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1. Introduction

In this paper we study linear and non-linear Fourier-Padé approxima-

tion for Angelesco systems of functions. This construction is similar to that

of Hermite-Padé approximation. Instead of considering power series expan-

sions of the functions in the system, we take their expansion in a series of

orthogonal polynomials.

In [6] and [7], S. P. Suetin obtained convergence results for rows of Fourier-

Padé approximation extending to this setting classical results of the theory

of Padé approximation.

Diagonal sequences of Fourier-Padé approximation were studied by A.

A. Gonchar, E. A. Rakhmanov, and S. P. Suetin in [2] when the function

to be approximated is of Markov type; that is, the Cauchy transform of

a measure supported on the real line. They give the rate of convergence

of diagonal sequences of linear and non-linear Padé approximants in terms

of the equilibrium measures of a related potential theoretic problem. We
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y Tecnoloǵıa under grant BFM 2003–06335–C03–03 and G. López by BFM 2003–06335–
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generalize those results to the case when a system of Markov functions is

given defined by measures whose supports do not intersect.

Let M(∆) denote the class of all finite, Borel measures with compact

support consisting of an infinite set of points contained in an interval ∆ of

the real line R. Given σ ∈M(∆), let

σ̂(z) =
∫

dσ(x)
z − x

be the associated Markov function. Let ∆k, k = 1, . . . , m, be intervals of the

real line such that

∆k ∩∆j = ∅ , k 6= j ,

and σk ∈ M(∆k), k = 1, . . . , m. We say that σ = (σ1, . . . , σm) forms an

Angelesco system of measures and (σ̂1, . . . , σ̂m) is the associated Angelesco

system of functions.

Let σ0 ∈M(∆0). Likewise, we will assume that

∆0 ∩∆k = ∅ , k = 1, . . . , m .

Consider the sequence {`n}, n ∈ Z+ = {0, 1, 2, . . .}, of orthonormal polyno-

mials with respect to σ0 with positive leading coefficient. Take a multi-index

n = (n1, . . . , nm) ∈ Zm
+ . Set

|n| = n1 + · · ·+ nm .

Let Qn, Pn,1, . . . , Pn,m, be polynomials such that:

i) deg Qn ≤ |n|, Qn 6≡ 0 , deg Pn,j ≤ |n| − 1, j = 1, . . . , m .

ii) For each j = 1, . . . , m , and k = 0, . . . , |n|+ nj − 1

ck(Qnσ̂j − Pn,j) =
∫

(Qnσ̂j − Pn,j)(x)`k(x)dσ0(x) = 0 .

Notice that

(1) Pn,j(z) =
|n|−1∑

i=0

ci(Qnσ̂j)`i(z) .
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The |n| + 1 coefficients of Qn satisfy a homogeneous linear system of |n|
equations given by

ck(Qnσ̂j) = 0 , j = 1, . . . , m , k = |n|, . . . , |n|+ nj − 1 .

Therefore, a non-trivial solution is guaranteed.

In Section 2 we will prove that every solution to i)-ii) has deg Qn =

|n|. This being the case, (Qn, Pn,1, . . . , Pn,m) is uniquely determined up

to a constant factor. In fact, let us assume that (Qn, Pn,1, . . . , Pn,m), and

(Q̃n, P̃n,1, . . . , P̃n,m), are solutions of i)-ii). Without loss of generality, we can

assume that Qn and Q̃n are monic (with leading coefficient equal to one).

Obviously, if Qn − Q̃n 6≡ 0 then (Qn − Q̃n, Pn,1 − P̃n,1, . . . , Pn,m − P̃n,m) is

also a solution with deg Qn − Q̃n < |n| which contradicts our assumption.

Hence Qn ≡ Q̃n and by (1) it follows that Pn,j ≡ P̃n,j , j = 1 . . . ,m .

The rational vector function
(

Pn,1

Qn
, . . . ,

Pn,m

Qn

)
constructed from any so-

lution of i)-ii) is called the n-th linear Fourier-Padé approximant for the

Angelesco system (σ̂1, . . . , σ̂m) with respect to σ0. We shall see that for all

n ∈ Zm
+ the linear Fourier-Padé approximant of an Angelesco system is

unique.

Non-linear Fourier-Padé approximants are determined as follows. Given

n ∈ Zm
+ , we must find polynomials Tn, Sn,1, . . . , Sn,m such that

i’) deg Tn ≤ |n|, Tn 6≡ 0 , deg(Sn,j) ≤ |n| − 1, j = 1, . . . , m .

ii’) For each j = 1, . . . , m , and k = 0, . . . , |n|+ nj − 1

ck

(
σ̂j − Sn,j

Tn

)
=

∫ (
σ̂j − Sn,j

Tn

)
(x)`k(x)dσ0(x) = 0 .

This system of equations is non-linear in the coefficients of the polynomials.

We shall prove that for each n ∈ Zm
+ , the system has a solution but we

have not been able to show that it is unique. For any solution of i’)-ii’), the

vector rational function
(

Sn,1

Tn
, . . . ,

Sn,m

Tn

)
is called an n-th non-linear Fourier-

Padé approximant for the Angelesco system (σ̂1, . . . , σ̂m) with respect to σ0.
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In this paper, we obtain the rate of convergence (divergence) of linear and

non-linear Fourier-Padé approximants for Angelesco systems such that the

measures σ0, . . . , σm are in the class Reg of regular measures. For different

equivalent forms of defining regular measures see sections 3.1 to 3.3 in [5].

In particular, σ0 ∈ Reg if and only if

ĺım
n
|`n(z)|1/n = exp{gΩ0(z;∞)} ,

uniformly on compact subsets of the complement of the smallest interval

containing the support, supp(σ0), of σ0 and gΩ0(·;∞) denotes Green’s func-

tion for the region Ω0 = C \ supp(σ0) with singularity at ∞. Analogously,

one defines regularity for the other measures σ1, . . . , σm . In the sequel, we

write (σ0;σ1, . . . , σm) ∈ Reg to mean that σk ∈ Reg, k = 0, . . . , m . The

system (σ1, . . . , σm) will be used to construct the Angelesco system of func-

tions whereas σ0 will determine the system of orthogonal polynomials with

respect to which the Fourier expansions will be taken. Therefore, for all

0 ≤ j, k ≤ m, we assume that

∆j ∩∆k = ∅ , j 6= k .

