
Progress In Electromagnetics Research, Vol. 123, 447–465, 2012

FOURIER BASED COMBINED TECHNIQUES TO DE-
SIGN NOVEL SUB-WAVELENGTH OPTICAL INTE-
GRATED DEVICES

L. Zavargo-Peche*, A. Ortega-Moñux,
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Departamento Ingenieŕıa de Comunicaciones, ETSI Telecomunicación,
Universidad de Málaga, Málaga 29071, Spain

Abstract—We present a tool to aid the design of periodical structures,
such as subwavelength grating (SWG) structures. It is based on the
Fourier Eigenmode Expansion Method and includes the Floquet modes
theory. Besides, the most interesting implemented functionalities to
ease the design of photonic devices are detailed. The tool capabilities
are shown using it to analyse and design three different SWG devices.

1. INTRODUCTION

According to the effective medium theory [1, 2], subwavelength gratings
(SWG) are periodic structures that can implement homogeneous
effective medium. This characteristic has been used to implement
several structures, such us mirrors [3], fibre-to-chip grating couplers [4]
or low loss and low crosstalk waveguide crossings [5], or high-pass
filters [6].

The design of devices with periodic sections (e.g., SWG, photonic
crystals [7], etc.) is usually performed using Finite Difference Time
Domain (FDTD) simulations. However, analysis of periodic structures
using FDTD is computationally very expensive, so a different approach
is preferred in order to streamline the design of these nanophotonic
periodic devices.

Eigenmode Expansion Methods (EEM), used together with
Floquet mode theory [8–11] allows a significantly reduction in memory
requirements and computational time when compared with FDTD.
The first implementations of EEM used a classical Finite Difference
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transversal discretization technique [8]. More recently, several
implementations of the EEM based on the Fourier series expansion
of the fields have been published [9–11]. These techniques are usually
known as Fourier-EEM.

In this work, we have used a Fourier based Eigenmode Expansion
Method which includes perfectly matched layer (PML) absorbing
boundary conditions to deal with outgoing radiation and the Floquet
formalism to efficiently analyse periodic devices. Using this highly
efficient electromagnetic core, we have developed a CAD tool that
facilitates the design of photonic structures with periodic sections. The
utility of this tool has already been demonstrated with the successful
design of a fibre-to-chip grating coupler for micrometric silicon rib
waveguides [12, 13].

The main objective of this work is to show that the proposed tool is
also a valuable resource for the design of state-of-the-art nanophotonic
SWG devices, such as the multimode interference (MMI) coupler with
subwavelength structures recently published in [14]. This paper is
organized as follows. In Section 2, fundamentals of SWG structures
are briefly described. Special attention will be paid later to explain
the basics of the numerical method (Section 3), and the capabilities
of the CAD tool (Section 4), which includes a complete set of design
features (e.g., multiport definition, scattering matrix analysis, field and
power monitors, optimization of physical and geometrical parameters,
etc.). Finally, in Section 5 three different SWG devices (a directional
coupler with SWG parallel waveguides and two MMI couplers with
SWG claddings) have been designed. These examples show not only
the capabilities of the proposed tool, but also the huge computational
advantage of using Fourier- Eigenmode Expansion Methods when
compared with FDTD techniques.

2. SUB-WAVELENGTH GRATINGS

A SWG is a periodic structure with a period short enough to suppress
diffraction effects. When properly engineered, SWG structures can
behave as homogeneous media, whose refractive index can be tuned by
adjusting the SWG geometry [1], thereby allowing for completely new
design approaches [15].

The SWG concept is shown in Figure 1(a), where a stratified
medium composed of alternate layers with refractive indexes n1 and n2

is considered. Note that the medium extends infinitely in the X and
Y directions. If the period length Λ is shorter than the shortest Bragg
period, the stratified structure behaves as a homogeneous medium [1].
Note that, even when the constituent materials are isotropic, the
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Figure 1. (a) Behaviour of an SWG upon an electrical field parallel
(E||) and normal (E⊥) to the interfaces. (b) Equivalent medium
refractive index, n||, for n1 = 3.476, n2 = 1 and G = Λ/2 at
λ = 1.55µm.

