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Fourier-Hermite Kalman Filter

Juha Sarmavuori and Simo Särkkä, Member, IEEE

Abstract—In this note, we shall present a new class of Gaussian
filters called Fourier-Hermite Kalman filters. Fourier-Hermite
Kalman filters are based on expansion of nonlinear functions
with the Fourier-Hermite series in same way as the traditional
extended Kalman filter is based on the Taylor series. The
first order truncation of the Fourier-Hermite series gives the
previously known statistically linearized filter.

Index Terms—nonlinear Kalman filtering, extended Kalman
filtering, statistical linearization, Fourier-Hermite series

I. INTRODUCTION

The Kalman filter (KF) [1] is concerned with estimation

of the dynamic state from noisy measurements in the class

of estimation problems where the dynamic and measurement

processes can be approximated by linear Gaussian state space

models. The KF is also applicable to linear state space

models with a wide range of non-Gaussian noise distributions

[2]. General filtering theory for non-linear and non-Gaussian

models was already presented in [3], [4], but in practice,

numerical solutions derived as approximations to the general

theory are usually computationally more demanding than the

Gaussian approximations derived as extensions to the KF. The

Taylor series based extended Kalman filter (EKF) [4], and

the Gaussian describing function based statistically linearized

filter (SLF) [5] are the classical Gaussian approximation based

extensions of the KF to nonlinear dynamic and measurement

models.

Recently, numerical integration based sigma point filters

[6]–[10], have been introduced as alternatives to the classical

linearization based methods. Many of the sigma point methods

can also be interpreted as numerical approximations to the SLF

[11]–[13]. In this note, we shall take the opposite approach

from the sigma point methods – instead of approximating

the SLF we shall develop higher order approximations by

extending SLF. In numerical comparison, the new approach

is found to give similar results as the sigma point methods.

The advantage of the new method compared to the sigma

point methods is that it provides a closed form approximation

instead of applying a numerical method directly. The imple-

mentation of the closed form solution can be more efficient.

If closed form solution is not possible for some part of the

problem then it is still possible to use the numerical sigma

point approach for that part.

In this paper, we shall introduce a new class of filters that

we call Fourier-Hermite Kalman filters (FHKF). The filters

are based on a finite truncation of the Fourier-Hermite series

in a similar way as the EKF is based on a truncation of the
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Taylor series. The first order truncation gives the previously

known SLF [5] in a similar way as the first order truncation

of the Taylor series gives the basic EKF. The new approach

also makes it possible to use higher order truncation of the

Fourier-Hermite series similar to the second order EKF. Due

to the orthogonality of the Hermite polynomials, any order

truncation is almost as easy to use as the first order truncation

and gives the best possible polynomial approximation in the

mean squared error sense. With the Taylor series the higher

order truncations are much more difficult to develop than the

first or the second order truncations, and a truncation of the

Taylor series is not the best possible polynomial approximation

under any simple criterion. Fourier-Hermite series expansions

can also be derived for non-differentiable functions whereas

Taylor series expansions only exist for differentiable functions.

We feel that introduction of orthogonal basis functions for

Gaussian filtering framework can lead to many new develop-

ments.

Fourier-Hermite expansions of non-linear functions and the

related Wiener chaos expansions of stochastic functionals

have previously been used for approximating the formal

continuous-time filtering equations, for example, in [14]–[16].

The Edgeworth series and related approximations are based

on Fourier-Hermite expansions of probability densities, and

they have also been applied in optimal filtering context [17]–

[19]. In [14]–[19] the Fourier-Hermite expansion is applied

to probability density. In this article, the probability density

is always approximated as Gaussian and the Fourier-Hermite

expansion is applied to the nonlinear functions.

A. Gaussian Filter

In this article, we consider discrete-time state space models

of the following form:

xk = f(xk−1) + qk

yk = h(xk) + rk, (1)

where xk ∈ R
n is the state of the model at a time step k, yk ∈

R
d is the measurement. qk ∼ N(0, Qk) and rk ∼ N(0, Rk) are

Gaussian process and measurement noises, respectively. The

Gaussian filter [7], [20] for the above model is the following:

• Prediction:

m−

k = E[f(xk−1)]

P−

k = E[(f(xk−1) − m−

k )(f(xk−1) − m−

k )T ] + Qk, (2)

where the expectations E[·] are with respect to xk−1 ∼
N(mk−1, Pk−1).

