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Abstract

In high dimensional regression, it is important to estimate the central and central mean sub-

spaces, to which the projections of the predictors preserve sufficient information about the response

and the mean response, respectively. Using the Fourier transform, we have derived the candidate

matrices whose column spaces recover the central and central mean subspaces exhaustively. Un-

der the normality assumption of the predictors, explicit estimates of the central and central mean

subspaces are derived. Bootstrap procedures are used for determining dimensionality and choosing

tuning parameters. Simulation results and an application to a real data are reported. Our methods

demonstrate competitive performance compared to SIR, SAVE and other existing methods. The

approach proposed in the paper provides a novel view on sufficient dimension reduction and may

lead to more powerful tools in the future.

KEY WORDS: Central subspace; Central mean subspace; SIR; SAVE; Candidate matrix; Fourier

transform; Bootstrap

1 Introduction

Suppose Y is a univariate response and X is a p-dimensional vector of continuous predictors. Let

FY |X denote the conditional distribution of Y given X and E[Y |X] the mean response at X. In

full generality, the regression of Y on X is to infer about the conditional distribution FY |X often

with the mean response E[Y |X] of primary interest. When FY |X or E[Y |X] does not admit a proper

parametric form, nonparametric methods such as local polynomial smoothing are usually employed for

regression. Due to the curse of dimensionality, however, these methods become impractical when the

dimension of X is high. In order to mitigate the curse of dimensionality, various dimension reduction

techniques have been proposed in the literature. One popular approach is to project X onto a lower

dimensional subspace where the regression of Y on X can be performed. In this paper, we focus on

sufficient dimension reduction (SDR), which further requires that the projection of X onto the lower

dimensional subspace does not result in any loss of information about FY |X or E[Y |X].

The theory of sufficient dimension reduction was originated from the seminal works by Li (1991)

and Cook and Weisberg (1991). During the past decade, much progress has been achieved in SDR; see

Cook (1998) for a comprehensive account. Let S denote a subspace of R
p and PS be the orthogonal
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projection operator onto S in the usual inner product. S is called a dimension reduction subspace if

Y and X are independent conditioned on PSX, that is

Y X | PSX, (1)

where means “independent with”. Note that dimension reduction subspace may not be unique.

When the intersection of all dimension reduction subspaces is also a dimension reduction subspace, it

is defined to be the central subspace, denoted by SY |X (Cook 1996, 1998). The dimension of SY |X is

called the structural dimension of the regression of Y on X, which is denoted by dim(SY |X). SY |X can

be regarded as a metaparameter that is the target of sufficient dimension reduction for FY |X . Under

mild conditions, Cook (1996, 1998) showed that central subspace exists and is unique. Throughout

this paper, we assume the existence of the central subspace.

When only the mean response E[Y |X] is of interest, sufficient dimension reduction can be defined

for E[Y |X] in a similar fashion as for FY |X . A subspace S is called a mean dimension reduction

subspace if

Y E[Y |X] | PSX. (2)

If the intersection of all mean dimension reduction subspaces is also a mean dimension reduction

subspace, it is defined to be the central mean subspace denoted by SE[Y |X] (Cook and Li 2002). Similar

to the central subspace, the central mean subspace exists under mild conditions; so its existence is

assumed throughout this paper. SE[Y |X] is the target of sufficient dimension reduction for the mean

response E[Y |X] and it is always a subspace of the central subspace SY |X (Cook and Li 2002). Lately,

Yin and Cook (2002) extended the central mean subspace to the central kth moment subspace that

is sufficient for the first k moments of the conditional distribution FY |X .

A variety of dimension reduction methods have been proposed in the literature, some of which can

be used to estimate central subspace or central mean subspace. For central subspace, they include

sliced inverse regression (SIR; Li 1991) and sliced average variance estimation (SAVE; Cook and

Weisberg 1991); for central mean subspace, they include principal Hessian direction (pHd; Li 1992),

iterative Hessian transformation (IHT; Cook and Li 2002), structure adaptive method (SAM; Hristache

et al. 2001) and minimum average variance estimation (MAVE; Xia et al. 2002). SAM and MAVE

are fundamentally different from the other methods mentioned above in that both of them involve

nonparametric estimation of the link function E[Y |X = x], which could be impractical when the

dimension of X is high. All the other methods mentioned above avoid high dimensional nonparametric

estimation and target either SY |X or SE[Y |X] directly. They usually follow a common procedure
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consisting of two steps: The first step is to define a p × p nonnegative definite matrix M called

candidate matrix (Ye and Weiss 2003), whose columns span a subspace of SE[Y |X] or SY |X , and then

propose a consistent estimate M̂ of the candidate matrix from a sample {(xi, yi)}1≤i≤n of (X,Y );

The second step is to obtain the spectral decomposition of M̂ and use the space spanned by the

eigenvectors of M̂ corresponding to the largest q eigenvalues as the estimate of SE[Y |X] or SY |X , where

q is the dimension of SE[Y |X] or SY |X . Recently, a more efficient method called minimum discrepancy

method was proposed by Cook and Ni (2005) for estimating SE[Y |X] or SY |X from a given candidate

matrix. For these methods to work, some distributional assumptions need to be imposed on X. For

convenience, we assume that the mean of X is the origin of R
p and the covariance matrix of X is the

standard p × p identity matrix Ip. Then, SIR and IHT require X to satisfy the linearity condition,

which is E[X|PSY |XX] = PSY |XX, and SAVE and pHd require an additional condition called the

constant variance condition, which is cov[X|PSY |XX] = QSY |X , where QSY |X = Ip − PSY |X . These

conditions are satisfied when the distribution of X is elliptically contoured or multivariate normal.

For a detailed discussion of the conditions, readers can consult Cook (1998).

Although SIR, SAVE, pHd and IHT discussed above work well in practice, there has not been

much study regarding when they can exhaustively recover the central subspace or the central mean

subspace in the literature. It is known that SIR fails to capture directions along which Y is symmetric

about. For example, if Y = (βτX)2 + ε where β is a p-dimensional vector, τ denotes transpose and ε

is a random error independent of X, SIR will miss β. A sufficient condition for SAVE to exhaustively

recover SY |X is that the conditional distribution of X given Y is multivariate normal, which may be

restrictive in practice. A potential risk of applying these methods is that they may lead to the loss

of information regarding FY |X or E[Y |X]. Therefore, it is desirable to derive new methods that can

guarantee the exhaustive recovery of the central subspace or the central mean subspace under general

conditions. Recently, Li, Zha and Chiaromonte (2005) made progress in this direction by proposing

contour regression for sufficient dimension reduction. Contour regression assumes that X follows an

elliptically-contoured distribution, and in addition, it requires an intriguing condition that involves X,

Y and the vectors in SY |X and S⊥
Y |X (Assumption 2.1, Li Zha and Chiaromonte 2005), where S⊥

Y |X is

the complementary subspace of SY |X . The latter assumption is reasonable, but it serves primarily as

a technical assumption and may not be easily verified in practice.

The current paper represents another effort to derive methods that can fully recover the central

mean subspace and the central subspace under various conditions. The primary tool we use is the

Fourier transform. At the population level, we have derived two candidate matrices MFM and MFC

whose column spaces are identical to the central mean subspace and the central subspace, respectively.
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Given a sample of (X,Y ), if consistent estimates of MFM and MFC can be found, they can be used

to exhaustively recover the central mean subspace and the central subspace. In fact, the consistent

estimates exist, but their exact formulas or calculations depend on the amount of prior knowledge we

have regarding the distribution of X. Due to limited space, in this paper, we only fully implement our

methods for the case where X is normally distributed. The implementation of our method under more

general conditions on X is briefly described in this paper and is currently under further investigation,

and we will report the results elsewhere in the future.

To facilitate our approach, we need to modify the model assumptions as follows. First we assume

that the joint distribution of (X,Y ), the conditional distributions of X|Y and Y |X, and the marginal

distributions of X and Y admit densities, which are denoted by fX,Y (x, y), fY |X(y|x), fX|Y (x|y),
fX(x) and fY (y), respectively. Let B = (β1, β2, . . . , βq) be a p× q matrix with its columns forming a

basis for SY |X . Then (1) can be restated in terms of conditional distributions, that is, FY |X = FY |Bτ X ,

or in terms of density,

fY |X(y|x) = fY |Bτ X(y|Bτx) = h(y;βτ
1x, β

τ
2x, . . . , β

τ
q x), (3)

where h(y;u1, . . . , uq) is a (q+1)-variate function. Similarly, let α1, . . . , αq be a basis of SE[Y |X], then

(2) is equivalent to

E[Y | X = x] = g(ατ
1x, α

τ
2x, . . . , α

τ
qx), (4)

where g is a q-variate function. We assume the differentiability of h and g with respect to their

coordinates wherever it is needed.

