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Hyperspectral images contain a great amount of information which can be used to more
robustly register such images. In this paper, we present a phase correlation method
to register two hyperspectral images that takes into account their multiband struc-
ture. The proposed method is based on principal component analysis, the multilayer
fractional Fourier transform, a combination of log-polar maps, and peak processing.
The combination of maps is aimed at highlighting some peaks in the log-polar map
using information from different bands. The method is robust and has been success-
fully tested for any rotation angle with commonly used hyperspectral scenes in remote
sensing for scales of up to 7.5x and with pairs of hyperspectral images taken on dif-
ferent dates by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
for scales of up to 6.0x%.

Keywords: hyperspectral data; image registration; Fourier transform; feature
extraction; remote sensing.

1. Introduction

The development of image sensor technology has made it possible to capture hy-
perspectral images composed of hundreds of bands covering a wide range in the
electromagnetic spectrum (Landgrebe 2002). The high dimensionality of hyper-
spectral data offers new opportunities for recognizing and classifying materials.
Applications range from agriculture (Haboudane et al. 2004), mineralogy (Cud-
ahy et al. 2010), medicine, quality control, material inspection, and surveillance,
among others. Hyperspectral sensors usually collect two dimensional spatial images
comprising hundreds of spectral bands, so that specific techniques are required to
exploit all the information available in the hyperspectral data (Fauvel et al. 2013).

Image registration is a fundamental task in many image processing applications.
We consider the image registration problem associated with images where the trans-
lation, rotation, and scaling parameters between a reference image and a second
image of the same scene must be estimated. Several different algorithms to solve au-
tomatic image registration have been proposed (Dawn, Saxena, and Sharma 2010;
Deshmukh, and Bhosle 2011; Le Moigne, Netanyahu, and Eastman 2011; Goshtasby
2005, 2012). Fourier methods are very efficient because the fast Fourier transform
(FFT) can be used to compute the cross-correlation (phase correlation) between
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the two images. Additionally, they are resilient to noise, occlusions, and other de-
fects typical of medical or remote-sensing images. The method was proposed by
Chen, Defrise, and Deconinck (1994) for translation, rotation and scale-invariant
image registration using a log-polar grid. This method is also known as Fourier-
Mellin invariant symmetric phase-only matched filtering (FMI-SPOMF) (Dasgupta
and Chatterji 1996; Reddy and Chatterji 1996; Derrode and Ghorbel 2001). Keller,
Averbuch, and Israeli (2005) introduce the pseudopolar Fourier transform (PPFT)
to improve the approximation of the log-polar map for the estimation of large trans-
lations, rotations, and scalings. The pseudo-log-polar Fourier Transform (PLPFT),
which can be calculated quickly by utilizing the Fourier separability property and
the Fractional Fourier Transform (FRFT), was proposed by Liu, Guo, and Feng
(2006). The PPFT was generalized by Chou, Izatt, and Farsiu (2009), while an
octa-log-polar version of the PLPFT was proposed by Wu, Guo, and Wang (2009).
A simpler approach was followed by Pan, Qin, and Chen (2009), who proposed an
adaptable Multilayer Fractional Fourier Transform (MLFFT) for image registra-
tion with lower interpolation errors in both polar and log-polar grids.

Another approach in image registration is based on feature detection methods.
These methods extract and match representative features from both images. The
matched features between the two images allow determining the geometrical trans-
formation that is needed to register the images. The Scale Invariant Feature Trans-
form (SIFT) method was proposed by Lowe (2004) and presents a local descriptor
that is robust to changes in illumination and camera viewpoint. It is invariant to
image scaling or rotation. These characteristics make it an excellent approach for
image registration, obtaining very effective algorithms (Rey Otero 2014; Ke, Yan,
and Rahul Sukthankar 2004; Zhu et al. 2009). The Speeded-Up Robust Features
(SURF) algorithm was proposed by Bay, Tuytelaars, and Van Gool (2006) and
outperforms the SIFT method in terms of distinctiveness and computational time.

The hundreds of bands collected by a hyperspectral sensor can be acquired as
a sequence of images at different wavelengths. Since it takes time to collect these
images, image registration is required to match the band-to-band pixel locations
and build coherent image cubes. For this purpose Kern, Pattichis, and Stearns
(2004) used the multivariate mutual information as a similarity measure, while
Moigne et al. (2002) developed methods based on wavelet decomposition, edge
detection, mutual information and feature matching to perform dimension reduc-
tion and automatic registration and fusion of multisensor data. Fourier methods
were implemented by Erives, and Fitzgerald (2005, 2006) to recover scaling, rota-
tion, and translation parameters from an airborne hyperspectral imaging system.
A similar system is proposed by Wang, Xu, and Zhang (2013). Vakalopoulou, and
Karantzalos (2014) introduce an automated framework which allows using differ-
ent feature descriptors such as SIFT, SURF and Affine-SIFT (ASIFT) to align the
hyperspectral bands.

A slightly different task is the registration of two multi-channel images. Rhode et
al. (2003) describe a general framework for the registration of two multi-channel im-
ages and propose a multivariate correlation as a similarity measure. However, most
existing multi-channel image registration methods are specific to the registration of
multi-valued medical data, such as phase contrast Magnetic Resonance Angiogra-
phy (MRA) and diffusion tensor Magnetic Resonance Imaging (MRI). Ruiz-Alzola
et al. (2002) proposed a unified framework for the nonrigid registration of 3D ten-
sor medical data using local matching. The approach used by Avants (2008) is
to average the cross-correlations calculated for each channel individually. Heinrich
et al. (2014) present an approach based on canonical correlation analysis which is
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able to find new correlations using linear combinations of multiple channels.

