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STUDIA MATHEMATICA, T. LI, (1974)

Fourier multipliers and estimates of the Fourier transform
of measures carried by smooth curves in R®

by
PER SJTOLIN (Uppsala)

Abstract. Assume ¢ > O and lot m (z) be defined for z¢ B2 by m(z) = (1 — o))",
|z < 1, and m (%) = 0, |@] > 1. It is then kunown for what values of prm ig a Fourier
multiplier for L? (R?). In this article this result is extended to more general functions m.

Itis alse given an I? estimate of the Fourier transform of measures carried hy
smeoth curves in R% which extends a result of C. Fefferman and E. M, Stein [4].

Imtroduction. Letm bea bounded measura.b]c complex—wﬂued funetion
on R Define an operator T by setting (Tf = 'mf, fe OF (R?), where f
is the Fourier transform of f, given by f(x f =Y df, xe R? and

5 denotes the class of infinitely differentiable complex»va.luecl functions
with compact support, We say that m is a multiplier for I” (R?) if | Zf)! llzomy
< Oplifllzomyy, fe O (R, for some constant €, depending only on m
and p.

The following theorems are the main vesulty of this paper.

TrEorEM 1. Let I be o OF curve in B® which is simple and closed and
has a tangent at each point. Denote the region inside I by 0. For me R* lof
d{w) denote the distance from & to I" and let o be a positive number. Assume
that m 18 o funetion on K with the following properties:

(i) The restriction of m to Q belongs to C*(R).

(i) There exists a meighbourhood ' of I' such that m(x) = §(x)* if
ze 2N

(iil) m vanishes ouside Q.

Then, if 0<C a<{1/2, m is o multiplier for LB if amd omly if
4/(3--2a) < p < 4/(1-2a If a>1/2 m is a multzplwr for IP(R?) for
1€ p < oo,

TurorEM 2. (1) Let I, = [0, 1], assume that yy and y, are real and
belong to 0% (1) (i.e. they are infinitely differentiable in the interior of I,
omd have one-sided derivatives of all orders at the endpoinis), and that

72’ + v (8 % O for te Iy, Tet ' demoto the curve {(y1(8), yo () B?; ¥ I},
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et d8 denote the arc length measure on I' and sel
Sf(e)y = [e"™f(0as(n), we R, fe NI d8).
r

Then

18 1| zamyy < O, If 1Bl zoqrasy
if 4 < g< o0, gf(g—3) < p < oo and y > 1]g, where K (1) denotes the curva-
ture of I' at a point te I

(i) If furthermore K () = O for te I, then 5t is sufficiont to asswme that
e O (To), i = 1, 2, and in this case the above inequality holds also for y = 1fg.

In the case when I' is the unit circle Theorem. 1 is well known (see
Bochner [1], Herz [T], Stein [9], Fetferman. [4] and Carleson and Sjolin. [37).
Tn particular it was proved in [4] that the condition on p is sufficient for
o>1/6 and then in [3] that it is sufficient for o > 0. The author has
also proved that this result ean be extended to the case when the tangent
to 1" has everywhere finite order of contact. A simplification of the proof
in [3] and an easy proof of the extension just mentioned are contained in
Hormander [8]. An alternative proof in the case when I" is the unit circle
is given in Fetferman [6].

We also want to remark that if we set a = 0 in the definition of m
in Theorem 1, then it follows from Fefferman’s counterexample in [5]
that m is multiplier for L? (R?) if and only if p = 2.

The basic idea in the proof of Theorem 1 is the following. To treat
the case when I' is convex we make a parfition of the curve which leads
to a splitting of # with properties similar to those of the splitting carried
out by Fefferman in [6] in the case of the unit circle. The main difficulty
is to find a suitable partition of I. We then use a property of ¢ fune-
tions (see Lemma 1) to pass to the general case.