Figure 2. Geometry of a SWG waveguide.

refractive index of the equivalent homogeneous medium depends on
the incident field polarization, which can be used to engineer the
birefringence [16]. That refractive index can be expressed with the
zeroth-order approximation [1]
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for the electrical field parallel (n||) and normal (n⊥) to the interfaces.
In Figure 1(b), the equivalent refractive index n|| of a stratified
medium, composed of Silicon (n ∼ 3.5) and air (n ∼ 1) layers with
a 50% duty cycle, calculated with the numerical tool presented in this
paper is compared with the zeroth order approximation [1] and the
analytical value [17]. Two conclusions can be extracted. On the one
hand, the zeroth-order approximation is only valid for electrically short
periods (2Λneq/λ ¿ 1). On the other hand, our numerical result and
the analytical one are indistinguishable.

While the stratified medium is a convenient structure to
understand the SWG principle, many current practical applications
use SWG waveguides instead of stratified media [5]. An example of
a 2D SWG waveguide is presented in Figure 2, which, in fact, is a
stratified medium with a finite width W . In a first order approximation
the behaviour of this device is similar to the one of a conventional
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waveguide with a homogeneous core [15]. However, SWG parameters,
i.e., Λ and G, can be used to engineer the refractive index, the
dispersion and the birefringence of the waveguide. If W is not large
enough to consider the SWG waveguide as a stratified medium, it
cannot be modelled analytically, so that numerical tools are required
for its analysis and design.

3. MODELLING OF PERIODIC PHOTONIC DEVICES

In the literature [18, 19], several strategies and methods to analyse
photonic devices can be found. They can be classified attending
different criteria. In this paper, we have chosen the F-EEM [10, 11],
which is a spectral method that belongs to the group of eigenmode
expansion methods. It considers structures as longitudinally invariant
sections joined by abrupt discontinuities. We have also applied the
Floquet modes theory [20, Ch. 9] to the F-EEM. This technique
dramatically reduces the computational effort in the analysis of
periodic devices [8, 9, 21]. Since SWG structures are typically periodic
and exhibit abrupt discontinuities, this method is particularly well
suited for their analysis. Below, the F-EEM and the Floquet modes
theory are detailed.

3.1. Fourier based Eigenmode Expansion Method

In the F-EEM, we first divide devices into sections in which the
refractive index does not depend on the longitudinal coordinate
(z ). Then, we calculate the eigenmodes of each invariant section
as a discrete sum of Fourier coefficients. The complex coordinate
Perfectly Matched Layer (PML) boundary conditions are employed
to absorb the radiated fields [22]. To propagate the electromagnetic
field along the longitudinally invariant sections, we expand the field
into the calculated eigenmodes and we use the well-known analytical
expressions for mode propagation. The discontinuities are solved using
the Mode Matching Method [24, Ch. 9] that matches the tangential
fields at both sides of each discontinuity.

So, the first step of the F-EEM is the calculation of the
eigenmodes. The simulation tool presented in this paper is based
on a 2D version of the F-EEM. In this case, the eigenvalue problem
that determines the eigenmodes of each longitudinally invariant section
is [10]

MiTi = −Tiγ
2
i (2)

where the system matrix Mi is determined, depending on the light
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polarization, by

MTE = P(s−1
x )DxP(s−1

x )Dx + k2
0P(ε) (3)

for transversal electric (TE) modes and

MTM =
[
P(s−1

x )Dx

[
P(ε)

]−1
P(s−1

x )Dx + k2
0I

] [
P(ε−1)

]−1
(4)

for transversal magnetic (TM) modes. The diagonal matrix γi is
formed by the complex mode propagation constants. The m column of
the matrix Ti is the Fourier expansion of the m-th mode electrical field.
The matrices Dx and P() are, respectively, the derivative and product
operators in the Fourier domain [23]. The matrix I is the identity
matrix and sx is a function determined by the PML [22]. The function
ε = ε(x) is the relative dielectric function (we omitted x dependence
in (3) and (4) for clarity) and k0 = 2π/λ, where λ is the vacuum
wavelength of the electromagnetic field.