In the field of remote sensing some methods have been proposed for the registra-
tion of two hyperspectral images. Mahdi and Farag (2002) use a genetic algorithm
as a search technique to estimate the optimum parameters for the matching of two
multispectral data sets. This approach can be considered a fusion of the different
decisions resulting from the registration of the different bands. Chen, Leung, and
Boss (2011) propose the use of the expectation maximization algorithm to solve
the joint image registration and fusion problem. The registration parameters are
estimated by maximizing a conditional expectation function. Bunting, Labrosse,
and Lucas (2010) outline a method for the automatic registration of multi-sensor
remote imagery using multiple scales and resolutions, introducing a self-organising
network to control the movements of neighbouring tie points. However, none of
these methods are based on Fourier transforms.

In this paper we propose a Fourier-based method for the registration of two
hyperspectral images called HY perspectral Fourier-Mellin algorithm (HYFM). The
method exploits the information contained in the different bands of the images
and is based on principal component analysis, the multilayer fractional Fourier
transform and a combination of log-polar maps. This last operation is aimed to
highlighting some peaks in the log-polar map using information from different
bands.

2. Registration of hyperspectral images

In this section we present an automatic method to register two hyperspectral im-
ages (reference and target) that exploits not only the spectral but also the spatial
information available in the images. The proposed method is based on the com-
putation of Fourier transforms and log-polar maps and on the processing of the
peaks detected in these maps. The main problem that is successfully solved in this
paper is the adaptation of the registration method to the case of hyperspectral
images. When facing the processing of hyperspectral images, a key issue is that
they are highly correlated in the spatial and spectral dimensions. This complicates
the design of new algorithms and increases processing times.

In the case of the registration proposal presented here, the most direct approach
is to perform the registration of each band of the two images separately and to
compute a vote of the results obtained. This approach was discarded because of the
excessive computational time and because the results are worse than using other
solutions. A common approach in the literature in order to deal with the high
dimensionality of the images is to perform a dimensionality reduction and feature
extraction of the images by wavelets or Principal Component Analysis computation
(PCA) (Richards 1999). The process, in this case registration, is then computed
from a small number of components. The choice in this work is to retain typically
four, eight, or the number of PCA components (PCs) required to accumulate “high
enough” variance, for each one of the two images. The registration is then applied
to pairs of PCA components.

In some experiments in this paper the dimensionality reduction is also carried
out by computing a gradient of the hyperspectral image based on the Euclidean
distances among pixel vectors by using the Robust Color Morphological Gradient
(RCMG). This gradient (Evans and Liu 2006) reduces the dimensionality of each
one of the original hyperspectral images so that finally a pair of one-band images
whose edges are enhanced and thinned is obtained. In the experiments where the
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Figure 1. Log-polar maps after the phase correlation for two replicas of the Indian
Pines image with a scale factor of 1 and a rotation angle of 45°: (a) for the first
PCA component, and (b) for the combination of the first eight PCA components.

RCMG is calculated, a pair of components consisting of the RCMG band for each
hyperspectral image is also included along with the PCA component pairs.

Additionally, the registration experiments performed have revealed that an ef-
ficient approach to combine the information is to combine the phase correlation
maps computed for each pair of PCA components, since it allows each pair to con-
tribute to the cross-correlation independently. The combination is performed by
averaging the different contributions. The averaging of the log-polar maps is aimed
at highlighting some peaks in the final map by using information from different
bands. As an example, Figure 1 shows two log-polar maps after the correlation
for two replicas of the Indian Pines image. On the left of the figure, the log-polar
map is displayed for the first PC and a number of high peaks of similar height are
observed, while the figure on the right shows the combination of phase correlations
for the first eight PCA components where highlighted peaks are visible, especially
one of them.

The registration method proposed in this paper, which it is called the HYFM
method, is detailed in the pseudocode shown in Figure 2 and consists of the fol-
lowing steps. First, a PCA is performed on the two hyperspectral images retaining
several components that are arranged in pairs. Next, the phase correlation method
is applied to each pair of components. In this step, the MLFFT technique is used
to approximate the log-polar grids. This technique uses Fractional Fourier Trans-
forms (FRFTSs) to reduce the interpolation errors and, therefore, to achieve better
accuracy. Then, the different log-polar grids are combined to integrate the infor-
mation from the different pairs of principal components. This step highlights some
peaks of the log-polar grid. Finally, the highest peaks are examined to determine
the scaling, rotation, and translation parameters. In the following subsections, we
detail the different stages of the method.

2.1. Phase correlation

The Fourier based automatic registration relies on the Fourier shift theorem, which
states that a circular shift in the spatial domain is equivalent to a phase ratio in
the frequency domain.

Let I1(z,y) and I3(z,y) be two images, where (x,y) are the spatial coordinates,
being the second image a translated replica of the first one,


https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1292071

January 30, 2017 International Journal of Remote Sensing reg-1JRS
This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Remote Sensing
on 21/03/2017, available online: https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1292071.