In Theorems 1 and 2 below, we find the rate of convergence of the |n|th
root of the error of approximation of the functions σ̂k by linear and non-

linear Fourier-Padé approximants, respectively. The answers are given in

terms of extremal solutions of certain vector valued equilibrium problems

for the logarithmic potential. Before stating Theorems 1 and 2, we need to

introduce some notation and results from potential theory.

Let Fk, k = 1, . . . , N, be (not necessarily distinct) closed bounded intervals

of the real line and C = (cj,k) be a real, positive definite, symmetric matrix of

order N . C will be called the interaction matrix. By M1(Fk), k = 1, . . . , N,

we denote the subclass of probability measures of M(Fk) and

M1 = M1(F1)× · · · ×M1(FN ) .



FOURIER-PADÉ APPROXIMANTS FOR ANGELESCO SYSTEMS 5

Given a vector measure µ ∈ M1 and j = 1, . . . , N, we define the combined

potential

(2) Wµ
j (x) =

N∑

k=1

cj,kV
µk(x) , x ∈ ∆j ,

where

V µk(x) =
∫

log
1

|x− t| dµk(t)

denotes the standard logarithmic potential of µk. We denote

wµ
j = ı́nf{Wµ

j (x) : x ∈ ∆j} .

In Chapter 5 of [3] (see Propositions 4.5, 4.6, and Theorem 4.1) the au-

thors prove (we state the result in a form convenient for our purpose)

Lemma 1. Let C be a real, positive definite, symmetric matrix of order N .

If there exists µ = (µ1, . . . , µN ) ∈M1 such that for each j = 1, . . . , N

Wµ
j (x) = wµ

j , x ∈ supp(µj) ,

then µ is unique. Moreover, if cj,k ≥ 0 when Fj ∩ Fk 6= ∅ then µ exists.

The vector measure µ ∈ M1 is called the equilibrium solution for the

vector potential problem determined by C on the system of intervals Fj , j =

1, . . . , N .

In the sequel Λ = Λ(p1, . . . , pm) ⊂ Zm
+ is an infinite system of distinct

multi-indices such that

ĺım
n∈Λ

nj

|n| = pj ∈ (0, 1) , j = 1, . . . , m .

Let us define the block matrix

C1 =


 C1,1 C1,2

C2,1 C2,2


 ,
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where

C1,1 =




2p2
1 p1p2 · · · p1pm

p2p1 2p2
2 · · · p2pm

...
...

. . .
...

pmp1 pmp2 · · · 2p2
m




,

and C1,2, C2,1, C2,2 are diagonal matrices given by

C1,2 = C2,1 = diag{−p1(1 + p1),−p2(1 + p2), · · · ,−pm(1 + pm)} ,

and

C2,2 = diag{2(1 + p1)2, 2(1 + p2)2, · · · , 2(1 + pm)2} .

C1 satisfies all the assumptions of Lemma 1 on the system of intervals Fj =

∆j , j = 1, . . . , m, Fj = ∆0, j = m + 1, . . . , 2m, including cj,k ≥ 0 when

Fj ∩ Fk 6= ∅. The only non-trivial property is its positive definiteness and

we shall prove this in Section 2. Let µ = µ(C1) be the equilibrium solution

for the corresponding vector potential problem. We have

Theorem 1. Let (σ0; σ1, . . . , σm) ∈ Reg and consider a sequence of multi-

indices Λ = Λ(p1, . . . , pm). Let
(

Pn,1

Qn
, . . . ,

Pn,m

Qn

)
,n ∈ Λ, be the associated

sequence of linear Fourier-Padé approximants for the Angelesco system of

functions (σ̂1, . . . , σ̂m) with respect to σ0. Then,

(3) ĺım
n∈Λ

∣∣∣∣σ̂j(z)− Pn,j(z)
Qn(z)

∣∣∣∣
1/|n|

= Gj(z) , j = 1, . . . ,m ,

uniformly on each compact subset of C \ (∪m
k=0∆k), where

Gj(z) = exp
(
(Wµ

j (z)− ωµ
j )/pj

)
,

µ = µ(C1), and the combined potentials Wµ
j are defined by (2) using C1.

Set

G±
j = {x ∈ C \ (∪m

k=0∆k) : ±
(
ωµ

j −Wµ
j (x)

)
> 0}.

An immediate consequence of Theorem 1 is
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Corollary 1. Under the assumptions of Theorem 1,

ĺım
n∈Λ

Pn,j

Qn
= σ̂j , j = 1, . . . , m ,

uniformly on compact subsets of G+
j and diverges to infinity at each point

of G−
j .

Non-linear Fourier Padé approximants require the solution of a different

vector potential equilibrium problem. Let

C2 =


 C1,1 C1,2

C2,1 C2
2,2


 ,

where C1,1, C1,2, C2,1 are as before and

C2
2,2 =




2m(1+p1)2

m+1
−2(1+p1)(1+p2)

m+1 · · · −2(1+p1)(1+pm)
m+1

−2(1+p2)(1+p1)
m+1

2m(1+p2)2

m+1 · · · −2(1+p2)(1+pm)
m+1

...
...

. . .
...

−2(1+pm)(1+p1)
m+1

−2(1+pm)(1+p2)
m+1 · · · 2m(1+pm)2

m+1




.

C2 is a real, positive definite, symmetric matrix of order 2m. We take the

system of intervals Fj = ∆j , j = 1, . . . ,m, Fj = ∆0, j = m + 1, . . . , 2m. C2

does not satisfy that cj,k ≥ 0 when Fj ∩ Fk 6= ∅. In Theorem 4 of Section

3, we prove that the corresponding equilibrium problem has at least one

solution and that C2 is positive definite. Therefore, according to Lemma 1

the solution is unique. Let µ = µ(C2) be the equilibrium solution for the

corresponding vector potential problem. In Lemma 5 we show that for each

n ∈ Zm
+ there exists at least one non-linear Fourier- Padé approximant but

we have not been able to prove that it is unique. We have

Theorem 2. Let (σ0; σ1, . . . , σm) ∈ Reg and consider a sequence of multi-

indices Λ = Λ(p1, . . . , pm). Let
(

Sn,1

Tn
, . . . ,

Sn,m

Tn

)
,n ∈ Λ, be an associated

sequence of non-linear Fourier-Padé approximants for the Angelesco system

of functions (σ̂1, . . . , σ̂m) with respect to σ0. Then,

(4) ĺım
n∈Λ

∣∣∣∣σ̂j(z)− Sn,j(z)
Tn(z)

∣∣∣∣
1/|n|

= Hj(z) , j = 1, . . . , m ,
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uniformly on each compact subset of C \ (∪m
k=0∆j), where

Hj(z) = exp
(
(Wµ

j (z)− ωµ
j )/pj

)
,

µ = µ(C2) and the combined potentials Wµ
j are defined by (2) using C2.