The rest of the paper is organized as follows. Section 2 derives MFM for central mean subspace and

Section 3 derives MFC for central subspace. Section 4 derives the estimates of MFM and MFC under

the assumption that X is normal, and discusses the asymptotic properties of these estimates. Section

5 focuses on the implementation of the proposed methods for estimating central subspace and central

mean subspace. In Section 6, the proposed methods are compared to SIR, SAVE and other existing

methods using synthetic and real data. Section 7 contains conclusions and future work. The proofs of

propositions, theorems and crucial equations are given in Appendix 8. In this paper, we use S(M) to

denote the linear space spanned by the columns of a matrix M .

2 Central Mean Subspace

In this section, we propose a candidate matrix MFM whose column space is exactly the central mean

subspace SE[Y |X]. We follow a commonly used idea for deriving candidate matrices in the literature,
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which is to identify vectors that belong to SE[Y |X] and combine them to generate the candidate matrix.

The major tool we use is the Fourier transform.

Let m(x) = E[Y |X = x]. From (4), m(x) = g(u) where u = Aτx and A = (α1, α2, . . . , αq) whose

columns form a basis of SE[Y |X]. Let ∂
∂x = ( ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xp
)τ denote the gradient operator. By the

chain rule of differentiation,

∂
∂xm(x) = A ∂

∂ug(u).

Thus the gradient of m(x) at any fixed x is a linear combination of α1, α2, . . . , αq, therefore it is in

SE[Y |X]. Let supp(X) = {x ∈ R
p : fX(x) > 0} be the support of X. The collection of all the gradients

of m(x) over x ∈ supp(X) spans the central mean subspace SE[Y |X], so does the collection of all the

gradients of m(x) weighted by fX(x), that is,

SE[Y |X] = span{ ∂
∂xm(x), x ∈ supp(X)} = span{( ∂

∂xm(x)) fX(x), x ∈ R
p}. (5)

The proof of (5) is given in Appendix 8. From (5), it appears that we can immediately use the

gradient of m(x) to generate a candidate matrix for SE[Y |X]. However, this idea leads to inefficient

estimation of the central mean subspace, because much effort has to be spent on estimating g and its

derivatives nonparametrically (Hristache et al. 2001; Xia et al. 2002). Recall that the primary goal

of sufficient dimension reduction is to recover the central mean subspace SE[Y |X] only. So we hope to

achieve dimension reduction while avoiding fitting the link function g(x) and its derivatives as much as

possible. This can be realized by considering the Fourier transform of the gradient of m(x) instead of

using ∂
∂xm(x) directly. Another advantage of using the Fourier transform of ∂

∂xm(x) is that sufficient

dimension reduction for the central subspace and the central mean subspace can be dealt with in a

unified fashion as will be demonstrated in the next section.

For ω ∈ R
p, let

ψ(ω) =
∫

exp{ı ωτx} (
∂
∂x m(x)

)
fX(x) dx. (6)

Then ψ(ω) is the Fourier transform of the density-weighted gradient ( ∂
∂x m(x))fX(x). Intuitively,

ψ(ω) can also be regarded as an average of the gradient of m(x) weighted by exp{ı ωτx} over x with

density fX(x). In particular, when ω = 0, ψ(0) = E[ ∂
∂xm(X)], which is exactly the average gradient

of m(x) (Härdle and Stoker 1989). Therefore, in some sense, ψ(ω) is a generalized average derivative

of the mean response m(x). Let a(ω) and b(ω) be the real and imaginary parts of ψ(ω), that is,

ψ(ω) = a(ω) + ıb(ω). Because the gradient of m(x) belongs to SE[Y |X], it implies that both a(ω) and

b(ω) belong to SE[Y |X].

5



An appealing property of ψ(ω) is that it contains all the information of the gradient ∂
∂xm(x),

because ∂
∂xm(x) can be recovered from ψ(ω) through the inverse Fourier transform (Folland 1992;

Page 244). Assuming ( ∂
∂xm(x))fX(x) is integrable and continuous on R

p and ψ(ω) is also integrable,

( ∂
∂xm(x))fX(x) = (2π)−p

∫
exp{−ıxτω}ψ(ω) dω. (7)

From (5), we know that the central mean subspace is spanned by the gradients. Considering the cor-

respondence between ψ(ω) and ∂
∂xm(x) as demonstrated in (6) and (7), we can use ψ(ω) to generate a

candidate matrix for the central mean subspace SE[Y |X]. The other properties of ψ(ω) are summarized

in the following proposition.

Proposition 1.

1. Both a(ω) and b(ω) are vectors in SE[Y |X], furthermore, SE[Y |X] = span{a(ω), b(ω) : ω ∈ R
p}.

2. Suppose log fX(x) is differentiable and m(x)fX(x) goes to zero as ‖x‖ → ∞, then

ψ(ω) = −E(X,Y )

[
Y (ıω +G(X)) exp{ı ωτX}], (8)

where G(x) = ∂
∂x log fX(x).

3. If ( ∂
∂xi
m(x))fX(x) is absolutely integrable for 1 ≤ i ≤ p, then ψ(ω) → 0 as ‖ω‖ → ∞.

4. If ( ∂
∂xi
m(x))fX(x) is squared integrable for 1 ≤ i ≤ p, then

∫
( ∂

∂xm(x))( ∂
∂xm(x))τfX(x)2 dx = (2π)−p

∫
ψ(ω)ψ̄(ω)τ dω, (9)

where ψ̄(ω) is the conjugate of ψ(ω).

The first property indicates that the real and imaginary parts of ψ(ω) are the vectors we can

use to generate candidate matrices for the central mean subspace. In the second property, ψ(ω) is

represented as an expectation of the random function −Y (ıω +G(X)) exp{ı ωτX}. Recall that ψ(ω)

was originally defined in terms of m(x) as in (6). The new expression of ψ(ω) in (8) does not include

m(x) explicitly, which provides us the opportunity to estimate ψ(ω) without directly estimating m(x).

This distinguishes our method from the methods that directly estimate m(x) and its derivatives in

the literature.

The third property is essentially the Riemann-Lebesgue Lemma for the Fourier transform (Folland

1992; Pages 217, 243). It indicates that, when the density-weighted gradient is absolutely integrable,

ψ(ω) decays to zero as the norm of ω goes to infinity. The fourth property is a result from applying the
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Plancheral Theorem for the Fourier transform (Folland 1992; Pages 222, 224) to ( ∂
∂xm(x))fX(x) and

ψ(ω), and it establishes the connection between the expected outer product of the density-weighted

gradient of m(x), that is, E
[
( ∂

∂xm(X))( ∂
∂xm(X))τfX(X)

]
, and the integral of the outer-product of

ψ(ω). Let M∗
FM = (2π)−p

∫
ψ(ω)ψ̄(ω)τdω. Then the column space of M∗

FM, S(M∗
FM), is exactly equal

to the central mean subspace as stated in the following proposition.

Proposition 2. M∗
FM is a real non-negative definite matrix and S(M∗

FM) = SE[Y |X].

Intuitively, M∗
FM can be considered as the sum of the outer product of ψ(ω) over all ω. Be-

cause of (7), ψ(ω) can be regarded as the vector of coefficients of exp{ıxτω} in the representation

of ∂
∂xm(x)fX(x). For different ω’s, exp{ıxτω} are basic oscillatory functions with different frequen-

cies. So ψ(ω) with small ‖ω‖ captures the patterns of ∂
∂xm(x)fX(x) with low frequencies, while ψ(ω)

with large ‖ω‖ captures the patterns of ∂
∂xm(x)fX(x) with high frequencies. According to the third

property of ψ(ω), ψ(ω) goes to zero when ‖ω‖ goes to infinity. Therefore, when patterns with various

frequencies are of different interests, ψ(ω) of different ω should be treated differently. This can be

realized by assigning different weights to ω when combining the outer product of ψ(ω). We use K(ω)

to denote the weight function, and generate a more flexible candidate matrix for the central mean

subspace as follows,

MFM = Re
(∫

ψ(ω)ψ̄(ω)τK(ω) dω
)

=
∫

[a(ω)a(ω)τ + b(ω)b(ω)τ ]K(ω) dω, (10)

where Re() means “the real part of”. Note ifK(ω) is a radial weight function, then
∫
ψ(ω)ψ̄(ω)τK(ω)dω

itself is a real matrix.

Proposition 3. If K(ω) is a positive weight function on R
p, then MFM is a non-negative definite

matrix and S(MFM) = SE[Y |X].