Input: Two hyperspectral images (reference and target).
Output: Scale factor pg, rotation angle 6y, and shift (zo, yo)-
Parameters: Number of components, FRFT «; parameters, and number of log-polar peaks.
(1) Preprocessing (for the two images separately).
(a) Apply a Blackman window to each hyperspectral band.
(b) PCA computation.
(c) Apply a high-pass filter to each component.
(d) Extend each component to N x N pixels, with N power of 2.
(2) Log-polar and phase correlation.
e For each PCA component pair:
(a) Compute FRFTs with parameters aq, aa, ..., ar for each PCA component.
(b) Compute the L-level MLFFT grid for each PCA component.
(c) Approximate a N/2 x N/2 log-polar grid for each PCA component.
(d) Compute phase correlation in the log-polar grid.
(3) Combination of log-polar maps.
(a) Average the log-polar maps obtained for each pair of PCA components.
(4) Peak processing.
(a) Sort by magnitude the log-polar peaks.
e For each peak (with coordinates p’ and 0’):
(i) Scale and rotate (6" and 6’ + 7) first PCA component of target image.
(ii) Compute phase correlation in the cartesian grid.
(iii) Select the highest peak (with coordinates z’ and y’).
(b) Use the highest peak of all cartesian grids to determine (po, 6o, o, yo)-

Figure 2. Pseudocode for the HYFM registration.

Iy(z,y) = Li(x + xo0,y + o), (1)

the shift theorem states that their Fourier transforms are related by

Fy(u,v) = e2ruzotvyo) gy (4 v), (2)

where (u,v) are the coordinates in the transform space and i is the imaginary unit.
Applying the phase correlation in the frequency domain,

Fi(u,v)F5 (u,v)
|1 (u, 0) F5 (u, v)|

_ e—i27r(uxo+vy0)’ (3)

and, finally, computing the inverse Fourier transform, we obtain a matrix with
approximate zeros everywhere except for a peak at coordinates (xg,yo), that can
be used to register the images.

To recover the rotation and scaling parameters, Chen, Defrise, and Deconinck
(1994) proposed using the log-polar Fourier transform (Fourier-Mellin transform).
Let Iy be a translated, scaled, and rotated replica of I, with scale factor pg and
rotation angle 6y, i.e.,

I(z,y) = Ii(po(z cos by + ysinby + zo), po(—x sin by + ycosby + yo)),  (4)

applying the Fourier shift theorem in polar coordinates (p, ), we obtain,

Fy(p,0) = e'@srotwuto) p o2 [ (piLp, 6 + 6p), (5)

where w; = pcosf and w, = psind.
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Moreover, taking the magnitude of the Fourier transform and the logarithm of
the radius p, we have

|Ex(Inp, )] = po*|Fi(lnp — n po, 6 + o), (6)

wherein py and 6y can be obtained by applying again the Fourier shift theorem
and the phase correlation. In this case, we obtain a matrix with approximate zeros
everywhere except for a peak at coordinates (In pg, fy), that can be used to register
the images.

Stone, Tao, and McGuire (2003) investigated the factors that degrade the preci-
sion of image registration based on phase correlation. The major sources of error
are interpolation error and rotationally dependent aliasing. Since rotationally de-
pendent aliasing is exacerbated by the presence of high frequencies, the use of a
Blackman window removes spurious high frequencies created by the image bound-
ary and greatly reduces aliasing effects (Harris 1978). Since the remaining aliasing
effects are strongest in the low frequencies of the Fourier transform, their effects
can be reduced to a negligible amount by removing frequencies within a radius of
N/4 of the Fourier domain origin. To this end, Reddy and Chatterji (1996) pro-
posed using a simple high-pass emphasis filter transfer function based on the cosine
function.

2.2. FRFT

The Fractional Fourier Transform (FRFT) is a generalization of the discrete Fourier
transform (DFT) whose exponent is modified by a parameter «. The FRFT
{Gi(x,);0 < k < m} of a complex sequence of size m, € = {x;;0 < j < m}, can
be written as

—_

m—

Gr(z,a) = Z xje2midker (7)

j:
« is not restricted to rational numbers and in fact may be any complex number. If
« is a rational number, the FRFT can be reduced to a DFT and evaluated using
conventional fast Fourier transforms (FFTs).

The FRFT can be efficiently computed by means of the fast algorithm described
below (Bailey and Swarztrauber 1991). Suppose we wish to compute the FRFT
for a complex sequence x of size m, where m is a power of 2. Based on the “chirp
z-transform” the FRF'T expression can be derived as

2m—1
a9 i a2
Gk(w,a) —e mik?o § : e Tij ozem,(k Jj)Pa (8)
i=0
2m—1
—mik?a
= "N wiyak g, (9)
J=0

where the 2m-long complex sequences y = {y;;0 < j < 2m} and z = {2;;0 < j <
2m} are as follows
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y; = e T 0<j<m, (10)
y; =0, m < j <2m, (11)
z; = e™e 0<j<m, (12)
zj = emili—2m)*er m < j < 2m, (13)
and where
xz; =0, m < j < 2m. (14)

The 2m-long sequences y and z satisfy the required property for a circular con-
volution, so DFTs may be used to evaluate (9):

Gr(z,a) = e_”kQO‘Fk_l(w), 0<k<m, (15)

where w = {wy;0 < k < 2m} is a 2m-long sequence defined by wy = Fy(x ©
y)Fy(z), where ® denotes the element-wise multiplication, and F and F~! denote
the forward and inverse DFT. The remaining m results of the final inverse DFT
are discarded. In our case the data are centered by using an offset s = m/2,
then we need to compute a different m-long sequence Giis(x,a), 0 < k < m.
The expression for the FRFT (Equation 15) for the first m values of Gy s(x, «)
satisfies:

Grps(m,a) = e T apl (4, 0<k<m. (16)

In this case z is as follows:

2y, = eTilkts) e 0<k<m, (17)

2, = emikFs=2m)e m <k < 2m. (18)

This procedure is referred to as the FRFT transform algorithm.