Notice that the limit only depends on Λ and not on the non-linear Fourier-

Padé approximants selected (in case that they were not uniquely deter-

mined). Set

H±
j = {x ∈ C \ (∪m

j=0∆j : ±
(
ωµ

j −Wµ
j (x)

)
> 0}.

As a consequence of Theorem 2, we obtain

Corollary 2. Under the assumptions of Theorem 2,

ĺım
n∈Λ

Sn,j

Tn
= σ̂j , j = 1, . . . , m ,

uniformly on compact subsets of H+
j and diverges to infinity at each point

of H−
j .

Section 2 is dedicated to the proof of Theorem 1 and Section 3 to that of

Theorem 2. Section 4 is dedicated to the justification of Lemma 1 as stated

here since in [3] the assumption cj,k ≥ 0 if Fj ∩Fk 6= ∅ is assumed in general.

In the sequel, we maintain the notation introduced above.

2. Proof of Theorem 1

From the definition of the linear Fourier-Padé approximant immediately

follows that for each j = 1, . . . ,m

(5)
∫

xk(Qn(x)σ̂j(z)− Pn,j(x))dσ0(x) = 0, k = 0, . . . , |n|+ nj − 1 .

Since the function Qn(z)σ̂j(z) − Pn,j(z) is continuous on ∆0, from (5) we

have that Qn(z)σ̂j(z)− Pn,j(z) has at least |n|+ nj sign changes on ∆0.

Let Wn,j be the monic polynomial whose zeros are the points where

Qn(z)σ̂j(z)−Pn,j(z) changes sign on the interval ∆0. Obviously, deg Wn,j ≥
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|n|+ nj and

Qn(z)σ̂j(z)− Pn,j(z)
Wn,j(z)

∈ H(C \ supp(σj)), j = 1, . . . ,m ,

is analytic on the indicated region. Thus, linear Fourier-Padé approximants

satisfy interpolation conditions on ∆0. A similar statement holds for the

non-linear Fourier-Padé approximants. In our proofs, we will use certain

orthogonality relations satisfied by vector rational interpolants.

Lemma 2. Let (σ̂1, . . . , σ̂m) be an Angelesco system, n = (n1, . . . , nm) ∈
Zm

+ , and (wn,1, . . . , wn,m) a system of polynomials such that deg wn,j ≥
|n| + nj , j = 1, . . . , m, whose zeros lie on an interval ∆0,∆0 ∩∆j = ∅, j =

1, . . . , m. Let (pn,1

qn
, . . . ,

pn,m

qn
) be a vector rational function such that deg pn,j ≤

|n| − 1, j = 1, . . . , m,deg qn ≤ |n|, qn 6≡ 0, and

(6)
qn(z)σ̂j(z)− pn,j(z)

wn,j(z)
∈ H(C \ supp(σj)), j = 1, . . . , m .

Then

(7)
∫

xk qn(x)
wn,j(x)

dσj(x) = 0 , k = 0, 1, . . . , nj − 1 , j = 1, . . . , m .

Consequently, deg qn = |n| with exactly nj simple zeros in the interior of

∆j (in connection with intervals of the real line, the interior refers to the

Euclidean topology of the real line) and deg wn,j = |n| + nj , j = 1, . . . , m.

Let qn = qn,j q̃n,j , where qn,j is the monic polynomial whose zeros are those

of qn lying in the interior of ∆j . Then

(8) σ̂j(z)− pn,j(z)
qn(z)

=
wn,j(z)

q2
n,j(z)q̃n,j(z)

∫
q2
n,j(x)
z − x

q̃n,j(x)
wn,j(x)

dσj(x) .

Proof. Notice that (6) and the assumption on the degrees of the polyno-

mials qn, pn,j , and wn,j imply that for j = 1, . . . , m, and k = 0, . . . , nj − 1,

zk qn(z)σ̂j(z)− pn,j(z)
wn,j(z)

= O
(

1
z2

)
, z →∞ .

Let Γj be a closed, smooth, Jordan curve that surrounds ∆j such that all the

intervals ∆i, i 6= j, i = 0, . . . , m, lie in the unbounded connected component
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of the complement of Γj . By Cauchy’s Theorem, Cauchy’s Integral Formula

and Fubini’s Theorem, it follows that

0 =
1

2πi

∫

Γj

zk qn(z)σ̂j(z)− pn,j(z)
wn,j(z)

dz =

1
2πi

∫

Γj

zk qn(z)σ̂j(z)
wn,j(z)

dz − 1
2πi

∫

Γj

zk pn,j(z)
wn,j(z)

dz =

1
2πi

∫

Γj

zk qn(z)
wn,j(z)

∫
dσj(x)
z − x

dz =
∫

xk qn(x)
wn,j(x)

dσj(x),

for k = 0, 1, . . . , nj − 1 and j = 1, . . . , m. Therefore, (7) follows.

Using standard arguments of orthogonality, from (7) we obtain that qn

must have at least nj sign changes in the interior of ∆j and, consequently, at

least nj zeros of odd multiplicity. Since deg qn ≤ |n|, we have that deg qn =

|n|, that all its zeros are simple and they are distributed in such a way that

exactly nj lie in the interior of ∆j .

Assume that deg wn,j > |n|+ nj for some j. Then

zk qn(z)σ̂j(z)− pn,j(z)
wn,j(z)

= O
(

1
z2

)
, z →∞ , k = 0, . . . , nj .

This implies that (7) holds for all k = 0, . . . , nj . In turn, this means that qn

has at least nj + 1 zeros in the interior of ∆j against what was just proved.

Therefore, deg wn,j = |n|+ nj .

Set qn = qn,j q̃n,j , where qn,j is the monic polynomial whose zeros are

those of qn lying in the interior of ∆j . Notice that q̃n,jdσj/wn,j is a real

measure with constant sign on ∆j . For future reference, notice that with

this notation the orthogonality relations (7) may be expressed as

(9)
∫

xkqn,j(x)|q̃n,j(x)| dσj(x)
|wn,j(x)| = 0, k = 0, 1, . . . , nj − 1 .

Hence, for each j = 1, . . . , m, qn,j is the monic orthogonal polynomial of

degree nj with respect to the varying measure |q̃n,j |
|wn,j |dσj .