Proposition 3 indicates that the central mean subspace SE[Y |X] can be exhaustively recovered by

the column space of MFM. In the proposition, we have assumed that K(ω) is positive over all R
p. This

condition can be substantially weakened. For example, if ψ(ω) is analytic, then the proposition holds

true for any weight function K(ω) with bounded support that contains an open set. In this paper, we

will focus on positive weight functions only. Though the proposition is true for any positive function

in theory, the particular choice will affect the performance of dimension reduction based on MFM in

practice, especially when the sample size is moderate. For simplicity, we choose the Gaussian function

K(ω) = (2π)−p/2 exp{−‖ω‖2/2σ2
W} as the weight function in the rest of the paper. Note that σ2

W in

K(ω) is a constant (or tuning parameter) that controls how the weight is assigned to different ψ(ω)’s.

7



Furthermore, K(ω) leads to an explicit expression of MFM given below,

MFM = E(U1,V1),(U2,V2) [JFM((U1, V1), (U2, V2))] , (11)

where

JFM((U1, V1), (U2, V2)) = V1V2 e
−σ2

W
2

‖U12‖2 [
σ2

WIp + (G(U1) − σ2
WU12)(G(U2) + σ2

WU12)τ
]
,

(U1, V1) and (U2, V2) are independent and identically distributed as (X,Y ), Ip is the p × p identity

matrix, and U12 = U1 − U2.

3 Central Subspace

As discussed in the introduction, the central mean subspace can only capture the information in X

regarding the mean response E[Y |X]. In applications where the entire conditional distribution FY |X

is of interest, sufficient dimension reduction should aim at the central subspace SY |X . This section

is focused on the derivation of the candidate matrix MFC for SY |X . We will again use the Fourier

transform as well as other similar ideas from Section 2.

First, we establish a connection between SY |X and a family of central mean subspaces. As noted

in the introduction, the central mean subspace SE[Y |X] is always a subspace of SY |X . Let T denote a

transformation of Y . Then T (Y ) is a new response. It can be shown that the central mean subspace

of T (Y ), denoted by SE[T (Y )|X], is also a subspace of SY |X . For two different transformations T1(Y )

and T2(Y ), their corresponding central mean subspaces SE[T1(Y )|X] and SE[T2(Y )|X] are not necessarily

identical and may cover different part of SY |X . This provides a possibility to recover the entire central

subspace by collecting the central mean subspace of T (Y ) over all the possible transformations, that

is,

SY |X =
∑

all possible T

SE[T (Y )|X]. (12)

The above equation is indeed true and will be implied by Proposition 4 given below. In fact, it is not

necessary to use all the possible transformations in (12), a family of properly chosen transformations

is enough to serve the purpose.

For any given t ∈ R, define T (Y, t) = exp{ıtY }. The T (·, t)’s form a family of transformations

indexed by t. The mean response of T (Y, t) at X = x is

m(x, t) = E[T (Y, t)|X = x] =
∫

exp{ıty} fY |X(y | x) dy.
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So m(x, t) is the Fourier transform, or the characteristic function, of the conditional density function

fY |X(y|x). Note that both T (Y, t) and m(x, t) are complex functions. The central mean subspace for

T (Y, t) is defined to be the sum of the central mean subspaces for its real and imaginary parts, that is,

SE[T (Y,t)|X] = SE[sin(tY )|X] + SE[cos(tY )|X]. The following proposition states that the central subspace

SY |X is equal to the sum of SE[T (Y,t)|X] over t ∈ R.

Proposition 4. Suppose ∂
∂xfY |X(y|x) exists and is absolutely integrable with respect to y. Then

SY |X =
∑
t∈R

SE[T (Y,t)|X].

When defining the central kth moment subspace, Yin and Cook (2002) considered the power

transformations of Y , which are Y l with 1 ≤ l ≤ k. The transformation we consider can be regarded

as an extension of the power transformation, they, however, lead to entirely different methods for

recovering the central subspace. Proposition 4 suggests that, in order to recover the central subspace

SY |X , we can first recover the central mean subspace for T (Y, t) at fixed t, then combine them over

t ∈ R. The methods and results developed in Section 2 for the central mean subspace SE[Y |X] can be

directly generalized for the central mean subspace SE[T (Y,t)|X] with Y replaced by exp{ıtY }. Hence,

we can combine the candidate matrices for SE[T (Y,t)|X] to generate a candidate matrix for SY |X . The

idea of combining candidate matrices to generate new ones was originally mentioned in the rejoinder

of Li (1991) and it was further investigated in Ye and Weiss (2003). In the following, we start with

applying the Fourier transform to the gradient of m(x, t) as in Section 2 and materialize the idea

outlined above to derive a candidate matrix MFC for SY |X .

Because m(x, t) is the mean response of T (Y, t) at X = x, similar to (5) in Section 2, we have

SE[T (Y,t)|X] = span{ ∂
∂xm(x, t), x ∈ supp(X)} = span{( ∂

∂xm(x, t)) fX(x), x ∈ R
p}.

Note that the spanned space of complex vectors is defined to be the space spanned by their real parts

and imaginary parts. Using Proposition 4, we have

SY |X = span{ ∂
∂xm(x, t), x ∈ supp(X), t ∈ R} = span{( ∂

∂xm(x, t)) fX(x), x ∈ R
p, t ∈ R}. (13)

As in Section 2, to derive a candidate matrix for SY |X , we do not use the gradient ∂
∂xm(x, t) directly,

instead we consider its Fourier transform. For any ω ∈ R
p and t ∈ R, define

φ(ω, t) =
∫

exp{ıωτx} ( ∂
∂xm(x, t)) fX(x) dx. (14)
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Then φ(ω, t) is the Fourier transform of ∂
∂xm(x, t) weighted by the marginal density function of X,

and it preserves all the information about ∂
∂xm(x, t). Let a(ω, t) and b(ω, t) be the real and imaginary

parts of φ(ω, t). The properties of φ(ω, t) are summarized in the following proposition.

Proposition 5.

1. Both a(ω, t) and b(ω, t) are vectors in SE[T (Y,t)|X], furthermore,

SY |X = span{a(ω, t), b(ω, t) : ω ∈ R
p, t ∈ R}. (15)

2. Suppose log fX(x) is differentiable and m(x, t) log fX(x) goes to zero when ‖x‖ −→ ∞,

φ(ω, t) = −E(X,Y )[(ıω +G(X)) exp{ıωτX + ıtY }]. (16)

3. If ( ∂
∂xi
m(x, t))fX(x) is absolutely integrable for 1 ≤ i ≤ p, then φ(ω, t) → 0 as ‖ω‖ → ∞.

4. If ( ∂
∂xi
m(x, t))fX(x) is squared integrable for 1 ≤ i ≤ p, then

∫
( ∂

∂xm(x, t))( ∂
∂xm(x, t))τfX(x)2 dx = (2π)−p

∫
φ(ω, t)φ̄(ω, t)τ dω, (17)

where φ̄(ω, t) is the conjugate of φ(ω, t).

Proposition 5 is a direct extension of Proposition 1 with Y replaced by exp{ıtY } and m(x) replaced

by m(x, t). According to the first property in Proposition 5, using the similar arguments as following

Proposition 1, we can combine a(ω, t) and b(ω, t) to derive a candidate matrix for SY |X . Let K(ω) be

a weight function for ω ∈ R
p and k(t) be a weight function for t ∈ R. Define

MFC = Re
(∫∫

φ(ω, t)φ̄(ω, t)τK(ω)k(t) dωdt
)

=
∫∫

[a(ω, t)a(ω, t)τ + b(ω, t)b(ω, t)τ ]K(ω)k(t) dωdt.

(18)

Proposition 6. If K(ω) is a positive weight function on R
p and k(t) is a positive weight function on

R, then MFC is a non-negative definite matrix and S(MFC) = SY |X .

Proposition 6 implies that SY |X can be exhaustively recovered by the column space of MFC. In

this paper, for convenience, both K(ω) and k(t) are chosen to be the Gaussian functions, which are

K(ω) = (2π)−p/2 exp{−‖ω‖2/2σ2
W} and k(t) = (2π)−1/2 exp{−t2/2σ2

T}, where σ2
W and σ2

T are two

constants that control how the weights are assigned to different φ(ω, t). Furthermore, the Gaussian

weight functions lead to an explicit expression of MFC given below,

MFC = E(U1,V1),(U2,V2) [JFC((U1, V1), (U2, V2))] , (19)
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where

JFC((U1, V1), (U2, V2)) = exp{−σ
2
W

2
‖U12‖2 − σ2

T

2
V 2

12}
[
σ2

WIp + (G(U1) − σ2
WU12)(G(U2) + σ2

WU12)τ
]
,

(20)

(U1, V1) and (U2, V2) are independent and identically distributed as (X,Y ), Ip is the identity matrix,

U12 = U1 − U2, and V12 = V1 − V2.

The derivation of MFC can also be understood from the perspective of inverse regression used in

SIR and SAVE, where the candidate matrices were defined by the first and second moments of the

conditional distribution of X given Y . Next we first present a connection between φ(ω, t), which is

used to define MFC, and the conditional distribution of X given Y . Define

η(y, ω) = −E[(ıω +G(X)) exp{ıωτx} | Y = y].