Figure 3 shows the computation of the FRFT applied to a 2-dimensional im-
age X instead of a sequence = (G(X, «)). Equation 16 must be calculated and,
as the FRFT is a separable operation, the 2D fractional Fourier transform (2D-
FRFT) can be expressed as a product of two functions operating separately by
rows and by columns. To calculate the 2D-FRFT, first, we apply a 1D fractional
Fourier transform (Equation 16) to each row and then we apply a 1D fractional
Fourier transform to each column. This is simplified by performing the element-
wise multiplications by rows and columns in the same step, reusing data and saving
computation time, as illustrated in the first, third and last steps in Figure 3, where
* denotes the complex conjugate and T the transpose of a matrix.

In the first step (beginning on the left of Figure 3) the FFT of the element-wise
multiplication of the image X and the sequence y is calculated, that is, Fi(x ®y).
Also the FFT of z is computed in the second step. Then, in the third step, wy =
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X < X0 @ a") X < FIX){X = Xo ¢ ™) |—FRFT (X)

2z (Eq. 17-18)

Figure 3. Flowchart of the FRFT computation of an image X.

Fi(x®y)Fi(z) for 0 < k < m is calculated also operating by rows and by columns.
Next, in the fourth step, the inverse Fourier transform of the previous multiplication
(Fi, _&s('w)) is computed. In the last step, the multiplications of the result of the
previous step by e ™k+5)*a are calculated. This corresponds to the right side of
Equation 16, F}_ _:S(w). As a result, the FRFT of the image X is obtained. From
a computational point of view, it can be observed that the terms e ™kt 4re
equal to the first range of z that was previously calculated (see Equation 18). The
sequences z and y and the transform Fj(z) are precomputed in order to reuse them
consequently saving computation time. The computation of the 2D-FRFT requires
the computation of 3 2D-FFT of double size, so the complexity of the 2D-FRFT

is the same as for a 2D-FFT, i.e., O(m?logy m).

2.3. MLFFT

As we discussed in Section 2.1, log-polar maps and phase correlation computations
are the base for obtaining the scale factor and the rotation angle in the Fourier-
Mellin registration method. Rotation aliasing is an important source of error that
is difficult to overcome, thus scaling overlapping will be inevitable and critical
for registering images with large-scale factors. The main challenge is to evaluate
the log-polar Fourier transform efficiently and accurately, and different ideas have
been proposed in recent years to solve this problem. These include the pseudo-polar
(Keller, Averbuch, and Israeli 2005), pseudo-log-polar (Liu, Guo, and Feng 2006),
generalized pseudo-polar (Chou, Izatt, and Farsiu 2009), and the octa-log-polar
(Wu, Guo, and Wang 2009) maps, among others. We use the MLFFT (Pan, Qin,
and Chen 2009), since it has lower interpolation errors in both polar and log-polar
grids, and can be computed efficiently. Recovering scale factors of up to 5 with
arbitrary rotation angles or scale factors of up to 10 without rotation in gray-level
images have been reported by different authors.

The MLFFT uses a multilevel grid to approximate the log-polar grid, as illus-
trated in Figure 4. Since the point spacing in the log-polar map follows a logarithmic
law relative to the radius, MLFFT uses a denser grid in the lower levels. Each level
of the MLFFT can be computed by means of a FRFT with a particular parameter
«y as described in Section 2.2, which requires three FFTs of size 2N for computing
one FRFT of size N. Then, the L-level MLFFT grid can be written as

L
P=|JP (19)
=1

where P; = {P,,;0 < p < N}, P, = Gp(x,q), T is a row or column of matrix
X,and 0 <o < g <--- < ap = 1. P, is first calculated for all the N rows of
X and then for all the N columns. Usually, a number of levels L between two and
four is used.

Figure 5 describes a computation of a four-level MLFF'T over an image, in this
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(a)
Figure 4. Grids: (a) log-polar, and (b) MLFFT.
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Figure 5. Computation of a four-level MLFFT over a PCA component.

case a PCA component of a hyperspectral image. First, a high-pass filter is applied
to remove aliasing effects, as we discussed in Section 2.1. It involves applying a
FFT, the filter and finally the inverse Fourier transform as can be seen in the
top part of the figure. Secondly, four FRFTs with o = {1,1/4,1/16,1/64} are
computed (the bottom part of the figure). Using Equation (19) the MLFFT grid is
calculated. The points in each level are represented in different gray levels. Finally,
the log-polar grid is generated by interpolating on the MLFFT grid.

2.4. Peak processing

Once the phase correlation and the combination of maps of the different pairs of
PCA components have been performed, a log-polar map is obtained with approx-
imate zeros everywhere except for several peaks. In the ideal case, there will be a
single peak at the coordinates corresponding to the scale factor and the rotation
angle. However, in real applications, we will have more than one peak in the result.
This is due to the interpolation errors and rotationally dependent aliasing, as well
as due to the fact that the images do not match exactly. If undesirable large false
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peak values occur, the FFT-based algorithm may be unsuccessful in registering the
images. Therefore, it is advisable to have a procedure capable of identifying the
true peak.