Notice that

[qn,j(qnσ̂j − pn,j)](z)
wn,j(z)

= O
(

1
z

)
, z →∞ .
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Choose Γj as before. Using Cauchy’s integral formula, Cauchy’s Theorem,

and Fubini’s Theorem, we obtain that for each j = 1, . . . , m

[qn,j(qnσ̂j − pn,j)](z)
wn,j(z)

=
1

2πi

∫

Γj

[qn,j(qnσ̂j − pn,j)](ζ)
wn,j(ζ)(z − ζ)

dζ =

∫
1

2πi

∫

Γj

(qn,jqn)(ζ)
wn,j(ζ)(z − ζ)(ζ − x)

dζdσj(x) =
∫

q2
n,j(x)
z − x

q̃n,j(x)
wn,j(x)

dσj(x) ,

which is equivalent to (8). ¤
The vector rational function (pn,1

qn
, . . . ,

pn,m

qn
) is called a multipoint vector

Padé approximant of the Angelesco system (σ̂1, . . . , σ̂m). According to Lem-

ma 2 a necessary condition for their existence is that deg wn,j ≤ |n|+nj , j =

1, . . . , m. Solving a homogeneous linear system of equations one sees that

this condition is also sufficient. When deg wn,j = |n| + nj , j = 1, . . . , m,

uniqueness follows because then deg qn = |n| as we have seen.

Remark 1. Applying this Lemma to linear Fourier-Padé approximants, we

have that deg(Qn) = |n|. Thus, for each n ∈ Zm
+ , they are uniquely deter-

mined as claimed.

Let us return to linear Fourier-Padé approximants. In this case, Qn =

qn, Qn,j = qn,j , Q̃n,j = q̃n,j and Wn,j = wn,j .

Lemma 3. For each j = 1, . . . , m, and k = 0, . . . , |n|+ nj − 1

(10)
∫

tk
Wn,j(t)
|Qn,j(t)|

(∫
Q2

n,j(x)
|t− x|

|Q̃n,j(x)|
|Wn,j(x)|dσj(x)

)
dσ0(t) = 0 .

Moreover, deg Wn,j = |n| + nj , j = 1, . . . ,m; that is, Qn(z)σ̂j(z) − Pn,j(z)

has exactly |n|+ nj sign changes in the interior of ∆0.

Proof. From (8) and the definition of the linear Fourier-Padé approxi-

mant, (10) follows directly. The assertion concerning the degree of Wn,j is

also contained in Lemma 2. ¤
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Let {µl} ⊂ M(K) be a sequence of measures, where K is a compact subset

of the complex plane and µ ∈M(K). We write

∗ ĺım
l

µl = µ , µ ∈M(K) ,

if for every continuous function f ∈ C(K)

ĺım
l

∫
fdµl =

∫
fdµ ;

that is, when the sequence of measures converges to µ in the weak star

topology. Given a polynomial ql of degree l ≥ 1, we denote the associated

normalized zero counting measure by

νql
=

1
l

∑

ql(x)=0

δx ,

where δx is the Dirac measure with mass 1 at x (in the sum the zeros are

repeated according to their multiplicity).

In order to prove our main results we need Theorem 3.3.3 of [5]. We

present it in the form stated in [1] which is more adequate for our purpose.

In [1], it was proved under stronger assumptions on the measure.

Lemma 4. Let {φl}, l ∈ Γ ⊂ Z+, be a sequence of positive continuous

functions on a bounded closed interval ∆ ⊂ R, σ ∈ Reg ∩M(∆), and let

{ql}, l ∈ Γ, be a sequence of monic polynomials such that deg ql = l and
∫

ql(t)tkφl(t)dσ(t) = 0, k = 0, . . . , l − 1.

Assume that

ĺım
l∈Γ

1
2l

log
1

|φl(x)| = v(x),

uniformly on ∆. Then

∗ ĺım
l∈Γ

νql
= ν,

and

ĺım
l∈Γ

(∫
|ql|2φldµ

)1/2l

= e−ω,
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where ν ∈M1(∆1) is the unique solution of the equilibrium problem

V ν(x) + v(x)





= ω, x ∈ supp(ν) ,

≥ ω, x ∈ ∆1 ,

in the presence of the external field v.

Using this result, we can obtain the asymptotic limit distribution of the

zeros of the polynomials Qn,j and Wn,j .

Theorem 3. Let (σ0; σ1, . . . , σm) ∈ Reg and consider a sequence of multi-

indices Λ = Λ(p1, . . . , pm). Then, for each j = 1, . . . , m

∗ ĺım
n∈Λ

νQn,j = µj , ∗ ĺım
n∈Λ

νWn,j = µm+j ,

where µ = µ(C1) ∈ M1 is the vector equilibrium measure determined by the

matrix C1 on the system of intervals Fj = ∆j , j = 1, . . . , m , Fj = ∆0, j =

m + 1, . . . , 2m .

Proof. The unit ball in the cone of positive Borel measures is weakly

compact; therefore, it is sufficient to show that the sequences of measures

{νQn,j} and {νWn,j},n ∈ Λ, have only one accumulation point which co-

incide, respectively, with the components of the vector measure µ(C1). Let

Λ′ ⊂ Λ be a subsequence of multi-indices such that for each j = 1, . . . , m

∗ ĺım
n∈Λ′

νQn,j = νj , ∗ ĺım
n∈Λ′

νWn,j = νm+j .

(Notice that νj ∈ M1(∆j), j = 1, . . . , m, and νj ∈ M1(∆0), j = m +

1, . . . , 2m.) Therefore,

(11) ĺım
n∈Λ′

|Qn,j(z)|
1

nj = exp(−V νj (z)),

uniformly on compact subsets of C \∆j , and

(12) ĺım
n∈Λ′

|Wn,j(z)|
1

|n|+nj = exp(−V νm+j (z)),

uniformly on compact subsets of C \∆0.
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For each fixed j = 1 . . . ,m, the polynomials Qn,j satisfy the orthogonality

relations (9). Using (11) and (12) it follows that

ĺım
n∈Λ′

1
2nj

log
|Wn,j(x)|
|Q̃n,j(x)|

= −1 + pj

2pj
V νm+j (x) +

∑

k 6=j

pk

2pj
V νk(x),

uniformly on ∆j . By Lemma 4, νj is the unique equilibrium measure for the

extremal problem

(13) V νj (x) +
∑

k 6=j

pk

2pj
V νk(x)− 1 + pj

2pj
V νm+j (x) ≥ θj , x ∈ ∆j ,

with equality for all x ∈ supp(νj). Additionally,

(14) ĺım
n∈Λ′

(∫
|Qn,j(x)|2 |Q̃n,j(x)|dσj(x)

|Wn,j(x)|

) 1
2nj

= e−θj .