Theorem. 2 is well known in the cage when the curvature of I' never
vanishes (see [4] and cf. [3], [8] and Zygmund [11]). It is also known that
already in this case the conditions ¢ > 4 and ¢/(g—3)<p can not be
weakened.

The proof of Theorem 2 in the case K > 0 is a generalization of the
proof in the case of non-vanishing eurvature and to pass to the 0 result
we use Lemmsa 1 once more. We shall also give examples of curvey I’
for which the conditions on y in Theorem 2 can not be relaxed.

I wigh to express my gratitude to Charles Fefferman for valuable
conversations. '

1. The multiplier theorem. We ghall need the following property
of C* functions.

Lemwa 1. Let I be a compact interval on R, assume that pe O°(I) and
is reol-valued and let & be a positive mwumber. Set B = {weI; p(x) = 0}
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and Tet {1} | be the component intervals of INE. Then 3 (suplg|)® 48 con-
vergent. w=l I,

Proof. Let F be set of points of accumulation of ¥ and let {J,,}m_,
be the component intervals of INF. To prove the lemma it is suffieient
ot prove that '

(1) > (suplgl)’ € Oyl
I, Tl I
for each m, where |J,| denotes the length of J,,.
Firgt let ¥ be the smallest integer which is larger than 1/e. At least

one of the end points of each J,, is contained in F and if follows from
Taylor’s formula that

lp(@)] < (SJHP ) [Tl

It at most & of the intervals I, are included in J,, the above estimate
yields (1) with O, = I(sup [p®|)*|I/"*~*. I J,, includes more than %
I .

Ze Jm.

intervals I, we make a partition of J,, into subintervals o, ;, 1 =1, 2, ...,
such. that each J,,; inclndes at least & and at most 2% intervals I,,. From
Rolle's theorem it follows that each ¢, j = 1,2, ..., k—1, hag at leagt
one zero in each .,,;. Repeated use of the mean value theorem yields

£up ol << (Sup e’ ) Wl < ..o < (30D [@®)) |,

m,t m,l ) T 1
and hence

D (suplpl) < Oyl

L,ET g I

Summing this inequality over 1 we obtain (1) algo in this case and the
proof of the lemmma is complete.
‘We introduce gome notation. We let |#| denote the Liebesgue measure

of a get B in R or R’ and set AD = {lo; we B}, 2> 0.

I w is an interval on R, fe L'(w) and ae R st

0w; f) =i

. i 6~‘i2n]rn|'"1exf,f(t) at

and

00

O3 ) = ) (bl oagunle; -
Finally set @ = {{&, )e R*; |z} < 10, |y| < 10}
We ghall now prove the main lemma in the proof of Theorem 1.
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LemMma 2. Let I be a compact interval on B, let ¢ and pe C°(I) and
assume that v is real-valued. Set

Ky(w,q) =N [e¥evomian, (a,9)e R, N > 2.
I

and
feLl 0,1)

1 .
Tyf(@,y) = [ Kxla—1, y)f(t)t, (@ y)e B
[}

Then if 4 << ¢ <<
q such that

oo there ewists o constant O depending only on I, v, @ and

1w gy < ow—m (log ) nfnm,n

Proof. PFirst set 4 = 10max(suply’|, suply’’|, 1). Starting from
I I

the left endpoint of I we make a partition: of I into intervals w,, & =1, 2,
, K, such that loy) [ lyp"|du = AN"' for k<K and |wgl fizp"|du
oF
< AN-L Tt follows that |wy| = N~ for k< K and that K < ON”"
We set B — {uel; ¢ (u) = 0} and let {5, be the ecomponent
intervals of INE. Tt there exist intervals I, for which there is at least
cne value of % such that w, < I,, we denote the eorresponding inter-
vals | wy by Qn, m =1,2,..., M,. The intervals w, which are not
apCly My

included in | £, are denoted by £2,, m = M,+1,..., M. We have
m=1
constructed a partition {0,1%. . of I with the following properties:

2) 12, flgu”ldu;AN‘l (unless 2,, = wg).