• Update:

µk = E[h(xk)]

Sk = E[(h(xk) − µk)(h(xk) − µk)T ] + Rk

Kk = E[(xk − m−

k )(h(xk) − µk)T ] S−1
k

mk = m−

k + Kk (yk − µk)

Pk = P−

k − Kk Sk KT
k , (3)

where the expectations E[·] are with respect to xk ∼
N(m−

k , P−

k ).
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II. MAIN RESULTS

A. Computation of Gaussian Expectations via Fourier-

Hermite Series

The Gaussian filter (see Section I-A) requires computation

of three kinds of expectations:

ĝ = E[g(x)] (4)

Cov[g(x)] = E[(g(x) − ĝ) (g(x) − ĝ)T ] (5)

Cov[x, g(x)] = E[(x − E[x]) (g(x) − ĝ)T ], (6)

where g is f on the prediction step (2) or h on the update step

(3) and x ∼ N(µ,Σ). As discussed in the introduction, in the

EKF, these expectations are approximated with Taylor series

of the function and in the sigma-point filters with numerical

integration. As the following theorem shows, the expectations

can also be easily computed from the Fourier-Hermite series

coefficients of the function g(x) (see Appendix):

Theorem 1: Assume that the Fourier-Hermite series repre-

sentation (37) for the function g(x) exists. The expectation of

the function is the zeroth coefficient in (38) or (39):

E[g(x)] = c0 (7)

and the covariance of the function is

Cov[g(x)] =
∞
∑

k=1

1

k!
Γk, (8)

where the matrices Γk ∈ R
n×n are given by (42) or (43). The

cross-covariance between the random variable and the function

can be expressed as

Cov[x, g(x)] = L CT = Σ AT , (9)

where we have arranged the vectors of (38) and (40) into

matrix forms C = [c1
1 c1

2 . . . c1
n] and A = [a1

1 a1
2 . . . a1

n].

Proof: Equation (7) is trivial from (38) with k = 0.

Equation (8) follows from the Parseval relation (41). Equation

(9) is trivial from (38) and (39) with k = 1.

Unfortunately, the direct use of the formulas (38) and (40) for

the Fourier-Hermite series coefficient vectors would require

computation of complicated expectation integrals. However,

by using the idea originally presented in [5, Eq. (6.4-12)], the

required number of the expectation integrals can be reduced

to only one:

Theorem 2: Assume that we can compute the following

integral in closed form:

ĝ(µ,Σ) =

∫

Rn

g(x)N(x|µ,Σ) dx. (10)

Then the derivative expectation terms in (40) can be equiva-

lently expressed as:

ak
j1,...,jk

=
∂k

∂µj1 . . . ∂µjk

ĝ(µ,Σ). (11)

Proof: k = 0 is trivial. For k = 1, we can assume that for

most functions of practical interest, we can change the order

of the integration and the differentiation:

c1
i =

∫

Rn

g(x)
[

H1(L
−1(x − µ))

]

i
N(x|µ,Σ) dx

=

∫

Rn

g(x)

n
∑

j=1

Lj,i
∂

∂µj
N(x|µ,Σ) dx

=
n

∑

j=1

Lj,i
∂

∂µj

∫

Rn

g(x)N(x|µ,Σ) dx. (12)

Further indices k = 2, . . . follow similarly.

Thus with the Theorems 1 and 2 we can construct Fourier-

Hermite series based approximations to the Gaussian expecta-

tions in terms of the integral (10) and its derivatives. Although,

the closed form integration of (10) is not always possible, for

many common functions it is possible to use the random input

describing functions tabulated in [21]. Finding closed form

formulas for the expectations in terms of elementary functions

or special functions is also nowadays easier than before due

to availability of powerful computer algebra systems (CAS).

Usually, the integral is the hardest part, but the derivatives are

an easy task for a CAS.

B. Fourier-Hermite Kalman Filter

We present the Fourier-Hermite Kalman filter up to third

order using the method described in section II-A. It is easy to

deduce how to compute fourth and higher order terms.