On the other hand, for each fixed j = 1, . . . , m, the polynomials Wn,j

satisfy the orthogonality relations (10) and we can apply once more Lemma

4. Notice that for all t ∈ ∆0

(15)
∫ |Q2

n,j(x)|
|t− x|

|Q̃n,j(x)|dσj(x)
|Wn,j(x)| ≤ 1

δj

∫
|Qn,j(x)|2 |Q̃n,j(x)|dσj(x)

|Wn,j(x)| ,

where δj = ı́nf{|t− x| : t ∈ ∆0, x ∈ ∆j} and

(16)
∫ |Q2

n,j(x)|
|t− x|

|Q̃n,j(x)|dσj(x)
|Wn,j(x)| ≥ 1

δ∗j

∫
|Qn,j(x)|2 |Q̃n,j(x)|dσj(x)

|Wn,j(x)| ,

with δ∗j = máx{|t − x| : t ∈ ∆0, x ∈ ∆j}. From (11), (12), (14), (15), and

(16), we obtain

ĺım
n∈Λ′

1
2(|n|+ nj)

log
|Qn,j(x)|

∫ |Qn,j(t)|2
|x−t|

|Q̃n,j(t)|dσj(t)
|Wn,j(t)|

= − pj

2(1 + pj)
V νj (x) +

pj

1 + pj
θj ,

uniformly on ∆0. Using Lemma 4, νm+j is the unique extremal solution for

the equilibrium problem

(17) V νm+j (x)− pj

2(1 + pj)
V νj (x) +

pj

1 + pj
θj ≥ θm+j , x ∈ ∆0 ,

with equality for all x ∈ supp(νm+j).
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Rewriting (13) and (17) conveniently, we see that the vector measure

(ν1, . . . , ν2m) ∈M1 is the unique solution for the vector equilibrium problem

determined by the system of extremal problems

(18) 2p2
jV

νj (x) +
∑

k 6=j

pjpkV
νk(x)− pj(1 + pj)V νm+j (x) ≥ ωj , x ∈ ∆j ,

(2p2
jθj = ωj) with equality for all x ∈ supp(νj), and

(19) 2(1 + pj)2V νm+j (x)− pj(1 + pj)V νj (x) ≥ ωm+j , x ∈ ∆0 ,

with equality for all x ∈ supp(νm+j). That is, it is the equilibrium measure

µ ∈M1 for the vector potential problem determined by C1 on the system of

intervals Fj = ∆j , j = 1, . . . , m, Fj = ∆0, j = m + 1, . . . , 2m. The condition

cj,k ≥ 0 if Fj ∩ Fk 6= ∅ is fulfilled. According to Lemma 1, this equilibrium

vector measure is uniquely determined if C1 is positive definite. Let us prove

this.

For j ∈ {1, . . . , m} the principle minor C(j)
1 of order j of C1 is

det(C(j)
1 ) = (p1 · · · pj)2

∣∣∣∣∣∣∣∣∣∣∣∣

2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 · · · 2

∣∣∣∣∣∣∣∣∣∣∣∣
j×j

= (p1 · · · pj)2(j + 1) > 0 .

For j ∈ {m + 1, . . . , 2m} the principle minor C(j)
1 of order j of C1 can be

calculated as follows. For each k = 1, . . . , m, factor out pk from the kth row

and kth column of C(j)
1 . From the row and column m + k, k = 1, . . . , j −m,

factor out 1 + pk. In the resulting determinant, for each k = 1, . . . , j −m,

add the kth row to the (m+k)th row and then to the resulting determinant

add the kth column to the (m + k)th column. We obtain

det(C(j)
1 ) = [p1 · · · pm(1 + p1) · · · (1 + pj−m)]2

∣∣∣∣∣∣∣∣∣∣∣∣

2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 · · · 2

∣∣∣∣∣∣∣∣∣∣∣∣
j×j

=
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[p1 · · · pm(1 + p1) · · · (1 + pj−m)]2(j + 1) > 0 .

With this we conclude the proof. ¤
Proof of Theorem 1. From (8), (15), and (16), the asymptotic behavior

of the function σ̂j − Pn,j

Qn
depends on the behavior of Wn,j , Qn,j , Q̃n,j , and

γn,j , where

1
γ2
n,j

= mı́n
Q

{∫
|Q(x)|2 |Q̃n,j(x)|dσj(x)

|Wn,j(x)| : Q(x) = xnj + · · ·
}

=
∫
|Qn,j(x)|2 |Q̃n,j(x)|dσj(x)

|Wn,j(x)| .

From Theorem 3, for each j = 1, . . . ,m, we have

(20) ĺım
n∈Λ

|Wn,j(x)|1/|n| = exp{−(1 + pj)V µm+j (x)},

uniformly on compact subsets of C \∆0, and

(21) ĺım
n∈Λ

|Qn,j(x)|1/|n| = exp{−pjV
µj (x)},

uniformly on compact subsets of C \ ∆j , where µ = µ(C1) Using (14) (see

also parenthesis after (18)), it follows that

(22) ĺım
|n|→∞

(
1

γ2
n,j

)1/|n|
= exp{−2pjθj} = exp{−ωj/pj} .

Combining (8), (20), (21), and (22), we conclude that (3) holds true uni-

formly on compact subsets of the indicated region. ¤

3. Proof of Theorem 2

We begin by proving the existence of non-linear Fourier-Padé approxi-

mants.

Lemma 5. Given (σ0; σ1, . . . , σm), for each n ∈ Zm
+ there exists an n-th

non-linear Fourier-Padé approximant of (σ̂1, . . . , σ̂m) with respect to σ0.



FOURIER-PADÉ APPROXIMANTS FOR ANGELESCO SYSTEMS 17

Proof. In the proof we make use of multipoint Hermite-Padé approxima-

tion. Fix n ∈ Zm
+ . For each j ∈ {1, . . . ,m}, choose an arbitrary set of |n|+nj

points contained in ∆0

Xn,j = (xn,j,1, . . . , xn,j,|n|+nj
) ∈ ∆n,j ,

where

∆n,j = {(x1, . . . , x|n|+nj
) ∈ ∆|n|+nj

0 : x1 ≤ · · · ≤ x|n|+nj
} .