For fixed ω, η(y, ω) can be regarded as the mean response vector for inversely regressing −(ıω +

G(X)) exp{ıωτX} on Y . The properties of η(y, ω) are given in the following proposition.

Proposition 7. Suppose for any fixed y, fX,Y (x, y) goes to zero as ‖x‖ −→ ∞.

1. For any given y and ω, the real and imaginary parts of η(y, ω) are vectors in SY |X , in particular,

those of η(y, 0) = −E[G(X)|Y = y] are vectors in SY |X .

2. φ(ω, t) = E[η(Y, ω) exp{ıtY }].

Recall that φ(ω, t) serves as the building blocks for MFC. From the second statement in Proposition

7, φ(ω, t) can be regarded as the Fourier transform of η(y, ω) with respect to the marginal density

of Y . When X is multivariate normal with mean zero and covariance matrix Ip, G(x) = −x and

η(y, 0) = E[X|Y ], which serves as the building blocks in SIR. This observation leads to an important

connection between MFC and the candidate matrix MSIR used in SIR.

Proposition 8. Suppose X follows the normal distribution with mean 0 and covariance matrix Ip. If

K(ω) is chosen to be a point mass at ω = 0, then S(MFC) = S(MSIR).

The above proposition indicates that the column spaces of MFC and MSIR coincide when X follows

the standard normal distribution and the weight function K(ω) is degenerate at ω = 0. Hence, MSIR

could be considered as a special case of MFC under the normality assumption. Note that, although

S(MFC) and S(MSIR) are the same, the matrices are generally different from each other. It is known

that SIR fails to capture directions along which Y is symmetric about, so does MFC with σ2
W = 0. In

general, we will not use a degenerate weight function for ω. When σ2
W > 0, the entire central subspace

can be successfully recovered as stated in Proposition 6.
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4 Estimation of Candidate Matrices

In this section, we derive the estimates of MFC and MFM and discuss their asymptotic properties. We

assume that the dimensionality q and the tuning parameters σ2
W and σ2

T are known and will discuss

their selection in the next section.

Let {(xi, yi)}1≤i≤n be a random sample of (X,Y ). Without loss of generality, we assume E[X] = 0

and cov[X] = Ip. Let us consider MFC first. According to (19), MFC is the expectation of JFC over

(U1, V1) and (U2, V2) that are independent and identically distributed as (X,Y ). Let F (x, y) be the

cumulative distribution function of (X,Y ). Then MFC can be expressed as

MFC =
∫∫

JFC((u1, v1), (u2, v2)) dF (u1, v1)dF (u2, v2). (21)

With the given sample {(xi, yi)}1≤i≤n, a natural estimate of F (x, y) is its empirical distribution,

Fn(x, y) =
1
n

n∑
i=1

I[xi≤x, yi≤y],

where I[·] is the indicator function. Therefore, a proper estimate of MFC is derived by replacing

F (u1, v1) and F (u2, v2) in (21) with Fn(u1, v1) and Fn(u2, v2) respectively, which is

M̂FC =
1
n2

n∑
i=1

n∑
j=1

JFC((xi, yi), (xj , yj)). (22)

The explicit expression of JFC((xi, yi), (xj , yj)) is given in (20). Notice that, to make M̂FC a legitimate

estimate, we need to estimate G(xi) = ∂
∂x log fX(xi) for 1 ≤ i ≤ n.

If we know that the distribution of X belongs to a certain parametric family, that is, fX(x) =

f0(x; θ), where f0(·) is of known form and θ is an unknown parameter, then the maximum likelihood

estimate θ̂ can be calculated using {xi}1≤i≤n, and G(xi) can be estimated by ∂
∂xf0(xi; θ̂)/f0(xi; θ̂). If

fX(x) belongs to the family of elliptically contoured distributions, that is, fX(x) = g(‖x‖2), where

g(·) is an unknown function, then using {‖xi‖}1≤i≤n, a one-dimensional nonparametric procedure can

be employed to obtain ĝ(‖x‖2) and ĝ′(‖x‖2), which are the estimates of g and its derivative g′, and
∂
∂x log(g(‖x‖2)) can be estimated by 2xĝ−1(‖x‖2)ĝ′(‖x‖2). In general, if there is no prior knowledge

about fX(x), nonparametric density estimators can be used to estimate fX(x) and ∂
∂xfX(x), and

further to obtain an estimate of G(xi). The general case is currently under investigation.

In the rest of this paper, we will focus on the case whereX follows a multivariate normal distribution

only. Normality is a common assumption in regression and is at least approximately valid in many

applications. For applications where the normality assumption is not valid, variable transformation

or data resampling can be considered to alleviate the violation of normality so that the methods
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developed below can still be applied; see Brillinger (1991) for the resampling method and Cook and

Nachtsheim (1994) for the Voronoi weighting method.

Assume X follows the multivariate normal distribution with mean 0 and covariance matrix Ip.

Then G(x) = −x. For clarity, we use JFCn, MFCn and M̂FCn to denote JFC, MFC and M̂FC under the

normality assumption, respectively. Hence,

MFCn = E(U1,V1),(U2,V2) [JFCn((U1, V1), (U2, V2))] , (23)

and

M̂FCn =
1
n2

n∑
i=1

n∑
j=1

JFCn((ui, vi), (uj , vj)), (24)

where

JFCn((u1, v1), (u2, v2)) = exp{−σ
2
W

2
‖u12‖2 − σ2

T

2
v2
12}

[
σ2

WIp + (u1 + σ2
Wu12)(u2 − σ2

Wu12)τ
]
. (25)

Note M̂FCn is a V -statistic and it can be expanded as the sum of a U -statistic and a low-order term

(Lee 1990). The asymptotic distribution of M̂FCn can be obtained by the theory of U -statistic.

Theorem 1. Suppose X follows the standard multivariate normal distribution and the covariance

matrix of vec(JFCn((U1, V1), (U2, V2))) exists. As n→ ∞,

M̂FCn = MFCn +
1
n

n∑
i=1

(J (1)
FCn(xi, yi) − 2MFCn) + op(n−1/2),

where

J
(1)
FCn(x, y) = E(U2,V2)[JFCn((x, y), (U2, V2)) + JFCn((x, y), (U2, V2))τ ].

Let ΣFCn be the covariance matrix of vec(J (1)
FCn(X,Y )). Then

√
n(vec(M̂FCn) − vec(MFCn))

L−→ N(0,ΣFCn), as n→ ∞.

In the theorem above, vec is an operator that transforms a matrix to a vector by stacking up all

its columns. For instance, if M = (m1, . . . ,mk) is a p × k matrix and mi’s are the column vectors,

then vec(M) = (mτ
1 , . . . ,m

τ
k)

τ is a kp × 1 vector. Theorem 1 asserts M̂FCn converges to MFCn at the

rate of
√
n, which implies that the eigenvalues and eigenvectors of M̂FCn converges to those of MFCn

at the same rate.

Although the explicit expression of MFCn in (23) is obtained under the normality assumption, in

fact, it remains to be a candidate matrix for SY |X under a weaker condition as stated in the following

proposition.
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Proposition 9. Suppose B = (β1, . . . , βq) is an orthonormal basis of SY |X and B̃ = (βq+1, . . . , βp)

is an orthonormal basis of the complementary space of SY |X in R
p. If BτX and B̃τX are independent

with each other and B̃τX follows the standard normal distribution, then S(MFCn) ⊆ SY |X .

We call the assumption in Proposition 9 as the weak normality condition. Proposition 9 implies that

MFCn can be used to recover the central subspace under the weak normality assumption, though it does

not guarantee that the central subspace can be recovered exhaustively as under the normality condition.

Note that the distribution of BτX can be arbitrary. The weak normality condition represents a

situation in practice where Y only depends on a subset of predictors and the rest of the predictors are

random noises following normal distributions.

For the central mean subspace SE[Y |X] and its candidate matrix MFM, similar discussions can be

used to derive the estimates of MFM under various conditions on X. In the following, we only report

the results under the normality assumption on X. Again, we use JFMn, MFMn and M̂FMn for JFM, MFM

and M̂FM under the normality condition. Recall that G(x) = −x. Therefore,

MFMn = E(U1,V1),(U2,V2) [JFMn((U1, V1), (U2, V2))] , (26)

and the estimate of MFMn is

M̂FMn =
1
n2

n∑
i=1

n∑
j=1

JFMn((xi, yi), (xj , yj)), (27)

where

JFMn((u1, v1), (u2, v2)) = v1v2 exp{−σ
2
W

2
‖u12‖2} [

σ2
WIp + (u1 + σ2

Wu12)(u2 − σ2
Wu12)τ

]
. (28)

The asymptotic normality of M̂FMn is established in the following theorem.