The Fourier-Mellin registration process has two stages: phase correlation in the
log-polar map to detect the scale factor and the rotation angle, and phase corre-
lation in the cartesian grid (after correcting the scaling and rotation of the target
image) to determine the translation. In order to find the best peak in the combined
correlation map in the proposed method for hyperspectral images, as shown in the
pseudocode at Figure 2, all the highest peaks in the log-polar map are processed.
The second phase of correlation in the cartesian grid is then used to select the best
peak, producing very good results. First, the peaks in the log-polar map are sorted
by magnitude and the higher value ones are processed. The coordinates of each
peak determine a tentative scale factor p’ and rotation angle 6’ (due to the ambi-
guity of the log-polar map, it is necessary to examine also the angle 6’ 4+ 7). Next,
the first component of the target image is scaled and rotated, and phase correlation
is performed on the cartesian grid to determinate the translation parameters. A
peak in the cartesian grid will be obtained for each pair of p’ and ¢ values. The
value of the highest peak in the cartesian grid will determine the correct peak in the
log-polar grid. Finally, the coordinates of this selected peak in the log-polar map
determine the scale factor pg and the rotation angle 8y, while the peak coordinates
in the cartesian grid determine the translation parameters (o, yp).

3. Evaluation

Seven hyperspectral scenes were used to evaluate the method proposed in this work.
The first four images are single datasets commonly used for testing in the field of
remote sensing. The remaining scenes are pairs of datasets taken on different dates.

3.1. Test images

These scenes were taken by the ROSIS (Reflective Optics System Imaging Spec-
trometer) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensors
and are commonly used for testing in remote sensing (EHU 2015). Ground ref-
erence data are available for these images, which are displayed in Figure 6. The
ROSIS-03 sensor captures 115 bands in the spectral range from 0.43 to 0.86 pm,
corresponding mainly to the visible spectrum. The AVIRIS sensor captures 224
bands in the spectral range from 0.4 of 2.5 pm, corresponding to the visible and
infrared spectrum. For these scenes, the registration is performed with a rotated
and scaled version of the same image. The reason for registration with the same
image is that all the details can be investigated in a controlled environment.

The first dataset is the Pavia University image. It is a ROSIS image of 103
bands (the twelve noisiest bands were removed) of the urban area surrounding the
University of Pavia, Italy. Its location is latitude N 45°12°13.176” and longitude E
9°8’11.108”. The image size is 610 x 340 pixels with a spatial resolution of 1.3 m
per pixel. The pixels in the ground reference data are assigned to one out of nine
classes: asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks,
and shadows.

The second ROSIS dataset is the Pavia Centre image, and it is located at latitude
N 45°11°07.4” and longitude E 9°8’34.8”. It was originally 1096 x 1096 pixels in size,
but a 381-pixel-wide black vertical band in the middle of the image was removed,
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Figure 6. Hyperspectral images commonly used for testing in remote sensing: (a)
Pavia University, (b) Pavia Centre, (¢) Indian Pines, and (d) Salinas.

resulting in a two-part image of 1096 x 715 pixels. Thirteen channels have been
removed due to noise, leading to an image of 102 bands with a spatial resolution
of 1.3 m per pixel. Nine classes of interest are considered: water, trees, meadows,
bricks, soil, asphalt, bitumen, tiles, and shadows.

The third dataset is a 220-band AVIRIS image (four bands were removed) taken
over the Indian Pines Test Site 3 (2 x 2 mile portion of NW Tippecanoe County,
Indiana). Details on the location of this image can be found in Gualtieri et al.
(1999). This image has a size of 145 x 145 pixels and a spatial resolution of 20 m
per pixel. The scene is a rural area which contains two-thirds agriculture (alfalfa,
corn, grass, oats, soybean, wheat) and one-third forest or other natural perennial
vegetation. There are two major dual lane highways, smaller roads, a rail line, some
low density housing and other built structures.

The fourth dataset was collected by the AVIRIS sensor over Salinas Valley in
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Figure 7. Jasper Ridge Biological Preserve 1 scene taken by the AVIRIS sensor.
(a) 588 x 1286 pixel fragment of the first image taken on 12 May 2006, and (b)
fragment of the second image taken on 13 August 2007 with the same number of
pixels.

Central California. More details about the location of this image can be found in
Gualtieri et al. (1999). It is an image of a rural scene with a size of 512 x 217 pixels
and 204 spectral bands (after elimination of water absorption and noisy bands). It
was taken at low altitude with a pixel size of 3.7 m. The scene includes crops in
different stages of growth (broccoli, lettuce, corn, celery), stubble, bare soils and
vineyard fields.

3.2. Pairs of timages taken at different dates

The remaining scenes are pairs of images taken by the AVIRIS sensor at different
dates. Each pair of images, in addition to different scaling and orientation factors,
presents differences in the lighting conditions, changes in vegetation, and alter-
ations in buildings and infrastructures. To increase the range of the study, we have
performed additional operations of scaling and rotation over the second image of
each pair. These images were loaded from the AVIRIS database (Aviris 2015) and
no additional processing or band removal was performed.

The Jasper Ridge Biological Preserve 1 scene covers a region of the nature pre-
serve and biological field station of Jasper Rigde, CA. Its location is latitude N
37°24’8.5” and longitude W 122°14’42.2”. Tt includes a wooded part as well as one
more open with vegetation, ponds, bare soil, roads and some buildings. The first
image of the pair was taken in a time of strong growth of vegetation, while the
second, taken a year later, has a drier appearance. The pixel size is 3.3 m for the
first image and 3.4 m for the second one. A region of 588 x 1286 pixels from both
images was selected. They are shown in Figure 7.
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Figure 8. Santa Barbara Front Range A2 scene taken by the AVIRIS sensor. (a)
470900 pixel fragment of the first image taken on 30 March 2009, and (b) fragment
of the second image taken on 30 April 2010 with the same number of pixels.