Let

wn,j(x) = (x− xn,j,1) · · · (x− xn,j,|n|+nj
) ,

and consider the simultaneous multipoint Padé approximant which inter-

polates the functions σ̂j , j = 1, . . . , m, at the zeros of wn,j respective-

ly. That is, (pn,1/qn, . . . , pn,m/qn) is a vector rational function such that

deg(pn,j) ≤ |n| − 1, j = 1, . . . , m, deg(qn) ≤ |n|, qn 6≡ 0, and

(23)
qnσ̂j − pn,j

wn,j
∈ H(C \ supp(σj)).

From Lemma 2 we have (7) and (8). Once we have determined qn , for each

j = 1, . . . , m, we define the monic polynomial Ωn,j ,deg(Ωn,j) = |n|+nj , by

the orthogonality relations

(24)
∫

ykΩn,j(y)

(
1

q2
n,j(y)q̃n,j(y)

∫
q2
n,j(x)
y − x

q̃n,j(x)dσj(x)
wn,j(x)

)
dσ0(y) = 0,

k = 0, . . . , |n| + nj − 1. For each j = 1, . . . , m, these relations determine

a unique Ωn,j since the (varying) measures involved have constant sign on

∆0 .

The polynomial Ωn,j has exactly |n| + nj simple zeros in the interior of

∆0 . Set

Yn,j = (yn,j,1, . . . , yn,j,|n|+nj
) ∈ ∆n,j ,

where yn,j,1 < · · · < yn,j,|n|+nj
are the zeros of Ωn,j .
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Since for each j = 1, . . . ,m, the distance between ∆j and ∆0 is greater

than zero, the correspondence

(Xn,1, . . . , Xn,m) −→ (Yn,1, . . . , Yn,m),

defines a continuous function from ∆n,1 × · · · × ∆n,m into itself with the

Euclidean norm. The continuity of this function is an easy consequence of

the fact that ∆0 ∩∆j = ∅, j = 1, . . . , m. By Brouwer’s fixed point Theorem

(see page 364 of [4]) this function has at least one fixed point. Choose a fixed

point. Then, wn,j = Ωn,j , j = 1, . . . , m . Consequently (24) can be rewritten

as

(25)
∫

ykwn,j(y)

(
1

q2
n,j(y)q̃n,j(y)

∫
q2
n,j(x)
y − x

q̃n,j(x)dσj(x)
wn,j(x)

)
dσ0(y) = 0 ,

k = 0, . . . , |n|+ nj − 1, and taking into consideration (8) we obtain that for

each j = 1, . . . ,m,

∫ (
σ̂j(x)− pn,j(x)

qn(x)

)
xkdσj(x) = 0 , k = 0, . . . , |n|+ nj − 1 .

From the definition, it follows that (pn,1/qn, . . . , pnm/qn) is an nth non linear

Fourier-Padé approximant for the Angelesco system, taking Sn,j = pn,j ,

j = 1, . . . , m, and Tn = qn. ¤
Let

(
Sn,1

Tn
, . . . ,

Sn,m

Tn

)
be any non-linear Fourier-Padé approximant with

respect to the Angelesco system (σ̂1, . . . , σ̂m). From ii’) it follows that σ̂j(z)−
Sn,j(z)
Tn(z) has at least |n| + nj sign changes on ∆0. Let Wn,j be the monic

polynomial whose zeros are the points where this function changes sign on

∆0. Obviously, deg Wn,j ≥ |n|+ nj and

(26)
Tn(z)σ̂j(z)− Sn,j(z)

Wn,j(z)
∈ H(C \ supp(σj)), j = 1, . . . , m ,

is analytic on the indicated region. (These polynomials Wn,j do not coincide

with those of the linear case.) Using Lemma 2 it follows that

(27)
∫

xk |Tn(x)|
|Wn,j(x)|dσj(x) = 0 , k = 0, 1, . . . , nj − 1 , j = 1, . . . , m .
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and

(28) σ̂j(z)− Sn,j(z)
Tn(z)

=
Wn,j(z)

T 2
n,j(z)T̃n,j(z)

∫
T 2
n,j(x)
z − x

T̃n,j(x)
Wn,j(x)

dσj(x) ,

where Tn,j is the monic polynomial whose zeros are the nj zeros of Tn lying

in the interior of ∆j . Combining (28) with ii’) we obtain

(29)∫
ykWn,j(y)

(
1

T 2
n,j(y)|T̃n,j(y)|

∫
T 2
n,j(x)
|y − x|

|T̃n,j(x)|dσj(x)
|Wn,j(x)|

)
dσ0(y) = 0 .

The proof of Theorem 2 is similar to that of Theorem 1. First, we study

the asymptotic zero distribution of the polynomials Tn,j and Wn,j . Then,

we use this result to obtain the asymptotic behavior of the remainder in the

approximation.

Theorem 4. Let (σ0; σ1, . . . , σm) ∈ Reg and consider a sequence of multi-

indices Λ = Λ(p1, . . . , pm). Then, there exists µ = (µ1, . . . , µ2m) ∈ M1 such

that for each j = 1, . . . , m

∗ ĺım
n∈Λ

νTn,j = µj , ∗ ĺım
n∈Λ

νWn,j = µm+j .

Moreover, µ = µ(C2) is the vector equilibrium measure determined by the

matrix C2 on the system of intervals Fj = ∆j , j = 1, . . . , m , Fj = ∆0, j =

m + 1, . . . , 2m .

Proof. Let us show that the sequences of measures {νTn,j} and {νwn,j},n ∈
Λ, have only one accumulation point. Let Λ′ ⊂ Λ be a subsequence of indices

such that for each j = 1, . . . , m

∗ ĺım
n∈Λ′

νTn,j = νj , ∗ ĺım
n∈Λ′

νWn,j = νm+j .

(Notice that νj ∈ M1(∆j), j = 1, . . . , m, and νj ∈ M1(∆0), j = m +

1, . . . , 2m.) Therefore,

(30) ĺım
n∈Λ′

|Tn,j(z)|
1

nj = exp(−V νj (z)) ,
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uniformly on compact subsets of C \∆j , and

(31) ĺım
n∈Λ′

|Wn,j(z)|
1

|n|+nj = exp(−V νm+j (z)),

uniformly on compact subsets of C \∆0.

