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ABSTRACT.   A new approach to harmonic analysis on the unit sphere in
R        is given, closer in form to Fourier analysis on R   than the usual develop-
ment in orthonormal polynomials.   Singular integrals occur in the transform form-
ulae.   The results generalize to symmetric space.

1. Introduction.  Fix a positive integer d and let S denote the unit sphere
in Rd+1.  Fix a point a on S and let B = {s £ S\s • a = 0}.  (a is the "north
pole" and B is the "equator.")  For an integer n > 0 and b £ B define a function
e(b, n) on 5 by

e(b, n)(s) = (a • s + ib ■ s)"      (s £ S).

The message of this paper is that the theory of harmonic analysis on S may be
formulated in a manner that so closely parallels classical Fourier analysis on abelian
Lie groups as to justify our title.  In this formulation the functions e(b, ri) and a
"dual" set of functions e#(b, n) play the role that characters and their conjugates
do on an abelian group.  These functions are parameterized by B x TV (where N
denotes the set of nonnegative integers). B x N is our Fourier transform dual
space, analogous to the character group.

For suitably restricted functions/on S we will have formulae:

0 -1) Ffrb. n) = fs e(b, n)(s)f(s) ds,

(1.2) As) = fB XN ejb, n)(s)Ff(b, n) d(b, n),

(1.3) Ftftb, ri) - fs eJib, nfaW) ds,

(1.4) As) = fB XN e(b, n)(s)F*f(b, ri) d(b, n),
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2 T. O. SHERMAN

O-5) îs/,(*ya(»)& - ÎBXN Wi&. «Waft ")</(*. »)•
What separates this paper from the rest of the abundant literature on this

subject is the peculiar nature of the functions e*(b, ri) which are singular with a
singularity on the equator like that oi z~n~d+1 (z £ C).

eJib, «)(s) - (sgn(s • d))d- * (e(b, n+d- l)(s))" »      (s £ S - B).

(Thus the integral in (1.3) is improper and special care is needed in its definition.
Also (1.2) should be modified to say s £ B.)

To continue the comparision with Fourier theory and the contrast with
classical spherical theory:

Appendix 1 of this paper is devoted to the strong analogy between e(b, ri)
on S and characters of an abelian group.  That appendix can be read independently
of the rest of the paper and the reader is invited to glance at it at this point.

The ideas developed here are part of a general theory of Fourier analysis on
Riemannian symmetric space which includes Fourier theory in the special case that
the symmetric space is an abelian group.

Another special case is that of symmetric space of noncompact type.  Fourier
theory here was given by Helgason (see for example [2, Chapters I, II, §2]) after
Harish-Chandra developed the necessary theory of zonal spherical functions. How-
ever up to now there has not appeared for the compact case a full analogue of
Helgason's transform.  One obstruction to a successful compact theory is the sing-
ularity of the functions which are here denoted e*(b, ri). Thus this paper is a
laboratory for the study of this singularity.  (We now quickly add that our inten-
tion has been to write for a general mathematical readership and there will be no
further references to symmetric space.)

Contrasts with the classical theory are evident.  While e(b, «)'s have played
a role in the classical theory (see e.g. [3] ) the goal has always been to construct
and compute using an orthonormal basis of L2(S). The e(b, «)'s span but they
are not neatly orthonormal.  In the present paper we abandon the emphasis on
orthonormality in favor of the symmetry of (1.1)—(1.5).

To go into more detail recall the following outline of harmonic analysis on
5:  Normalize the integral on S so that /.1»1, Write H for L2(S). H is the
Hubert space direct sum of finite dimensional subspaces Hn, each invariant and
irreducible under the action of the rotation group. Hn may be described as the
space of homogeneous wth degree harmonic polynomials on Rd+ x restricted to S.
In Hn there is a distinguished function s —► Pn(s • a) where Pn is a polynomial of
degree n on R, with .P„(l) = 1.  The orthogonal projection H —*■ Hn is given by
/-*/„ where
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FOURIER ANALYSIS ON THE SPHERE 3

(1 -6) /„(s) = dim(//„)/s Aíi)P„(»i • s)*i•

Our contribution is to analyse (1.6) into two stages:  Stage I given by (1.1)
(or (1.3)) and Stage II given by (1.7) (or (1.8)) below.

(1.7) fn(s) = dim(#„) Jß e*(ft, n)(s)Ff(b, ri) db,

(1.8) fn(s) m dim(Hn)fB e(b, n)(s)F^f(b, ri) db.

(1.2) is a corollary of (1.7) and (1.4) is a corollary of (1.8) once it is explained
that the measure on B x TV is the product of the normalized rotation invariant
measure on B with the measure on TV which assigns to the singleton {«} the value
dim(Hn). (1.7) and (1.8) follow from (1.6) and the following result:

(1.9) Pn(s   sl) = fB e*(b, n)(s)e(b, n)(Sl)db

where s £ S - B and st £ S.
(1.9) may be fairly regarded as the key to the paper.
The paper is organized as follows:
§2 is a brief survey of the classical theory without proofs.  The goal is to

establish notation and help isolate what is new from what is well known.
§3 is a rigorous statement of the main results without proof, namely (1.1)-

(1.5)and(1.7)-(1.9).
§4 proves (1.9).
§5 is devoted to the definition and theory of the improper integral in (1.3).

The hope is that the theory will prove to be computationally effective. However,
the section is long and should probably be skimmed lightly on first reading.

§6 combines the results of §§4 and 5 into proofs of the statements in §3.
Numbering up to this point is as follows:  (x.y) or (x.y.z) refers to a num-

bered formula or equation in §jc.   The format (x.y) is used with x = 1, 2. (x.y.z)
is used with x = 3 through 6.  In this range x.y (without parenthesis) refers to
the 7th numbered result (i.e., definition, lemma, or theorem) in §jc and (x.y.z)
is the zth formula within that result.

Appendix 1 examines the analogy between e(b, ri) on S and characters on
abelian Lie groups.

Appendix 2 is a miscellany of results leaning toward a calculus of F and F*.

2. Notation and classical results.  Fix a positive integer d.  S denotes the
unit sphere in Rd+1.  There is a unique rotation-invariant Borel measure on S
such that the measure of S is 1.  This measure on S is always understood (with
one brief exception in Lemma 5.2 that will be clearly marked): fsfoi fsf(s)ds
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4 T. O. SHERMAN

denotes integration with respect to this measure.
Let H = L2(S). H is the Hilbert space direct sum of finite dimensional

subspaces Hn, n an integer > 0.  Let H„ denote the space of harmonic homogen-
eous polynomials of degree n on Rd+1.  Hn is obtained by restricting the func-
tions in H„ to S.  The restriction map from H„ to Hn is a bijection.  à\m(Hn) has
the generating function

£ dim(T7„)r" = (1 + r)(l - tyd;
o

thus

dim(T/n) = (n + d - l)\/nl(d - 1)! + (n + d - 2)!/(« - \)\(d - 1)!

= (n + d)\¡n\d\ - (n + d - 2)!/(n - 2)W!.

There is a unique function Pn = Pn d on [-1, 1] with the following two
properties:

(2.1)i>„(l)=l;
(2.2) s —► Pn(s ■ Sj) is in Hn (sl fixed, s £ S). P„ is in fact a polynomial

of degree n and except for a constant factor equals the Gegenbauer polynomial
C£ where X = (d - l)/2 or the Jacobi polynomial P^'a) where a = (d - 2)/2.
It is given by

Pn = QJQn(\)
where

Qn(t) = (1 - t2)-a(d/dt)n(l - r2)"+a,     a = (d - 2)/2,

ß„(l) = (-2)"r(K+a + l)/r(a+l).

The orthogonal projection oif&H to / £ Hn is given by

(2.3) /„(*,) = dim(//„)/s /(Sy„(Sl • s) ds.

Let G denote the group of rotations of Rd+l around the origin, g £ G acts
on a function / (on S or Rd+1) by sending/ to fg where /*(*) = f(gx). Note
that Z^7 = (fgy (g, y £ G).  Thus G has a representation on H which is unitary.

The spaces Hn may be characterized as the irreducible components of H
under the above representation of G, taken in increasing order of à\m(Hn).

Let D denote C°°(S) equipped with the topology of uniform convergence on
S in all derivatives.  Let D' denote the space of continuous linear functional on
D.   We write elements of D' as though they were functions integrated against ele-
ments of D.   Thus if/' ££)' and/£Z) then the value of/' at/is denoted
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FOURIER ANALYSIS ON THE SPHERE 5

fsf'f= fsff'-  H has a natural embedding in D' which is consistent with this
notation.  Thus Hn C D C H C D'.

