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Abstract. Approximations based on random Fourier embeddings have
recently emerged as an efficient and formally consistent methodology to
design large-scale kernel machines [23]. By expressing the kernel as a
Fourier expansion, features are generated based on a finite set of ran-
dom basis projections, sampled from the Fourier transform of the kernel,
with inner products that are Monte Carlo approximations of the original
non-linear model. Based on the observation that different kernel-induced
Fourier sampling distributions correspond to different kernel parameters,
we show that a scalable optimization process in the Fourier domain can
be used to identify the different frequency bands that are useful for pre-
diction on training data. This approach allows us to design a family of
linear prediction models where we can learn the hyper-parameters of the
kernel together with the weights of the feature vectors jointly. Under
this methodology, we recover efficient and scalable linear reformulations
for both single and multiple kernel learning. Experiments show that our
linear models produce fast and accurate predictors for complex datasets
such as the Visual Object Challenge 2011 and ImageNet ILSVRC 2011.

1 Introduction

The proper choice of kernel function and its hyper-parameters are crucial to
the success of kernel methods in practical applications. These selections span a
number of different problems, from choosing a single width parameter in radial
basis kernels, scaling feature dimensions with different weights [6], to learning
a linear or a non-linear combination of multiple kernels (MKL) [17]. In compli-
cated practical problems such as computer vision, sometimes the need of multiple
kernels arises naturally [32]. Images can be represented using descriptors based
on shape, color and texture, and these descriptors have different roles in clas-
sifying different visual categories. In such situations it is, in principle, easy to
design a classifier where each kernel operates on one of the descriptors or feature
channels and the classifier is obtained as a combination of kernels with category
dependent learnt weights.

A natural difficulty in kernel learning is scalability. Kernel methods scale with
an already mediocre time complexity of at least O(N2.3) with respect to the size
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460 E.G. Băzăvan, F. Li, and C. Sminchisescu

N of the training set, but combining multiple kernels or learning the hyper-
parameters of a single kernel significantly slows down training. Some speed-ups
apply to specific kernels, but only in limited scenarios [22]. As a consequence,
some of the standard kernel learning approaches can only handle a few thousand
training examples at most. This is insufficient for the current age of massive
datasets, such as the 11 million images ImageNet, or the 19 million articles
within Wikipedia.

An emerging technique that can in principle speed up the costly kernel method
while at the same time preserving its non-linear predictive power is the random
Fourier feature methodology (RFF) [23,33,19]. By sampling components from
the frequency space of the kernel using Monte Carlo methods, RFF obtains
a bounded, approximate representation of a kernel embedding, even for non-
linear models that may span an infinite-dimensional space. Many operations are
simplified once such a representation is available, the most notable being that
any kernel learning algorithm would now scale as O(N), where N is the number
of examples. This opens path for applying kernel methods to the realm of massive
datasets.

In the seminal work on random Fourier approximations [23], the methodology
was developed primarily for radial basis kernels. Recent work [33,19,25] focused
on extending this technique to other useful kernels defined on histogram fea-
tures (empirical estimates of multinomial distributions), such as the χ2 and the
histogram intersection measures. However, the potential of the linear Fourier
methodology for kernel learning remains largely unexplored. In this paper we
develop the methodology for learning both single kernel and for multiple ker-
nel combinations in the Fourier domain and show that these models produce
accurate and efficient predictors. We conduct experiments in the visual object
recognition domain, using both the PASCAL Visual Object Challenges 2011 and
the ImageNet ILSVRC 2011 datasets, to illustrate the performance of the pro-
posed Fourier kernel learning methodology. We also compare against non-linear
learning algorithms, designed to operate in the original kernel space and show
significant speedups at comparable accuracy.

2 Related Work

Approaches to kernel learning can be broadly classified into methods that esti-
mate the hyper-parameters of a single kernel[6,15] and methods that estimate the
weights of a linear combination of kernels and possibly their hyper-parameters
– the multiple kernel learning framework, MKL[2,16,34].

A popular approach for single kernel learning is the gradient-based method
pursued by Chapelle et al. [6,15]. Keerthi et al. [15] give an efficient algorithm
that alternates between learning an SVM and optimizing the feature weights.
Cortes et al. [8] propose a two-stage method based on the modification of a
kernel alignment [9] metric and prove a number of learning bounds. Approaches
to single kernel learning under a kernel prior have been pursued both as semi-
definite programs[17] and within unconstrained optimization formulations[12],
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although in both cases the optimization is fairly involved and the complexity
remains an issue. More recent methods attempt to track the entire regularization
path in the non-linear case [20].