Once the eigenvalue problem (2) is solved, the field Fourier
coefficients can be calculated as

Φ = TiΨ (5)

where Ψ are the field mode coefficients and Φ are the electrical field
Fourier coefficients. Then, the propagation of the forward wave Ψ+ in
a longitudinally invariant section is analytically determined by [8]

Ψ+(z) = e−γi(z−z0)Ψ+(z0). (6)

Note that (6) should not be used to propagate backward modes as
the resulting positive exponential can cause numerical problems. To
calculate the backward wave, in the tool presented in this paper we
have used the reflection coefficient [8]. The reflection coefficient R is
defined as

Ψ−(z) = R(z) ·Ψ+(z) (7)

and its propagation along a longitudinally invariant section is

R(z0) = e−γ(z−z0) · R(z) · e−γ(z−z0) (8)

which is attained using negative exponentials that avoid numerical
problems. Therefore, once Ψ+ and R are known at the beginning
and the end of the longitudinally invariant section respectively, we use
Equations (6)–(8) to calculate Ψ± at any point in that section, solving
the propagation problem. Note that the propagation in (6) and (8) is
analytical.
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Figure 3. (a) Multiple discontinuity structure. (b) Period sample,
letting the period length Λ be L1 + L2 + L3.

Finally, let us detail the implementation of the Mode Matching
Method used in the presented tool to solve the longitudinal discon-
tinuities [24, Ch. 9]. Consider the interface between two different z -
invariant sections A and B where the electrical field is determined
by the mode coefficients Ψ±

A and Ψ±
B respectively. According to the

continuity condition, we obtain these equations [8]

2Ψ+
A =

(
eB + hB

)
Ψ+

B (9)

RA =
(
eB − hB

)(
eB + hB

)−1
(10)

where eB and hB are

eB =
(
T

A

i

)−1

T
B

i

(
I + RB

)
, hB =

(
T

A

i Y
A

i

)−1

T
B

i Y
B

i

(
I− RB

)
(11)

letting Y
A,B

i be the characteristic admittance matrices [10].
In conclusion, with the expressions (6)–(10), we can analyse

waveguide circuits avoiding numerical problems. To do so, consider
the structure depicted in Figure 3(a). We first propagate the
reflection coefficient RC(L), from the device output to the input using
Equations (8) and (10). Then, the forward wave Ψ+

A(0), is propagated
from the input to the output using (6) and (9). After these two steps,
we know R and Ψ+ at any point of the device. Only Ψ− remains
unknown, but we can calculate it using (7). Note that, using this
algorithm, we are able to analyse the whole device without numerical
problems and using analytical expressions in the z direction.
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3.2. Periodic Devices: The Floquet Modes

The SWG devices that we want to analyse in this paper consist of
a periodical sequence of homogeneous sections. Even though the
algorithm presented above can be used without numerical problems, we
have to perform the mode matching method at least twice per period.
As the number of periods may become very high (hundreds or even
thousands), the computational effort becomes huge. Floquet modes
can be a versatile and useful tool to dramatically reduce the number
of operations required to analyse large periodical devices [8].

