• <1>"-1 «3"-1) <1>"

• (-fll - . • • -fl" -I - T(X I + .. . + X") f. , "

· (Xl + T-Ifll •... • X"-1 + rlfl"-I) dfll dfl"-I

- TPr.J<1>1 «31) •• • <1>"-1 «3"-1) <I>,,(-fl l - • •• _fl"-I)

when the supports of ¢I, . . . • 1/1"-1 are farther away from that

of ¢" than some number p. This means that the distribution e
has compact support. By the Schwartz-Paley-Wiener theorem,

e is, therefore. the Fourier transform of a function of slow
growth, say f. , ....,,(XI , ... • X"-I) and we may write the rela

tion (72) . In the case that values of the process X(¢) at a dis

tance from each other are only weakly dependent, we can ex

pect the cumulant to be small and for the representation (72)

to hold with (73) satisfied .

Proof of Theorem 2: We see from (66) and (73)

cum { d ~ ; ) ( X I ), . .. • d~;)(X") }

=f.. J<I>\T)(a l
- XI) ... < l > k ~ ~ ( a " - I - Xk-I)<I>~t)

It follows from this last that the standardized joint cumulants
of order greater than 2 tend to 0 and so the Fourier transforms
are asymptotically normal.

1 of

¢I.· ..• 1/1" E iJ

APPENDIX

{

(21T)P(" - I ) f 4l(T)(t)" dt f., ...•,,0,I • . . . • X"-I).

cum {d~;)(XI), . . . • d~;)(A") }-

O.

Suppose that no proper subset of XI • . . . , X" sums to O. It

then follows from the principal relation connecting moments
and cumulants that

is continuous in each of its arguments. Being a continuous

multilinear functional it can be written

. dt f., ...•,,(XI
• • • • • X"-I)

provided XI + . . . + Xk = O. This last one suggests the use of

kth order periodogram

I ~ ~ ' . k ( X I • •. . • X"-I) = (21T)-P("-I) (f¢(T)(t)"dt)-1

. d~;)(XI) ... d ~ ~ ~ l (X"-I)

X d~~)( -XI _ • .• _Xk - 1) (76)

as a naive estimate of the spectrum f., ....,,(X I, • • •• AIr-I) pro

vided that no proper subset of XI •..•• X"-1 sums to O. From

what we have seen in the case k = 2 this estimate will be un

stable . It follows that we should in fact construct an estimate

by smoothing the periodogram (76) over (k - I )-tuples of fre
quencies in the neighborhood of XI • .. . , X"-I , but such that

no proper subset of the (k " I)-tuple sums to O. Details of this

construction are given in Brillinger and Rosenblatt [91] for
the discrete time case. We could equally well have constructed

an estimate using the Fourier transforms d¥)(X, j) based on
disjoint domains.

We begin by providing a motivation for Assumption
Section XIV. Suppose that

cum { X. , (¢I).· . . , X . ,,(¢,,) }.

C., .... ,,(I/II ~ ¢1 ~ .. . ~ 'ilk)

where c., ....k is a Schwartz distribution on iJ(RPk), from the

Schwartz nuclear theorem. If the process is stationary this
distribution satisfies

C., ... .,,(S"I/II ~ S"¢2 ~ . . . ~ S"I/Ik) = c.,...."
'(¢I ~ ¢ 2 ~ ' " ~ ¢ , , ) .

It follows that it has the form

e(J¢(t + u l
•• • • • t + u"-I. t) dt)

for ¢ E iJ(RP") where e is a distribution on iJ(RP(" - Ilj.

Now consider the case in which the process X(¢) has the
property that

cum { X. , (¢I).· . . ,X.,,(¢,,)} = 0

(I)

(2)

(31

(4 1

(5)

(6]
[71

[81

(91

[IO!

[111
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Solid-State Control of Electric Drives
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Ab,trrlCt-A lIltoria1 review of the de and Ie eleclJic.<lriv. fldd lapre
_ted, The pi is to preent fuDdamenDi concepu, principle COIl

cemI, and key deYeiopmenlJ in eleclJic.<lrive tecIInology. Principlel
at Ie and de power COIIYer!en and Ie and de moton are ~ted.
Theil the combination at the Cllmerler and motor to proride a c0m

plete drlore I)'Ilem la cIJIcu..t a10ng with drJore.oyllem chuacteriallca
md methodJ for analyzing perfomance. Finally, I0Il1. appIicatlon
gWddiMa for both .., and de oylllemJ are pen.

l. INTRODUCTION

T
HE GROWTH of electric drives has closely paralleled

the growth of automation in industry. Electric-drive

systems provide a convenient means for controlling the
operation of industrial machinery . The high reliability and

great versatility of electric drives has resulted in their wide
spread application. In size, electric drives range all the way

from fractions of one horsepower up to thousands of horse
power . Speeds range from stalled positioning systems up to

I5 000 revImin and higher .

Historically, the first electric-drive system to gain real prom

inence was the Ward Leonard System, patented by H. Ward

Leonard in the 1890's. The history of de electric drives pro

ceeded from the basic Ward Leonard principle to various modi

fications thereof, in approximately the following steps :

I) rheostat control of generator field ;

2) tandem field rheostat control of generator field and

motor field ;

17I1.r Invlt.d paper I.r 011< 01 a _ri., plann.d on toptc.r 01 grneral tn
terest-« tn« Editor.

ManUlCript recelv.d March 16, 1973; t .....d April ~6 , 1974 and
AlII\11l 6, 1974.

lb. authon are with the Reliance Electric Company, On-eland,
Ohio44117.

3) thyratron control of generator and motor fields and later

thyraton control of the armature voltage of small dc
motors;

4) ignitron and mercury pool control of the armature voltage

of de machines too large for thyratrons ;

5) magnetic amplifier control of generator field and motor
armature voltage; and

6) thyristor control of generator and motor fields and later

thyristor control of armature voltage.

During the latter part of the era of the thyratron, the tran
sistor started to replace vacuum tubes in drive regulators.

Now solid-state electronic circuits are used to implement

special compensating circuits that significantly improve feed 
back control system response. Microelectronic circuits, par·
ticularly operational amplifiers, are used extensively in drive
systems today. The operational amplifier circuits are the key
to drive-system response , sta bility, and regulation.

The ac motor variable speed drive development is very sim

ilar to the de.

Initially , the motor alternator set with field rheostats was

used to control the ac motor speed . Then other methods of

ac motor control were developed. They are as follows :

I) wound rotor resistance control to vary speed with torque
load ;

2) methods of replacing the resistor in the rotor with other

rotating machinery or rectifiers to pump the power back
into the ac line;

3) ae motor stator voltage control by the use of resistors,

reactors, magnetic amplifiers, thyratrans, ignitrons, mer
cury-pool tubes or thyristors ; and

4) replacement of the motor-il1temator set for varying volt
age and frequency to the motor with static devices.
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