The sixth scene, Santa Barbara Front Range A2, shows a section of the town
of Santa Barbara, CA. It is located at latitude N 34°26’24.3” and longitude W
119°50°40.0”. Tt includes an urban area with numerous buildings and structures
and some vegetation, in addition to the coastline. Both images, which were taken
with an interval of one year, differ in the spatial resolution, which is 16.4 m for the
first image and 11.3 m for the second one. The selected region, shown in Figure 8,
contains 470 x 900 pixels.

The last scene corresponds to Santa Barbara Box Line 8 (SB31), a crop area next
to Santa Barbara, CA, delimited by a mountainous area. It is located at latitude
N 35°18’14.3” and longitude W 118°50°22.6”. The first image was taken in clear
weather, while the second, taken a year later, presents a few clouds. The spatial
resolution of both images is similar, 15.2 m per pixel. A region of 769 x 1024 pixels
was selected from both images, as shown in Figure 9.

3.3. Procedure and results

The HYFM algorithm was programmed in C and comprises four main functions:
computation of PCA, FRFT and MLFFT grid, phase correlation, and peak pro-
cessing. Bicubic interpolation was used to approximate the log-polar grid and to
rotate and scale the images. The algorithm has three selectable parameters: the
number the components to retain in the PCA (eight components in our case), the
oy parameters in the FRFT and MLLFT ({1,1/4,1/16,1/64}), and the number of
log-polar peaks to be examined (50).

The procedure used to test the method is as follows. The first image of each pair
is used as a reference while the target image is rotated and scaled. We have carried
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Figure 9. Santa Barbara Box Line 8 scene taken by the AVIRIS sensor. (a) 769 x
1024 pixel fragment of the first image taken on 11 April 2013, and (b) fragment of
the second image taken on 16 April 2014 with the same number of pixels.

Figure 10. Example of registration process: (a) original or reference image, (b) tar-
get image (central region of the original image scaled by 5.5x and rotated 45°), and
(¢) result of the registration process showing the correctly registered superposition
of the reference and target image.

out exhaustive search with scale factors ranging from 1/6x to 8x (20 scale factors)
and rotation angles from 0° to 360° in increments of 5° (72 angles). Two types of
experiments are considered: in the first type the target image is scaled down (scale
factors of 1/ix, i = 6,5,...,2) while in the second one it is scaled up (scale factors
of 1x to 8x in steps of 0.5x) while the scene is trimmed on the central region to
keep the number of pixels constant, as can be seen in Figure 10. This second case
is more realistic because it corresponds to the images taken by a sensor at different
distances and orientations, as shown in the image pairs of Figures 7, 8, and 9.
First of all, we have compared two different configurations of the proposed HYFM
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Table 1. Successfully registered cases for each scene using two variants of the pro-
posed HYFM method.

Scene HYFM (4 PCAs + RCMG) Proposed HYFM (8 PCAs)
Pavia Univ. 1/4% to 5.5% 1/4% to 5.5%
Pavia Centre 1/6x to 7.5x 1/5% to 7.5x%
Indian Pines 1/2x to 3.0x 1/2x to 4.0x
Salinas 1/2x to 4.5% 1/2% to 4.5%x
Jasper Ridge - 1/5% to 3.0x
Santa Barbara Front 1/4% to 3.5x 1/4% to 3.5%
Santa Barbara Box 1/4% to 5.0 1/4% to 6.0x

method as shown in Table 1. The first configuration (denoted as HYMF (4 PCA
components + RCMG) in the table) considers five components of each image over
which the registration is performed. These include the four most relevant PCs gen-
erated by PCA and a gradient of the image calculated by using RCMG. The second
version of the proposed algorithm considers more components, in particular, eight
PCA components and does not include the RCMG of the images. It is important
to note that for the pairs of images taken by the AVIRIS sensor at different dates
(see Figures 7, 8, and 9) to increase the range of the study we have performed
additional operations of scaling and rotation over the second image of each pair.

Table 1 summarizes the correctly registered cases for each scene considering these
two versions. In both cases the same parameters were used (bicubic interpolation,
same number of peaks, the same MLLFT parameters, etc.). This was also the case
in the following comparisons. Although for the largest part of the images both
configurations show the same results, there are two images for which the results
are different. For Indian Pines (IP), the second configuration successfully registers
two more cases than the first configuration, specifically for 3.5x and 4.0x. For the
Jasper Ridge image (JR) the registration is unsuccessful for all the cases when
the first configuration is used. The reason is that the information retained by the
RCMG is not enough for this complex image. Thus, the second configuration of
the proposed method is selected for the remainder of the paper.

Table 2 shows the registration details for the proposed method. Note that the
scaling of 1x corresponds to the registration of pairs of images without scaling.
For this scaling for all images, including those taken at different dates for the same
scene, the registrations are successful for all angles.