For /' £ D' we may define f'n £ Hn by formula (2.3). Then we have

SSfnf=fSfnfn=fSf'fn (f'^D'.fGD).
Theorem.   Let fED.   Then the series 2q fn converges to f in the topology

ofD.

As a general reference for this section see [3].

3.  Statement of results.   Fix a point a in S, once and forever.   Let B =
{s £ S\s • a = 0}.  B is the unit sphere in a1. The rotation invariant integral on B
with fB 1 = 1 is denoted fBfot fBf(b)db.

Let TV denote the nonnegative integers.  Any sum unless otherwise indicated
is over n £ TV.

For (b, ri) £ B x TV we have two functions on S and S - B respectively,
defined as follows.

e(b, n)(s) = (a • s + ib ■ s)n      (s £ S),

e*(b, n)(s) = (sgn(s • a))d~1 (e(b, n+d-\ )(s))~1      (s £ S - B).

Definition 3.1.   For any /' £ D' we define Ff'(b, ri) - fsf'e(b, ri).
Definition 3.2.   Let p be a C°° function on R whose support contains 0

and such that the support of 1 - p is compact.  For t £ R let rt be the C°° func-
tion defined on S by

rt(s) - p(t(s ■ a)),      s £ S.

For /' £ D' define Ftf(b, ri) by

F/(b, ri) = fs f'rte*(b, ri).

If \\mt^.„,Ftf'(b, ri) exists it is denoted F%f'(b, n).
This definition depends on the choice of p which will be considered fixed

(but not further specified).
Remark. Both definitions apply to /£ L*(S) or /£ D since D <Z Ll(S)

CD'.

Lemma 3.3.   ///£ D then F*f(b, ri) exists for all (b, ri) £ B x TV.  For
fixed n, F#f(b, n) is a continuous function of b.  In fact as t —► °°, Ftf(b, ri) con-
verges to F*f(b, ri) uniformly on B.   The map f—► F*f(b, ri) is in D' for fixed
(b, ri).

Theorem 3.4.  Fix « £ TV.   Then for f £ £>' we may compute f'n £ Hn byLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 T. O. SHERMAN

/» = dim(H„)fB Ff'(b, n)e.(b, ri)(s)db
where s £ S - B. (Note. Ff'(b, n) is a polynomial function of b of degree < n.
Also for s £ S - B the function ejp, ri)(s) is analytic in b. Thus the integral is
well defined.)

Corollary 3.5.  Let f EH.  Then

As) =Zdim(Hn)fB FAb, «>*(&, n)(s)db
with the series converging in the norm of H. IffED then the series converges
uniformly on S-B.

Theorem 3.6. Let f ED.   Then for all s E S

fn(s) = dim(Hn)fB F*Ab, n)e(b, ri)(s)db.

Corollary 3.7.   Let f ED.  Then

As) = Zdim(^n)/B F*M>> ">(*• "Mdb

where the series converges in D.

Theorem 3.8. Let f ED and f ED'.  Then

¡s ff - Zàim(Hn)fB FJQ>, n)Ff'(b, n)db.

The corollaries follow by combining the theorems with classical results (see
§2). The theorems in turn hinge on the formula (2.3), Lemma 3.3, and the fol-
lowing lemma which is the most important new result.

Key Lemma 3.9.   Fix n E N, sl E S and s E S - B.  Then

pn(si ' s) =/B e(b- "Xsi>*(k n)(s)db.

This formula generalizes to arbitrary Riemannian symmetric space. Helgason
proved it by integral means for noncompact symmetric space and used it to obtain
a second proof of his Fourier transform theory.  That proof does not work for
compact symmetric space, where the formula appears to be new even for the
sphere in R3.

4. The Key Lemma. This section is devoted to a proof of Lemma 3.9. We
begin with the case d = 1 which turns out to be elementary (Lemma 4.1). There-
after we assume d > 2. Our next step is to establish the case of s = a (Lemma
4.2). This also is easy and not original; the resulting formula is classical and a
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FOURIER ANALYSIS ON THE SPHERE 7

special case of a general type of formula given by Harish-Chandra for zonal spher-
ical functions; in case d = 2 it is called "Laplace's integral of the first kind."

Then begins the serious work on the Key Lemma.  It will be helpful if we
give here an outline of the argument with some of the notation to be used.

After Lemma 4.1 fix the integers d > 2 and « £ TV.   Let

I(sv s) = J   e(b, n)(s.)e^(b, n)(s)db      (s.ES, sES-B).

The problem is to prove that I(slt s) = Pn(sx * s).  By Lemma 4.2,1(sv a) =
*„(»! • a).

Recall that we are using G to denote the group of rotations in Rd+1 around
the origin. Consider

¿(g) = ¿Qr> sv s) = I(gsv gs).

If I(sv s) = P„(si ■ s) is true then ¿ is locally constant on G. Conversely if we
can show that JL is locally constant we will be very close to proving that I(sl, s)
is a function of s1 • s and this by Lemma 4.2 will be enough.

The heart of the proof then is the demonstration that i, is locally constant.
Let g denote the real Lie algebra of G   For x £ g let Dx denote the corre-

sponding differential operator on G acting on the left. We will show (Lemma 4.3)
that DXJL = 0.  The idea is to take Dx under the integral sign, shift the derivative
over to the fc-variable and show that the resulting integral of a derivative is zero.

Lemma 4.1.   Lemma 3.9 holds in case d = 1. More explicitly: Pn is the
Tchebychev polynomial of degree n;a = (l,0);B= {(0, 1), (0, -1)}; ifsx =
(xv yj, s = (x, y) then e((0, ± 1), n)(s^ = (Xy ± iyj1 and e*((0, ± 1), n)(s) =
(x ± iy)~n.  Then our assertion is

pn(xix +y%y) = ^(e((°> !)> ")(si>*((°> o. »x«)

+ e((0, -1), w)(si>*((0, - O, «X«))-

Proof.  Let xx + iyx = expO'öj) and x + iy = exp(/0). Then

^n(*i* +y1y) = Pn(cos(e - ej) = œs(n(e - ej).

On the other side we have

e((0, 1), n)(Sl) = expC^),   e((0, -1), n)(s) = exp(- ind)

and so on. Thus the formula becomes

cos(n(0 - 0j)) = ^(expO'nö^expi- bid) + exp(- inB ¡ysxpQnß))

which is of course true.   DLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 T. O. SHERMAN

From now on assume d > 1 and n £ TV are fixed integers.

Lemma 4.2 [3, Theorem 7].   Let s £ S.  Then

Pn(s-a)= fBe(b,n)(s)db.

Proof.   For each b £ B, e(b, ri) E Hn since p(x) = (x • a.+ ix • b)n is
harmonic onRd+I and e(b, ri) = p\S.

The function b —► e(b, n) is continuous from B to the finite dimensional
vector space Hn. Thus fBe(b, ri)db EHn. Evaluation at s £ 5 is a linear func-
tional on Hn so the function

m = fB e(b, n)(s)db = \JB e(b, n)db\(s)

is in Hn.
Now <j> is symmetric around the axis Ra.  (Indeed if K C G is the group of

rotations fixing a then <p(ks) = (¡>(s) (k E K, s E S). This follows from e(b, n)(ks)
= e(k~1b, n)(s) and the Af-invariance of fB.) This symmetry implies that for
some function R on [- 1, 1], 0(s) = R(s • a). Also R(l) = 1 since e(b, n)(a) = 1
and /g 1 = 1.  Thus R satisfies (2.1) and (2.2) with st = a, proving R = Pn.   D

We will write I(sv s) = fB e(b, n)(Sj)e*(è, n)(s)db when st £ S and s £
S - B.   From the lemma just proved it suffices to show that I(sv s) is really a
function of Sj • s, for then that function is necessarily Pn. To this end let G(s) =
{gEG\gs£B}.

The remainder of the proof shows that ¿(g) = ¿(g; sv s) = I(gsv gs) is
constant on G(s).  (The reason that this is enough is simply that if (s\, s) is an-
other pair in 5 x (S - B) with s1 • s = s\ • s' then there is £ £ G(s2) such
that gSj = s'j, gs = s'.) Our first and hardest task is to show that JL is locally
constant.  This we do by differential means.

The real Lie algebra g of G will be identified with the skew-symmetric
linear transforms on Rd+1.  x E g gives rise to the differential operator Dx on G:

DJ(g) = -(d/dtWMtx)g)u=0

where /is differentiable in a neighborhood of g in G.   To show that JL is locally
constant it is enough to establish

Lemma 4.3.   For all x E g, Dx¿ = 0 on G(s).

