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Abstract—Fourier-based radar processing algorithms have
attracted a lot of interest among imaging techniques mostly
because they are extremely fast. Moreover, such techniques can
be integrated with a Multiple-Input Multiple-Output (MIMO)
effective aperture, able to alleviate the hardware constraints,
to form a cost-effective imaging system that can retrieve an
estimation of the scene in real-time. The proposed technique
leverages the phase center approximation and a multistatic-to-
monostatic data conversion to render the back-scattered mea-
surements compatible with fast Fourier processing. Whereas
the phase center approximation is applicable for imaging in
the far-field of the synthesized aperture, in the near-field, a
more sophisticated aperture design should be considered to
reduce the distortion in the reconstructed images. This paper
presents a theoretical study for a sparse aperture design and the
optimization of the aperture layout in the context of the phase
center approximation validity for near-field imaging facilitated by
Fourier-based reconstructions. Furthermore, it proposes a GPU
accelerated reconstruction algorithm able to form 3D images in
a few milliseconds with low-cost hardware.

Index Terms—millimeter-wave imaging, three-dimensional
imaging, Fourier-based image processing, MIMO sparse aper-
ture, near-field imaging

I. INTRODUCTION

Millimeter-wave imaging is gaining significant popularity
among a variety of applications, with surveillance systems
and detection of concealed items being some of the most
noteworthy examples. Particularly in the context of security-
screening, the superiority of such a system lies in a variety of
reasons, such as the capability of millimeter-waves to penetrate
common clothing and other optically opaque materials to
form an image of a person carrying any concealed items.
Moreover, radiation at millimeter-wave frequencies is non-
ionizing, hence, does not pose any health hazards. Millimetre-
wave imaging can also achieve a high resolution due to the
relatively short wavelength (1-10 mm) at these frequencies.

Traditionally, millimeter-waver imaging systems rely on
Synthetic Aperture Radar (SAR) technology [1-3] to me-
chanically scan the target scene satisfying Nyquist criteria.
However, this configuration, although associated with high
quality images, requires a large number of channels and
considerable amount of time to acquire the back-scattered
information. Nevertheless, since the measurements on the
aperture side are derived from a point-by-point raster scanning,
they are uniformly sampled, and thus can be handled using

Fourier-based processing techniques [1], addressing the image
reconstruction problem in real-time.

To alleviate the above constraints, computational imaging
approaches have been used in the literature [4-7]. However,
such configurations demand the inversion of an ill-posed
matrix, which results in a bottleneck in achieving fast im-
age reconstruction time. Alternatively, a compressed sensing
approach via an effective aperture [8-12] could also meet
the hardware constraints, reducing significantly the number
of elements and thus the acquisition time and the cost of the
system.

Although meeting the hardware constraints, the above
configurations transfer the complexity from the acquisition
step to the signal processing step. Since fast reconstruction
is essential for real-time applications, image processing in
the frequency domain, utilizing Fourier transformations, is
preferable over computational techniques in spatial domain.
A traditional Fourier-based reconstruction algorithm, like the
one demonstrated in [1] for a monostatic aperture, will not be
sufficient in multistatic configurations, since the data are not
derived from a point-by-point scanning of the target scene.
Hence, more sophisticated image reconstruction techniques
need to be developed that usually involve pre-processing
steps. In this paper, we present the aperture design constraints
for Fourier-based image reconstruction in MIMO radars with
sparse apertures as applied to near-field imaging problems at
millimeter-wave frequencies.

The rest of the paper is organized as follows: Section II
analyses the proposed Fourier-based technique for multistatic
apertures leveraging the effective aperture concept, Section III
discusses the importance of a more sophisticated aperture de-
sign in near-field and supports the hypothesis with simulation
results, Section IV refers to the algorithm implementation and
performance and lastly Section V includes the conclusions.

II. IMAGE RECONSTRUCTION TECHNIQUE

A. Fourier-based Imaging

Fourier-based reconstruction techniques are very appealing
since they can be implemented leveraging the Fast Fourier
Transform (FFT) algorithm, which is known for its high
computational efficiency. Naturally, to take advantage of the
FFT, the data need to be uniformly sampled. This is usually



the case in monostatic imaging configurations [1], where a co-
located transmitter-receiver source is scanned, mechanically
or electronically to form the whole aperture. At the end of
the raster scan, the collected information will be uniformly
sampled and readily compatible with fast Fourier processing.