Floquet modes are the field solution of a periodic struc-
ture [20, Ch. 9]. A very intuitive way to calculate the Floquet modes
of a periodic device solves an eigenvalue problem based on the transfer
matrix relation between the modes at both ends of the period [8]. Al-
though this method works fine when the period length is short, it shows
numerical instabilities for long-period devices. This serious drawback
can be solved by using the scattering matrix formulation [25], so we
have decided to adopt this approach. In our work, we have chosen the
latter method so that the presented tool can analyse also long period
devices without numerical problems. The actual generalized eigenvalue
problem to be solved is[

−S11 I
−S21 0

]
X =

[
0 S12

−I S22

]
X

[
e−ΓΛ 0

0 eΓΛ

]
(12)

where Λ is the period length and S is the scattering matrix of
one period, that is calculated using the algorithm presented in the
Section 3.1 and is defined as[

Ψ−
I

Ψ+
II

]
=

[
S11 S12

S21 S22

][
Ψ+

I
Ψ−

II

]
(13)

where Ψ±
I,II are the mode coefficients at the left (I) and right (II)

end of the period, represented in Figure 3(b). The eigenvalues of (12)

are the elements of the diagonal matrix e−ΓΛ, where Γ is a diagonal
matrix whose elements represent the complex propagation constant of
the Floquet modes. The eigenvectors are the Floquet modes waveguide
coefficients, arranged in the columns of X, letting the relation between
the Floquet modes and the waveguide modes be

[
Ψ+

q

Ψ−
q

]
= X ·

[
ζ+
q

ζ−q

]
=

[
X1 X2

X3 X4

]
·
[

ζ+
q

ζ−q

]
(14)

were ζ±q and Ψ±
q are, respectively, the Floquet and waveguide mode

coefficients at the beginning of the period q, as depicted in Figure 3(b).



454 Zavargo-Peche et al.

Besides, propagation of forward Floquet modes ζ+ between the left
ends of periods q and r is

ζ+
r = e−ΓΛ(r−q)ζ+

q . (15)

Again, numerical problems arise if (15) is used in the propagation of
backward Floquet modes ζ−. The Floquet mode reflection coefficient is
used to avoid numerical problems [8]. The Floquet reflection coefficient
ξ is defined by

ζ−q = ξqζ
+
q (16)

and its propagation is expressed as [8]

ξq = e−ΓΛ(r−q)ξre
−ΓΛ(r−q). (17)

From (7), (14) and (16), the relation between waveguide and Floquet
reflection coefficients is

R=
(
X3+X4ξ

)(
X2ξ+X1

)−1
, ξ =

(
RX2−X4

)−1(
X3−RX1

)
. (18)

Finally, we describe the algorithm to analyse the whole device.
First, the waveguide reflection coefficient at the structure output
is transformed into Floquet mode reflection coefficient using (18).
We transform the output Floquet reflection coefficient to the input
with (17). Using (18), we get the waveguide reflection coefficient
at the input. It allows us to calculate the field distribution at the
input once the incident field is known. Then, using (14)–(16), we
can determine the field distribution in the whole device. Note that
numerical problems are not expected as positive exponentials have been
avoided and the S -matrix formulation has been used.

In conclusion, we have detailed two techniques to analyse photonic
devices. On the one hand, the F-EEM is used on a generic structure
and is specially efficient with structures formed by longitudinally
invariant structures joined by abrupt discontinuities. On the other
hand, the Floquet modes efficiently analyse long periodic devices,
giving a better physical insight of the device performance.

4. FEXEN

In this section, we present the Fourier EXpansion simulation
ENvironment (FEXEN), which is the simulation tool that we present
in this paper. The electromagnetic core of this tool implements the
F-EEM with Floquet modes theory, already detailed in the previous
section. Besides, it includes a set of functionalities aimed to ease
the design of photonic devices and, particularly of SWG structures.
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The overall result is a set of MATLAB functions implementing a
2D CAD tool that, up to now, has been successfully used in the
analysis and design of several photonic devices [12, 14, 26]. It is
worth mentioning that the reliability of FEXEN was demonstrated
elsewhere [13, Figure 3], where the results of this tool were fairly
similar to actual measurements on a real device. To understand the
set of functionalities offered by FEXEN, we will classify them in three
different groups: i) electromagnetic simulation features, ii) automation
characteristics and iii) simulator output options.