As we have seen, Tn,j is orthogonal with respect to the varying measure
|T̃n,j |
|Wn,j |dσj . Using (30) and (31), we obtain

ĺım
n∈Λ′

1
2nj

log
|Wn,j(x)|
|T̃n,j(x)|

= −1 + pj

2pj
V νm+j (x) +

∑

k 6=j

pk

2pj
V νk(x) ,

uniformly in ∆j . By (27) and Lemma 4, νj is the unique equilibrium measure

for the extremal problem

(32) V νj (x) +
∑

k 6=j

pk

2pj
V νk(x)− 1 + pj

2pj
V νm+j (x) ≥ ηj , x ∈ ∆j ,

with equality for all x ∈ supp(νj), and

(33) ĺım
n∈Λ′

(∫
|T 2

n,j(x)| |T̃n,j(x)|dσj(x)
|Wn,j(x)|

) 1
2nj

= e−ηj .

These relations are completely similar to those obtained for the linear case

(see (13) and (14)). On the other hand, Wn,j satisfies the orthogonality

relations (29). We can apply once more Lemma 4 obtaining that, for each j =

1, . . . , m, νm+j is the unique equilibrium measure for the extremal problem

(34) V νm+j (x)− pj

1 + pj
V νj (x)−

∑

k 6=j

pk

2(1 + pj)
V νk(x) ≥ ηm+j , x ∈ ∆0 ,

with equality for all x ∈ supp(νm+j). These relations differ from those ob-

tained for the linear case (see (17))

If we look at the matrix corresponding to this system of equations we

see that it is not symmetric. Let us rewrite the system as follows. Multiply

equations (32) times 2p2
j and we obtain for each j = 1, . . . , m,

(35)

2p2
jV

νj (x)+
∑

k 6=j

pjpkV
νk(x)−pj(1+pj)V νm+j (x) ≥ 2ηjp

2
j = wj , x ∈ ∆j ,
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with equality for all x ∈ supp(νj). With equations (34) we have to work

harder. First, let us multiply them times 2(1 + pj) thus obtaining for each

j = 1, . . . , m,

(36) −2pjV
νj (x)−

∑

k 6=j

pkV
νk(x) + 2(1 + pj)V νm+j (x) ≥

2ηm+j(1 + pj) = η′m+j , x ∈ ∆0 ,

with equality for all x ∈ supp(νm+j).

Let us show that in this second group of equations we have equality for all

x ∈ ∆0 (supp(νm+j) = ∆0). In fact, notice that 2(1 + pj)νm+j is a measure

on ∆0 of total mass equal to 2(1 + pj). On the other hand

2pjνj +
∑

k 6=j

pkνk

is a measure of total mass pj +
∑m

k=1 pk = 1 + pj < 2(1 + pj) supported on

the set ∪m
k=1∆k which is disjoint from ∆0. Therefore,

2(1 + pj)νm+j = (2pjνj +
∑

k 6=j

pkνk)′ + (1 + pj)ω∆0 ,

where (·)′ denotes the balayage onto ∆0 of the indicated measure and ω∆0

is the equilibrium measure on ∆0 (without external field). Since these two

measures are supported on all ∆0 so is their sum. Thus, supp(νm+j) = ∆0 .

The idea now is to take row transformations on the system of equations

(36) to transform it conveniently. The matrix of this system of equations is




−2p1 −p2 · · · −pm 2(1 + p1) 0 · · · 0

−p1 −2p2 · · · −pm 0 2(1 + p2) · · · 0
...

...
. . .

...
...

...
. . .

...

−p1 −p2 · · · −2pm 0 0 · · · 2(1 + pm)




.

Since each column has a common factor we will carry out the operations

without the common factor and afterwards place them back. Thus in columns
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k = 1, . . . , m we factor out −pk and in columns k = m+1, . . . , 2m we factor

out 2(1 + pk−m), respectively. The resulting matrix is



2 1 · · · 1 1 0 · · · 0

1 2 · · · 1 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

1 1 · · · 2 0 0 · · · 1




=
(
B I

)
,

where I denotes the identity matrix of order m. We know that the submatrix

B is positive definite and through row operations can be reduced to the

identity. This is the same as multiplying
(
B I

)
on the left by B−1. Doing

this we obtain the block matrix
(
I B−1

)
.

It is easy to check that

B−1 =
1

m + 1




m −1 . . . −1

−1 m . . . −1
...

...
. . .

...

−1 −1 · · · m




.

Multiplying back the factors we extracted we obtain the matrix



−p1 0 · · · 0 2m(1+p1)
m+1

−2(1+p2)
m+1 · · · −2(1+pm)

m+1

0 −p2 · · · 0 −2(1+p1)
m+1

2m(1+p2)
m+1 · · · −2(1+pm)

m+1
...

...
. . .

...
...

...
. . .

...

0 0 · · · −pm
−2(1+p1)

m+1
−2(1+p2)

m+1 · · · 2m(1+pm)
m+1




.

Therefore, the system of equations (36) is equivalent to

(37) −pjV
νj (x) +

2m(1 + pj)
m + 1

V νm+j (x)−

∑

k 6=j

2(1 + pk)
m + 1

V νm+j (x) = η
′′
m+j , x ∈ ∆0 ,

where

(η
′′
m+1, . . . , η

′′
2m)t = B−1(η′m+1, . . . , η

′
2m)t.
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Finally, multiply the jth equation in (37) times (1 + pj) to obtain

(38) −pj(1 + pj)V νj (x) +
2m(1 + pj)2

m + 1
V νm+j (x)−

∑

k 6=j

2(1 + pk)(1 + pj)
m + 1

V νm+j (x) = η
′′
m+j(1 + pj) = wm+j , x ∈ ∆0 .

The system of equilibrium problems defined by (35) and (38) has the inter-

action matrix

C2 =


 C1,1 C1,2

C2,1 C2
2,2




defined in Section 1. Thus, the corresponding equilibrium problem has at

least one solution given by (ν1, . . . , νm). According to Lemma 1, (ν1, . . . , νm)

is uniquely determined if we prove that C2 is positive definite.

Let us show that C2 is positive definite. The first m principal minors of

C1 and C2 coincide and we already know that they are positive. Let C(j)
2

denote the principal minor of C2 of order j where j ∈ {m + 1, . . . , 2m}. For

each k = 1, . . . , m, factor out pk from the kth row and kth column of C(j)
2 .

From the row and column m + k, k = 1, . . . , j −m, factor out 1 + pk. In the

resulting determinant, for each k = 1, . . . , j − m, add the kth row to the

(m+k)th row and then to the resulting determinant add the kth column to

the (m + k)th column. We obtain

det(C(j)
2 ) = [p1 · · · pm(1 + p1) · · · (1 + pj−m)]2×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 · · · 1 1 1 · · · 1

1 2 · · · 1 1 1 · · · 1
...