(3) If more than one interval w, is included in Q,,, then y’’ has constant
sign in £,,.
(4) Por every n I,nQ,, is non-empty for at most three values of m.

We have
Jiwiaus 3 [lvldu
'Qm

TanQy =2 X,

and. using (4) we obtain
(5) 2 fwria) <s J( [l iduf, 0<e<1.
m Iy

= N [Nt o 4) iy and

@

If w is a subinterval of I we set K% (v, y)

T5f(w,y) = [ Ex@—i, )f()dt, feI'(0,1).
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Extending f to R by setting f(f) = 0 for te RN\(0, 1) we obtain
(6) T3f(@,y) =N f T g (1) f( i)

We are going to prove that if ©Q,, 5= wg, then
() 1Tl < O j | du)"™ T NV Log NV a0,

< g o0

We fix m and for each integer I let w!, w},..., denote the mtewa.ls
o, in 2, for which 21! < [e,| < 27 (if there is any) where w!is to the
left of ! if ¢< j. Then set TNM = > TN,ZeZ k=0,1,2,3, and
J=R(mod 4)
7y = (TN,,,,,f Y. ¥, is the inverse Fourier transform of & measure on
== {( (g -+ 5) , W (p(uan) + 9 (0a))); g 2y 6 = 1,2} and a computa-
tion shows that for every s, :

(8) s (51, 92 e BH S N [y dus| 2y
'Qm
Wo choose ye 0= (R?) such that |y|> 1 in @ and y< O (R*) and has
gupport in a unit square with center at the origin. Choosing 7 (@1, 2g)
= B(2,) B(w,), where p belongs to a suitable non-quasi-analytic clags, we
may also agsume that

(9 z(@) = 0(e7= ™",

2] o0,
wheré .6 18 a small positive number. Using (8) and (2) we easily prove
that
(10) |supp (472" |

<ON R, [ly"idu.
Qn

From Schware’s inequality and Plancherel’s theorem it follows that

Iz grry < 2nlsupnd | gl z2gm2),

if ge OP(RY), snd hence

(11) llg ey < (*Isuppg[”” 29 gl 2 gty -
‘We have
k)
”“TN?;,kf HL*T(Q) = | 1, rc“_l,;!; gy = < ||lxF L fmfzmz)

for each I and & and using (11) with g = I, ; and (10) we obtain

@2) TR fllme < 0( f W’M)“"“N"” “2ux1f‘u,lw)
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We now fix [ and write w; instead of o). We have

2Fr = Z(T_zu:rf)(T?yl )
1,3 =k(mod4)
and shall prove that two terms y(TW )T F) and y(Tx (T f) in this
gum. are orthogonal in L*(RY) £ j <, 1 < ¢ and (7,5) # 8,4,
To show this we shall prove that their Fourier transforms have
digjoint supports. It is sufficient to prove that the distance between the
set

By = {(N(%‘{'uz): N

and the corresponding set. By ;. is larger than V2. Without logs of generality
we may assume that j <.

Now assume that w,ew;, Uye 0, Vg€ 0;, Vye 0y and that [N {u,+
A aty) — N (Vg +0y)] < < V2. Tt follows that i’ < j'v Betting p = min(v; —u,,
U4y —v,) and using the definition of 4 and the intervals o; we obtain

(1pGaan) + () tia€ g, ze ooy}

| ¥ (y () o (wa)) = N (w(02) +y ()| = N | [ was— [ yag|
“p-@ w340 : 'T"l
>N| [ yas— [ yag—N2[N)4/10)

1
uy+e

_Nf

=N f(fIw"ldu)d§~4/5>A/2_A/5>1/5’