An estimation of the scene can then be retrieved using the
following equation [1]:

f(x, y, k) = IFFT2D[FFT2D[s(x, y, k)e−j
√

4k2−k2
x−k2

yz0 ]]
(1)

In the above equation, s(x, y, k) represents the back-
scattered signal recorded by the transceiver. The signal is eval-
uated at multiple frequencies and k = 2πf/c, where c stands
for the speed of light in vacuum, symbolizes the corresponding
wavenumber. The exponential term stands for the dispersion
relation [1]. The abbreviation IFFT denotes the Inverse Fast
Fourier Transform (IFFT). After the IFFT, the third dimension
is coherently summed to obtain a two-dimensional (2D) image
plane f(x,y), which is an estimation of the imaged scene.
For three-dimensional (3D) imaging multiple image planes are
considered at different range distances z0 from the aperture.
All the planes are finally combined to obtain one 3D image.

B. Multistatic Fourier-based Imaging

1) The multistatic aperture: Although monostatic imaging
seems very attractive due to the direct compatibility with
FFT techniques, the substantial amount of acquisition time
and number of channels associated with it hinders its use in
practical applications.

On the other hand, multistatic apertures promise to alleviate
the above restrictions, leading to a more effective imaging sys-
tem. Multistatic imaging benefits from the effective aperture
concept [9-11], according to which NRX

receiving elements
and NTX

transmitting elements can form up to NRX
NTX

spatially diverse positions. Consequently, the effective aperture
concept eliminates the need for physically densely sampled
apertures on the condition that the synthesized effective aper-
ture provides sufficient sampling. In other words, the number
of transmit and receive antennas can be substantially reduced,
resulting in a sparse aperture layout.

A typical sparse MIMO 2D aperture is depicted in Fig.
1(a) [9,11]. The aperture is divided into multiple clusters,
each of them looks like the one in Fig. 1(b). More details
about the need of clustering are mentioned in the next section.
As depicted in Fig. 1(b) each cluster consists of receiving
elements, which are represented by red dots along the x-
axis, and transmitting elements which are represented by blue
dots along the y-axis. The element spacing is subject to
λmin, which is the wavelength corresponding to the maximum
frequency of the band. Each transmitting antenna propagates
millimeter-waves to the scene and each receiving antenna
within the same cluster records the back-scattered information.

The multistatic back-scattered measurements will then be in
the form s(xT , yT , xR, yR, k), i.e, they are a function of the
position of each transmitting and receiving antenna and each

(a) (b)

Fig. 1: (a) A 2D sparse MIMO aperture of size D=0.9m. The
receiving elements are represented with red dots, while the
transmitting with blue. (b) One cluster of size D′=0.225m
highlighted with the dashed rectangle in Fig. 1(a).

frequency point in the band. Thus, they cannot be used as they
are in (1).

2) The phase center approximation: In Fig. 1(b), one
cluster of the aperture in Fig. 1(a) is depicted. In case that the
length of each cluster is small enough compared to the imaging
distance, the distance between each transmitter-receiver pair
within the same cluster will also be small compared to the
imaging distance. Therefore, we can assume that the target is
in the far-field in terms of each cluster. Thus, an effective phase
center can be formed between each transmitter-receiver pair
within the same cluster [11-12]. In Fig. 1(b) one such phase-
center is shown, formed by a random transmitter-receiver pair.
Physically, the phase-center lies in the middle of the distance
between them, therefore letting (xT , yT ) and (xR, yR) be
coordinates of the antenna elements pair, the coordinates of
their phase center are,

xc =
xR + xT

2
, yc =

yR + yT
2

(2)

The process of forming a phase-center is repeated for every
transmitting-receiving pair within each cluster, such that a grid
of phase centers is created that covers the whole surface of
the aperture. This grid is uniform and is spaced by 0.5λmin,
resembling the grid of a monostatic aperture. If we could
transform the back-scattered measurements of the multistatic
aperture, such that they are sampled on this phase centers grid,
we will be able to reconstruct the scene using (1).