Theorem 2. Suppose X follows the standard multivariate normal distribution and the covariance

matrix of vec(JFMn((U1, V1), (U2, V2))) exists. As n→ ∞,

M̂FMn = MFMn +
1
n

n∑
i=1

(J (1)
FMn(xi, yi) − 2MFMn) + op(n−1/2),

where

J
(1)
FMn(x, y) = E(U2,V2)[JFMn((x, y), (U2, V2)) + JFMn((x, y), (U2, V2))τ ].

Let ΣFMn be the covariance matrix of vec(J (1)
FMn(X,Y )). Then

√
n(vec(M̂FMn) − vec(MFMn))

L−→ N(0,ΣFMn), as n→ ∞.
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5 Implementation

In this section, we describe the procedures for estimating SY |X and SE[Y |X] using the estimated

candidate matrices M̂FC and M̂FM, respectively. The determination of dimensionality q and the choice

of tuning parameters σ2
W and σ2

T are also discussed.

5.1 Algorithms

If the dimensionality of SY |X (or SE[Y |X]) is known to be q, then the first q eigenvectors of MFC (or

MFM) form an orthogonal basis of SY |X (or SE[Y |X]). From the previous sections, it is known that

the eigenvectors of M̂FC (or M̂FM) converge to those of MFC (or MFM) at the rate of
√
n. Therefore,

we can use the first q eigenvectors of M̂FC (or M̂FM) to generate a linear subspace and use it as

an estimate of SY |X (or SE[Y |X]), which is denoted by ŜY |X (or ŜE[Y |X]). In practice, X does not

necessarily have zero mean and identity covariance matrix, so the data needs to be standardized first.

Standardizations generally do not affect the convergence rate of the estimates, but may change their

asymptotic variances. The procedure to derive ŜY |X (or ŜE[Y |X]) is summarized as follows.

0. Specify parameters q, σ2
W, and σ2

T (σ2
T is not needed when estimating SE[Y |X]).

1. Standardize data as follows: x̃i = Σ̂−1/2(xi − x̄) and ỹi = (yi − ȳ)/sy, where x̄ and Σ̂ are the

sample mean and the sample covariance matrix of xi’s, and ȳ and sy are the sample mean and

the standard deviation of yi’s.

2. Calculate M̂FCn (or M̂FMn) using standardized data {(x̃i, ỹi)}1≤i≤n.

3. Obtain the spectral decomposition of M̂FCn (or M̂FMn), that is, the eigenvector-eigenvalue pairs

(ê1, λ̂1), . . . , (êp, λ̂p) with λ̂1 ≥ · · · ≥ λ̂p.

4. Then ŜY |X(or ŜE[Y |X]) = span{Σ̂−1/2ê1, . . . , Σ̂−1/2êq}.

The procedure listed above is fairly standard in sufficient dimension reduction except that the es-

timated candidate matrices M̂FCn (or M̂FMn) based on the Fourier method is used in Step 2. For

convenience, in the rest of the paper, we will simply refer to the procedure with M̂FCn as FC standing

for the Fourier method for estimating Central subspace, and the procedure with M̂FMn as FM standing

for the Fourier method for estimating the central Mean subspace. There are two parameters q and σ2
W

that need to be specified in FM, while in FC, an additional parameter σ2
T needs to be chosen. Note that

q is different from the other two parameters in that the former is a model parameter and the latter are

tuning parameters. The procedures described above assume that these parameters are known. Next

we discuss the determination of dimensionality q and the choice of the tuning parameters.
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5.2 Determination of Dimensionality q

In practice, the dimension of SY |X (or SE[Y |X]) is unknown, and needs to be inferred from data. One

informal method is to generate the scree plot of the eigenvalues of M̂FCn (or M̂FMn) as in principal

component analysis and look for an “elbow” pattern in the plot. The dimension q is chosen to be the

number of dominant eigenvalues. Several more formal methods for choosing q were proposed in the

literature. For example, Li (1991, 1992) proposed to use a χ2 statistic to sequentially test q = 0, 1, 2,

etc., while Cook and Yin (2001) advocated using permutation test for the same purpose. Recently, Ye

and Weiss (2003) proposed to use the bootstrap procedure to determine q. Next we follow the basic

idea of Ye and Weiss (2003) to develop the bootstrap procedure to choose q in FC (or FM).

First we introduce a distance measure for two subspaces of R
p and then use it to define the

variability of an estimated subspace. Let A and B be two p× q matrices of full column rank and S(A)

and S(B) be the column spaces of A and B respectively. Let PA = A(AτA)−Aτ and PB = B(BτB)−Bτ

be the projection matrices onto S(A) and S(B) respectively, where − represents the generalized inverse

of a matrix. We define the trace correlation r between S(A) and S(B) to be r =
√

1
q tr(PAPB). It can

be verified that 0 ≤ r ≤ 1, and r is equal to 0 if S(A) and S(B) are perpendicular to each other; r

is equal to 1 if S(A) and S(B) are identical. The larger r is, the closer S(A) is to S(B). Hence, we

use d = 1 − r as a metric of the distance between S(A) and S(B). See Ye and Weiss (2003) for more

discussion.

Given {(xi, yi)}1≤i≤n, let Ŝq be the estimate of S for a fixed q, where S represents SY |X or SE[Y |X].

The variability of Ŝq can be evaluated by the bootstrap procedure described below.

(1) Randomly re-sample from {(xi, yi)}1≤i≤n with replacement to generate N bootstrap samples

each of size n, and the jth sample is denoted by {(x(j)
i , y

(j)
i )}1≤i≤n for 1 ≤ j ≤ N ;

(2) Based on each bootstrap sample, e.g., the jth sample {(x(j)
i , y

(j)
i )}1≤i≤n , derive the estimate of

S and denote it by Ŝ(j)
q ;

(3) Calculate the distance between Ŝ(j)
q and Ŝq and denote it by d(j)

q ;

(4) Calculate d̄(q) = 1
N

∑N
j=1 d

(j)
q , which is the average distance between Ŝ(j)

q and Ŝq for 1 ≤ j ≤ N .

We use d̄(q) as a measure of the variability of Ŝq.

Repeating the procedure above for q = 1, . . . , p results in {d̄(q)}p
q=1, which are the variabilities of Ŝq

for 1 ≤ q ≤ p.

Suppose the true dimensionality of S is equal to q0. When q < q0, Ŝq estimates a q-dimensional

proper subspace of S. Because there are infinitely many such subspaces, Ŝq is expected to demonstrate
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large variability, and the smaller q is, the larger the variability (or d̄(q)) is. When q is slightly bigger

than q0, Ŝq estimates S ⊕ S̃, where S̃ is a (q − q0)-dimensional space orthogonal to S. Because S̃ can

be arbitrary, Ŝq is also expected to show large variability, that is, large d̄(q). When q is getting bigger

and closer to p, Ŝq estimates almost the whole space R
p, so the variability of Ŝq starts to decrease

and eventually becomes zero. When q = q0, Ŝq and Ŝ(j)
q estimate the same fixed space S, hence the

variability of Ŝq is expected to be small. In summary, d̄(q) demonstrates the following overall trend. It

decreases for 1 ≤ q ≤ q0, then increases for q0 ≤ q ≤ q∗, where q∗ is a maximizer of d̄(q), then decreases

to zero for q∗ ≤ q ≤ p. We call q0 the valley and q∗ the peak of this trend. In real data analysis, it is

possible to have local fluctuations that are not consistent with the overall trend. To choose q0, we plot

d̄(q) against q and look for the overall trend in the plot ignoring possible local deviations, then the

valley is chosen to be q0. The plot of d̄(q) versus q is called the dimension variability plot. Examples

on how to use the dimension variability plot to choose q0 will be given in Section 6.

5.3 Choice of σ2
W and σ2

T

The tuning parameters σW and σT may be considered as the bandwidths of the weight functions

K(ω) and k(t). The selection of σW and σT, however, is fundamentally different from the selection of

bandwidth for kernels used in nonparametric function estimation. In the latter case, the bandwidth

of a kernel needs to decrease to zero to ensure the asymptotic consistency of the estimated function as

sample size goes to infinity. In FC and FM, the consistency of M̂FM and M̂FC hold for any fixed positive

σ2
W and σ2

T; see Proposition 3 and Proposition 6. Nevertheless, given a finite sample, the choice of σ2
W

and σ2
T affects the variability of the resulted estimates, so they need to be chosen carefully. In the

following, we first discuss the heuristics for choosing σ2
W and σ2

T and give their recommended values,

then we briefly introduce a bootstrap procedure for their optimal selection again following the idea of

Ye and Weiss (2003).