“F+1 “5+2

| (& -+ g —uy) — ' (£)| dE — AVE/10

which ig the desired estimate.
From the orthogonality it follows that

B gy < 22 le (TR TS ||Lz(na,
for each % and using the rapid decrease of y and trivial estimates of Ty.f
we obtain.
@3) el < O 2 TS
where @, = (log Ny+*Q.
We are now going to estimate Ty f and shall first study Kl“:? . Letting
; denote the left endpoint of w; and setting

HL’(QN) +ON ) fllseco,y »

o(u) = oy (u3y) = VU g (4 1y )
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we obtain
" legl
E(w,y) = NN [ ofNetmtinn g (4) gy,
0
We algo set

(g

gla) = N f ¢V o () duy
and then have
K (@, y) = ¥™g(n+yy' (1))
From the definition of ¢, i follows that
lo' (w)] < O(log NY*+¥2t  for O

it |y) < 10(log N)*** and integrating by parts in the integral defining g
‘we can prove that

(14) g™ (a) < O(log N )** (N2~ )'min (N2, a7,

lo(u)| = O and < u < oy

s =0,1,2.
Setting w, = [({—1)2eN 12", 22N 19}, ic Z, we obtain

T, < Y | [ gle+ vy ()~ )= f(ry |

om0 2y
We alao seb # = n(@, y) = [(2m) " N2 Nz +yy' (w))], where [ ] denotes
the integral part. It then follows from (14) that
Olog Ny (W2~ (L + i —ul) ™,

&g
¥ (w-I-J'G/) (u)—1)| <

tes;y, § = 0,1,2, and hence

%
R — il
}_, b2%4 ik “1 te sty (@, )@y

glow -y’ (uy) —1) =

Pow —00

where ‘
Iyl O+~ log N+ Na=i (1

(see [2], Lemmea 3).
Using this representation of ¢ we obtain

li—n)t, e Z

&
TS @, y)| < C(log Ny % (Lt —a)™ Oy, (563 1)

= OQlog W)™ B (L) Oy, O weai fh @9 Qs

Ipj<N?
since f vanishes outgide the interval (0, 1).
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From Schwarz’s inequality it follows thatb

(18) [Zf(w, 9)P < Clog NP D (1+1uly™ Oy, (ns T

juj <N
* (®,¥)e Q.

We ghall now estimate the sum in (13) using the above inequality. The
technique is similar to the proof in [6].

Tt follows from the definition of the intervaly w; that |¢’ () — ' (4]
> N2 it § »§ and we may also assume that the above difference is
less than a small constant for all §,j. We let s, be the smallest integer
such that N—'2' > 27% and conclude that s, < ClogN. We also set

g o= {(§,4)5 2707 < I () — 9 ()| <277,

S Z, $< 89, a0G oy = {(J,1); 05 = op).
Setting n;(z,y) = [(2n)“’N2”’(w+yzy (u)]] and defining «.(v,4)
analogously we see from @ geometrical argument thatb

(@, ¥)e Qus my(@, ) = m,my(@,y) = w'H < O(logN)'F¥ §-2g%Fe
¥)eQy, (J, 1) e o, implies that
O(log Nyt N2~-3,

for all integers n,n' if (j,j')e o,. Also (»,
g (5 y) — 1y (2, )| <

Hence
(16) ZH(TNf lBagm < 2 DL AP TS (s 9,
KEN? <N

where

S(u,») = Clog M)** 3 3 I,

sy {1,dVesly
and.
Ly = [ [ Oy g PO, G ) A By
N
KDy D) Oy ltnss FY Outy (s I
Im—nT=ds

where

D, = Q(logN# N-29%+%  and 0, = O(log Ny o=,

Trom Parseval’s formula it follows that

(A7) 8, ) < Olloghy 3 - 3 ([ jppad)( [ |f1ae).