As stated earlier our method of proof is to shift Dx inside the integral sign
to obtain

Dxl(g) = f Dx(e(b, «)feSl>*(&, ri)(gs))db.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER ANALYSIS ON THE SPHERE 9

Then we shift the derivative from the variable g to the variable b.  We wish to
study this shift from g to b in advance of the proof of 4.3.

Recall that B is the unit sphere in a1. We identify a1 with Rd.
Definition.  By a "real tangent field on B" we mean a function <p: B —►

Rd such that for all b E B, (¡>(b) • b = 0.  By a "complex tangent field on 5" we
mean a function <pl + i<j>2: B —► C1 where 0j and <¡>2 are real tangent fields. If
0 = 0j + i<j>2 is a complex tangent field and / is a C1 function on B then 0 acts
as a differential operator on / (notation.   <p #/) as follows: extend / to a Cl
function in an open neighborhood of B in Rd.  Then

(0x #fW>) = (d/dt)Ab + tftWW
<p2 #/is similarly defined and 0 #/= 0j #/+ i*02 #f.

Now given * £ g we assign a complex tangent field 0a on B by the formula

ßx(b) = x(Z>) - (x(Z>) • a)a - i(x(a) - (x(a) ■ b)b)

= -i(je(«) + ix(b) - ((x(a) + ix(b))a)a - ((x(a) + ix(b)) • b)b).

Geometrically ß   is the orthogonal projection of - ix(a + ib) onto the complex
tangent plane to B at b.

Lemma 4.4.   Fix s ES. ForgEG.bEB let <¡>(g, b) = e(b, l)fes). Let m
be an integer. If m is negative restrict g to G(s).  Then

Dx<t>m = -im(x(a) • byr + ßx # <¡>m

where Dx acts with respect to g and ßx# acts with respect to b.

Before giving the proof, some motivation can be obtained from

Corollary 4.5.   For Sj £ S, b £ B, n E TV, x £ g, g £ G,

(4.5.1) Dxe(b, n)(gst) = -in(x(a) ■ b)e(b, n)(gSl) + ßx # e(b, n^gsj.

If g E G(s) then:

(4.5.2)Dxe*(b, ri)(gs) = i(n +d- l)(x(a) • b)e*(b, ri)(gs) + ßx #e*(b, n)(gs).

Dx(e(b, «)feSl>*(6, n)(gs)) = (i(d - l)(x(a) • b) + ßx #)
(4.5.3)

• (e(b, nygs^tO», n)(gs)).
Proof of Corollary 4.5.   e(b, n)(gs) = <pn(g, b); and e*(b, ri)(gs) is

locally (on G(s) x B) a constant (+ 1 or - 1) multiple of 4>~n~d+1(g, b). (4.5.1)
and (4.5.2) now follow immediately from 4.4.  (4.5.3) follows from (4.5.1) and
(4.5.2) by Leibnitz' rule for differentiating a product.   D

Proof of Lemma 4.4.   First consider m = 1.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 T. O. SHERMAN

Dx<p(g, b) = -a- x(gs) - ib • x(gs) = x(a)gs + ix(b)gs

= -i(x(a) ■ b)(a • gs + ib ■ gs) + ißx(b) • gs

= -i(x(a) ■ b)<t>(g, b) + ßx# <Kg, b)

proving the case m = 1.  The case of m an arbitrary integer follows from this
one by

Dx<pm = m<pm - XDX§ = m<pm -\- i(x(a) ■ b)<p + ßx # <p)

= -im(x(a) ■ bW + ßx # <¡>m.   D

Lemma 4.6.   Let /£ C1 (B) andxEq.   Then

f i(d - l)(x(a) • b)Ab) + ßx #f(b)db = 0.

Proof.   This is an application of the divergence theorem once we recognize
that the divergence of the vector field ßx on the manifold B at the point b is
i(d- l)x(a) • b.  To see this consider the real and imaginary parts of ßx separately.

The real part of ßx is b —► x(b) - (x(b) ■ a)a.   This map from B to Rd ex-
tends uniquely to a linear map of Rd to Rd which is skew-symmetric.  The flow
of such a vector field on B is a rotation which is volume preserving.  Clearly then
the divergence of the real part of ßx is 0.

The imaginary part of ßx is - jjyx where yx(b) = x(a) - (x(a) • b)b. We
must show that div(7x)(è) = -(d - l)x(a) • b.   Consider the following extension
of yx to a vector field (again denoted 7^) on Rd: yx(v) = x(a)(v • v) - (x(a) • v)v
(v £ Rd).  Taken as a vector field on Rd the divergence of yx is easily seen to be
-(d - l)x(a) • v. Now if we compute div^) on Rd in polar coordinates and
evaluate at b £ B we obtain the sum of a radial term (which is, however, 0 since
yx(v) • v = 0) and a spherical term which is just the divergence of yx as a vector
field on B.   Thus on B, divB(yx)(b) = -(d - l)x(a) ■ b.    D

Proof of Lemma 4.3.   For g E G(s) let

Ag, b) = e(b, rijígs^Jb, rifes).
By (4.5.3) of Lemma 4.5

Dxf(g, b) = i(d - l)(x(a) ■ b)Ag, b) + ßx #f(g, b).

Thus by Lemma 4.6, fBDxAg, b)db = 0.  Then

Dxl(g) = Dx fB Ag, b) db = fBDx Ag, b) db = 0.   D

We have proved that ¿ is locally constant on G(s). It remains only to prove
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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that it is globally constant.  To do this write G(s) = G+ U G_ where G+ is the
set of all g £ G(s) which carry s into the component of S - B containing s; G_ is
the complement: the set of all g E G(s) which carry s into the opposite component
oiS-B.

Lemma 4.7.   ¿ is constant on G+ and on G_.

Proof.   Let G0 stand for either G+ or G_ consistently. The set {(gsv
gs)\g £ G0} is a component of S x (S - B).  Let g and g be two elements of
G0.  Then there is a third element g" of G0 connected to g by a continuous curve
in G0 such that (g"sv g"s) = (g'sv g's).  ¿.(g) = ¿(g") because ¿ is locally con-
stant; and

¿(g") = Hg"sv g"s) = I(g'sv g's) = ¿(g).
So ¿(g) = ¿(g) proving ¿ is constant on G0.    D

Lemma 4.8.   ¿ is constant on G(s).

Proof.   It remains only to show that ¿ takes the same value on G+ and
G_. To this end we compare ¿ at / £ G+ and - / £ G_ where / denotes the
identity transform in G.

¿(-1) = ¡b e(b, «X- St)e*(b, «)(- s)db

- fB (- W * si + ib ■ *i)"(sgn(- s • a))0-1

. (_ 1)-n-d+l(s . a + is . ¿)-n-d+l db

= fe(b,n)(si)e!t(b,n)(s)db = ¿(I).   D

Proof of Key Lemma 3.9.   Lemma 4.8 states that for all g E G such that
gs &B ¿(g) = I(gsl, gs) is independent of g.  Now {(gsv gs)\g E G(s)} is precisely
the set of points (s'v s) in S x S - B for which i'j ■ s = sl ■ s. Thus I(sv s)
really depends only on Sj • s, i.e. there is a function R on [-1, 1] such that
I(sv s) = /?(«! • s).  By Lemma 4.2, Ä(Sj • a) = -P,,^ • a) (sï E S). Thus R =
Pn and we have I(sv s) — P„(st ■ s).   D

As a final remark it is interesting to note what the Key Lemma says when
Sj = a. As in 4.2 we get Pn(s ■ a) = fB e*(b, ri)(s) db.   In case d = 2 this is called
Laplace's integral of the second kind.  For d > 2 it appears to be new.  The not-
able thing here is the singularity of e* versus the regularity of Pn.

5. A singular integral.  In this section we study the divergent improper
integral Ssfe*(b, ri). With reference to Definition 3.2 we could say that fsfe*(b, ri)
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12 T. O. SHERMAN

is defined as F+fQ>, ri), provided the latter exists. Then we should give an exist-
ence theory and a computational method. In fact our existence theory lends it-
self directly to computation.