...
. . .

...
...

...
. . .

...

1 1 · · · 2 1 1 · · · 1

1 1 · · · 1 2m
m+1

m−1
m+1 · · · m−1

m+1

1 1 · · · 1 m−1
m+1

2m
m+1 · · · m−1

m+1
...

...
. . .

...
...

...
. . .

...

1 1 · · · 1 m−1
m+1

m−1
m+1

... 2m
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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In the determinant above, delete the row m+1 from the following ones and

in the resulting determinant add to the column m + 1 those after it and we

get ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 · · · 1 j −m 1 · · · 1

1 2 · · · 1 j −m 1 · · · 1
...

...
. . .

...
...

...
. . .

...

1 1 · · · 2 j −m 1 · · · 1

1 1 · · · 1 (m+1)+(j−m)(m−1)
m+1

m−1
m+1 · · · m−1

m+1

0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 · · · 1 j −m

1 2 · · · 1 j −m
...

...
. . .

...
...

1 1 · · · 2 j −m

1 1 · · · 1 j −m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 · · · 1 0

1 2 · · · 1 0
...

...
. . .

...
...

1 1 · · · 2 0

1 1 · · · 1 (m+1)−2(j−m)
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(j −m) + (m + 1)− 2(j −m) = 2m + 1− j > 0 .

With this we conclude the proof. ¤
We are ready to prove Theorem 2.

Proof of Theorem 2. From (28) the asymptotic behavior of σ̂j(z) −
Sn,j(z)
Tn(z) can be expressed in terms of that of the sequences of polynomials

Wn,j , Tn,j , and ζn,j , where

1
ζ2
n,j

= mı́n

{∫
|Q(x)|2 |T̃n,j(x)|dσj(x)

|Wn,j(x)| : Q(x) = xnj + · · ·
}

=
∫
|Tn,j(x)|2 |T̃n,j(x)|dσj(x)

|Wn,j(x)| .

On account of Theorem 4, we have

(39) ĺım
n∈Λ

|Wn,j(z)|1/|n| = exp{−(1 + pj)V µm+j (z)} ,
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uniformly on compact subsets of C \∆0, and

(40) ĺım
n∈Λ

|T 2
n,j(z)|1/|n| = exp{−2pjV

µj (z)} ,

uniformly on compact subsets of C \∆j , where µ = µ(C2). Using (33), we

have

(41) ĺım
n∈Λ

(
1

ζ2
n,j

)1/|n|
= exp{−2pjηj} = exp{−wj/pj} .

Combining (28), (39), (40), and (41), we obtain that (4) holds true uniformly

on compact subsets of the indicated region. ¤

4. Comments on Lemma 1

Let M(Fk), k = 1, . . . , N, be the class of all finite Borel measures on

M(Fk) and

M = M(F1)× · · · ×M(FN ) .

Given a real, symmetric, positive definite matrix C = (cj,k) of order N, define

the mutual energy of two vector measures µ1, µ2 ∈M by

(42) J(µ1, µ2) =
N∑

j,k=1

∫ ∫
cj,k ln

1
|z − x|dµ1

j (z)dµ2
k(x).

The energy of the vector measure µ ∈M is

(43) J(µ) =
N∑

j,k=1

cj,kI(µj , µk) ,

where

(44) I(µj , µk) =
∫ ∫

ln
1

|z − x|dµj(z)dµk(x) .

For µ ∈ M define the combined potentials Wµ
j , j = 1, . . . , N, as in the

introduction, and the vector potential Wµ = (Wµ
1 , . . . ,Wµ

N ). These formulas

may be rewritten as

(45) J(µ1, µ2) =
∫

Wµ2
(z)dµ1(z) ,
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where
∫

Wµ2
(z)dµ1(z) =

m∑

i=1

∫
Wµ2

i (z)dµ1
i (z) ,

and

(46) J(µ) =
∫

Wµ(z)dµ(z) .

If µ, µ1, µ2 ∈ E are vector charges whose components have finite energy, the

energy J(µ) of µ and the mutual energy J(µ1, µ2) of µ1, µ2 can be defined

analogously by formulas (43) and (42), respectively.

In Proposition 5.4.2 of [3], using a unitary decomposition of C, the authors

prove that J(·) defines a nonsingular positive definite quadratic form on the

linear space E . (Here, the condition cj,k ≥ 0 when Fj ∩ Fk 6= ∅, j, k ∈
{1, . . . , N} on the coefficients of C is not needed.) Therefore, if there is a

vector measure µ1 ∈ M1, J(µ1) < ∞, which minimizes the functional J(·)
on M1, it is unique (see, for example, Theorem 5.3.1 in [3]). If cj,k ≥ 0 when

Fj ∩ Fk 6= ∅, j, k ∈ {1, . . . , N} the functional J(·) is lower semicontinuous in

the weak star topology of M (see Proposition 5.4.1 in [3]). Consequently,

the functional J(·) attains its minimum in M1.

Let 0 ≤ ε ≤ 1 and µ1, µ2 ∈ M1. Assume that the components of µ1, µ2

have finite energy. Set µ̃ = εµ2 +(1− ε)µ1 ∈M1. It is algebraically straight-

forward to verify that

(47) J(µ̃)− J(µ1) = ε2J(µ2 − µ1) + 2ε
∫

Wµ1
(x)d(µ2 − µ1)(x) .

Assume that µ1 minimizes J(·) on M1. Dividing by ε and letting ε tend to

zero, it follows that

(48)
∫

Wµ1
(x)d(µ2 − µ1)(x) ≥ 0.

for all µ2 ∈M1. Reciprocally, assume that (48) takes place for all µ2 ∈M1,

then using (47) with ε = 1 it follows that µ1 minimizes the energy functional

since J(µ2 − µ1) ≥ 0 for all µ1, µ2 ∈ E .
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Now, let µ ∈ M1 be a solution of the equilibrium potential problem

determined by C on the system of intervals Fj , j = 1, . . . , N . That is

Wµ
j (x) = wµ

j , x ∈ supp(µj) ,

where wµ
j = ı́nf{Wµ

j (x) : x ∈ Fj}. Hence, for all µ ∈M1,

∫
Wµ(x)d(µ− µ)(x) =

N∑

j=1

∫
Wµj (x)d(µj − µj)(x) ≥

N∑

j=1

wµ
j − wµ

j = 0

and it follows that µ minimizes the energy functional. With this we conclude

the comments on Lemma 1.
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