83y |n-n’| <0y T E
We set

B, = {ne Z; In—k0,| < 0}, FeZ,
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and

A= L% By Bed.

me By,

Hence |4,, < 0(log Ny**27° and the lagt sum in (17) is majorized by

w3 3 [ura)( [ e -0 3( [y ] vta)

kon,n ‘Rh e ] *n v vl

<o 3 St [ irtaa)
g, Ay e

O(log Ny f |F 1t < O(log N2 400,
0 R

Hence the left-hand side of (16) is less than C(logN)** mllf”r@(u,l) and
(7) follows if we use (12) and (13).

In the case 2, = wy the above argument yields (7) with the first
factor after the constant removed and an application of (5) and Lemma 1
completes the proof of Lemma 2.

We shall now usé the above lemma to prove the multiplier theorem.

Proof of Theorem 1. Cover I' with finitely many small open discs
Dy, d == 1,2,...,n, 60 that § is 0™ and m = §" in QnD; for each j. Choose

;e OF(RY such that supppy < Dy, j=1,2,...
i 4 i !

7y and Doy =1 in
a neighbourhood of I 1

n 1
Writing m = m{1l— Y¢;) + 3 me; we observe that the first term is
1 1

¢® and hag compact support and thus is a multiplier for L7 (R?) for 1< p
< oo, We then fix § and ghall study me,.

Performing a rotation we may assume that suppe; = I xR, where
I is @ compact interval on R and that ¢ equals the distance to
a eurve {(u, v)e R* uel, v = p(uw)}, where p<0°(I}, in suppg,. Since
(8 1y w) /|0~ (u)] n* 1s 0™ in & neighbourhood of suppe; it is sofficlent to
prove that (v—wy(w))ie;(u,v) is a multiplier (bere 2, ~ max(w,0),
we R). We mw algo assume (following Hormander [8]) that ¢ (w, v}
‘‘‘‘‘ s gp () g (0~ (w)), where ge O%(I) and ¢e 7 (R). .

Letting K denote the inverse Fourier transform of (p—yp(u Waesle, )
wo get

(18)  E(e,y) == @) [[ ™ Wp(u)o(v—p(u) (v~

IxR

w)}3. du dw

o= (2,‘1)—-2 fci(:mwuw(u))qj(,u/) duf eit/'ug(,u)?)ad,v.
I [}
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We let Q' and @’ be two squares in the plane with sides parallel to
the coordinate axes and wside length 1/8 and assume that the distance
between them is >1/8 and < 2. Then let f have support in ¢’ and seb

Buflo, ) = [ [ NEN(@—1), Ny —s)|fit,s)dtds, (o,9)cQ", N >2
4 |

We shall prove that

(19) WS llragn < O, N4 (log Ny | fllpagys 4 < ¢ 00

The last integral in (18) eguals Oy~ ="+ 0 (5~ >*), Y-+ o0, and it follows
from Lemma 2 that

20) | [ N E(N @), (y—s)f(t, 9)d | 1do dy )"
{(@r) @ ly—simegd B

< O =M= (og W) ( [ 1£(E, ) at)™,
) ®

4 < q << oo,

for all values of s if ¢, is a positive constant and an analogouns estimate
holds for ¢ = oc.

If |y —s] << ¢, and ¢, i chosen small enough, then it follows from
repeated partial integrations in the first integral on the right-hand side
of (18) that :

(NEN@—1), Ny—a)|<O¥ ™",  (2,9)eQ", (t9)eq
and hence (20) holds with |y—s| = ¢, teplaced by |y —s| << ¢,. Minko-
wski's inequality for integrals yields (19) and Theorem I can be obtained
from the following standard argument.