Let D denote the closed unit disk in C. On D consider the function e„ d(z)
= (sgn(Re(z)))d-1z_"-d+I. There is more than a formal analogy between the
integral /s/e*(ô, n) and the integral /D0e„ d (Lebesgue measure is understood on
D) as we will see in Corollary 5.3. Just for now consider the problem of defining
fD<pen d. e„ d is so singular at z = 0 that if <p is, say, continuous and 0(0) ¥= 0
then (pen d is certainly not in L1(D). Nevertheless if 0 is sufficiently smooth at
z = 0 we can assign a meaning to /D0e„ a (see Lemma 5.1).  After showing how
to do that we turn to the connection between this singular integral on D and our
original problem on S. We give a method for reducing the problem on S to the
problem on D via the map e(b, l): S —► D.

Recall the function p of Definition 3.2.  It is defined on R, is of class C°°,
vanishes in a neighborhood of 0 and is identically 1 outside a compact set. Define
a function pt on C for r £ R:

pt(z) = p(tx)      (x + iy=zE C).

Lemma 5.1. Let <pELl (D). Suppose for some open neighborhood UofO
in Int(D) we have <p\UE Cn+d~2(U). Then lim^» /D pt<pend exists and is inde-
pendent of the choice of p.

Proof.  Choose a C°° partition of unity for D: 1 = \p0 + i/>x where \jj0
vanishes in a neighborhood of 0 and supp(i//j) C U.

111611 $oen,d is smooth so lim^ fD ptH0end = /D#0en>d.
Next let Y = -id/by (z ■ x + iy in D) and e2_dd(z) = (sgfi(x))d~1z~l.
Then end = (M)~1(Y)ke2_dd where k = n + d '- 2.
Using the fact that i//j0 £ Cfe(Int(D)) with support in Int(D) we have

JD Piti&nj =iD(kir\(- Yfp^^e^^

= L(.k\rxpt((-y)k^^2-d,ä-

Since e2_d d ELl(D) and pt —► 1 boundedly pointwise (except at x = 0) the
limit as r—*°° of the above integrals exists and equals (kl)~1fD((-Y)k ^i0)e2_dd.
Thus

(5.1.2)   lim fD pt<j>enid = fß 0o0e„>d + (*!)" 1fß ((- lOfc010)e2_d>d.
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Since p does not appear on the right side and \p0, \pl do not appear on the left,
both sides are independent of p, 0O and i//t.    D

We have proved more than was stated and shall return to this proof later
for a more refined statement. J*D0e„ d turns out to be continuous in 0 as it ranges
through a Banach space of Ck test functions.

We now turn our attention to the connection between ejfi, ri) on S and end
on D.  The link is the function e(b, 1): S —* D. Note that

e*(b, n) = end ° e(b, 1).

Also the function rt of 3.2 may be expressed as pt ° e(b, 1).
The idea is this: composition with e(b, 1) gives an isometric injection

¿°°(D) —► L°°(S).  It turns out that this injection is the adjoint of a map Eb:
L\S) —► Ll(D). Thus for /£ L*(S) and 0 £ ¿~(D)

fs(<t>oe(b, l)V= fD4>Eb(f).
In particular if 0 = pten d then

)sr,ejp, ri)f= JDPten,dEb(f)-

Thus the study of \imt^.oefs rte#(b, rijfis reduced to Lemma 5.1 plus a study of
the map Eb, which we now undertake.  The discussion is a long one, partly be-
cause we wish to develop a calculus of the map Eb.

Lemma 5.2.   There exists a unique continuous linear map Eb: LX(S) —►
L\D)ofnorm 1 such that for all fE L1 (S) and 0 £ L°°(S)

(5.2.1) Js(<l>°e(b, l))f=iD<t>Eb(f).

Before beginning the proof we will introduce a bit of machinery that forms
part of the calculus of Eb.

Remark 5.3. Fix b EB. Let B'(b) denote the unit sphere in {a, b}1, i.e.
B'(b) = {b' £ B\b' • b = 0}. Define a continuous surjection £lb: D x B'(b) —►
5 by

nb(x + iy, b') =xa+yb + (l-x2 -y2)Vlb'.

Then

(5.3.1) e(b, l)(nb(z, b')) - z      ((z, b') E D x B'(b)),

(5.3.2) nb(ew, b') = cos(0)a + sin(0)Z>      (0 £ [0, 2n]).

Let D° denote the interior of D and S°(b) = e(b, 1)_1(D°)-  Then
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14 T. O. SHERMAN

(5.3.3) Çlb: D° x B'(b) —► S°(b) is a diffeomorphism.

Since B'(b) is a sphere (the unit sphere in {a, b}L) it makes sense to speak
of its normalized rotation invariant measure. This measure will be assumed.

Lemma 5.4.   The map S2ft: D x B '(b) —► S preserves sets of measure zero
(where we are assuming the product measure on D x B'(b)).

Proof.   Let TV C D x B'(b) be of measure zero. Write TV = TV3 U TV0
where TV3 = TV n (3D) x B'(b) and TV0 = D° x B'(b). Then S26(TV3) is of measure
zero by (5.3.2).  Also £2Ô: D° x B'(b) —► S°(b) preserves sets of measure zero be-
cause it is a diffeomorphism and the measures in question are equivalent (in the
sense of absolute continuity) in any coordinate patch to Lebesgue measure.  Thus
S2ft(TV) is the union of two sets of measure zero.     D

Proof of 5.2.   Fix b £ B and abbreviate e(b, 1) by e. We claim first of
all that e: S —* D has the property

(5.2.2) If TV C D has measure zero then e~l(N) C S does also.
To see this observe that e may be factored as p o £2~x where p: D x B'(b)

—* D is the projection. Thus e_1(TV) = £2ö(p-1(TV)). p-1(TV) is of measure zero
since the measure on D x B'(b) is the product measure.  Now 5.4 proves (5.2.2).

The rest of the argument rests on (5.2.2).  The idea is roughly that Eb is
like a conditional expectation.

For /£ Ll(S) let pf denote the Borel measure on S such that pÁA) —
Sa /(s) ds where A is a Borel set in S.   (This is the only occasion on which we use
a measure different from the normalized rotation invariant one which in the pre-
sent notation is jUj. dpj- = fdpl.)

Form a new measure ly on D by jy = Pf ° e~ '.  This is a Borel signed
measure with total variation < that of Pf, i.e., < ll/llj. Moreover py is absolutely
continuous with respect to Lebesgue measure X on D by (5.2.2).  Define Eb(f) =
dvJdX, the Radon-Nikod^m derivative. Eb is linear since the maps/—> p*—►
ly—*■ dvJdk are and \\Eb(f)\\   equals the total variation of jy which is < that of
pf which is ll/llj. Thus \\EbW < 1.

Now let A C D be Borel measurable and let 0 be its characteristic function.
Then 0 ° e is the characteristic function of e~l(A) and

¿(0 - ey= fe-HA)f= »/A) = iD4>Eb(f).
Thus (5.2.1) holds in this special case. However since both sides of (5.2.1) are
linear and continuous in 0 £ L°°(D) we have that (5.2.1) holds in general.

(5.2.1) is equivalent to the statement that E*: L°°(D) —► I°°(5) is given by
£■£(0) = 0 o e.   (Note that 0 ° e is well defined in L°°(S) by (5.2.2).) This makes
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it clear that Eb can be the only map from Li(S) to Ll(D) satisfying (5.2.1) be-
cause the adjoint uniquely determines the map.   D

Corollary 5.5.   Given fEL1(S)and^EL°°(D)we have Eb((\p ° e(b, 1))/)
= ̂ CO-

PROOF.   For 0 £ L°°(D) we have (setting e = e(b, 1))

Jd 0¿T0((0 o e)f ) = fs ((00) o e)f - /d ^Eb(f)
by (5.2.1).  Since 0 is arbitrary we are done.   D

We will need to study the effect of certain group translations on Eb. Let K
denote the subgroup of G (= the full rotation group) which fixes the point a.
Then K operates transitively on the sphere B.   Also if g E G and / is a function on
S we write fg(s) = figs)-

Lemma 5.6.   For bEB.kEK, and fELl(S)we have Eb(fk) = Ekb(f) (or
equivalent^, £fc_lft(f*) = Eb(f)).

Proof.   Define Ek b(f) = E _l (fk). It suffices to show that Ek b satisfies
(5.2.1). Choose any 0 £Z,~(D). Then by (5.2.1)

Jd^W = Jr/V^fc) = is® ° e(-k~lb> l))fk-
Note that

e(k~lb, \)(s) = a- s 4- ifc-1ft • s = a • s + ib • ks

= e(b, l)(ks) = e(b, l)k(s).

Thus

<¡>oe(k~lb, \) = (<t>°e(b, \)f.