• Compute mean functions:

f̂(m, P) =

∫

Rn

f(x) N(x|m, P) dx

ĥ(m, P) =

∫

Rn

h(x) N(x|m, P) dx. (13)

• Compute Jacobians:

[F̂m(m, P)]i,i′ =
∂

∂mi′
f̂i(m, P)

[Ĥm(m, P)]i,i′ =
∂

∂mi′
ĥi(m, P). (14)

• Compute higher derivatives:

f̂
′′

i,j(m, P) =
∂2

∂mi∂mj
f̂(m, P)

f̂
′′′

i,j,u(m, P) =
∂3

∂mi∂mj∂mu
f̂(m, P)

... (15)

ĥ
′′

i,j(m, P) =
∂2

∂mi∂mj
ĥ(m, P)

ĥ
′′′

i,j,u(m, P) =
∂3

∂mi∂mj∂mu
ĥ(m, P)

... (16)

With these approximations, the prediction and update

steps of the Gaussian filter can be written as follows:
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• Prediction:

m−

k = f̂(mk−1, Pk−1)

P−

k = Qk + F̂m Pk−1 F̂
T

m +
1

2!

∑

i,j
u,v

f̂
′′

i,u Pi,jPu,v f̂
′′T

j,v

+
1

3!

∑

i,j
u,v
a,b

f̂
′′′

i,u,a Pi,jPu,vPa,b f̂
′′′T

j,v,b + . . . , (17)

where we used shorthand notation Pi,j = [Pk−1]i,j and

the derivatives are evaluated at mk−1 and Pk−1.

• Update:

Sk = Rk + Ĥm P−

k Ĥ
T

m +
1

2!

∑

i,j
u,v

ĥ
′′

i,u Pi,jPu,v ĥ
′′T

j,v

+
1

3!

∑

i,j
u,v
a,b

ĥ
′′′

i,u,a Pi,jPu,vPa,b ĥ
′′′T

j,v,b + . . . (18)

Kk = P−

k Ĥ
T

m S−1
k

mk = m−

k + Kk (yk − ĥ(m−

k , P−

k ))

Pk = P−

k − Kk Sk KT
k , (19)

where Pi,j =
[

P−

k

]

i,j
and the derivatives are evaluated at

m−

k and P−

k .

III. DISCUSSION

The first order truncation of the Fourier-Hermite series gives

the statistically linearized filter [5]. The first order truncation

of the series (37) using the coefficients of (38) leads to the

same filter form as in [5], which is also correct linearization

for any non-Gaussian distribution. In the Gaussian case, the

statistical linearization based approximations for (4), (5) and

(6) can be written with the first order truncation of (37) using

the coefficients of (40) and (39) as:

ĝ = E[g(x)] (20)

Cov[g(x)] ≈ E[Gx(x)]Σ E[Gx(x)]T (21)

Cov[x, g(x)] = Σ E[Gx(x)]T . (22)

where the expectations E[·] are with respect to x ∼ N(µ,Σ).
The corresponding approximations for EKF are very similar:

ĝ ≈ g(E[x]) (23)

Cov[g(x)] ≈ Gx(E[x])Σ Gx(E[x])T (24)

Cov[x, g(x)] ≈ Σ Gx(E[x])T . (25)

The order of the expectation and the nonlinear functions are

the opposite in the EKF and the SLF. Of course, with a linear

function the order is exchangeable. Also, the SLF recursion

becomes the EKF, if Σ is small and we use approximation

Σ → 0 in the expectations.

The second order approximation for the covariance can also

be written in a form closer to the approximation used in the

second order EKF [22]:

Cov[g(x)] ≈ E [Gx(x)] Σ E [Gx(x)]
T

+
1

2

n
∑

i,j=1

eie
T
j tr

[

E
[

Gi
xx(x)

]

Σ E
[

Gj
xx(x)

]

Σ
]

,

(26)

where ei is a coordinate axis column vector with one at index

i and zeros elsewhere.