Multiple kernel learning provides a powerful conceptual framework for both
model combination and model selection and has attracted significant research
recently. Initial approaches, originating with work by Lanckriet et al. [17] es-
timated a linear combination of kernels using semi-definite programming. This
was reformulated by Bachet al. [3] as block-norm regularization, reducing the op-
timization problem to a second order cone program applicable to medium scale
problems. More recent methods [7] learn a polynomial combination of kernels. A
number of approaches have pursued different lp-norms for kernel selection [16,34].
Hierarchical kernel learning approaches like (HKL) [2] perform feature selection
combinatorially, by choosing kernel combinations obtained by mapping to a di-
rected acyclic graph. The search for such combinations can then be performed
in polynomial time.

A difficulty with many single or multiple kernel learning formulations is their
relatively unfavorable scaling properties. When kernels are used, such methods
usually scale at least quadratically in the number of examples. Sometimes scaling
in the combined number of kernel parameters and number of kernel models can
also become an issue. A formulation of kernel learning within a linear Fourier
framework, as pursued in this paper, carries the promise of better scalability
and wider applicability to large datasets, while at the same time preserving the
non-linear predictive power that makes kernel methods attractive.

3 Learning Kernels in the Random Fourier Domain

3.1 Random Fourier Approximations

Kernels offer substantial power and flexibility to predictive models. Central to
their use is the ‘kernel trick’ which allows the design of algorithms that depend
only on the inner product of their arguments. This is based on the property
of positive definite kernels k(·, ·) to define a lifting φ so that the inner product
between lifted data points can be efficiently computed as φ(x)�φ(y) = k(x,y),
without having to explicitly construct φ(x). Algorithms become linear in a com-
plex feature space induced by φ, but access the data only through evaluations
of the kernel k in input space. This makes possible to handle complex or infinite
dimensional feature space mappings φ, and indeed these usually give the best
results in visual recognition datasets [14,18]. However the very advantage that
make kernel methods popular – the kernel trick, requires the manipulation of
matrices of pairwise examples. For large datasets, the scaling of kernel methods
is at least quadratic in the number of examples. This makes their direct usage
impractical beyond datasets of 104 elements. The methodology we pursue is to
approximate the kernel function linearly using random feature maps.

Key to the random Fourier methodology is Bochner’s theorem, that connects
positive definite kernels and their Fourier transforms [26,23,19]. For positive def-
inite translation-invariant kernels k(x,y) = k(x−y) on R

m, Bochner’s theorem
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Table 1. Examples of kernels that can be efficiently optimized within our framework,
given for the unidimensional case. In the multidimensional case, the Fourier methodol-
ogy decomposes, hence it requires a simple multiplication of parameters corresponding
to each dimension. Above, the random variable ω is drawn from the uniform distribution.

kernel parametric probability quantile σh(ω)
form (kσ) distribution μk(γ)

Gaussian 1

σ
√
2π

e
− ‖x−y‖2

2σ2 σ√
2π

e−
σ2γ
2 σ

√
2erf−1(2ω − 1)

Skewed− χ2
2(x+c)σ(y+c)σ

(x+c)2σ+(y+c)2σ
1
2σ

sech
(
πγ
2σ

)
σ 2

π
log

(
tan

(
π
2
ω
))

Skewed Intersection min
{

(x+c)σ

(y+c)σ
, (y+c)σ

(x+c)σ

}
1
π

σ
σ2+γ2 σ tan

(
π(ω − 1

2
)
)

guarantees that every kernel is the inverse Fourier transform of a proper prob-

ability distribution μk. Defining ζ(x) = ejγ
�x (with j the imaginary unit), the

following equality holds:

kσ(x,y) =

∫
Rm

ejγ
�(x−y)μk(γ)dγ = Eμk

[ζγ(x)ζγ(y)
∗] ≈ ψΓ (x)

�ψΓ (y) (1)

where ∗ is the (complex) conjugate, and

ψΓ (x) =

√
2

d

[
cos
(
γ�
i x+ 2πbi

)]
i=1,d

∈ R
d×1 (2)

is the random feature map at samples Γ = {γ1, . . . ,γd} drawn from μk and
b ∼ U[0, 1], the uniform distribution in the interval [0, 1]. We approximate the
expectation Eμk