The main electromagnetic simulation characteristics of FEXEN
are the same of any other CAD tool based on the eigenmode expansion
method. On the one hand, modal analysis of longitudinally invariant
structures can be calculated. On the other hand, the electromagnetic
field propagation is simulated. Besides, when periodic structures are
involved, Floquet modes can be obtained. FEXEN can also handle
circuital ports that, combined with the previous features, let the
designer efficiently calculate the scattering parameters of multi-port
periodic devices. As a final detail, the tool offers some smart options
to customize the input field and the load condition, such as a weighted
sum of port modes or a Gaussian distribution for the input field,
and a perfect mirror or a semi-infinite periodic structure for the load
condition.

Automation features let the designer evaluate many different
design options with a single instruction. We have provided FEXEN
with a sweep system that allows the simultaneous variation of all the
variables the user may define. This feature was essential for the design
of the MMI coupler with 2D SWG cladding that will be presented in
Section 5.3. The designer can also automate the structure definition.
To do so, this tool allows the user to divide the whole device in zones.
Then, several zone types are provided and each of them allows the
smart definition of different structures. In the Figure 4, we present
three different structures automatically generated by FEXEN: a) a
periodic structure, b) a longitudinally variant structure, and c) a
combination of both of them.

Finally, let us focus on the simulator output. It is determined by
customized simulation scripts that define the analysis to be performed
on the photonic structure. Therefore, depending on the executed
script, different results can be obtained. The use of scripts provides
FEXEN with a representation versatility just limited by MATLAB
capabilities and the designer ability. The tool includes predefined
scripts to calculate usual characteristics, such us Floquet mode effective
indices, scattering parameters, electromagnetic field propagation or
power flux along arbitrarily defined segments. Note that more
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Figure 4. Three different automatically generated structures: (a)
Grating, (b) taper and (c) SWG taper.

complicated figures of merit can be obtained. For example, the phase
error and the common mode rejection ratio in a 90◦ hybrid [14] or the
coupling efficiency between a radiating grating and a fibre [12] were
obtained using customized FEXEN scripts.

5. RESULTS

In this work, we have used the presented tool to analyse three different
structures comprising SWG. The first one is a directional coupler
with two SWG waveguides. We have analysed this simple device to
show the SWG behaviour and to validate the presented tool. The
second analysed device is a recently designed 90◦ hybrid receiver
implemented by a multi-modal interference (MMI) device that includes
an SWG cladding to engineer the index contrast and achieve a better
performance [14]. We use this device to show the capability of FEXEN
to aid the design of novel devices comprising SWG structures. Finally,
the third device is an improvement of the previous one. It will be
shown for the first time that using a rather involved 2D SWG cladding,
the fabrication tolerances can be doubled, compared to the previously
reported design [14]. The use of an efficient design tool is indispensable
in this problem, since the number of geometrical parameters to be
designed is significantly greater in this case.

5.1. Directional Coupler with two SWG Parallel Waveguides

The conventional directional coupler is a well-known device that has
been analysed widely in the literature, e.g., [27, Ch. 3]. It consist of two
parallel waveguides separated a distance Wg, as depicted in Figure 5(a).
When light is injected in one of the waveguides, at the coupling length
Lπ, light has coupled to the other waveguide. The coupling length is
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(a) (b)

Figure 5. Directional couplers: (a) with homogeneous waveguides,
and (b) with SWG waveguides.
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Figure 6. (a) Even and (b) odd supermodes of a directional coupler
formed by SWG (dashed line) [Figure 5(b))] or the conventional coupler
with EHW (solid line) [Figure 4(a))].

a function of the structure refractive indices, the waveguides geometry
and the separation between them.