Choose @< C°(R), non-vanishing only in the interval (1/2,2), such

that > ®(27%) =1 for 121 Set K,(o) =K (@) P2 *lz|), =R
[}
E=0,1,2,...
Tf f has support in & square with side length 2% it follows from (19)

with ¥ = 2% and 2 change of scale that

IE o+ fll pamey < &< g < oo,
and the same estimate can be obtained for a general f by writing f = 2 fres

< C 2R I | F oy,

k2
where yx, are characteristic functions of squares with side length 2%2.
I 0<a<<1)2 and 4<Cg<C4/(1~2a) or a>1/2 and 4 < g< oo,

2 oMIE—te— 4 converges and hence m is a multiplier for L4(R?). The guf-

fmlenoy of theucondltlon onpin Theorem 1 then follows from interpolation
and duality.
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That the condition is also necessary follows from essentially the
same simple argument ag in the case when I"ig the unit circle (see e.g. [4],
pp. 10-11).

The following result on summability of Fourier integrals is a conse-
quence of Theorem 1.

CoROLLARY 1. Let I, Q and m satisfy the conditions of Theovem 1 and
suppose that Oe Q and m(0) = 1. Assume that either 0 < a<<1/2 and
4/B3420)< P2 or o> 1/3 ond 1< p <2 For R >0 define the operator
8p on TP (R%) by (8uf)" = myf, where my(w) = m(R~ %), weR®. Then
8pf eonverges to fin LF (RY) when R tends to infinity if fe LP (RY).

Proof. There exist positive numbers d, and d, such that I" < {x< R?;
dy < |w] << dg}. We choose p and y in OF(R?) such that ¢(x) = 1 in a neigh-
bourhood of the origin, suppe « {we R?; 2| < d,} and ¢(2)+p{z) =1
for |o] < dy. Tet fe L?(R*) and write Spf = Spf+8zf, where (Szf)°
= ppipf; (Spf)" = wamyf and gg and vy are defined in the same way
as Myp.

Since gme 02, we have Ileim IS&F—Fllzomy = 0.

A dilation shows that the functions my are multipliers for L*(R?)
of uniformly bounded norm and using the fact that p is smooth and van-
igshes in a neighbourhood of the origin we conclude that 11m 18 2F [l 2o
== (), which completes the proof of the corellary.

A similar regults on summability of Fourier series can also be obtained
from Theorem 1, gince a continuous multiplier for L”(R* corresponds
to a multiplier for I?(T% (see [10], p. 260).

2. Proof of Theorem 2. We ghall uge the following lemma.

Lemma 3. Let I be o compact interval on R, let pe O°(I) and assume
that v is real-valued and v''(3) = 0 for te I.- Set
8f (@, y) =

= ot Op s, (@, 9)s B fe D).

Then

(21) ”Sf”fﬂ(n“) ¢ lI[l Up— “"’I]ny"‘”qEW(z)f

d<g< oo,  gi{g—8)

LP K 00,
where O, does not depend on I or p.

Proof. We first agsume that 4 < g<< oo, p = ¢f{g—3). and that
the right-hand side of (21)is finite. We use the method in [3], pp. 289-290,
‘We have

(8f (@, )t =2 g e bl na) £(4) £(5) i ds

{(t.9)ed x Iil< 8}
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and setting 2. = t-s, v = p(t)+y(s) we get

(8F (@, 9)) =2 [ [ e f () f(s) ly (8} — ' (8)] 7 du o,
D

where ¢ and s are functions of % and » and D is the image in the (%, v)-plane
of ¥ xI under the above mapping.

Defining » by 2/g-+1jr =1, using Hausdorff~Young’s inequality
and ehanging variables once more we obtain

1S agaty < ( ] f IO I F@) v (¢
We set £ = y' (1), n = »'(s) and it follows that

nSfua aw <0 [f |f(t>ri’f(s>t'|-s~ml-*(w”(t))-1(«p"(s>)“1dfdn)””.
W) x 9’ ()
We now use Holder’s mequa,lity and the theorem on fractionary integrals
af in the case of non-vanigshing eurvature (cf. [8]) and conclude that

(22) 18 \lpamy < Og{ [ IFOPT (3 ()0 22| = Collf ™oy,
W (I}

W (&)l ds )P

where p, = p/r. Hence (21) is proved in the case p = g/(¢ —3) and the
remaining case follows from Hilder’s inequality.