[ζγ(x)ζγ(y)
∗] by means of a Monte-Carlo sample drawn from the

distribution μk. This is an operation on linear functions with explicit features.
The algorithm for the change of representation has two steps: i) Generate d
random samples Γ from the distribution μk; ii) Compute the random projection
ψΓ using (2), for all training examples. The approximation has the convergence
rate of Monte Carlo methods, O(d−1/2), dependent on the random sample size,
but independent of the input dimension. One usually needs up to a few thousand
dimensions to approximate the original kernel accurately.

Our kernel learning approach is based on the observation that manipulating
the sampling distribution μk in an optimization process identifies the different
frequency bands that are useful for prediction on training data. This effectively
leads to a posterior frequency distribution, given μk as a prior. Generating sam-
ples from this posterior and optimizing with respect to their expectation on the
training set gives a direct way of learning the parameters of the kernel in the
Fourier domain. However, as the kernel hyper-parameters σ change, Γ (the dis-
tribution induced by the kernel) changes and needs to be re-sampled. Although
this is feasible, changing the sampling distribution introduces conceptual dif-
ficulties during optimization as sampling introduces noise, high-variance and
non-smoothness in the optimization cost. Importance sampling can be used to
avoid resampling at each step, but if the parameterized frequency distribution
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μk drifts far away from the initial kernel-induced distribution, the original sam-
ples will have little importance weights, and resampling would potentially be
necessary for convergence. Such difficulties can be overcome for several interest-
ing kernels that belong to a class of functions where μk has an explicit quantile
which is linear in the kernel parameters. Assuming the quantile of μk has the
form γ = σ � h(ω) where h is a nonlinear function, and � is the Hadamard
product of two vectors then we can draw the required samples Γ from μk using
the following procedure: (i) draw d vectors ωi of the same dimensionality as
the input vectors x from the uniform distribution; (ii) pass each ωi through the
nonlinearity h, and (iii) multiply each dimension of the resulting h(ωi) with the
corresponding σi. The desired samples are obtained as

γi = σ � h(ωi) (3)

Notice that when changing the kernel parameters σ we no longer have to re-
sample ωi. Throughout the entire optimization process, sampling needs to be
done only once from the uniform distribution for each ωi. When σ is changed,
samples from the new distribution are generated automatically from the stored
values of h(ωi). In the sequel, we consider the case of anisotropic input scaling.
In this case we have γi = [σ1h(ωi,1), . . . , σrh(ωi,r)], and the Fourier embedding
can be written as

ψσ(x) =

√
2

d

⎡
⎣cos

⎛
⎝ r∑
j=1

σjh(ωi,j)
�xj + 2πbi

⎞
⎠
⎤
⎦
i=1,d

∈ R
d×1 (4)

where xj is the block from the input data x that corresponds to σi, and r is the
number of blocks x is split into. Examples of kernels that can be learned using
this procedure are the Gaussian, the generalized Skewed-χ2 and the generalized
Skewed Intersection[19] (see Table 1).

3.2 General Learning Model

We express our kernel learning model as a general cost optimization problem
where we jointly learn the kernel parameters σ and the weights w of a linear
predictor operating on the new Fourier representation. In the sequel we denote X
and y the matrix of inputs or covariates x (column-wise organized) and y the vec-
tor of targets on the training set, respectively. We define ψσ(X) ∈ R

d×n, where n
is the number of inputs, to be the feature map applied to all inputs(columns) of
matrix X ∈ R

m×n. The general form of the error function we wish to minimize
can be written as

f (σ,w) = l(ψσ(X)�w,y) + ν(w) + η(σ) (5)

where ψσ(x) is the Fourier embedding of an input data x, l(ȳ,y) is the loss
function which measures how close the predicted labels ȳ = ψσ(X)�w are to
the ground truth y, ν(w) is a regularizer on the linear parameters w and η(σ)
is a regularizer on the kernel hyper-parameters σ.
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Optimizing the parameters in equation (5) depends on the different design
decisions made for the model. In Table 2 we show different choices of loss func-
tions and regularization terms. If f is smooth in both σ and w and we choose to
jointly optimize all parameters, we will need to compute the gradient of f with
respect to these parameters. The following derivatives are completely general,
based on the model (5)