3.4. Comparison with other methods

The Fourier-Mellin algorithm has been used as the basis for several registration
methods. For gray-level images, the best result reported using the PPFT (Keller,
Averbuch, and Israeli 2005), PLPFT (Liu, Guo, and Feng 2006), generalized PPFT
(Chou, Izatt, and Farsiu 2009) and octa-log-polar PLPFT (Wu, Guo, and Wang
2009) estimate scale factors of up to 4x and arbitrary rotation angles. The MLFFT
(Pan, Qin, and Chen 2009) is able to recover scale factors of up to 5x with arbitrary
rotation angles, as reported by the authors. The method we propose in this work has
been successfully tested for any rotation angle with commonly used hyperspectral
scenes in remote sensing for scalings of up to 7.5x and with pairs of hyperspectral
images taken on different dates by the AVIRIS sensor for scalings of up to 6.0x.
Regarding the registration of hyperspectral images, the Fourier-Mellin algorithm
has been used to match the band-to-band pixel locations and build coherent im-
age cubes in airborne hyperspectral imaging systems (Erives, and Fitzgerald 2005,
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Table 2. Registration details for the proposed HYFM method over the Pavia Cen-
tre (PC), Pavia Univ. (PU), Santa Barbara Box Line (SBB), Salinas (S), Indian
Pines (IP), Jasper Ridge (JR), and Santa Barbara Front Range (SBF) scenes. For
each scale factor the rate of angles with successful registration (in percentage) is
indicated (for a total of 72 angles in steps of 5°).

Rate of angles (%)
Scale factor PC PU SBB S P SBF JR

1.0 - 3.0x 100 100 100 100 100 100 100

3.5% 100 100 100 100 100 100 88
4.0x 100 100 100 100 100 83 67
4.5x 100 100 100 100 93 39 14
5.0% 100 100 100 90 46 0 3
5.5% 100 100 100 78 21 0 0
6.0x 100 75 100 65 0 0 0
6.5x% 100 44 75 40 0 0 0
7.0x 100 28 49 19 0 0 0
7.5% 100 19 8 1 0 0 0
8.0x 61 19 7 0 0 0 0

2006; Wang, Xu, and Zhang 2013). In these cases, the registration is carried out
band-to-band and the scale factors of required are close to unity. For the registra-
tion of multimodal remotely sensed datasets several methods have been proposed
(Mahdi and Farag 2002; Chen, Leung, and Boss 2011; Bunting, Labrosse, and Lucas
2010), but they are intended for the recovering of linear and non-linear translations
and small scalings and rotations, both global and local. We are not aware of pub-
lished Fourier-Mellin based methods aimed at the recovery of large scalings in pairs
of hyperspectral images.

As mentioned in Section 1, feature-based methods provide good registration re-
sults due to their invariance to changes in illumination, rotation and scaling. For
this reason, such methods have been compared to the proposed method. Table 3
summarizes the cases that were correctly registered for each scene by the proposed
scheme with the best configuration of Table 1 as compared to to the results in the
literature. The first five columns display the results for previously published meth-
ods using the first PCA component of the hyperspectral image. The first and second
columns show the results for the original Fourier-Mellin (FMI-SPOMF') (Chen, De-
frise, and Deconinck 1994) and MLLFT (Pan, Qin, and Chen 2009) methods, while
the third, fourth and fifth columns make reference to feature extraction algorithms,
specifically SURF (Bay, Tuytelaars, and Van Gool 2006) and two SIFT implemen-
tations: the original (SIFT-1) (Lowe 2004) and a more recent version (SIFT-2)
(Rey Otero 2014). The sixth column shows the results for the proposed HYFM
method considering eight PCA components. The same parameters were used in
all methods based on the FFT (bicubic interpolation, same number of peaks, the
same parameters for the MLLFT, etc.). The same holds for the three feature ex-
traction algorithms used (the same algorithm for matching the feature points, the
same method to estimate the global affine transformation model, etc.). Due to the
arbitrariness of the Random Sample Consensus (RANSAC) algorithm, in order to
estimate the model parameters in these three methods, 50 executions were carried
out for each case. Even though the FMI-SPOMF and MLLFT methods present
very similar results in Table 3, the second one is more robust since it needs fewer
peaks to produce the same result and the number of rotation angles that failed is
smaller. SURF is not stable to rotation changes, as shown in the table by the fact
that it achieves correct registrations for only a small number of scalings.

The proposed HYFM method provides the best results on average, correctly
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Table 3. Successfully registered cases for each scene. The number in parenthe-
ses indicates the number of scalings that were correctly registered for all angles.
Proposed HYFM refers to HYFM (8 PCAs) while FMI-SPOMF, MLFFT, SURF,
SIFT-1 and SIFT-2 are applied to the first PCA component of each image.

Scene

FMI-SPOMF

MLLFT

SURF

Pavia Univ.
Pavia Centre

1/4x to 4.5x (11)
1/5% to 6.0x (15)

1/4x% to 4.5x (11)
1/5% to 6.0x (15)

1/4% to 3.0x (8)
1/6x to 5.5x (15)

Indian Pine 1/2% to 3.0x (6) 1/2x to 3.0x (6) 1.0x (1)

Salinas 1/2X to 4.0x (6) 1/2% to 4.0x (6) 1/2x to 1.5x (3)

Jasper Ridge 1/3x to 2.5% (6) 1/3% to 2.5x (6) (0)

Santa Barbara Front 1/4x to 2.5% (7) 1/4x% to 2.5% (7) 1.0x (1)
Santa Barbara Box 1/2x to 2.0x (4) 1/3x to 2.0x (5) 1.0x (1)
Average number of scalings (7.86) (8.00) (4.14)
Scene SIFT-1 SIFT-2 Proposed HYFM

Pavia Univ.