Thus

/D<t>Ek,bV) = fs(<t>° eQ> 0)*/* = Js(0 ° e(è, 1))/    □

Corollary 5.7.   IfMb denotes the subgroup of K which also fixes the
point b then for m £ Mb, Eb(fm) = Eb(f).

Corollary 5.8.   Normalize Haar measure on Mb so that fM 1 = 1. Then
forfEL\S),Eb(JMbr dm) = Eb(f).

Proof,  m —► fm is continuous from Mb to the Banach space L1 (S) so
fM fm dm is well defined.  Since Eb is continuous from L1(S) to L1(D) we have
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E»(Lb fm dm)-Lb E»^dm=Lb E^dm
by the previous corollary.  Now on the right we have the integral of a constant
which is again that constant.   D

Definition 5.9.  For /£ Ll(S) we define Ab(f) ELl(S) by

A>®=Lb fm dm-
Observe that Ab(f) is again in Ll(S) by the Fubini theorem and that Ab(f) is
constant on the orbits in S of the group Mb. Since these orbits are precisely the
sets e(b, l)_1(z) as z £ D there exists a measurable function ab(f) on D such that

ab(f)oe(b,\) = Ab(f).

Lemma 5.10. IffEL°°(S) then ab(f)EL~(XS) with lb6(/)IL < B/L-
Moreover

Eb(f) = ab(f)Eb(\).

Proof.  Ab(f)(s) is the average of/over the orbit Mbs so lAb(f)lm <
ll/IL.  Clearly l!a6(OlL = lAh(f)îm so the first assertion is clear.

Now by 5.8, 5.9 and 5.5 (in that order)

Eb(f) = Eb(Ab(f)) = Eb((ab(f) o e(b, 1))1) = <xb(f)Eb(l).   D

This lemma gives an often useful method of computing Eb from Ab and the
function Eb(\) which is given explicitly in Lemma 5.12.  A second method of
computing ab(f) is obtained from Clb in

Lemma 5.11. ForfEL°°(S)

ab(f)(z) = fB.(b)Wb(z,b'))db'.

Proof.  It is easily seen that for m £ Mb, b" E B'(b) we have m£lb(z, b")
= £lb(z, mb").  For almost all z £ D

Ab(f%ßb(z, b")) = fM  AmVb(z, b"))dm

= íMbñ-n»(-Z' mb"»dm * Jb'^W2' b'»db'-

The last equality on the right follows from the fact that for any 0 £ Ll(B'(b))
/B'(6)0(Z>') db' = fM  4>(mb") dm since both sides express an Mb-invariant normal-
ized integral.   D

Lemma 5.12. Eb(\)(z) = (d- 1)(1 - |z|2)(d-3>/2/27r (z £ D).
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Proof.   Let/£ Ll(S) and X denote Lebesgue measure on D.  Then

(5.12.1) fsf= fDXB.(b)Wb{*. b'))Eb(\Xz)d\(z)db'.

To prove (5.12.1) multiply both sides of the equation in 5.11 by Eb(\)(z) and
integrate over D.  The right side coincides with the right side of (5.12.1) and the
left side is

fD Eb(l)(z)ab(f)(z)d\(z) = jD Eb(f) = fsf

by (5.2.1).  This proves (5.12.1).
The message of (5.12.1) is that the map S2ft: D x B'(b) —*■ S pulls the mea-

sure on S back to a function / times the product measure on D x B'(b) and / is
given by J(z, b') = Eb(l)(z).

The point is that we can compute / explicitly.  Although this is routine we
include a sketch of how this can be done expeditiously.

Let W = {a, b}1. B'(b) is the unit sphere in W.   Extend £2ft to a map
ñb: D x W-+Rd+l by

Üb(x + iy, w) = llwll(jca +yb) + (1 -x2 -y2)*w.

The measures on D x B'(b) and S are connected to Lebesgue measure onDxlf
and Rd+1 respectively by introducing polar coordinates.  It is an easy matter to
compute the Jacobian of Í2& and relate this to / through polar coordinates.  The
result is that J(z, b') = c(l - |z|2)^d-3^2 where c is a constant.  The value of c
is found from

1 =ísl=ívE^ = CSTS^-r2)íd-3)l2rdrd6.   D
We know enough about Eb at this point to begin a study of its smoothness

preserving qualities. Picture a neighborhood U of 0 in D which is so small that
the closure of Uis in D°. Imagine an open set Fin S which contains e(b, l)-1(f).
If a function fELl(S) has uniformly continuous derivatives on V up to order
n + d - 2 then we will show below that the same is true of Eb(f) on U.  Conse-
quently, we may compute SsfeJJ), ri) from fj)Eb(f)en d by 5.2 (see the discussion
preceding 5.2).  For a while now our concern will be to make the suggestion of
this paragraph precise.

Definition 5.13.   Let X be a C°° manifold with a fixed finite measure.
Let U be an open subset of X with compact closure.  Let m be a positive integer.
LCm(X, U) will denote the space of L1 functions on X having uniformly contin-
uous derivatives up to order m on U.   By this is meant the following:

If /£ LCm(X, U) then /¿.I/I < °° and if/) is any C°° -coefficient differential
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operator defined in a neighborhood of ?7and of order < m then D(f\U) is defined
and extends to a continuous function on U.

Remark 5.14.   LCm(X, U) is a topological vector space with convergence
defined as convergence in Ll(X) plus uniform convergence on Urn all derivatives
up to order m   With this topology LCm(X, U) is normable and complete.  Also,
if g: X —* X is a measure preserving C°° diffeomorphism with g(U) = U then
/—►/* is a continuous automorphism of LCm(X, U).

Definition 5.15.   Fix a number /: 0 < / < 1 for the duration of the paper.
Denote

/D° = {/z|z £ D°} = {z £ D| \z\ < /},   £m = ¿Cm(D°, /D°).

S[l] = {s £ 5| \s ■ a\ > /}, Zm = LCm(S, S[l] ),

Lemma 5.16. Eb maps <&m into î)m and is a continuous linear operator
between these spaces.

Proof.  We already have that Eb: L1 (S)—* Ll(D) is continuous. We have
to consider Eb(f) on /D° for/£ LCm(S, S[l]). Since Eb(f) = ab(f)Eb(l) and
Eb(l) is C°° in D° it suffices to consider ab(f)\lD°.

Now by 5.11, ab(f)(z) = fB-(b)f(nb(z, b')) db'.
UfELCm(S, S[l]) then/o üb is of class Cm on /D° x B'(b) with uni-

formly continuous derivatives up to order m (i.e. they extend continuously to
ID x B'(b)). Consequently, ab(f) is also uniformly continuous in all derivatives
up to order m on /D° and we may bound the sup norm of a derivative
(d/dx)'(d/dy)kab(f)(x + iy) by the sup norm of the same operator applied to
foÇlb.   D

Lemma 5.17. In the notation of Lemma 5.1 and Definition 5.15 the linear
functionals on lJ)"+d-2 given by 0 —► fD <¡>Ptend (0 £î)"+d_2) are continuous
and converge uniformly as t —► °° to a continuous linear functional as in 5.1.

Proof. A «examination of the proof of 5.1 is sufficient proof. Take the
open set U to be ZD°. The convergence of/Dpf00oe„ d is uniform in 0 £ L '(D)
and the convergence of SvPtH^n,d = (W-)~1fDPt((- Y)n+d~2^i<l>)£2-d,d is
uniform in 0t0 £ C^+d~2(lD°).   D

Lemma 5.18. In the notation of 3.1 and 5.15, iffE<B"+d~2 then FtAb, n)
exists and is continuous infE&"+d~2. As t —► °° this continuous linear func-
tional converges uniformly in f to F*Ab, ri)-

Proof.  By definition of Ft and by 5.3
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FtAb, ri) = fs((pten¡d) ° e(b, W = fDPte„idEb(f).
Now the result follows by combining 5.16 and 5.17.   D

Lemma 5.19. Fix fE®m, m>0.  Then the map k —> fk from K to ©m
is continuous.  In particular [fk\k E K} is compact in <s>m.

Proof.  The continuity of k —*■ fk into LÏ(S) is a well-known consequence
of the fact that the uniformly continuous functions on S are dense in L1(S).

The continuity of k-*fk\S[l] into Cm(S[l] ) follows from the uniform
continuity of derivatives of/up to order m on the /^-invariant set S[l].

The continuity of k —► fk into (£>m is a combination of these two kinds of
continuity.   D

Lemma 5.20. ForfE <§"+<*-2 we have

(5.20.1) FtAkb, ri) = Ftfk(b, ri)     (kEK,bE B),

(5.20.2) lim FtAb, ri) = F*/i7>, n) uniformly in bEB,

(5.20.3) F,Akb, ri) = F*fk(b, ri)      (kEK,bE B).