3) Multistatic-to-monostatic conversion: The answer to the
above speculation has been given in the literature developing
a multistatic-to-monostatic conversion of the back-scattered
measurement set, [11-12]. A reference point is defined to
establish this conversion. This point lies on the center of
the imaging scene, and its coordinates are xref , yref , zref .
Then the multistatic back-scattered set s(xT , yT , xR, yR, k)
will be transformed to a monostatic one ŝ(xc, yc, k) through
the following relationship:

ŝ(xc, yc, k) = s(xT , yT , xR, yR, k)
ŝref (xc, yc, k)

sref (xT , yT , xR, yR, k)
(3)



where ˆsref stands for the back-scattered signal of a hypothet-
ical monostatic aperture imaging the scene consisting only of
the reference point, and accordingly, sref stands for the the
back-scattered signal of the multistatic aperture imaging the
scene consisting only of the reference point. The reference
signals are

sref (xT , yT , xR, yR, k) = e−jk(RT+RR)

ŝref (xc, yc, k) = e−2jkRc
(4)

where RT and RR stand for the distances between the refer-
ence point and each transmitter and receiver in the multistatic
array, respectively. In the monostatic scenario, Rc symbolizes
the distance between the co-located antenna and the reference
point. Assuming that the center of the imaging scene, i.e. the
reference point, is the point with coordinates (0, 0, z0), the
distances are defined as follows:

RT =
√
xT 2 + yT 2 + z02

RR =
√
xR2 + yR2 + z02

Rc =
√
xc2 + yc2 + z02

(5)

After the transformation in (3), we can use (1) to retrieve
an estimation of the target scene.

III. NEAR-FIELD IMAGING

The effective aperture concept described in Section II is
strictly valid in the far-field of the aperture [10]. This assump-
tion becomes less accurate as the imaged object is located
closer to the aperture, extending into the near-field region.
Hence, for near-field applications a more sophisticated design
of the aperture should be considered to avoid the distortion in
the final image. The minimum far-field distance is subject to:

dfar field =
2D2

λ
(6)

where λ is equal to λmin and D is the size of the aperture
in meters. Strictly speaking, to achieve a non-distorted image
an imaging distance at least equal to the one given by (6) is
required.

By clustering the aperture as shown in Fig. 1(a) and
ensuring that no cross-cluster interactions occur, it is possible
to measure the far-field distance in terms of the size of each
cluster and not of the whole aperture. As a result, the phase
center approximation can hold accurate within each cluster
without the necessity of the overall physical aperture to satisfy
the far-field condition.

It is important to clarify at this point that the purpose of
using the proposed method is to minimize the distortion caused
by the violation of the far-field condition and not to vanish it.
In other words, one can continue increasing the number of
clusters within the aperture until each cluster is small enough
such the target scene is strictly in the far-field of each cluster.
However, this increases the physical layer complexity due to
having an unfeasible number of clusters. Evidently, there is
a trade-off between the number of clusters the aperture can
be partitioned into, hence the system complexity, and the
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Fig. 2: (a) The sparse MIMO aperture consisting of 16 clusters
and target scene. (b) The cross-range plane. (c) Cross-range
resolution curve.

corresponding far-field distance for each cluster to satisfy the
phase center approximation. Our goal in this paper is to find
an optimal solution to this trade-off. As part of this study,
we will show through simulations that satisfying results could
be achieved even though the far-field condition is not strictly
satisfied while keeping the number of clusters at an acceptable
level.

In the configuration depicted in Fig. 1(b), in each cluster 16
receiving elements are considered along the top and bottom
boundaries and 16 transmitting elements along the lateral
boundaries. The element spacing is subject to λmin. We use a
2GHz bandwidth (B) in K-band, from 19GHz to 21GHz and
thus λmin=14.3mm. Consequently, using the effective aperture
principle, 32×32 = 1024 phase centers are created within each
cluster and 16 × 1024 = 16384 within the whole surface of
the aperture. The size of each cluster is equal to D′ = 0.225m.
Hence, according to (6), the far-field distance will be equal to
7.1m. We consider an imaging distance equal to 1m, which
is comparable to the distance of the far-field limit. The target
scene consists of two sets of nine point scatterers lying on
different depth distances, as shown in Fig. 2(a). The results
are illustrated in Fig. 2.