In this paper, we substitute the waveguides with homogeneous
core of a conventional directional coupler by SWG waveguides, as
shown in Figure 5(b). Thanks to that, the effective index and the
chromatic dispersion of the constituent waveguides can be engineered.
This could lead to novel applications such us filters. In Figure 6, we
represent the supermodes of the conventional and SWG couplers. The
dashed lines represent the even and odd TM supermodes of the SWG
directional coupler letting WA = 0.5µm, Wg = 0.3µm, Λ = 0.1µm
and G = 50 nm. The free-space wavelength is λ = 1.55µm, the
core refractive index is n2 = 2.85 and the cladding is n1 = 1.58. In
these conditions, the SWG waveguides are equivalent to homogeneous
waveguides of the same width WA and a core refractive index neq =
2.25, that we calculated using our tool. The solid line in Figure 6
represent, at λ = 1.55µm, the TM supermodes of the directional
coupler formed by the equivalent homogeneous waveguides (EHW)
with neq = 2.25 [Figure 5(a)]. Both supermodes are in a very good
agreement.
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Figure 7. (a) Field propagation in a SWG coupler. (b) Coupling
length versus waveguide separation in a SWG directional coupler.
Curves calculated with FEXEN while markers calculated with an
FDTD commercial tool.

We have used FEXEN to predict the SWG coupler coupling length
against waveguide separation [Figure 5(b)]. The field propagation is
presented in the Figure 7(a), where the power transfer between both
waveguides can be appreciated. The coupling length (Lπ) can be
expressed as Lπ = π/(β1 − β2), where β1 and β2 are the propagation
constants of the even and odd supermodes respectively. Note that
these supermodes are Floquet modes. Programming an appropriate
script, the coupling length against waveguide separation, shown in
Figure 7(b), was automatically plotted by our tool. To confirm these
results, we simulated the same coupler on a commercial 2D FDTD
tool (RSoft FullWAVE). FDTD results are marked on the same figure.
As can be seen, both results are in a very good agreement (maximum
error is 2.8%). It is worth mentioning that each FEXEN simulation
point was calculated in less than 10 seconds using an 8 core @ 2.8 GHz
with 8 GB RAM PC while each FDTD point took from 10 minutes in
the shortest simulation to 24 hours in the longest one. These numbers
show that EEM is better suited than FDTD for analysis and design of
SWG structures.

5.2. High Performance MMI Using SWG

An MMI is a well known structure widely used in photonic circuits,
such us Mach-Zehnder interferometers [28] or 90◦ hybrid for coherent
optical receivers [29]. As shown in [29], MMI performance can be highly
improved optimizing the index contrast. While this solution required
two etch steps, the use of SWG can reduce the index contrast employing
only one etch step, which reduces the fabrication complexity. Based on
that concept, FEXEN was used to design the novel SWG based 2× 4
MMI shown in Figure 8(a) [14].
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(a) (b)

Figure 8. High performance MMI for coherent optical reception using:
(a) SWG structure cladding and (b) Homogeneous cladding.

The design process of this device, detailed by Ortega et al. [14],
is summarized as follows. First we design an MMI with homogeneous
cladding, as the one depicted in Figure 8(b). Then, we calculate the
SWG structure that synthesizes the homogeneous cladding. Finally,
we adjust the resulting device [Figure 8(a)].

The first step does not involve any SWG structure, so we will just
indicate the results. Considering the working wavelength λ = 1.55 µm
the homogeneous MMI parameters are WA = 1.5µm, Wg = 0.5µm,
WMMI = 7.7µm, LMMI = 116µm and neq = 2.62. The refractive
indices are n1 = 1.58 and n2 = 2.85, which have been calculated using
the effective index method on a SOI waveguide formed by a SiO2

bottom oxide (nSiO2 = 1.444), a 260 nm thick Si core (nSi = 3.476)
and a SU-8 cladding (nSU-8 = 1.58).

In the second step, we design a SWG structure that synthesize a
refractive index neq = 2.62. To do so, we first use FEXEN Floquet
mode calculation to obtain a set of curves that relate neq with the gap
(G) and pitch (Λ) of a stratified medium. These curves are presented
in the Figure 9(a). Depending on the gap size chosen, we get different
optimum pitches. Then, we select a pair (Λ, G) that implements the
desired neq. In this case, we elected G = 80 nm which leads to a pitch
Λ ≈ 270 nm.