Let us discuss σ2
W first. When σ2

W is too large, φ(ω, t) with large ‖ω‖ will receive much larger weight

than when σ2
W is small. As explained earlier, φ(ω, t) with large ‖ω‖ corresponds to patterns with high

frequencies, which may not be as important as the patterns with low frequencies and are sensitive to

noise. Therefore, large σ2
W makes FC unstable, especially when the sample size is moderate. On the

other hand, if σ2
W is too small, for example, close to zero, then the weight assigned to φ(ω, t) is almost

zero except for ω in a small neighborhood of the origin. By Proposition 8, FC is close to SIR when σ2
W

is small, and may miss some symmetric directions. Hence, we need to use a value of σ2
W that is neither

too large nor too small. Based on our empirical study, we have found that σW = 1/3, or equivalently,

σ2
W = 0.1, generally works well for standardized data. Similarly for FM, we also recommend to use
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σ2
W = 0.1 in calculating M̂FM.

The interpretation of σ2
T is slightly different from that of σ2

W. Theoretically, we use k(t) to pool

the central mean subspaces SE[T (Y,t)|X] together to recover the entire SY |X . When σ2
T = 0, S(MFC)

degenerates to the null space. When σ2
T is too large, a relatively large amount of weight is assigned

to the central mean subspaces SE[T (Y,t)|X] with large t, which corresponds to features of the response

with high frequencies. This would make FM unstable and sensitive to noise. Hence, we need to use a

value of σ2
T that is neither too large nor too small. Our extensive empirical study suggests that σ2

T = 1

be a good choice for standardized response.

The recommendations for σ2
W and σ2

T above are based on heuristics and empirical study. A more

formal approach is to use the bootstrap procedure introduced in the previous subsection. Let us

use the choice of σ2
W as an illustration. First we choose m candidate values σ2

1, . . . , σ
2
m, which are

usually equally spaced in a given interval. For any σ2
i , i = 1, . . . ,m, calculate d̄(σ2

i ) using a bootstrap

procedure similar to that described in the previous subsection. Note that the dimensionality q is

assumed to be fixed, instead, σ2
W is varied here. The optimal σ2

W is chosen to be the σ2
i that minimizes

d̄(σ2
i ). The optimal σ2

T can be obtained using a similar bootstrap procedure.

In practice, some applications may require to optimally choose q, σ2
W and σ2

T. We recommend the

following procedure to use bootstrap repeatedly. First, q is determined with σ2
W = 0.1 and σ2

T = 1.0

and is denoted by q1; second, σ2
W is chosen with σ2

T = 1.0 and q1 and is denoted by σ2
W1; third, σ2

T

is selected with σ2
W1 and q1 and denoted by σ2

T1. The steps are iterated until the parameters are

stabilized. Our experiences suggest that one iteration is usually sufficient. The second and third steps

can in fact be combined if a two-dimensional grid is employed for selecting σ2
W and σ2

T simultaneously.

6 Examples

In this section, we present four examples to demonstrate the performance of FC and FM and compare

them with other existing methods. The first three examples are based on synthetic models where X =

(X1, . . . , X10)τ denotes a random vector in R
10, ε denotes a random error, Xi’s and ε are independent

and identically distributed as N(0, 1), β1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)τ and β2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)τ .

In the last example, we apply FC to a real data set called 1985 Automobile Data to study how the

price of car depends on its features.

Example 1. Consider the model Y = (βτ
1X)2/(3 + (βτ

2X + 2)2) + 0.2ε. In this model the central

subspace and the central mean subspace are identical, that is, SY |X = SE[Y |X] = S(β1, β2). Let

S = S(β1, β2). So, no matter whether a method is targeting the central mean subspace or the central
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subspace, it can be used to estimate S. The dimension of S, q = 2, is assumed to be known. We

compare FC (σ2
W = 0.1, σ2

T = 1.0) and FM (σ2
W = 0.1) with other five existing methods including

SIR (five slices), SAVE (five slices), y-pHd, r-pHd and IHT as follows. We randomly generate 500

samples of size n = 500 from the model. For each sample, we apply the seven methods listed above

one by one to obtain the estimates of S. Then we calculate the distances between these estimates and

S. For each method, we generate a boxplot for the 500 distances. This procedure results in seven

boxplots that are displayed side-by-side in Figure 1. From Figure 1, we conclude that both FC and
0.
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FCn FMn SIR SAVE IHT y−pHd r−pHd

Figure 1: Side-by-side boxplots for the performance comparison between FC, FM, SIR, SAVE, IHT,

y-pHd and r-pHd in Example 1. The y-axis represents the distance between an estimated subspace

and the true subspace. Each boxplot is based on 500 samples.

FM outperform the other methods. IHT has similar performance as FC and FM, but demonstrates

slightly larger variability. A possible explanation for IHT’s good performance is that it is carefully

designed to capture the monotone and U -shaped trends in the function that links E[Y |X] and X.

Example 2. Consider the following heteroscedastic model, Y = (βτ
1X) + 4 (βτ

2X) ε. For this model,

the central mean subspace and the central subspace are different, because SE[Y |X] = S(β1) and SY |X =

S(β1, β2). Clearly SE[Y |X] is only a proper subspace of SY |X , so we focus our attention on SY |X and

the methods aimed at estimating SY |X . We draw a sample of 500 data points, and apply FC (σ2
W = 0.1

and σ2
T = 1.0) to estimate SY |X . Only the first two eigenvalues of the estimated candidate matrix

M̂FCn are relatively large. We use the bootstrap procedure to generate the dimension variability plot

based on 500 bootstrap samples, which is included as the left plot in Figure 2. Using the rule described

in Section 5.2, it confirms that the dimension of SY |X is equal to 2. Therefore, SY |X is estimated by
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the space spanned the first two eigenvectors of M̂FCn, which are

β̂τ
1 = (0.5012, 0.4414, 0.4869, 0.4015,−0.0205, 0.2531,−0.1111, 0.0366,−0.0709, 0.0266),

β̂τ
2 = (0.0381, 0.2085,−0.0590, 0.0025,−0.1442,−0.0137, 0.4853, 0.5143, 0.5186, 0.3658).

The distance between ŜY |X = S(β̂1, β̂2) and the true SY |X is 0.04388.

In order to compare FC with SIR (five slices) and SAVE (five slices), we draw 500 samples of size

n = 500 from the model, apply the methods to the samples to obtain the estimated central subspaces,

and calculate the distances between the estimated central subspaces and SY |X . The distances are

summarized by the side-by-side boxplots included in the right plot of Figure 2. The boxplots indicates

that FC outperforms both SIR and SAVE in this example.
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Figure 2: On the left is the dimension variability plot of d̄(q) versus q based on 500 bootstrap samples

in Example 2. On the right is the side-by-side boxplots for the performance comparison between FC,

SIR and SAVE in Example 2. The y-axis represents the distance between an estimated subspace and

the true subspace. Each boxplot is based on 500 samples.

Example 3. Consider the following model with discrete response, Y = I[βτ
1 X+σε>1] + 2I[βτ

2 X+σε>0],

where I[·] denotes the indicator function and σ = 0.2. So the possible values for Y are 0, 1, 2, and

3. In this example we only consider the central subspace, which is spanned by β1 and β2. It is clear

that Y is not a continuous function of X. In the derivation of FC, a few differentiability conditions

are required. But in the final formula for MFC, no differentiation is involved. So we expect FC

would still work in this example. As a matter of fact, the involved differentiability in deriving FC

is required only in the generalized sense. We draw a sample of 500 points, and apply FC (σ2
W = 0.1

and σ2
T = 3.0) to estimate SY |X . Note that σ2

T is chosen to be larger than the usual recommended

value, because the discontinuity in the model represents a feature with high frequency and it could
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not be well captured by the transformed response exp{ıty} with small t. The first two eigenvalues of

M̂FCn are relatively large indicating that the dimension of SY |X is 2. This is further confirmed by the

dimension variability plot included in Figure 3. Therefore, the estimated central subspace is spanned

by the first two eigenvectors of M̂FCn, which are,

β̂τ
1 = (0.0603, 0.0927, 0.0567, 0.0521,−0.0432,−0.0106, 0.4964, 0.3776, 0.4923, 0.4571),

β̂τ
2 = (0.5274, 0.5209, 0.5306, 0.4528, 0.0580, 0.1041,−0.0735,−0.0771,−0.0729,−0.0819).

The distance between S(β̂1, β̂2) and the true subspace SY |X is d = 0.007809.

We use the same procedure as in Example 2 to compare FC (σ2
W = 0.1 and σ2

T = 3.0) with SIR

(four slices) and SAVE (four slices). The three boxplots corresponding to FC, SIR and SAVE are

included as the right plot in Figure 3. In this example, the performances of the three methods are

comparable with SIR slightly better than the other two. One explanation for the better performance

of SIR is that SIR can be regarded as an extension of linear discriminant analysis.
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Figure 3: On the left is the dimension variability plot based on 500 bootstrap samples in Example

3. On the right is the side-by-side boxplots for the performance comparison between FC, SIR and

SAVE in Example 3. The y-axis represents the distance between an estimated subspace and the true

subspace. Each boxplot is based on 500 samples.