Proof.   (5.20.1) follows from Lemma 5.5 and the formula FtAb, ri) =
fDEb(f)Pten,d-

(5.20.2) is a corollary of Lemmas 5.18 and 5.19.
(5.20.3) is immediate from (5.20.1) and (5.20.2).   D
Lemmas 5.18 and 5.20 together prove Lemma 3.3.  Indeed 5.18 and 5.20

constitute a statement that is more refined than 3.3 in a useful way.  For one
thing the exact degree of differentiability of / (namely n + d - 2) used in the
proof is displayed.  For another thing it is clear that this differentiability is needed
only in S[l] and / could be chosen as close to 0 as desired.

The formulae (5.20.1) and (5.20.3) are of great interest.  For one thing they
show that if/is a polynomial of degree m then F^Ab, ri) is the restriction to B
of a polynomial of degree < m.  Also they show that if /£ D then FtAb, ri) is
C°° in b and converges uniformly in all derivatives to F^Ab, ri) (n fixed, b variable
in B).

We can do even better than that.  Suppose /£ C(S) and is of class Cm in
"the direction parallel to the equator B" in the following sense: k —*■ fk is of
class Cm from the Lie group K to the Banach space C(S). Then Eb(f)(x + iy)
would be of class Cm in y (for z = x + iy in D°) and ifm = n+d-2,we may
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apply a refined version of the proof of Lemma 5.1 to establish a result like 5.18.
This raises the interesting possibility of defining F#f(b, ri) for/£ C(S) as a distri-
bution of B of degree n+d-2. That is, if 0 £ Cn+d~2(B) then fBFtAb, riyt>(b)db
converges as r —> °° to a value fB F*f(b, «)0(ft) db which is linear and continuous
in 0 £ C"+d"2.  The idea here is

fBFtAb, n)4>(b)db = fKFtAkbv nMcbJdk

= Ft($K<i>(kbi)fkdk)(bvri)

and fK(j)(kbiykdk is of class cn+d~2 "in the direction parallel to the equator
B" on S.   This is not a proof but it indicates an important potential for extending
the results of this section.  Let us then state

Conjecture 5.21.  For/£ C(S) we may define F*f(b, n) as a distribution
on B of order n + d - 2. Moreover for 0 £ Cn+d~2(B),

lim f é(b)FtAb, n)db =  f 0(ô)F*/(i, n)db

and postpone a full proof to another paper.

6. Proof of the main results.  We will prove the results stated in §3.  The
first is Lemma 3.3. At the end of §5 we observed that 3.3 follows from 5.18
and 5.20.  Next we have Theorem 3.4.

Proof of 3.4.   Recall that by (2.3)

fH(Sl) - dim(//„)/s/'(s)Pn(Sl • s)ds.

Thus it suffices to prove that for sl ES-B

¡sf(syPn(Sl -s)ds= fget(b, »Xs,)//'(*>& n)(s)dsdb.

But by the Key Lemma 3.9, P„(s1 • s) = fBe+(b, w)(Sj)e(ô, ri)(s)db.   Essentially
then this result amounts to an interchange of the order of integration except that
/' is a distribution.  (However if/' £ LX(S) we are done at this point by the
Fubini theorem applied to the integral over S x B of (s, b) —*■ f'(s)e*(b, n)(s¡) •
e(b, n)(s) (Sj fixed).)  To cover the general case of/' £ D' observe that b —*
e(b, ri) is continuous from B toD.   Also, for fixed sx ES-B, e*(b, ri)(sx) is con-
tinuous in b, so b —► e*(b, n)(st)e(ô, n) is continuous from B to D. Thus the D-
valued Riemann integral fBe*(b, «)(Sj)e(Z>, ri)db converges in D to S —► Pn(s • sx).
Now if we apply the continuous linear functional /' we get

Í f'h e*ib> ")(SiKb'n)db=L e*(b'n)(si)[L f'e{b'n))db- D
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The proof of Corollary 3.5 is immediate from the Hubert space direct sum
decomposition of f EH into the sum of terms /„ £ Hn plus 3.4 which gives

/„(Sl) = dim(H„)fB FAb, n)e*(b, nft^db

almost everywhere. The uniform convergence statement is a corollary of the theo-
rem stated at the end of §2.

Theorem 3.6 is the one which calls on §5.
Proof of 3.6.   Recall the function rt and Ftf as defined in 3.2.  By the

Lebesgue dominated convergence theorem

fsf(sl)Pn(s1 ■ s)dSï = Ihn fsrt(s1Y(s1)Pn(sl • s)dSl

= lim f (mrJß{HstyeJfo n)(st)e(b, ri)(s)dbdsv

Since rte^(b, ri) is smooth we can reverse the order of integration and obtain

lim  f  fr^s^s^^b, n^s^ds^Q), n)(s)db

= lim  f FtAb,n)e(b,n)(s)db.
/-♦oo JB

By Lemma 3.3 Ftf(b, n) converges to F*Ab> ri) uniformly on B so the above
limit becomes fBF*Ab> ri)e(b, ri)(s)db.   Thus

fn(s) = dim(flB)Js/(s1)Pll(i • Sl)ds1 = dim(Hn)fB FJ(b, ri)e(b, ri)db.    U

Corollary 3.7 follows from 3.6 and the theorem at the end of §2.
The idea of Theorem 3.8 is a combination of the ideas in 3.4 and 3.6.
Proof of 3.8.   Since fsff' = 2/s/n/' (sum over « £ TV) we have only to

show that

¡sf„fn = dhn(Hn)fBF*Ab, n)Ff'(b, ri)db.

By Theorem 3.6 we have/n = dim(Hn)SBFmf(b, n)e(b, n)db where we may re-
gard this as the Riemann integral on the continuous £>-valued function on B namely
b —► F^Ab, n)e(b, n). By an argument similar to the one in 3.4 we have

fsf'f„ = dim(Hn)fs (/'Jß FJ(b, n)e(b, n)db)

= fB F*Ab, n) ( fs f'e(b, n)) db = fß F*Ab, n)Ff'(b, ri) db.    D
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S as characters are to abelian groups. We have three observations to make in
evidence of this proposition.

First observation.   In the case d = 1, S has the structure of an abelian
group.  In this case the functions e(b, ri) are precisely the characters.  This case is
exceptional in that the functions e^(b, ri) are nonsingular and are in fact also
characters. Our theory in this case is precisely the theory of Fourier series.

Second observation.  Imagine that S is "inflated" until a neighborhood
of the north pole closely approximates Euclidean space of the same dimension d.
Then the class of functions e(b, ri) approximates the class of characters. (We will
make this precise in a moment.)

Third observation.   The functions e(b, ri) are eigenfunctions for a d-
dimensional Lie algebra of complex infinitesimal motions of S; they are character-
ized by this Lie algebra (which depends on b) and the normalizing condition that
e(*,»X«) = l.

To clarify our second and third observations let V denote {a}1 in Rd+1.
Then S and V have the same dimension d.   We are claiming a similarity between
harmonic analysis on S and on V.   Note that B is the unit sphere in V.   A char-
acter on V has the form

V -> e(b, r)(v) = (exp(ib • v))r      (b E B, r > 0, v £ V).

To make our second observation precise first imagine S "inflated" by a large
number TV to a sphere TVS of radius TV but concentric with S.   There is a natural
bijection

S*->NS,   s <-» TVs       (s £ S)

which lets us lift our theory wholesale to TVS.  In particular we write e(b, n)(Ns) =
e(b, n)(s).

Now consider the map yN of V to TVS' given by

yN(v) = cos(\v\/N)Na + sinflul/TVXTV/M)!;.
7^ maps rays from the origin in V to geodesies from TVa in TVS in a way that
preserves arc length.  Also 7^ approximates the map v —► TVa + v of V to the
tangent space TVa + V to TVS at TVa, at least for small v. This approximation is
what is meant by saying that TVS approximates the Euclidean space TVa + V, or by
proxy, V.

Now consider e(b, ri) on TVS composed with 7^:

e(b, n)(yN(v)) = (cos(\v\/N) + i(b • u)(|u|)sin(M/TV))n.

If we fix r > 0 and choose TV = n/r very large compared to |u| then the above
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expression is approximately (1 + i(b • v)/N)rN « e(b, r)(v).  If v is a multiple of
b then we have a precise equality:

e(b, n)(yN(v)) = e(b, r)(u).