Finally, we finely adjust the resulting device. This adjustment
is needed because the actual device is different from the problem
considered in the previous step: the SWG is not infinitely wide and the
fundamental mode in the SWG is not a plane wave. In Figure 9(b), we
have represented the modal phase error, as defined elsewhere [29], for
three different pitches. To obtain high performance MMI, the modal
phase error should be as low as possible. We found out that the
optimum pitch is slightly shorter than initially predicted. Again, a
CAD tool supporting Floquet modes, such as FEXEN, can efficiently
calculate these curves.
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Figure 10. SWG MMI behaviour in (a) amplitude and (b) phase,
where ∆θi = ∠(Si1/Si2).

Choosing Λ = 260 nm and an MMI length of 446 periods we use
the FEXEN functionality to calculate the scattering parameters of a
multi-port periodic device. The device features are shown in Figure 10.
On the one hand, Figure 10(a) shows the amplitude behaviour of the
device. The optimum value is −6 dB, as the power is divided among
four ports. The resulting power imbalance is lower than 0.5 dB in the
central wavelength and the maximum insertion loss is lower than 1.5 dB
in the C band (1530–1570 nm). On the other hand, we can see in the
Figure 10(b) that the device phase error is very good (lower than 5◦
in the whole C-band).

5.3. MMI with 2D SWG Structure

Even though the device presented above theoretically performs
properly, the actual fabricated circuit may differ from the nominal
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design. The tolerance analysis of it concludes that gap (G) deviations
larger than 5 nm make the device not satisfy the coherent photonic
receiver specifications [30] in the C-band bandwidth. To improve the
tolerance to fabrication errors, we propose the new device presented in
Figure 11. It presents a larger critical dimension than the previous
structure, reducing the dependence of the device behaviour with
fabrication errors.

The design procedure is similar to the one specified for the
previous device, but there are some differences as new degrees of
freedom appear (GX , ΛX) as shown in Figure 11(b). We have first
chosen ΛZ = 240 nm as it is close to the largest pitch that allows
SWG behaviour. We have also forced GZ = GX , i.e., squared holes, as
they minimize effective index deviation with fabrication errors. Then,
we have programmed a script to calculate the bandwidth where the
mentioned specifications are satisfied and we automatically evaluated
it in reasonable combinations of GX = GZ and ΛX . The results
are shown in Figure 12 where appropriate devices are represented by
light colours. Note that these figures summarize the S parameters
calculation of more than one hundred different devices at 21 different
wavelengths. The total computation time in the equipment previously
mentioned was shorter than 24 hours, which is a very reasonable time.
According to these figures, we chose the following design parameters:
ΛZ = 240 nm, GZ = GX = 130 nm and ΛX = 420 nm. Using them,
we obtained the behaviour shown in Figure 13, where it can be seen
that fabrication errors of 10 nm do not reduce the bandwidth below
40 nm, i.e., the C-band bandwidth. So, using the advanced automation
capabilities of the presented tool, we have been able to design a device,
with two more degrees of freedom, that duplicates the fabrication
tolerance of the previous one.

(a) (b)

Figure 11. Representation of a 2D SWG MMI. (a) 3D view and (b)
top view with parameters identification.
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Figure 13. Device performance: (a) CMRR and (b) phase error.

6. CONCLUSION

We have presented a tool to aid the design of periodical structures,
such as SWG structures. It is based on the Fourier Eigenmode
Expansion Method and includes the Floquet modes theory to efficiently
analyse periodic structures. Besides, the most interesting implemented
functionalities to ease the design of photonic devices have been
detailed. We have finally shown the tool capabilities using it to analyse
and design three different devices with SWG structures. We have also
shown that the proposed method is better suited to analyse and design
SWG structures than FDTD, typically used in the literature.
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14. Ortega-Moñux, A., L. Zavargo-Peche, A. Maese-Novo, I. Molina-
Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and
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