Pavia Centre

Indian Pine

Salinas

Jasper Ridge

Santa Barbara Front
Santa Barbara Box

1/6x to 5.5% (15)
1/8% to 6.5% (19)
1/3x to 3.0x (7)

1/4% to 5.5% (13)
(0)

1.0x to 1.5%x (2)

1/3X to 1.5x (4)

1/2x to 2.0x (4)
1/5% to 2.5% (8)
1/2x to 1.0x (2)

(0)
1/2% to 1.5x (3)
1/3% to 8.0x (17)
1/2X to 1.0x (2)

1/4% to 5.5x (13)
1/5% to 7.5x (18)
1/2x to 4.0x (8)
1/2x to 4.5% (9)
1/5% to 3.0x (9)
1/4% to 3.5x (9)
1/4% to 6.0x (14)

Average number of scalings

(8.57)

(5.14)

(11.43)

registering 11.43 cases versus 8.57 for SIFT-1. As discussed before, MLFFT is
slightly more robust than the original FMI-SPOMF method, registering 8.00 cases
versus 7.86. The SIFT-2 and the SURF methods provide worse results, as only 5.14
and 4.14 cases, respectively, have been correctly registered.

In general, SIFT-1 achieves slightly better results when the target image is a
scaled and rotated version of the original image, but it fails to register pairs of
hyperspectral images taken on different dates. For the Jasper Ridge image, SIF'T-1
registers all cases incorrectly, while for the Santa Barbara images the number of
correctly registered cases is very low. The SIFT-2 implementation provides worse
results than SIFT-1, except for the Santa Barbara Front in which this method
achieves the best results. The limited capacity of these methods to register different
images could be due to the fact that the identification of keypoints is sensitive to
small changes in the image.

The proposed HYFM method provides good results for all the scenes. The best
results are obtained for the pairs of hyperspectral images taken on different dates
by the AVIRIS sensor. For example, for the Jasper Ridge scene, scalings of 3.0x
have been recovered, while other methods have failed due to small structures that
are difficult to register.

In terms of registration error, the average error rate in angles and scalings for each
scene are presented in Table 4 for the best two methods, i.e., HYFM and SIFT-1.
The error rates have been calculated over the cases that were successfully registered
by both methods. The proposed HYFM method provides lower error rates in angles
and scalings for all the scenes. These results confirm that the HYFM method aligns
hyperspectral images with higher accuracy.

4. Conclusions

In this paper we have proposed a Fourier-Mellin algorithm to register two hyper-
spectral images and evaluated its results on several datasets used in remote sensing
for land-cover applications. The method is based on principal component analy-
sis, the multilayer fractional Fourier transform, a combination of log-polar maps,
and peak processing. The Fourier transform is computed through the FRFT over
a multilayer grid, which reduces the interpolation errors in the log-polar map. In
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Table 4. Average error rate in percentage for angles and scalings for the successfully
registered cases for each scene using the HYFM and SIFT-1 methods.

Angle error (%) Scalings error (%)
HYFM SIFT-1 HYFM SIFT-1

Pavia Univ. 0.26 1.33 0.38 0.95
Pavia Centre 0.17 0.96 0.27 0.56
Indian Pines 1.00 1.14 0.66 1.38
Salinas 0.57 1.67 0.52 0.93
Jasper Ridge 0.21 77.56 0.56 77.50
Santa Barbara Front 0.39 2.20 0.15 0.82
Santa Barbara Line 0.23 2.13 0.19 0.85

1 For Jasper Ridge the cases successfully registered by HYFM have been
used.

addition, it can be efficiently computed.

The proposed registration method takes into account the multiband structure
of the hyperspectral images. This is achieved through two strategies: the images
are first processed using PCA, enabling dimensionality reduction and feature ex-
traction. Second, the combination of log-polar maps is applied after the phase
correlation, which allows each pair of components to contribute independently to
the crosscorrelation. This stage is aimed at highlighting some peaks in the log-
polar map using information from different bands. A final peak processing stage is
applied to discriminate the false peaks due to interpolation errors and rotationally
dependent aliasing, as well as the images that do not match exactly.

We have performed several experiments on four hyperspectral images that are
commonly used for testing in remote sensing (Pavia Univ., Pavia Centre, Indian
Pines, and Salinas), as well as three pairs of remote sensing hyperspectral images
taken by the AVIRIS sensor on different dates (Jasper Ridge Biological Preserve
1, Santa Barbara Front Range A2, and Santa Barbara Box Line 8 (SB31)). These
images correspond to rural and urban scenes and contain various types of crops,
forests and other natural vegetation, buildings, asphalt, etc. The last three pairs of
images, in addition to different scaling and orientation factors, present differences
in the lighting conditions, changes in vegetation, and alterations in buildings and
infrastructures. The proposed method has been compared to the FMI-SPOMEF,
MLFFT, SIFT and SURF methods available in the literature. The results show
successful registration for more images and scalings for the proposed method while
presenting lower error rates. For example, a scale factor of 6.0x has been recovered
in Santa Barbara Box Line by the HYFM method with an error rate in angles and
scalings of 0.23% and 0.19%, respectively. For the SIFT method a scale factor of
1.5x with error rates of 2.13% and 0.85% was obtained.

Supplemental data

The underlying research materials for this article can be accessed at https://
wiki.citius.usc.es/hiperespectral :HYFM-REG.
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