We focus in the cross-range plane (xy) and cross-range
resolution here, since the range plane (z) is mostly affected by
the bandwidth. The cross-range plane is depicted in Fig. 2(b),
expressed in dB scale. We observe that all point scatterers
are resolved and almost no distortion is detected in the
reconstructed image. In Fig. 2(c) the cross-range curves for
a specific horizontal point, as indicated by the rectangle in
Fig. 2(b), are shown.

We repeat the experiment employing an aperture of the same
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Fig. 3: (a) The sparse MIMO aperture consisting of 4 clusters
and target scene. (b) The cross-range plane. (c) Cross-range
resolution curve.

size but now divided into four clusters, each one of size D′

= 0.45m, as shown in Fig. 3(a). The far-field limit is now
equal to 28.3m. In this case, the limit significantly exceeds the
near-field target distance of 1m, hence, we expect to observe
a noticeable violation of the phase center approximation,
resulting in an increased distortion in the final image. The
results shown in Fig. 3 confirm this observation.

Lastly, we consider an aperture consisting of a single cluster
of size D′= 0.9m, as shown in Fig. 4(a). The far-field distance
is now equal to 113.3m. The results are demonstrated in Fig. 4.
In this case, the simple aperture layout consisting of a single
cluster is achieved at the cost of significantly violating the
phase center approximation, resulting in a heavily distorted
reconstruction.

It is evident that in Fig. 3(b) and Fig. 4(b) the corner
point scatterers experience a greater amount of distortion.
The distortion gets significantly worse in Fig. 4(b). This
phenomenon becomes more apparent when looking at the
resolution curves in Fig. 3(c) and Fig. 4(c). The resolution
curve for the corner points does not have a clear peak point
and it is affected a lot by the side lobes. This is an expected
outcome derived from the paraxial approximation holding true
within small angle variations around the optical axis [8]. In
close range, the variations become more significant and thus
the points that are away from the optical axis, i.e., the corner
ones, are mostly affected.

In Fig. 5(a), the Normalized Mean Squared Error (NMSE)
is illustrated for all above configurations as a function of the
number of clusters. The NMSE is subject to the formula [15]:

NMSE =

∑
|fest − f |2∑
|f |2

(7)
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Fig. 4: (a) The sparse MIMO aperture consisting of a single
cluster and the target scene. (b) The cross-range plane. (c)
Cross-ranger resolution curve.
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Fig. 5: (a) The NMSE of the above reconstructed cross-
range planes as a function of the number of clusters. (b)
The cross-range plane of a configuration involving 64 clusters.
Considered ideal condition here.

The ideal condition is considered the case of 64 clusters, which
brings each cluster even closer to the far-field limit. The cross-
range plane for this scenario is shown in Fig. 5(b). Observing
Fig. 5, it is clear that increasing the number of clusters in
the aperture beyond this limit will not lead to any significant
improvement in the cross-range of the final image.

IV. ALGORITHM IMPLEMENTATION

The algorithm addressing the image reconstruction for all
the configurations discussed above was developed on a single
GPU using C language and CUDA programming. The GPU
card is a NVIDIA Tesla M60 with 16GB of memory.

The algorithm was developed considering a 3D scene, as
illustrated in Fig. 2(a). The scene is of the same size with the
aperture in cross-range and half this size in depth. Hence, it is
equal to 0.9m× 0.9m× 0.45m. To determine the number of
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Fig. 6: The range plane for 16 clusters and B=2GHz.

depth slices, the scene’s depth is divided with the theoretical
range resolution in near-field, given by the formula [14]:

δr =
c

2
(B + fmin(1−

1√
(1 + ( D

2z0
)2)

))−1 (8)

In this case, the range resolution is equal to 40mm and 12
range slices are considered.

The input matrix to the reconstruction function is a 3D
matrix s(x, y, k), according to (1). For this implementation,
its dimensions are 128 × 128 × 32, where 32 stands for the
number of frequency samples within the band. This matrix is
translated for all range slices. After the reconstruction process
is completed for a slice, we sum the third dimension to obtain
o 2D plane. Finally, all 2D planes are combined to obtain one
3D image of size 128× 128× 12.

The range plane, derived from the physical setup shown
in Fig. 2(a), is shown in Fig. 6 for 16 clusters. The middle
targets located at two different range distances as shown in
Fig. 2(a), are depicted. We can observe that the algorithm is
able to locate the targets properly in the range plane.