Due to the orthogonality of the Hermite polynomials, the

Fourier-Hermite Kalman filter is relatively easy to compute for

any given order. The Taylor series used in EKF does not have

the same property. We demonstrate this with one dimensional

expansion of the variance:

Var[g(x)] = (g′(µ))2σ2 +

(

1

2
(g′′(µ))2 + g′(µ)g′′′(µ)

)

σ4

+ . . . (27)

The second order EKF [22] omits the g′(µ)g′′′(µ) term. It is

possible to develop higher order Taylor series based EKF, but

the expansion for variance will have more and more terms

of the form g(k)(µ)g(n)(µ)σk+n. The Fourier-Hermite series

gives only terms of the form E
[

g(k)(x)
]2

σ2k.

For a monomial of order n, the nth order FHKF gives exact

results for all the Gaussian expectations (4), (5) and (6). The

same is true for an nth order Taylor series based EKF. The

unscented transform [6] and the spherical cubature integration

[9] give exact results only for first order monomials, but

the unscented transform can be made exact for second order

monomials with a suitable selection of parameters [8]. The

Gauss-Hermite quadrature rule of order n gives exact results

for (n− 1)th order monomial [7]. More advanced inequalities

for the accuracy of the FHKF could be derived from the results

presented in [23], [24].

IV. NUMERICAL EXAMPLE

To illustrate the practical applicability of the proposed

filters, we consider the following simulated pendulum model,

whose discretized dynamic model can be written as

xk,1 = xk−1,1 + xk−1,2 ∆t

xk,2 = xk−1,2 − g sin(xk−1,1)∆t + qk−1,
(28)

where ∆t = 1/1000 is the sampling period, g = 9.81 and

qk−1 ∼ N(0, Q), with Q = ∆t/100. The measurement model

is the following:

yk = h(xk,1) + rk, rk ∼ N(0, R), (29)

where R = 1/1000 and h is the piecewise constant function

h(x) =







−1 , if x < −a/2 + b
0 , if − a/2 + b < x < a/2 + b
1 , if x > a/2 + b,

(30)

where the constants have the values a = 0.5, b = 0.4. In

the simulation it was assumed that the initial conditions were

known with a small error of variance 0.01 in both of the state
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Fig. 1. The results of (a) EKF (RMSE = 0.41), (b) first order FHKF (RMSE
= 0.16), (c) second order FHKF (RMSE = 0.04), and (d) third order FHKF
(RMSE = 0.03). The measurements are marked with small dots, the thicker
gray line is the real signal and thinner black line is the estimate.

components. Note that implementing an EKF to the model is

quite hard due to the piecewise constant measurement model

function. Probably, the biggest practical advantage of the SLF

or FHKF is that the functions do not have to be differentiable.

The expectation of the function (10) is differentiable although

the function is not. A sensible way to implement an EKF (or

linearized filter) is to replace the measurement model with

h(x) ≈ (x − b)/a. The result of tracking with this simple

linearized model is shown in Figure 1(a). As can be seen,

the result is quite far away from the correct one, because

the approximation is unable to take the asymmetry in the

measurements into account.

Much better result can be obtained with the statistically

linearized filter (SLF/FHKF1), that is, the first order Fourier-

Hermite Kalman filter, as shown in Figure 1(b). Because

here the linearization takes into account the distribution of

x, the asymmetry is also better accounted and the result is

much more accurate. The results of the second order Fourier-

Hermite Kalman filter (FHKF2) in 1(c), and the third order

Fourier-Hermite Kalman filter (FHKF3) in 1(d) are even more

accurate. The RMSE values for each of the filters are given

in the caption of the Figure 1.

For comparison, the same simulation was repeated also

with unscented Kalman filter (UKF) [6], [10], [13], cubature

Kalman filter (CKF) [8], [9] and Gauss-Hermite Kalman filter

(GHKF) [7]. In terms of RMSE, the GHKF gives similar

results as the equal order FHKF. UKF and CKF give similar

results as the second order FHKF or GHKF.

V. CONCLUSION

In this note we have introduced a novel Fourier-Hermite

Kalman filter for nonlinear filtering and developed a practical

method for computation. We have also analyzed, how the new

filter solution relates to the older filters EKF and SLF. The

new filter was also compared in a numerical simulation with

the EKF and the sigma-point methods: UKF, CKF and GHKF.

The performance of the FHKF and the sigma-point methods

were found equal in the simulation.