Example 4. In this example, we use FC to analyze a real data set titled 1985 Automobile Data. The

objective is to study how the price of car depends on its features. The data set is available at the UCI

Machine Learning Repository (ftp://ftp.ics.uci.edu/pub/machine-learning-databases/autos).

Originally, there are 205 instances (or cases), 26 attributes (or variables) in the data set and there are

also some missing values. Because most current dimension reduction methods including FC can only

handle continuous variables, we remove eight categorical variables from the data set. We remove one
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continuous variable that contains many missing values. For simplicity, we also discard the instances

with missing values. The resulted data contains 195 instances and 14 variables, which are Wheelbase

(x1), Length (x2), Width (x3), Height (x4), Curb weight (x5), Engine size (x6), Bore (x7), Stroke

(x8), Compression ratio (x9), Horsepower (x10), Peak rpm (x11), City mpg (x12), Highway mpg (x13)

and Price (y). We use the logarithm of Price (log(y)) as the response and x1 to x13 as the predic-

tors. Before we apply FC to the data, we standardize each predictors using their means and standard

deviations.

We first use FC with σ2
W = 0.1 and σ2

T = 1.0 and the bootstrap procedure to choose the di-

mension of the central subspace. The results show that the dimension should be two. In or-

der to obtain sharper views, we fix q = 2, and further use the bootstrap procedure mentioned

in the end of Section 5 to tune the parameters σ2
W and σ2

T. We have found that σ2
W = .08 and

σ2
T = .6 are better choices. Employing FC with the tuned parameters, we calculate M̂FCn and de-

rive its spectral decomposition. The first two eigenvalues of M̂FCn are dominant, which are λ̂1 =

0.1071 and λ̂2 = 0.0381. The bootstrap procedure is run with 1000 bootstrap samples and the

dimension variability plot is generated and included as the left plot in Figure 5. The plot sug-

gests that q = 2. So, we use the first two eigenvectors of M̂FCn to derive the estimate ŜY |X =

S(β̂1, β̂2), where β̂τ
1 = (0.05,−0.19, 0.08, 0.09, 0.75,−0.24, 0.00,−0.11, 0.17, 0.51, 0.04,−0.08, 0.12) and

β̂τ
2 = (0.08,−0.38, 0.09, 0.08, 0.03, 0.70,−0.17,−0.20,−0.06,−0.08, 0.06, 0.49,−0.17). Figure 4 includes

the projection plots of log (y) versus β̂τ
1x (left) and log (y) versus β̂τ

2x (right), with the left displaying

a strong linear relationship and the right displaying a parabolic relationship.

Based on the relative magnitudes of the components, β̂1 is mainly determined by Curb weight (x5)

and Horsepower (x10) followed by the other variables, and β̂2 is mainly determined by Engine size (x6)

and City mpg (x12). The strong linear relationship between log(y) and β̂τ
1x indicates that the price of

a car can be well predicted by its Curb weight and Horsepower. The parabolic relationship between

log(y) and β̂τ
2x reveals that the price of a car also depends on its Engine size and City mpg, however,

in a slightly more complicated manner. After checking the makes and styles of the cars reported in

the original data, we have found that the points in the upper branch of the parabola represent high-

end cars such as the sedans or the convertibles of Mercedes-Benz, BMW, Jaguar, Porche etc., while

the points in the lower branch represent lower-end cars such as the hatchbacks of Honda, Chervolet,

Polymouth, Subaru, etc. For the high-end cars, the price increases as β̂τ
2x increases, while for the

lower-end cars, the price decreases as β̂τ
2x increases. The two relationships above further imply that

there exists a nonlinear confounding between β̂τ
1x and β̂τ

2x. The right plot in Figure 5 is the plot of β̂τ
1x

versus β̂τ
2x, which exhibits a parabolic relationship between these two directions. Readers can consult
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Figure 4: On the left is the plot of log(y) versus β̂τ
1x and on the right is the plot of log(y) versus β̂τ

2x

in Example 4.

Li (1997) for a detailed discussion of nonlinear confounding between predictors. SIR and SAVE are

also used to analyze the data. The former gives similar results as FC, while the latter fails to recover

interesting directions in this particular example.

7 Conclusion

Using the Fourier transform, we have derived two candidate matrices MFC and MFM to recover the

entire central subspace and central mean subspace respectively. Under further distributional assump-

tions, explicit estimates of the candidate matrices are derived, which lead to the estimates of the

central and central mean subspaces. The selection of the tuning parameters and the determination

of dimensionality have been discussed. Synthetic and real examples are used to demonstrate the per-

formances of the proposed methods in comparison with other existing ones. The use of the Fourier

transform may provide a different view on dimension reduction in general regression, which is expected

to generate more interesting results in the future. Currently, we are focused on two issues. The first

one is to generalize the results of the current paper to the case without distributional assumptions

imposed on X, and the second is to develop dimension reduction techniques for regression with mul-

tiple responses. Because our approach does not involve the slicing of the response and the partition

of data, it may be more appropriate for the latter case than SIR and SAVE.
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Figure 5: On the left is the dimension variability plot generated from the bootstrap procedure with

1000 bootstrap samples, σ2
W = 0.08 and σ2

T = 0.6; on the right is the plot of β̂τ
1x versus β̂τ

2x that shows

a nonlinear relationship. Both plots are for Example 4.

8 Appendix

Proof of Equation (5). Because A = (α1, α2, . . . , αq) and the columns α1, . . . , αq form a basis for

SE[Y |X] with q dimensions, to prove equation (5), it is sufficient to show that for β ∈ R
p, βτA = 0 is

equivalent to βτ ∂
∂x m(x) = 0 for all x ∈ supp(X).

By the chain rule of differentiation, ∂
∂x m(x) = A ∂

∂u g(u). So βτA = 0 immediately implies that

βτ ∂
∂xm(x) = βτA ∂

∂ug(u) = 0 for all x ∈ supp(X).

Next, we show the converse is also true by contradiction. Assume that there exists β0 ∈ R
p

such that βτ
0

∂
∂xm(x) = 0 for all x ∈ supp(X), but βτ

0A 6= 0. Let ξ1 = Aτβ0/‖Aτβ0‖. Clearly, ξ1

is a q-dimensional nonzero vector. So βτ
0

∂
∂xm(x) = βτ

0A
∂
∂ug(u) = 0 means ξτ

1
∂
∂ug(u) = 0, which

implies that the directional derivative of g as a function of u = (u1, . . . , uq)τ along ξ1 is always zero.

This further implies that g(u) is a constant along ξ1, that is, g(u + tξ1) = g(u) for t ∈ R. We can

expand ξ1 by bringing in ξ2, . . . , ξq to form an orthonormal basis for R
q. Let D = (ξ1, . . . , ξq) and

v = Dτu = (v1, . . . , vq)τ , then g(u) = g(Dv) and ∂
∂v1

g(Dv) = ξτ
1

∂
∂ug(u) = 0. Hence g does not depend

on v1, so we can rewrite g(u) = g(Dv) = g̃(v2, . . . , vq) = g̃(ξτ
2A

τx, . . . , ξτ
qA

τx), which implies that

S(Aξ2, . . . , Aξq) is also a dimension reduction subspace for E[Y |X], and the central mean subspace has

dimension at most q − 1, which contradicts that dim(SE[Y |X]) = q. Thus the proof is completed.

Proof of Proposition 1.
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1. From the definition of ψ(ω) in (6), a(ω) and b(ω) have the following expression

a(ω) =
∫

cos(ωτx)
(

∂
∂x m(x)

)
fX(x) dx

b(ω) =
∫

sin(ωτx)
(

∂
∂x m(x)

)
fX(x) dx

From (5), ∂
∂x m(x) ∈ SE[Y |X], for all x ∈ supp(X). So both a(ω) and b(ω) belong to SE[Y |X].

Furthermore, by (7), the inverse Fourier transform equation, and the fact that the Fourier

transform is one-to-one, we have βτ ( ∂
∂xm(x))fX(x) = 0 for all x ∈ R

p is equivalent to βτψ(ω) = 0,

for all ω ∈ R
p, which is further equivalent to βτa(ω) = βτ b(ω) = 0 for all ω ∈ R

p. Using (5), we

have SE[Y |X] = span{a(ω), b(ω) : ω ∈ R
p}.

2. Because m(x)fX(x) → 0 as ‖x‖ → ∞. Using integration by parts, we have

ψ(ω) = −
∫
m(x) (ıω exp{ıωτx}fX(x) + exp{ıωτx} ∂

∂xfX(x)) dx

= −E(X,Y )[Y (ıω +G(X)) exp{ıωτX}].