∂f (σ,w)

∂σ
=

(
∂l
(
ψσ(X)�w,y

)
∂ψσ(X)�w

)�
∂ψσ(X)�

∂σ
w+

∂η(σ)

∂σ
(6)

∂f (σ,w)

∂w
=

(
∂l
(
ψσ(X)�w,y

)
∂ψσ(X)�w

)�
ψσ(X) +

∂ν(w)

∂w
(7)

In the above equations, the derivative of the loss with respect to the linear
predictor ψσ(X)�w, as well as the derivatives of the regularizers are usually
easy to compute. A key quantity is the derivative of the random Fourier map

with respect to the parameters ∂ψσ(X)�

∂σ , e.g. (11).
The number of parameters for the joint optimization can be large (up to

thousands) which indicates that a limited memory quasi Newton algorithm, such
as l-bfgs is appropriate. When f is not smooth because of specific choices of
regularization, e.g. l1 norms, it is possible to use methods based on projection
onto the constraint set instead [21]. In such cases, we only need to provide the
derivative of l with respect to σ and w.

There are situations when, given σ, there is a closed form solution forw. Then
we can follow an optimization scheme for σ, and at each gradient step provide
the solution for w. In such sitations, we might also have to provide a derivative
of w with respect to σ. Denote by wσ the w that minimizes f given a fixed σ.
Then we have to provide the following gradient

∂f (σ)

∂σ
=

(
∂l
(
ψσ(X)�wσ,y

)
∂ψσ(X)�wσ

)�(
∂ψσ(X)�

∂σ
wσ + ψσ(X)�

∂wσ

∂σ

)
+

(
∂ν(wσ)

∂wσ

)�
∂wσ

∂σ
+
∂η(σ)

∂σ
(8)

Such methods are applicable not only for random Fourier feature maps, but
for any other embeddings where it is easy to compute the gradient of the map
∂ψσ(X)
∂σ with respect to the parameters.
In the next sections we present two models that we find particularly effective

for visual applications. Each one has an equivalent non-approximated counter-
part which scales quadratically in the number of training samples, whereas our
Fourier reformulations have linear complexity.

3.3 Single Kernel Learning

First we consider the case of single kernel learning. We use the Fourier embedding
ψσ, introduced earlier (4) as our approximation of the kernel lifting. This model
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Table 2. Different loss functions and regularizations for the parameters. These could
be combined in many ways. For each combination, different derivations are needed, but
all will require the derivatives of the Fourier feature map with respect to the kernel
parameters, e.g. (11).

l(ȳ,y) ν(w) η(σ)

square loss: ‖ȳ − y‖22 l2: λ‖w‖22 l2: ν‖σ‖22
hinge loss:

∑
i max(ȳi − yi, 0) l1: λ‖w‖1 l1: ν‖σ‖1

logistic loss:
∑

i log(1 + exp(−yiȳi)) l2,1: λ
∑

j ‖wj‖2

uses a quadratic loss function and a quadratic regularizer on both w and σ. The
instantiation of the error function in (5) is

f (σ,w) =
1

2

∥∥ψσ(X)�w− y
∥∥2
2
+ λ ‖w‖22 + ρ ‖σ‖22 (9)

For fixed σ there is a closed form solution for w, as this becomes a ridge regres-
sion problem

wσ =
(
ψσ(X)ψσ(X)� + λI

)−1
ψσ(X)y (10)

We further need to compute the gradients ∂ψσ(X)
∂σ and ∂wσ

∂σ , of (8). We give
gradients for a single training input x, being easy to extrapolate for the entire
matrix

∂ψσ(x)

∂σj
=

⎡
⎣−
√

2

d
h(ωi,j)

�xj sin

⎛
⎝ r∑
j=1

σjh(ωi,j)
�xj + 2πbi

⎞
⎠
⎤
⎦
i=1,d

(11)

LetQ = ψσ(X)ψσ(X)�+λI, and using a standard result, ∂Q
−1

∂σ = −Q−1 ∂Q
∂σQ

−1,
we obtain

∂wσ

∂σj
= −Q−1 ∂Q

∂σj
Q−1ψσ(X)y +Q−1 ∂ψσ(X)

∂σj
y

The gradient of Q with respect to σj can be obtained as

∂Q

∂σj
=
∂ψσ(X)

∂σj
ψσ(X)� + ψσ(X)