There are three comments worth making about this asymptotic relation be-
tween e(b, ri) and e(b, r). The first comment is that in case d = 1 this is the
method used by Fourier to go from Fourier series on the circle to the Fourier
integrals on the line.  In this connection note that when d = 1 v is always a
multiple of b so e(b, ri) ° yN — e(b, r). This is just the lifting of a character from
the circle to R by the covering map 7^.

The second comment is that the asymptotic relation between e(b, ri) and
e(b, r) explains various classical formulae expressing Bessel coefficients as limits of
associated Legendre functions. (See, for example, Whittaker and Watson, §17.4.)
Take d = 2. Then B is the circle. The limit relation

lim e(b, ri)(yn/r(v)) = e(b, r)      (n = rN)
JV-+00 '

implies a convergence of

Pn(cos(\v\r!n)) = ¡ße(b, n)(yn/r(v))db

(as n —► °°) to

J°(r\v\) = (oe(b,r)(v)db.

A similar formula holds for the higher Bessel coefficients if we introduce a char-
acter of the circle group B when we integrate over B.   If d > 2 this method gives
formulae which are new to the author if not to the world.

The third comment is that this asymptotic relationship suggests a general
principle:  Given a phenomenon in harmonic analysis on V which is invariant under
dilation:  v —► tv (t > 0), look for a corresponding phenomenon in harmonic
analysis on S which has the phenomenon on F as a limiting case.

Now to expand upon our third observation:   Fix b EB. We associate with
every v E V a complex vector field zv on S by

- izv(s) = ((a + ib) • s)v - (v • s)(a + ib).

zv extends by complex linearity to a skew-symmetric linear endomorphism of
Cd+1.  The set {zv\v E V} is a real Lie subalgebra of EndiC**"1"1) with

[zu> zv] = Zw>        w = Zu(v) - Z»-

Note also that - izu(a) = v.   Thus this set of vector fields is linearly independent
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and spans the complex tangent space to S at a.  (In fact, this will occur at every
point of S except for the zero set of e(b, 1).)

Now if we regard the vector field zv as a first order complex coefficient
differential operator on S by

(zvm = (d/dtWwt- »p»|r=o
then

zve(b, ri) = n(v • b)e(b, n).

This formula is analogous to -iDve(b, f) = r(v • b)e(b, r) where Dv denotes direc-
tional derivative on V in the direction v. The main difference in the case of the
sphere is the dependence on b EB. Whereas for Vone Lie algebra of vector fields
(the infinitesimal translations) serves to define all characters, on the sphere there
is a family of Lie algebras, one for each b, and a corresponding semigroup of
eigenfunctions e(b, ri) (n = 0, 1, . . . ).

Appendix 2. Calculations with F and F#. Our purpose here is twofold.
We wish to show by example that it is possible to make explicit calculations of
F and F*.  Secondly, we wish to give some general formulae and techniques that
will aid further calculations.

This appendix is divided into paragraphs numbered (l)-(8).
(1) We will vary d in this appendix so it is necessary to modify some of

our notation thus: where we have written Pn, ff„ and Hn we now write Pnd, Wnd
and Hnd. Rd is identified with aL in Rd+ '. Thus B is the unit sphere in Rd.
Hn d_ j will be regarded as a space of functions on B.

Let ?n(B) denote the space of polynomials on B of degree at most n.   Then

p„(5) = 2;=0///>d_1.
Recall from §2 that

dim(Hnd) = (n + d)l/(n\d\) - (n + d - 2)W(n - 2)!

= (n + d - \)\¡n\(d - 1)! + (n + d - 2)\/(n - l)\(d - 1)!

= (2n + d - 1)((« + d - 2)\¡n\(d - 1)!).

(These formulae hold for n > 2 and d > 1. We also have dim(//ld) = d + 1 and
dim(H0d)=l.)

As a consequence of

dim(#/(d_ !) = Q + d- \)\lj\(d - 1)! - (} + d - 3)!/(/ - 2)\(d - 1)!

we have
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dim Pn(B) = ¿ dimí^.^.j) = dim(Hn d).
/=o

We will be concerned with specific linear isomorphisms between ?n(B) and Hn d.
(2) Let R £ Hi d_ j and define a function fR on S by

/fi(cos 0a + sin 6b) = (sin öyP„_/d+2/(cos 0)K(6).

Then/Ä £ Hnd and the map F —► fR is an injection of H=d_x into #„ d. (See
[l.p.239].) '

The map R —> fR is obviously /£-equivariant, i.e., if k is a rotation leaving
fixed the point a (k E K) then f k = (/d)*. An immediate consequence of this
fact and the dimension count in (1) is that Hnd is isomorphic to ^=0H¡->d_l as
a ÜT-module.

Now suppose $>: Hn d —► L2(B) were any £-equivariant map. Then the
image of $ in L2(B) is Ä'-isomorphic to a subspace of ZqHj d_} and therefore
must lie within Z^Hj d_1.

(3) F* and F are both Ti-equivariant.  For F* this is shown in Lemma 5.20.
For F it is a simple consequence of the Tif-invariance of fs and the fact that
e(b, ri)(ks) = e(k~1b, n)(s).  From (2) it follows that for any /£ Hnd the func-
tions of b: Ff(b, m) and F^fQ}, m) (m>0 an integer) are in P„(B).

In more detail, consider R E H- d_ t and fR as in (2).  Then the maps
R —> fR —► FfR(b, m), R —► fR —► F*fR(b, m), are K-equivariant. Thus by
Schur's lemma and the Ti-irreducibility of H¡ d_l there are numbers <p(n, f, m, d)
and 0+(n, /, m, d) such that

FfR(b, m) = 0(«, /, m, d)R(b),   F*fR(b, m) = 0#(n, ;, m, d)R(b).

One of our objectives in this appendix is to compute 0 and 0* explicitly.
(4) From the Parseval formula (Theorem 3.8) we have (with/Ä as in (2))

that

fs(fR)2 = dim(Hnd)fBFfR(b, ri)F*fR(b, n)db

= dim(Hndyt>(n, j, n, cf)0*(n, /, n, d)JBR2.

On the other hand, we can compute the integral fsg of any function g on
Sas

cd\   J g(cos 0a + sin 0i)(sin 0)d~J db dipJ 0 * B

where the constant cd is chosen so that fsl = 1, i.e. 1 = cd/J(sin 0)d_1 d<j>.
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From the definition of fR

ísf* = C4l lPn-j,V+¿™ W2(SÍn 0)2Í+d- ' dtfBR2.

We may compute the integral over [0, ir] by exploiting the fact that

^j"0>„,d(cos 0)]2(sin 0)d-! d<¡> = fs(Pn,d(s • a))2 ds = (dim^))"1

(see (2.3) of §2 and in (2.3) take As) - f„(s) - Pn(s ■ a) and s, = a).     If we
replace « by n - j and d by d + 2/ we obtain

Cd+2ifllPn-i,2i+d(™ 0)]2(*in 0)2/+d_1 ¿0 * (^(Hn-,,2i+d)rl.

Thus

dim(//„ d)<Kn, j, n, ¿)0*(h, /, », <o/*2 = L(fÄ)2

= {cJcd+2j)(âim(PH_it2,+dyrl JBF2.

If we insert the values found above for cd, dim Hnd, etc. and simplify we may
obtain

M    .       _ .    .       «     [(<*- Ojgfrg + dl2)lT(dl2)(2n +d- l)]2n\(n -/)!
«... /, «, d)0*(«. /. «. «0 =-Qi + d-2yi(n+/ + d-2)i-•

In particular the maps /—► Ff(b, ri) and /—*■ F^fQ}, «) are nonsingular
from Hn d to P„(B). We will give explicit values for 0(«, /, n, d) and 0*(«, /, n, d)
in (6) and (7) respectively.

(5) We claim that if m =£n then 0(«, /', m, d) = 0; and if / < m when wj =£
n then 0#(/7, /, m, d) — 0.  (We will leave unresolved the case of n > / > m for
0*0

Our claim about 0 is equivalent to the following:  If /£ Hn d and m # n
then Ff(b, m) = 0.  To see this observe that for each fixed s the function b —►
e(b, m)(s) is in ?m(B). Thus Ff(b, m) is in Pm(B) no matter what /is, Ff(b, m)
is simply a combination of the functions e(b, m)(s) as s ranges through S.   Thus
if Ff(b, m)¥=0 there is a function g =£ 0 in Hm d such that Ff(b, m) ■ Fg(Z>, m)
(by the nonsingularity of F from 7Ym d to Pm(B) shown in (4)).  Now

fm(s) = äim(Hma)Jam)eJb, m)(s)db

= dim(Hmd)fBFg(b)e*(b, m)(s)db = gm(s) ? 0.