3. The proof is standard and can be found in Folland (1992; Pages 217, 243).

4. The proof is standard and can be found in Folland (1992; Pages 222, 244).

Proof of Proposition 2. Because ψ(ω) = a(ω) + ıb(ω), we have

ψ(ω)ψ̄(ω)τ = [a(ω)a(ω)τ + b(ω)b(ω)τ ] + ı[b(ω)a(ω)τ − a(ω)b(ω)τ ].

By (9), we know that
∫

[b(ω)a(ω)τ − a(ω)b(ω)τ ]dω = 0. Therefore,

M∗
FM = (2π)−p

∫
ψ(ω)ψ̄(ω)τ dω = (2π)−p

∫
[a(ω)a(ω)τ + b(ω)b(ω)τ ] dω.

Clearly M∗
FM is a real non-negative definite matrix. For any p-dimensional vector β, βτM∗

FMβ = 0 is

equivalent to βτa(ω) = βτ b(ω) = 0 for all ω, which implies that the column space of M∗
FM, S(M∗

FM),

is the same as span{a(ω), b(ω) : ω ∈ R
p}. By the first property in Proposition 1, we have S(M∗

FM) =

SE[Y |X].

Proof of Proposition 3. Because

MFM =
∫

[a(ω)a(ω)τ + b(ω)b(ω)τ ]K(ω) dω,

so MFM is a non-negative definite matrix. Because K(ω) > 0 for ω ∈ R
p, for β ∈ R

p, we have

βτMFMβ = 0 ⇐⇒ βτa(ω) = βτ b(ω) = 0 for all ω ∈ R
p,

where ⇐⇒ reads “being equivalent to”. Therefore S(MFM) = span{a(ω), b(ω) : ω ∈ R
p} = SE[Y |X].
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Proof of Proposition 4. Under the model assumption, following the similar argument as in the proof

of (5), the central subspace can be written as

SY |X = span{ ∂
∂x fY |X(y | x) : (x, y) ∈ supp(X,Y )},

where fY |X is the conditional density of Y given X. In order to prove this proposition, it is sufficient

to show that for β ∈ R
p and x ∈ supp(X),

βτ ∂
∂xm(x, t) = 0 for all t ∈ R ⇐⇒ βτ ∂

∂xfY |X(y | x) = 0 for all y ∈ supp(Y ).

This is an immediate result from the fact that ∂
∂xm(x, t) is the Fourier transform of ∂

∂xfY |X(y | x),
that is,

∂
∂xm(x, t) = ∂

∂x

∫
exp{ıty}fY |X(y | x) dy =

∫
exp{ıty} ∂

∂xfY |X(y | x) dy.

Thus the proposition is proved.

Proof of Proposition 5. The proof is a straightforward modification of that of Proposition 1 with Y

replaced by exp{ıtY } and m(x) replaced by m(x, t). The details are thus omitted.

Proof of Proposition 6. Because

MFC =
∫∫

[a(ω, t)a(ω, t)τ + b(ω, t)b(ω, t)τ ]K(ω)k(t) dωdt,

so MFC is a non-negative definite matrix. Because K(ω) > 0 for ω ∈ R
p and k(t) > 0 for t ∈ R, we

have, for any β ∈ R
p,

βτMFCβ = 0 ⇐⇒ βτa(ω, t) = βτ b(ω, t) = 0 for allω ∈ R
p and for all t ∈ R.

Therefore S(MFC) = span{a(ω, t), b(ω, t) : ω ∈ R
p, t ∈ R}. Using the first property of Proposition 5,

we have S(MFC) = SE[Y |X], and the proposition is proved.

Proof of Proposition 7. Applying integration by parts and the condition that f(X,Y )(x, y) goes to zero

as x goes to infinity and y is fixed, we have

η(y, ω) = −
∫

(ıω +G(x)) exp{ıωτx} fX|Y (x|y) dx

= −
∫
ıω exp{ıωτx} fX|Y (x|y) dx− f−1

Y (y)
∫

exp{ıωτx} (
∂
∂xfX(x)

)
fY |X(y|x) dx

= f−1
Y (y)

∫
exp{ıωτx} fX(x) ∂

∂xfY |X(y|x) dx.

Since ∂
∂xfY |X(y | x) ∈ SY |X , we have η(y, ω) ∈ SY |X . The second part of the proposition can be easily

verified.
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Proof of Proposition 8. When X follows the normal distribution with mean 0 and covariance matrix

Ip, G(X) = −X. Because K(ω) is a point mass at ω = 0,

MFC =
∫

[a(0, t)a(0, t)τ + b(0, t)b(0, t)τ ]k(t) dt,

where a(0, t) and b(0, t) are the real and imaginary parts of φ(0, t) respectively. So S(MFC) =

span{a(0, t), b(0, t) : t ∈ R}. By (16), φ(0, t) is the Fourier transform of E[X|Y = y]fY (y), that

is,

φ(0, t) =
∫

exp{ıty}x f(X,Y )(x, y) dxdy =
∫

exp{ıty}E[X|Y = y] fY (y) dy.

Then for any β ∈ R
p, βτE[X|Y = y]fY (y) = 0 for y ∈ R is equivalent to βτa(0, t) = βτ b(0, t) = 0 for

t ∈ R. Hence S(MFC) = span{E[X|Y = y] : y ∈ supp(Y )}. The latter is exactly the space aimed at by

SIR, which is S(MSIR). Thus, when σ2
W = 0, S(MFC) = S(MSIR), and the proposition is proved.

Proof of Theorem 1. Because M̂FCn is a V -statistic, it can be written as follows.

M̂FCn =
n− 1
2n

(
n

2

)−1 ∑
i<j

{
JFCn((xi, yi), (xj , yj)) + Jτ

FCn((xi, yi), (xj , yj))
}

+
1
n2

n∑
i=1

JFCn((xi, yi), (xi, yi)).

The first term in the right side of the equation above is a U -statistic, and the second term is of order

Op(n−1). Using the Hoeffding decomposition of U -statistic, we can further write M̂FCn as

M̂FCn =
n− 1
2n

(
2MFCn +

2
n

n∑
i=1

(
J

(1)
FCn(xi, yi) − 2MFCn

)
+ op(n−1/2)

)
+Op(n−1)

= MFCn +
1
n

n∑
i=1

(
J

(1)
FCn(xi, yi) − 2MFCn

)
+ op(n−1/2).

The second term in the expression above is the average of n independent and identically distributed

random matrices (J (1)
FCn(xi, yi) − 2MFCn) with 1 ≤ i ≤ n. Because ΣFCn exists, which is guaranteed by

the existence of the covariance matrix of vec(JFCn((U1, V1), (U2, V2))), by the Central Limit Theorem,

as n goes to infinity,

√
n(vec(M̂FCn) − vec(MFCn))

L−→ N(0,ΣFCn)

where ΣFCn = cov[vec(J (1)
FCn(X,Y ))] is a p2 × p2 matrix.
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Proof of Proposition 9. Because φ(ω, t) = E[η(Y, ω) exp{ıtY }], it is enough to prove that η(Y, ω) ∈
SY |X under the weak normality condition. Applying integration by parts, we have

η(y, ω) =
∫

exp{ıωτx} ∂
∂xfX|Y (x|y) dx+

∫
x exp{ıωτx} fX|Y (x|y) dx

= fY (y)−1

∫
exp{ıωτx} ( ∂

∂xfX(x) + xfX(x)) fY |X(y|x) dx

+ fY (y)−1

∫
exp{ıωτx} ( ∂

∂xfY |X(y|x)) fX(x) dx.

The second term belongs to SY |X , so we only need to focus on the first one and denote it by I1. Let

u1 = Bτx and u2 = B̃τx, and u =
(
u1

u2

)
= (B, B̃)τx = M τx. Then

I1 = f−1
Y (y)

∫
exp{ıω̃τu}M( ∂

∂u p̃(u) + up̃(u)) p(y|u1) du

= f−1
Y (y)B

∫
exp{ıω̃τu} ( ∂

∂u1
p̃(u) + u1p̃(u)) p(y|u1) du

+ f−1
Y (y)B̃

∫
exp{ıω̃τu} ( ∂

∂u2
p̃(u) + u2p̃(u)) p(y|u1) du1du2,

where ω̃ = M τω and p̃(u) = fX(Mu) is the density function of u. Notice that the first term falls in

SY |X . Under the weak normality condition, we have ∂
∂u2

p̃(u2|u1)+u2p̃(u2|u1) = 0, so the second term

in the expression above is zero. Therefore I1 ∈ SY |X . This proves the proposition.

Proof of Theorem 2. This proof is similar to that of Theorem 1 and is thus omitted.
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