∂ψσ(X)�

∂σj
. (12)

The overall cost we employ bears a certain similarity to the objective introduced
in [6] where the authors use a gradient descent learning technique for kernel
ridge regression based on the exact kernel matrix. It also relates to the multiple
learning technique for products of kernels introduced in [30]. However, besides
the technical differences introduced by the usage of a Fourier map, an important
advantage of our methodology is that we do not have to store the kernel matrices
in memory, which takes O(N2) space. Our memory requirement is just O(Nd+
d2) where d is the size of the Fourier embedding. The computational complexity



466 E.G. Băzăvan, F. Li, and C. Sminchisescu

of the method is dominated by O(iskl(Nd
2+d3+rNd)) where d is the size of the

random Fourier features, N is the number of training samples, r is the number
of kernel hyper-parameters and iskl is the number of iterations to convergence.
O(Nd2 + d3) is the cost of computing the matrix Q and inverting it.

3.4 Multiple Kernel Learning

We propose a multiple kernel learning formulation where the feature channels are
initially transformed using random Fourier embeddings and concatenated within
an optimization framework based on block l1 norm regularizer (RFF-MKL).
We prove that this new formulation is equivalent to an l1 regularized multiple
kernel learning formulation introduced in [30] (GMKL) and then compare the
two methodologies. Experiments show that both approaches have similar per-
formance. In contrast, the block l1 regularized MKL method based on random
Fourier maps runs faster and scales better since we do not need to compute or
store the Gram matrices associated with the input features.

In this case, the Fourier embedding has the following concatenated form

ψσ(X) =
[
ψσ1(X1)

�, . . . , ψσr (Xr)
�]� where we have split row-wise the input

matrix X into r different input matrices {X1, . . . ,Xr}, one corresponding to
each feature channel. We have a different embedding for each descriptor

ψσj (Xj) =

[√
2

d
cos
(
σjh(ωi,j)

�Xj + 2πbi
)]

i=1,d

∈ R
d×n (13)

and for different input samples u and v on which the same anisotropic scaling
is applied we have ψσ(u)

�ψσ(v) =
∑r

i=1 ψσi(ui)
�ψσi(vi) ≈ ∑r

i=1 kσi (ui,vi).
This corresponds to the sum of kernels for the different feature channels.

We now show that the l1 regularized GMKL is equivalent, as an optimiza-
tion procedure, with RFF-MKL. For GMKL, we have the following primal
problem[30]

min
w,d

1

2
w�w + Cl(φ(X)�w,y) +

r∑
j=1

dj , subject to d ≥ 0 (14)

where l is the ε-insensitive hinge loss used for svm regression and

φ(X) = [
√
d1φ1(X1)

�, . . . ,
√
drφr(Xr)

�]�, (15)

with φj(Xj) the lifting associated to kernel kj , which is applied on the feature
channel Xj . From the Representer Theorem [27] we know that the solution for
w will be a linear combination of basis functions

w =
∑

αxφ(x) =
[√

d1w
�
1 , . . . ,

√
drw

�
r

]�
(16)

where we have summed over all input data x and dropped the bias term for
simplicity. We can then rewrite the above equation (14) as

min
w,d

r∑
j=1

dj
2
‖wj‖22 + Cl(

r∑
j=1

djφj(Xj)
�wj ,y) +

r∑
j=1

dj , subject to d ≥ 0 (17)
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Following a standard trick from the multiple kernel learning literature[1] we make
the substitution djwj → wj to obtain the optimization problem

min
w,d

r∑
j=1

‖wj‖22
2dj

+ Cl(

r∑
j=1

φj(Xj)
�wj ,y) +

r∑
j=1

dj , subject to d ≥ 0 (18)

It can easily be shown that 1
2
‖wj‖2

2

dj
+ dj ≥ √

2‖wj‖2, and we observe that the

loss function no longer depends on d. Replacing the lifting φ by our Fourier
embedding ψσ and the ε-insensitive hinge loss with an approximate smooth
loss[10,24], the primal multiple kernel learning formulation is equivalent to the
following l2,1 norm optimization formulation

min
w

l(ψσ(X)�w,y) + λ

r∑
j=1

‖wj‖2 (19)

where we set λ =
√
2
C . The equality holds when dj = 1√

2
‖wj‖2. We see this

is a particular case of the general model (5) where σ is fixed and we have to
optimize for w with an l2,1 regularizer. The loss function we use to approximate
the ε-insensitive loss (ε-IL) used in standard support vector regression is the
ε-insensitive γ logistic loss (ε-IGLL) function[10,24](see Fig. 1) defined as

lγ,ε(ȳ,y) =
1

γ

N∑

i=1

[
log

(
1 + eγ(ȳi−yi−ε)