But iifEHnd and n =£ m, this is a contradiction. Our claim about 0* may be
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rephrased:  if /£ Hn d and m ¥= n then F„./$>, m) is orthogonal (as a function
oib) to Pn(B).

For the proof express an arbitrary element of Pm(B) as Fg(b, m) where
g G Hm d. (This is possible by (4).) Then by Theorem 3.8

0 = jsfg = dim(Hmd)fBFg(b, m)F*Ab, m)db
which is what we claimed.

(6) Choose bj £ B and let R(b) = Pjtd-i(b ' bt). We will compute
FfR{bv ri).  This will give us

<K.n, j, n,d) = <j)(n, j, n, d^QjJ = FfR(bv «).

Recall that

/Ä(cos 0a + sin <pb) = (sin 4>)'Pn_j2j+d(cos 0)P/d_1(Z> • bj.

If we let 0 be defined on D by

0(x + iy) = (1 -x2yl2Pn_hmd(x)PUd_M^ -x2r'A)

then/Ä = 0o e(b, 1).  Thus by Lemmas 5.2 and 5.12

fsfRe(b, n) = fs mb, 1Mb, 1)" = ̂ /0(z>"(l - |z|2)(d-3>'2 d\(z)

where X denotes Lebesgue measure.
To evaluate this integral, first we change variables from z £ D to (£, tj) in

[-1,1] x [-1, 1] by z = % + iv(l - %2f\ Then

1 - Iz|2 = (1 - £2X1 - v2),     d\(z) = (l- %2t d% dV,

m = V-ñi/2Pn-¡,2j+dtt)Pi,d-l(v)
and our integral may be expressed as

where

m - j't« + Ml - %2t)nPj,d-MV - V2)(d~3)'2 dv.

We are lead to consider integrals of the form

¡[¿a + ßt)mP„td(t)(\ - í2)(d-2)/2 dt.

Recall thatPnd(t) = ö„,d(0/ß„,dO) where
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Qnd(t) = (i -t2)-(d-»i2(dldt)n(\ -f2y+e*-2)/2,

ö„,d(l) = (- 2)"T(n + dl2)¡T(d¡2).

Integration-by-parts gives

fl fit + ßt)mPnid(t)(l - í2)<d-2)/2 dt

• f * (a + ßt)m-"(l - r2)" + (d-2)/2 dt

= C(m, /i, d)ß"I(m, n, d\ a, ß)

where C(m, n, d) denotes the constant, i.e.,

C(m, n,d) = mW(d/2)l2nr(n + d/2)(m -«)!

and / denotes the integral.
Notice that I(m, n, d; a, ß) is a homogeneous polynomial in (a, ß).  Also

only even powers of t from the expansion of (a + ßt)m~" contribute to the
integral; consequently I(m, n, d; a, ß) contains only even powers of j3.

Now we have immediately that

g(i;) m C(n, j, d - 1)(/(1 - Í2tÍI(n, j.d-Ul i(l ~ %2t\
Since I(n, j, d- I; a, ß) is a combination of terms in ß2kan~'~2k we find

that if we substitute a = % and ß = i(\ - £2)* then I(n, j, d-\;%, i(\ - t2)Vl)
is the same combination of terms in (%2 - \)k%"~'~2K. Thus

I(n,i,d-\;%,i(\-?t)

is a polynomial h(%) in | whose highest term is I(n, j, d - 1; 1, l)£"-;, and g(%)
is (1 - %2)il2h(%) multiplied by the constant C(n, j, d - \)(i)i.

Now our original integral equals this constant times

SrJ>«-/WÖ*(*Xi - s2)<2/+d-2>/2 dt

This may again be evaluated by expressing

Pn-j,d+2j = ßn-/,d+2//ön-/,d+2/w

and integrating-by-parts.  The integrand is then a constant multiple of
/j(n-/')(|:)(_i - |2y+W-2)/2.  From our considerations above concerning h we see
that we would obtain the same result if we simply replaced h by its highest order

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FOURIER ANALYSIS ON THE SPHERE

term I(n, /, d— 1; 1, 1)£"-'.  In other words our original integral equals

^TS-^n-i.d^ßnnJ, d - l)(i)'I(n, U d- 1; 1,1)

. £"-/(! - ç2j(2/+d-2)/2 ¿£

rf-1 C(«,/, d-l)(i)>I(n,j,d-l;Ul)2ir

■ C(n -j,n- j, d + 2f)I(n -j,n- j, d + 2/; 0, 1).

I(n, j, d- 1; 1, 1) - J',0 + 0"_/(l - |»y*<*-»/a rf|

= J* 0 + r)" + (d-3>/2(l - iy+(«-»Wa dr

= 2"+/+d-2r(« + (<z- i)/2)ro' + (d- i)/2)r(« + / + d-1).

/(» -/, n-j,d + 2/; 0, 1)   = J^(l - f2)"+(d~2)/2 rfr

= 22"+d~1r(« + dl2)2lY(2n + d).

If we combine the various formulae for C(n, j, d - 1), etc., and cancel some
factors we get

(i)>22"+>+2d-3n\r((d + l)/2)r(7 + d!2)T(n + (d - l)/2)r(n + rf/2)
7rr(/i +/ + £f-l)r(2n+c0

for 0(«, /, n, d).   If we use the duplication formula for Y the factor
T(n + (d- l)l2)F(n + d/2)/r(2n + d)becomesnAl22n+d-2(2n + d- 1). Thus finally

m ind) = ®V+d-l»W(a ± mm + d/2)
t>(n,],n,d)        n'A(n + j + d - 2)l(2n + d - 1)   '

(7) If we combine this with the result for 00* found in (4) we obtain

.       n     (- i)''2i+d-lTQ- + d/2)F((d + 1)/2)(k - J)
0#(n, ;, n, d) - ^ + d _ 2)(2/j +rf_1)

(- \)'(n -/)!(» + / + rf- 2)! .
= «!(«+<*-2)!-««• >' "' 0-

This is most easily seen by rewriting 00* using

(d - l)!/r(rf/2) = T((d + l)/2)2d-»/7rH
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to obtain

<j>(n, ;', n, d)0*(n, /, n, d)

_ [2>+d-1T((d + l)/2)rp- + dl2)hVl(2n + d- \)]2n\(n -/)!
(fi+d-2)!(n+/ + rf-2)!

(8) In a different direction fix b¡ EB and let/= e(bv n). We propose to
calculate F#Ab, n). In principle this is possible using (7).  However, we propose
a different approach.

Let hn(b1, b) ■ F*e(ôx, n)(b, ri).  By AT-equivariance of F*, hn(kbv kb) -
h„(bv b) so there is a function S„ on [-1, 1] such that hn(bv b) = 5„(¿>j • b).

Now by (3) hn(by b) is a polynomial in b of degree less or equal to n.
Then S„ is a polynomial of the same degree on [-1,1].

By the inversion formula for F*

e(bv n)(s) m dim(Hn d)(oF*e(bv n)(b, n)e(b, n)(s)db

= dim^^^S^Ô, • b)e(b, n)(s)db.

The fact that F maps Hn d onto P„(B) (see (3) above) implies that as s
ranges through S, e(b, n)(s) (as a function of b E B) ranges through a spanning
set in Pn(B). Thus for Q E Pn(B) we have

ö(ft,) = dim(Hnd)fB8n(bl ■ b)Q(b)db.

Consequently d\m(Hn d)8n(bi - b) is the "Dirichlet kernel" of degree n for harmonic
analysis on B. It may be given explicitly as 2"_0(dim H¡ d_l)Pjd_1(b1 • b).

To summarize, F*e(bv n)(b, n) = 8n(bl • b) where

8„(t) = (dim Hnd)- » t (dim H^^^ ¿t).
/=o

By the Christoffel-Darboux formula [1, p. 159] we then have

K(.0 = L„td(Pn+ud_l(t)-Pnid_1(t))l(t-i)

where L   d is a constant so chosen that 5„(1) = 1.  (This choice of Ln d follows
from dim Hnd = ZjL0dim #,,<*-1-)

Ka - Jm(?«+i^-i(0--P„.d-i(0)/(i- D

= ^+i>d-i(0-<d-i(i)-

The functions^(r) = Pm d_i(t) satisfy
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(1 - t2)y" -(d- l)ty' + m(m + d-2)y = 0.
Consequently P'mid_x(\) = m(m +d- 2)l(d - 1), and Lnd = (d- l)/(2« + d - 1).
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