APPENDIX

FOURIER-HERMITE SERIES

We use the following definition of the Hermite polynomials

[25]:

Hn(x) = (−1)n ex2/2 dn

dxn
e−x2/2, n = 0, 1, . . . , (31)

which are orthogonal with respect to the inner product defined

by the expectation with respect to the standard normal distri-

bution N(0, 1) as 〈f, g〉 = E[f(x)g(x)]. If g(x) is a function

such that E[g(x)2] < ∞, then it has the Fourier-Hermite series

[25]:

g(x) =
∞
∑

k=0

1

k!
E[g(x)Hk(x)]Hk(x) (32)

=
∞
∑

k=0

1

k!
E[g(k)(x)]Hk(x), (33)

where the latter representation also requires that the kth

derivatives of the function satisfy E[g(k)(x)2] < ∞. When

the standard normal distribution N(0, 1) is replaced with an

arbitrary normal distribution N(µ, σ2), the representations (32)

and (33) become:

g(x) =
∞
∑

k=0

1

k!
E

[

g(x)Hk

(

x − µ

σ

)]

Hk

(

x − µ

σ

)

(34)

=

∞
∑

k=0

1

k!
E[g(k)(x)]Hk

(

x − µ

σ

)

σk. (35)

The Fourier-Hermite series (34), (35) can be generalized to

higher dimensions [25]. The multidimensional Hermite poly-

nomials are multi-index objects, whose elements are products

of one dimensional Hermite polynomials. Although, the usual

multi-index notation used in [16], [25], [26] is more elegant, it

is difficult to manipulate non unity covariances Σ 6= I with it.

Therefore we use notation similar to [26, Section 8]. For an m
order Hermite polynomial of n dimensional vector x we need

m indices i1, i2, . . . , im ∈ {1, 2, . . . ,m}. Indices are divided

into n sets (Js = {k|ik = s})n
s=1 of, which some may be

empty. The size of the sets is qs = |Js| ∈ {0, . . . ,m} so that
∑n

s=1 qs = m. The elements of the Hermite polynomial are

then:

[Hm(x)]i1,...,im
=

n
∏

s=1

Hqs
(xs). (36)

For example, let n = 3, m = 4, i1 = 3, i2 = 2, i3 = 2, i4 = 1,

then J1 = {4}, J2 = {2, 3}, J3 = {1}, q1 = 1, q2 = 2, q3 = 1
and [H4(x)]3,2,2,1 = H1(x1)H2(x2)H1(x3). For small m we

can use other notations: H0(x) = 1 is a scalar, H1(x) = x is

a vector and H2(x) = xxT − I is a matrix.

In a multidimensional case the standard deviation σ is

replaced with the Cholesky decomposition L of the covariance

matrix Σ = LL
T . One dimensional x−µ

σ is replaced with
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L
−1(x−µ). The multidimensional Fourier-Hermite series can

be written as:

g(x) =

∞
∑

k=0

1

k!

n
∑

i1,...,ik=1

ck
i1,...,ik

[

Hk

(

L−1(x − µ)
)]

i1,...,ik

,

(37)

where the coefficients corresponding to the one-dimensional

series (34) are given as:

ck
i1,...,ik

= E
[

g(x)
[

Hk

(

L−1(x − µ)
)]

i1,...,ik

]

. (38)

For sufficiently differentiable function, the multidimensional

analog of (35) is:

ck
i1,...,ik

=

n
∑

j1,...,jk=1

ak
j1,...,jk

k
∏

m=1

Ljm,im
, (39)

where

ak
j1,...,jk

= E

[

∂k

∂xj1 . . . ∂xjk

g(x)

]

. (40)

Due to the orthogonality, the coefficient vectors satisfy the

Parseval’s relation:

E[g(x) gT (x)] =
∞
∑

k=0

1

k!
Γk, (41)

where the matrices Γk are given by:

Γk =

n
∑

i1,...,ik=1

ck
i1,...,ik

(

ck
i1,...,ik

)T
(42)

=

n
∑

i1,...,ik=1
j1,...,jk=1

ak
i1,...,ik

(

ak
j1,...,jk

)T
k

∏

m=1

Σim,jm
. (43)
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