)
+ log

(
1 + eγ(−ȳi+yi−ε)

)
− 2 log(1 + e−γε)

]

where N is the number of input samples, ȳ = ψσ(X)�w and we have to provide

the gradient
∂lγ,ε(ψσ(X)�w,y)

∂w . We give the gradient for a single input x, and the
first term in lγ,ε. It can be easily extended to the entire matrix X, and to the
other two terms of lγ,ε

∂ log(1 + eγ(ψσ(x)�w−y−ε)

∂w
= γ

eγ(ψσ(x)�w−y−ε)

1 + eγ(ψσ(x)�w−y−ε)ψσ(x) (20)

In an associated technical report[36] we discuss the computational and mem-
ory complexities and conclude that RFF-MKL scales linearly, while GMKL is
quadratic.

4 Experiments

We present experiments for single kernel learning and multiple kernel learning,
comparing the random linear Fourier methodology with its non-linear kernel
counterparts both in terms of running times and in terms of accuracy.

In a first set of experiments, we have evaluated the methods in the PASCAL
VOC2011[35] segmentation challenge. This consists of 2223 images for training
with ground truth split into halves for training and validation. Another 1111
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images are given for testing without ground truth. Following the standard pro-
cedure we have trained the methods on the training set (further split, internally
into training and validation for kernel hyper-parameter learning) and tested on
the PASCAL VOC2011 validation set. We have used the methodology presented
in Li et al. [18] and relied on the publicly available CPMC segmentation algo-
rithm from Carreira and Sminchisescu [4] to filter the initial pool of segments
to around 100 segments per image. For each of these segments we extracted 7
types of features among which two bag of visual words for color SIFT [29] and
two dense gray scale SIFT descriptors, one on each segment and one on the
background of each segment and three types of phog descriptors, two on the Pb
edges given by [13] computed at different scales, one on the contour and one on
the foreground. The third phog descriptor does not use Pb. Because the number
of segments (around 105) was still too large for any kernel support vector based
algorithm to cope with, we have chosen up to 104 segments for each class. The
segments were chosen based on their individual scores and we balanced the ex-
amples to have a fair split between positives and negatives. More detail on how
the scores are defined and computed can be found in [18].

Single Kernel Learning. We run a set of experiments for our single kernel
learning technique based on random Fourier features (RFF-SKL) and compare
in terms of accuracy with the single kernel learning technique introduced by
Chapelle et al. [6] (KRR-GD). We want to predict the class for more than 105

segments. We expect RFF-SKL to give comparable results in terms of accuracy
to KRR-GD. Results are shown in Table 3. We vary the size of the training
set from 103 to 105 and measure both the running times of RFF-SKL and the
accuracy. In Fig. 1 we show how the accuracy depends on the size of the training
data and the average time required for RFF-SKL and KRR-GD to run on one
class. We observe that RFF-SKL running time scales linearly in the number of
examples. The number of random Fourier samples we have chosen was d = 3000.
This is consistent with our computational complexity discussed in Section 3.3.
We are able to tune the hyper-parameters of a Fourier model trained with more
than 105 samples, each with 3000 attributes in less than 15 minutes.

Table 3. Accuracy of RFF-SKL versus KRR-GD. For a large number of training
samples the nonlinear method could not be run due to memory limits.

Samples 2.5 · 103 5 · 103 7.5 · 104 104 2 · 104 6 · 104
RFF-SKL 0.21 0.25 0.28 0.29 0.31 0.32

KRR-GD 0.24 0.29 0.31 0.32 * *

Multiple Kernel Learning. We also report experiments for multiple kernel
learning. For GMKL we have evaluated an exponentiated χ2 kernel for each
image feature. We set the scaling parameter to be the mean of the chi-square
distance matrix following the procedure from [14]. Gram matrices were created
for each class since for different classes we had to select different representa-
tive samples. For our multiple kernel learning based on random Fourier features
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Fig. 1. On the left, we plot time versus accuracy for classifying the VOC segments
for RFF-SKL and KRR-GD. We varied the number of training points from 103 up to
105 and measured the average time for a class, for 20 classes. For KRR-GD it was not
feasible to go beyond 104 training samples (horizontal axis, log scale). On the right
we show that an ε-insensitive γ loss function we use for optimization provides a good
approximation to the exact ε-insensitive loss. Here we show values for ε = 0.1 and
γ = 1, 5, 10.