Proof of Theorem 2. The result in Theorem 2, casge (ii) follows
immediately from Lemma 3 and it remains to treat the C* cage. We may
agsume that I' = {{u,v)e B?; wel, » = p(u)}, where I is a compact
interval and ye C°(I). We set

S'flw,y) = fe_i(“”““’)f(t)dt
I

and

8, f(@, y) =_fe”"<“+"'”(")f(t)dt n=1,2,3,...,
where I, are the componen‘n intervaly of {te ;9" (1) # 0}.

If ¢, p and y satisfy the conditions in Theorem 2 it follows from.
Lemma 3 and Lemma 1 that

o oo
18 Fllzsgen < D 180T longmty < G 17191 gz
=1 Nl .

< Gy D (sup |y 1 HF (97| gy < O

Aw=l n

w11 ey

and Theorem 2 is proved.
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The following result on restrictions of Fourier transforms follows
from Theorem 2 by duality.

CororrLary 2. (i) If I' satisfies the conditions of case (i) in Theorem 2,
then

I IE N | o riasy < Qg1 lzamsy 5

Fl<g<4/3, 1<p<gBg—1) and y > (g—-1)/g

(ii)y If I satisfies the conditions of case (ii) 4n Theorem 2, then the above
imequality holds also for v = (g—1)/q.

The following estimate follows from Corollary 2 if we apply Holder’s
inequality.

COROLLARY 3, Let I" be & C™*! curve in R?, for some imieger n = 3,
which has non-vanishing curvature exeepl at finitely many points. Assume
that the highest order of contact of the tangent at these points is n—1. Then

Hf “L’F'(l";cls’) = Op,qﬂf”Lq(Rz)’
FlgpKoo 1s5gK oo ond Lind-Lp+1fg> 1.

We shall finally give examples of curves I" for which the conditions
on y in Theorem 2 cannot be weakened. We begin with case (ii) and let
= {{u,0)e B 05 u < 12, v = p(u)}, where v(t) = ¢7'%, 02 1/2,
and (0) = 0. Asgume that 4 < g<< o0, g/(g—3) < p < oo and that

187 laomzy < Co g life’ ™ Mlzog,am-
We shall prove that then necessarily y > 1/g. We set f() = (" (),
0t e and f(#) = 0, e < ¥ 1/2, where 8 = yp/(p—1) and ¢ is a small
positive number. It follows that

[wora, wi<
0

1 1
|*5’f($,1)’r/'1—0‘ Tos
and hence

f ("P”)ﬂdt (57/’(’3))'% < Up,qn ([ (g’ dt)lmv
i o

Using the choice of § we obtain

&

([ fwrymie-Dagr=n < 6, . lop ()2,

[
and a caleulation shows that this can hold for small values of ¢ only if
y=1/g
The sume argument works also in the case p = oo. We then let I’
be given by the function ¢, defined by w(f) = e Wsin(L/t™), 0 < i< ¢,
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and ¢{0) = 0, where % is a large positive integer and ¢ a small constant.
We assume that 4 < ¢< o0, g/(¢—3) < p < oo (the same argument works
for p = co) and shall prove that there is no constant 0y, such that.

I8f llramz) < Cpgllf W”rl’?”ﬂ’(o,c)v
We et f(1) = |[p" (), Ot 1fn, and F(f) =0 otherwise, where
B = plg(p—~1) and n is a large positive integer, and the above inequality
yields

1jn
([ 1o a2 < O, neemm,
0

A computation shows that the lagt integral is larger tham c,n¢+Ii-2=#n
where ¢, > 0, and we obtain 2 contradiction if k i3 chosen large enough,
eg. k> gq. )

‘We finally remark that a counterexample congtructed in 2 sivnilar
way shows that if 1/(n+4-1)p +1/g <1, then the inequality in Corollary 8
does not hold.
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