The total execution time (including data transfers to and
from the GPU) of the reconstruction algorithm is equal to
21ms, considering the first scenario with 16 clusters. A tradi-
tional back-projection algorithm [13] needs about 11.6h to be
executed on CPU, while the proposed approach is executed in
100ms on CPU. Consequently, the GPU implementation offers
a speedup equal to 1.6e6 and 4.8 against the first and the latter
implementation, respectively. It is evident that the FFT-IFFT
approach supported with the GPU acceleration constitutes a
significant step towards real-time operation.

V. CONCLUSIONS

This paper presents a Fourier-based imaging technique
suitable for MIMO apertures. We argued, and supported by
simulation results, that a more sophisticated aperture design
should be considered in near-field to alleviate the distortion
in cross-range plane reconstruction. The proposed technique
is shown to produce high fidelity results in the range plane
as well. Lastly, we argued that fast execution time can be
achieved for the reconstruction process, i.e., in the order
of a few milliseconds, by utilizing GPU acceleration. This
is a promising result concerning the execution time of the
algorithm in more practical scenarios, particularly for an
application requiring real-time operation.

ACKNOWLEDGMENT

This work was funded by the Leverhulme Trust under
Research Leadership Award RL-2019-019.

REFERENCES

[1] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-
dimensional millimeter-wave imaging for concealed
weapon detection,” IEEE Transactions on microwave
theory and techniques, 49(9), 1581-1592, 2001.

[2] A. Moreira et al., “A tutorial on synthetic aperture radar,”
IEEE Geoscience and remote sensing magazine, 1(1), 6-
43.

[3] A. W. Doerry, and F. M. Dickey, “Synthetic aperture
radar,” Optics and photonics news, 15(11), 28-33, 2004.

[4] W. Li, J. Qi, and A. Sihvola, “Meta-Imaging: from
Non-Computational to Computational,” Advanced Op-
tical Materials, 8(23), 2001000, 2020.

[5] J. N. Mait, G. W. Euliss, and R. A. Athale, “Compu-
tational imaging,” Advances in Optics and Photonics,
10(2), 409-483, 2018.

[6] G. Lipworth et al., “Comprehensive simulation platform
for a metamaterial imaging system,” Applied optics,
54(31), 9343-9353.

[7] R. Sharma, O. Yurduseven, B. Deka, and V. Fusco,
“Hardware Enabled Acceleration of Near-Field Coded
Aperture Radar Physical Model for Millimetre-Wave
Computational Imaging,” Progress In Electromagnetics
Research B, 90, 91-108, 2021.

[8] S. S. Ahmed, Electronic microwave imaging with planar
multistatic arrays. Logos Verlag Berlin GmbH, 2014.

[9] S. S. Ahmed et al., “Advanced microwave imaging,”
IEEE microwave magazine, 13(6), 26-43, 2012.

[10] G. R. Lockwood, P. C. Li, M. O’Donnell, and F. S.
Foster, “Optimizing the radiation pattern of sparse pe-
riodic linear arrays,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and frequency control, 43(1), 7-14, 1996.

[11] W. F. Moulder et al., “Development of a high-throughput
microwave imaging system for concealed weapons detec-
tion,” In 2016 IEEE International Symposium on Phased
Array Systems and Technology (PAST) (pp. 1-6). IEEE,
October 2016.

[12] Z. Wang et al., “Near-field 3-D millimeter-wave imaging
using MIMO RMA with range compensation,” IEEE
Transactions On Microwave Theory and Techniques,
67(3), 1157-1166, 2018.

[13] Y. Ding, and D. J. Munson, “A fast back-projection
algorithm for bistatic SAR imaging,” In Proceedings.
International Conference on Image Processing (Vol. 2,
pp. II-II). IEEE, September 2002.

[14] T. Sleasman et al., “Single-frequency microwave imaging
with dynamic metasurface apertures,” JOSA B, 34(8),
1713-1726, 2017.

[15] H. Odabasi et al., “Investigation of alignment errors
on multi-static microwave imaging based on frequency-
diverse metamaterial apertures,” Progress In Electromag-
netics Research B, 70, 101-112, 2016.