within the l1 block regularizer (RFF-MKL) we have approximated the kernel
as in [28] using the recommended settings. In Fig. 2 we compare the accuracy
of predicting the correct class of segments and we show the average running
time per class. We see that for a small number of training samples GMKL is
slightly superior, but RFF-MKL catches up eventually due to its better scal-
ability. Notice that RFF-MKL scales linearly and GMKL scales quadratically.
Working with kernel matrices larger than 104 was not feasible for GMKL. We
also conducted experiments on the Skewed χ2 kernel and evaluated performance
as we varied the dimension d of the Fourier embedding. For each dimension we
trained a different model and compared to GMKL. Results are shown on Fig. 3.
To build the regularization path we traced the parameter λ in equation (19).

We have experimented on the ImageNet[11] ILSVRC2011 dataset as well.
We first considered 12 classes taken from the ILSVRC2011, each having 1300
images and split them into a train and test sets of 1000 and 300, respectively.
For each image we extracted three types of feature channels: two types of phog
descriptors at 3 pyramid levels each and at 20, respectively 40 orientations, and
a phow[31] feature channel extracted over three pyramid levels. We converted all
the features in the Fourier domain using the procedure from [28]. We used this
data to compare two joint models with their corresponding average models. In
the joint models both σ and w are learned, whereas for the average models σ is
fixed and only w is learned. First, we compared a multiple kernel learning joint
model with a square loss and a l2,1 regularizer with its average model, identified
as RFF-SQL-MKL-JOINT and RFF-SQL-MKL respectively. Then we compared
a single kernel learning joint model with a square loss and a quadratic regularizer
with its average model, identified as RFF-SQL-SKL-JOINT and RFF-SQL-SKL
respectively. Results are presented in Fig. 3.
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Fig. 2. On the left, we show the accuracy for classifying the VOC segments for RFF-
MKL and GMKL, as a function of the number of training examples. RFF-MKL scales
significantly better than GMKL. On the right, we show running times expressed in
seconds for RFF-MKL and GMKL. Notice that RFF-MKL scales linearly whereas
GMKL scales quadratically. Error-bars are obtained by averaging over the number of
classes (20 in this case).
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Table 4. Accuracy on the ILSVRC2011 dataset and average training time per class.
l2,1 regularizers are more effective than l2 norms in this case. The single kernel learning
model is indeed faster, but the multiple kernel learning models give better performance.

Method RFF-SQL-MKL RFF-SQL-SQR-MKL RFF-SQL-SKL

Accuracy 18.5% 12.3% 10%

Time 196±42s 101±41s 27±13s

We then extracted the same feature channels for all the 1000 classes of the
ILSVRC2011 dataset. We trained in the Fourier domain RFF-SQL-MKL, RFF-
SQL-SKL and a third multiple kernel learning model with l2 loss and l2 regu-
larizer, identified as RFF-SQL-SQR-MKL, on the entire dataset. We tested on
the 50,000 images validation set, since the ground truth for the test set is not
publicly available. Results are shown in Table 4. We observe that our results
match the accuracy levels reported for Imagenet baselines [5]. While better fea-
tures and kernels can certainly improve performance, we appreciate that fast,
yet generic approximate non-linear learning methods like the ones we propose,
have potential for such large datasets.

5 Conclusions

The Fourier methodology provides a powerful and formally consistent class of
linear approximations for non-linear kernel machines, carrying the promise of
both good model scalability and non-linear prediction power. This has motivated
research in extending the class of useful kernels that can be approximated, e.g.
χ2 [33,19,25], but leaves ample space for reformulating standard problems like
single or multiple kernel learning in the linear Fourier domain. In this paper, we
have developed gradient-based methods for single and multiple-kernel learning
in the Fourier domain and showed that these are efficient and produce accurate
results on complex computer vision datasets like VOC2011 and ILSVRC2011. In
future work we plan to explore alternative kernel map approximations, feature
selection and non-convex optimization techniques for learning.
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